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A MULTI–POINT DEGENERATE INTERPOLATION

PROBLEM FOR GENERALIZED SCHUR FUNCTIONS

VLADIMIR BOLOTNIKOV

(Communicated by S. McCullough)

Abstract. The Nevanlinna-Pick-Carathéodory-Fejér interpolation problem with finitely many in-
terpolation conditions is considered in the class Sκ of meromorphic functions f with κ poles
inside the unit disk D and with ‖ f‖L∞(T) � 1 . Necessary and sufficient conditions for the exis-
tence and for the uniqueness of a solution are given in terms of the Pick matrix P of the problem
explicitly determined from interpolation data. In particular it is shown that the problem admits
infinitely many solutions if and only if κ is not less than the number of nonpositive eigenvalues
of P . For κ equal to the number of nonpositive eigenvalues of P , we describe the solution set
of the problem. Also we present necessary and sufficient conditions for the existence of a mero-
morphic function with a given pole multiplicity satisfying interpolation conditions and having
the minimal possible L∞ -norm on the unit circle T .

1. Introduction

Let S denote the Schur class of analytic functions mapping the open unit disk D

into the closed unit disk D . The functions f from this class are characterized by the
property that the associated kernel

Kf (z,ζ ) :=
1− f (z) f (ζ )

1− zζ
(1.1)

is positive on D×D which implies that for every choice of an integer k � 0 and of two
k -tuples z = (z1, . . . ,zk) ∈ Dk and n = (n1, . . . ,nk) ∈ Nk , the Schwarz-Pick matrix

P f
n (z) =

⎡⎢⎢⎣
⎡⎢⎣ 1

�!r!
∂ �+r

∂ z�∂ζ
r

1− f (z) f (ζ )

1− zζ

∣∣∣∣∣ z = zi

ζ = z j

⎤⎥⎦
r=0,...,n j−1

�=0,...,ni−1

⎤⎥⎥⎦
k

i, j=1

(1.2)

is positive semidefinite. In fact, it is positive definite unless f is a Blaschke product
of degree κ < |n| := n1 + . . . + nk in which case rankPf

n (z) = κ . It is convenient to
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represent Pf
n (z) in the block-matrix form Pf

n (z) =
[
Pf

i j

]k

i, j=1
and the straightforward

differentiation in (1.2) gives

[
Pf

i j

]
�,r

=
min{�,r}
∑
s=0

(�+ r− s)!
(�− s)!s!(r− s)!

zr−s
i z �−s

j

(1− zi z j)�+r−s+1 (1.3)

−
�

∑
α=0

r

∑
β=0

min{α ,β}
∑
s=0

(α +β − s)!
(α− s)!s!(β − s)!

zβ−s
i zα−s

j f�−α(zi) fr−β (z j)

(1− zi z j)α+β−s+1

where we have set f j(zi) := f ( j)(zi)/ j! . We then observe that the Schwarz-Pick matrix

Pf
n (z) is the same for every function f analytic at z1, . . . ,zk and such that

f ( j)(zi)
j!

= ci, j for i = 1, . . . ,k; j = 0, . . . ,ni−1 (1.4)

for some preassigned complex numbers ci j . Upon substituting (1.4) into (1.3) we con-
clude that this matrix can be written as

Pn = [Pi j]ki, j=1 (1.5)

where the ni×n j blocks Pi j are defined entry-wise by

[Pi j]�,r =
min{�,r}
∑
s=0

(�+ r− s)!
(�− s)!s!(r− s)!

zr−s
i z �−s

j

(1− zi z j)�+r−s+1 (1.6)

−
�

∑
α=0

r

∑
β=0

min{α ,β}
∑
s=0

(α +β − s)!
(α− s)!s!(β − s)!

zβ−s
i zα−s

j ci,�−αc j,r−β
(1− zi z j)α+β−s+1

.

The positivity of Schwarz-Pick matrices associated to Schur-class functions gives the
necessity part in the following well-known Nevanlinna-Pick type theorem.

THEOREM 1.1. There exists a Schur-class function f subject to interpolation
conditions (1.4) if and only if the matrix Pn defined in (1.5), (1.6) is positive semidefi-
nite. Moreover:

1. If Pn is positive definite, then there are infinitely many functions f ∈ S subject
to conditions (1.4) which can be parametrized by a linear fractional formula with
free parameter running through the class S .

2. If Pn � 0 is singular, then there is a unique f ∈ S subject to (1.4) and this
unique f is a Blaschke product of degree equal to the rank of Pn .

The matrix Pn completely determined by formulas (1.5), (1.6) from the data set

{zi, ni, ci, j : j = 0, . . . ,ni−1; i = 1, . . . ,k} (1.7)
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of interpolation problem (1.4) is called the Pick matrix of the problem. It is not hard to
verify that it is Hermitian (by construction). Let us observe that the problem of finding
a Schur-class function with preassigned Taylor coefficients at prescribed points is a
combination of the classical Nevanlinna-Pick problem (where ni = 1 for i = 1, . . . ,k )
and of the Carathéodory-Fejér problem (where k = 1).

NOTATION. Before to move on, we fix the following notation.

1. Bκ – the set of all Blaschke products of degree κ .

2. Bp/Bq – the set of all coprime quotients g = b/θ with b ∈ Bp and θ ∈ Bq .

3. π(P) , ν(P) , δ (P) – respectively the numbers of positive, negative and zero
eigenvalues, counted with multiplicities, of a Hermitian matrix P .

In case Pn has negative eigenvalues, there are no Schur-class functions satisfying con-
ditions (1.4); however the latter conditions can be satisfied by generalized Schur func-
tions. Following [15], we define the generalized Schur class Sκ to be the set of all
meromorphic functions of the form

f (z) =
s(z)
b(z)

(1.8)

where the numerator s ∈ S and the denominator b ∈ Bκ have no common zeros.
Formula (1.8) is called the Krein-Langer representation of a generalized Schur function
f ; the entries s and b are defined by f uniquely up to a unimodular constant. Via
nontangential boundary limits, the Sκ -functions can be identified with the functions
from the unit ball of L∞(T) which admit meromorphic continuation inside the unit disk
with the total pole multiplicity equal κ . The problem of finding functions f ∈ Sκ
analytic and with preassigned Taylor coefficients at prescribed points of the unit disk
will be denoted by IPκ :

IPκ : Given data as in (1.7) and given an integer κ � 0 , find all functions f ∈Sκ
(if exist) which are analytic at zi and satisfy interpolation conditions (1.4).

The problem IP0 is handled in Theorem 1.1. The main objective of this paper is to
get an analog of Theorem 1.1 (that is to obtain the existence and the uniqueness criteria
for solutions in terms of the associated Pick matrix Pn ) in case κ � 0. An immediate
necessary condition for the existence of a solution is that κ � ν(Pn) . Indeed, the class
Sκ can be alternatively defined as the class of functions f meromorphic on D and
such that the associated kernel (1.1) has κ negative squares on ρ( f ) , the domain of
analyticity of f . Therefore, for every f ∈ Sκ , the Schwarz-Pick matrix Pf

n (z) defined
in (1.2) has at most κ negative eigenvalues and since Pf

n (z) = Pn for every solution f
to the problem IPκ , condition κ � ν(Pn) follows.

To formulate our first result we need one more definition. For two tuples n and m
in Zk

+ , we will say that

m = (m1, . . . ,mk) � (n1, . . . ,nk) = n if mi � ni for i = 1, . . . ,k.
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For a matrix Pn decomposed in blocks as in (1.5) and a tuple m � n as above, de-
fine the principal submatrix Pm = [(Pm)i j]

k
i, j=1 of Pn whose block entries (Pm)i j ’s are

equal to the leading mi ×mj submatrices of the corresponding blocks in Pn (the null-
dimensional conventions for mi = 0 are clear):

Pm = [(Pm)i j]
k
i, j=1 where (Pm)i j =

[
Imi 0

]
Pi j

[
Imj

0

]
. (1.9)

The matrices Pm of the form (1.9) are quite special principal submatrices of P ; how-
ever, we will call them just “principal submatrices”, since principal submatrices of other
types will never show up in this paper.

DEFINITION 1.2. We will say that Pn of the form (1.5), (1.6) is n-saturated if
for every m � n such that |m| := m1 + . . .+mk = rank(Pn) , the submatrix Pm of Pn is
invertible.

THEOREM 1.3. Let Pn be the Pick matrix of the problem IPκ . Then

1. The problem has infinitely many solutions if and only if

κ � ν(Pn)+ δ (Pn). (1.10)

2. The problem has a unique solution if and only if κ = ν(Pn) and Pn is singular
and n-saturated. This unique solution belongs to Bπ(Pn)/Bν(Pn) .

3. Otherwise, the problem has no solutions.

The problem IPκ and its matrix-valued generalizations have been studied exten-
sively in recent years; the list of earlier major publications include [1, 3, 4, 5, 12, 16, 19].
Most of the authors considered the nondegenerate case where Pn is invertible (i.e.,
δ (Pn) = 0). In this case Theorem 1.3 reads:

THEOREM 1.4. If δ (Pn) = 0 , then the problem IPκ has infinitely many solutions
if κ � ν(Pn) and it has no solutions otherwise.

The degenerate problem was studied so far for two particular cases. The case of
simple interpolation nodes (i.e., ni = 1 for i = 1, . . . ,k ) appears in [9] and earlier in
[20] (in the context of a related to Sκ class Nκ of generalized Nevanlinna functions).
In this case Pn being saturated means that every d × d principal submatrix of Pn is
invertible where d = rank(Pn) . The single-point problem (i.e., k = 1) appears in [2]
and earlier in [13]. In this context, Pn being saturated means that the d × d principal
submatrix of Pn is invertible where d = rank(Pn) ; the latter is easily checked. The next
theorem shows that even in the general multi-point case, there is a simple test to verify
that a structured matrix of the form (1.5), (1.6) is n-saturated.

THEOREM 1.5. Let Pn be of the form (1.5), (1.6) and let r = rank(Pn) . Then Pn
is n-saturated if and only if at least one principal submatrix Pm of Pn with |m|= r+1
and rank(Pm) = r , is m-saturated.
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According to this theorem, in order to verify that Pn is n-saturated, it suffices to
pick any principal submatrix Pm of Pn with |m|= r+1 and rank(Pm) = r and to verify
invertibility of its r× r principal submatrices P���� where ���� � m and |����| = |m|−1 (the
total number of such submatrices does not exceed k ). Theorems 1.3 and 1.5 will be
proved in Section 4.

Another issue discussed in the paper is the parametrization of all solutions of
the problem IPκ for each fixed κ subject to inequality (1.10). In the nodegenerate
case such a parametrization can be given in terms of a linear fractional transformation
with the parameter running through the generalized Schur class Sκ−ν(Pn) and satisfy-
ing certain mild restrictions which will be recalled in Theorem 3.1 below. In fact all
known methods working for the classical Schur-class interpolation problem IP0 can
be modified to the indefinite setting of the nondegenerate IPκ for κ > 0. In [14], a
suitable degenerate modification of the Krein-Langer method of generalized resolvents
was applied to show that the solution set of the Nevanlinna-Pick problem for gener-
alized Nevanlinna functions f ∈ Nκ whose Pick matrix is singular and saturated (in
our present terminology), can be parametrized by a linear fractional formula. This re-
markable result has certain deficiencies from computational point of view. One of the
entries (coefficients) in the linear fractional formula is given in terms of certain defect
elements of a symmetric operator associated to the data set of the problem and the ex-
plicit formula is obtained only in case δ (Pn) = 1. On the other hand, the parameters in
the parametrizing formula vary over certain subset of Nκ−ν(Pn) and it is not clear how
to generate effectively the functions from this subset.

In [9] we used the Schur reduction method to reduce the degenerate (not necessar-
ily “saturated”) Nevanlinna-Pick problem for generalized Schur functions to a similar
problem with fewer interpolation conditions and with the Pick matrix equal to the zero
matrix. This allowed us to parametrize the solution set of the original problem in terms
of a family of linear fractional transformations with disjoint ranges. On this way, we
got very explicit formulas for coefficient functions and parameters varying over the
whole generalized Schur class Sκ−ν(Pn)−δ (Pn) . It can be shown that the same approach
handles the problem IPκ with ni � 2 for i = 1, . . . ,k . In Section 3 the Schur reduc-
tion will be applied to the general IPκ (Theorem 3.5). Although this reduction is not
that efficient in the general framework, the results obtained in Section 3 will imply
parts (2) and (3) in Theorem 1.3. To prove part (1), it suffices to find numbers ci j for
j = ni, . . . ,ni + �i − 1 and i = 1, . . . ,k so that the Pick matrix Pn+���� of the extended
interpolation problem with interpolation conditions

f ( j)(zi) = j!ci, j (i = 1, . . . ,k; j = 0, . . . ,ni + �i−1) (1.11)

is invertible and has ν(Pn)+ δ (Pn) negative eigenvalues. Then the desired statement
will follow from the nondegenerate result in Theorem 1.4. In the next section we will
show that such an extension always exists. Moreover, in Section 5 we will describe
all extended interpolation problems of the form (1.11) with invertible Pick matrices
having ν(Pn)+ δ (Pn) negative eigenvalues so that the disjoint union of their solution
sets will be equal to the solution set of the original problem IPκ for κ = ν(Pn)+δ (Pn) .
Finally, in Section 6 we will discuss the existence of solutions of the problem IPκ with
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the minimal possible L∞ -norm.

2. Structured extensions of Pick matrices

Let us associate with the given tuples n = (n1, . . . ,nk) and z = (z1, . . . ,zk) the
matrices

Tn =

⎡⎢⎣ Jn1(z1)
. . .

Jnk(zk)

⎤⎥⎦ and En =

⎡⎢⎣En1
...

Enk

⎤⎥⎦ , (2.1)

where we denote by Jn(z) and En respectively the n× n Jordan block with z ∈ C on
the main diagonal and the vector of the length n with the first coordinate equals one
and other coordinates equal zero:

Jn(z) =

⎡⎢⎢⎢⎢⎣
z 0 . . . 0

1 z
. . .

...
. . .

. . . 0
0 1 z

⎤⎥⎥⎥⎥⎦ , En =

⎡⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎦ . (2.2)

The numbers ci j from (1.7) will be arranged in the column

Cn =

⎡⎢⎣C1,n1
...

Ck,nk

⎤⎥⎦ , where Ci,ni =

⎡⎢⎣ ci,0
...

ci,ni−1

⎤⎥⎦ (2.3)

for which we will use a more compact notation Cn = Col1�i�k Col0� j�ni−1 ci, j . The
Pick matrix Pn defined in (1.5), (1.6) might be introduced in a more compact (but less
explicit) way as a unique matrix satisfying the Stein identity

Pn−TnPnT
∗
n = EnE

∗
n −CnC

∗
n. (2.4)

Verification of (2.4) for the Pn of the form (1.5), (1.6) is straightforward, while the
uniqueness follows since all the eigenvalues of Tn are in D . The tuple z = (z1, . . . ,zk)∈
Dk is fixed throughout the paper, so the matrix Tm and the vector Em are defined by
formulas (2.1), (2.2) for every tuple m ∈ Zk

+ . Furthermore, the spectrum of Tm is a
subset of {z1, . . . ,zk} ⊂ D and therefore, for every vector

Bm = Col1�i�k Bi,mi = Col1�i�k Col0� j�mi−1 bi, j ∈ C
|m|, (2.5)

the Stein equation
S−TmST ∗

m = EmE∗
m −BmB∗

m (2.6)

has a unique solution S which will be denoted by S(Bm) (notation makes sense, since
the matrix is uniquely determined by m and Bm ). The Stein identity (2.6) (some-
times referred to as to the displacement rank identity) imposes certain structure on S
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for which reason such matrices are often called the structured matrices. The explicit
formula for S(Bm) in terms of Bm and z is similar to (1.6). In what follows, the matrix
S = S(Bm) and the vector Bm will be called associated to each other. In this notation,
the Pick matrix Pn of the problem IPκ equals S(Cn) and the principal submatrix Pm
defined in (1.9) is just S(Cm) , where Cm is defined via formula (2.3) for a tuple m� n .
Structured extensions of Pn are defined as follows: given a tuple ���� = (�1, . . . , �k) ∈ Z

k
+ ,

let us extend the vector Cn to

Cn+���� = Col1�i�k Col0� j�ni+�i−1 ci, j (2.7)

and define Pn+���� to be S(Cn+����) . Clearly, Pn is a principal submatrix of Pn+���� which in
turn, is the Pick matrix of the extended interpolation problem (1.11). For the reason
explained in the previous section, we desire to show that given a matrix Pn = S(Cn)
always admits a structured invertible extension Pn+���� with ν(Pn+����) = ν(Pn)+ δ (Pn) .
This will be done in Theorem 2.13 below. To control inertia of structured extensions,
it is also desired to have explicit formulas for inertia of the matrix S(Bm) in terms of
the associated vector Bm . Such formulas were obtained in [7] for quite special Bm and
S(Bm) .

DEFINITION 2.1. We will say that the matrix P = S(Bm) is m-singular if for
every k � m the submatrix S(Bk) of P is singular.

Characterization of m-singular matrices in terms of the associated vectors is given
below (see [7, Proposition 2.1] for the proof).

THEOREM 2.2. Let Bm be of the form (2.5). Then the matrix S(Bm) is m-
singular if and only if

b1,0 = b2,0 = . . . = bk,0 = γ, |γ| = 1 (2.8)

and
bi, j = 0 for every i = 1, . . . ,k and 1 � j �

[mi

2

]
,

where [a] stands for the greatest integer less than or equal to a ∈ R .

For Bm of the form (2.5), let ri(Bm) be the index of the first nonzero entry in the
block Bi,mi other than the top one:

ri(Bm) = min{ j ∈ {1, . . . ,mi −1} : bi, j �= 0}. (2.9)

We extend this definition to the cases where mi � 1 or where bi, j = 0 for all j =
1, . . . ,mi −1 just by letting ri(Bm) = mi . We then introduce the tuple

r(Bm) = (r1(Bm), . . . ,rk(Bm)) ∈ Z
k
+

and let as usual, |r(Bm)| :=∑k
i=1 r1(Bm) . Another result from [7] (see Theorem 2.2 and

Corollary 2.3 there) relates the numbers (2.9) to inertia of S(Bm) .
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THEOREM 2.3. Let m = {m1, . . . ,mk} ∈ Zk
+ , let the entries bi,0 of the vector Bm

(2.5) satisfy (2.8) and let us assume that

ri(Bm) � mi

2
for i = 1, . . . ,k, (2.10)

where the numbers ri(Bm) are defined in (2.9). Let S(Bm) be the matrix associated
with Bm . Then

π(S(Bm)) = ν(S(Bm)) = |m|− |r(Bm)| and δ (S(Bm)) = 2|r(Bm)|− |m|.

Furthermore, for each one of the ni×ni diagonal blocks Sii of S(Bm) = [Si j]
k
i, j=1 , we

have
π(Sii) = ν(Sii) = mi − ri(Bm) and δ (Sii) = 2ri(Bm)−mi. (2.11)

REMARK 2.4. Theorem 2.2 states that S(Bm) is m-singular if and only if con-
ditions (2.8) are satisfied and ri(Bm) > mi

2 for every i such that mi > 0. Therefore,
Theorem 2.3 applies in particular, to m-singular matrices.

In Proposition 2.12 below we will get an analog of Theorem 2.3 for structured
matrices S(Bm) with no restrictions (2.8) and (2.10) imposed (to an extent fitting the
objectives of this paper). As we will show, the general case reduces to the m-singular
one via standard Schur complement arguments. In the following subsection we discuss
the Schur complements of structured matrices S(Bm) in some detail.

2.1. Schur complements

Let Pn = S(Cn) be a unique solution of the Stein equation (2.4), let d =(d1. . . . ,dk)
∈ Z

k
+ be a tuple such that d � n and let Pd be a principal submatrix of Pn defined

according to (1.9). Let U be the |n| × |n| permutation matrix defined by U =
[
U1

U2

]
where U1 and U2 are diagonal block matrices with the i-th diagonal blocks

U1,i =
[
Idi 0

] ∈ C
di×ni and U2,i =

[
0 Ini−di

] ∈ C
(ni−di)×ni . (2.12)

Then it is easily verified that

UPnU
∗ =

[
Pd Ψ∗
Ψ Γ

]
and UTnU

∗ =
[
Td 0
R Tn−d

]
(2.13)

where the matrices Td and Tn−d are defined via formula (2.1) and where R is the
diagonal block matrix with the diagonal blocks

Ri =

⎡⎢⎢⎢⎣
0 . . . 0 1
0 . . . 0 0
...

...
...

0 . . . 0 0

⎤⎥⎥⎥⎦ ∈ C
(ni−di)×di , i = 1, . . . ,k.
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The first formula in (2.13) means that the permutation U ensembles the submatrix Pd
in the left upper corner of Pn . If we decompose the vectors Eni and Ci,ni from (2.1)
and (2.3) conformally with (2.13) as

Ci,ni =
[
Ci,di

C̃i

]
, Eni =

[
Edi

Ẽi

]
for i = 1, . . . ,k

and define the columns C̃ = Col1�i�k C̃i and Ẽ = Col1�i�k Ẽi then it is readily seen that

UCn =
[
Cd

C̃

]
, UEn =

[
Ed

Ẽ

]
. (2.14)

Multiplying both parts in (2.4) by U on the left and by U∗ on the right and making use
of (2.13), (2.14) we get[

Pd Ψ∗
Ψ Γ

]
−
[
Td 0
R Tn−d

][
Pd Ψ∗
Ψ Γ

][
T ∗
d R∗
0 T ∗

n−d

]
=
[
Ed

Ẽ

][
E∗

d Ẽ∗]−[
Cd

C̃

][
C∗

d C̃∗]
which amounts to

Pd = S(Cd), Ψ−Tn−dΨT ∗
d −RPdT

∗
d = ẼE∗

d − C̃C∗
d, (2.15)

Γ−Tn−dΓT ∗
d −RPdR

∗ −Tn−dΨR∗ −RΨT ∗
n−d = ẼẼ∗ − C̃C̃∗. (2.16)

If Pd is invertible, then the matrix

Sn−d := Γ−Ψ∗P−1
d Ψ

is called the Schur complement of Pd in Pn . The matrix Sn−d can be decomposed in
blocks

Sn−d = [Si j]
k
i, j=1 with Si j ∈ C

(ni−di)×(n j−d j). (2.17)

If di = ni , then the blocks Si j and S ji in (2.17) are null-dimensional; however, for the
sake of uniformity, we will keep the k×k -block structure of Sn−d disregarding in what
follows, equalities of null-dimensional matrices as trivial. Also it is convenient to break
the index set I = {1, . . . ,k} into

I0 = {i ∈ I : di = ni} and I1 = {i ∈ I : di < ni}, (2.18)

so that all positive-dimensional blocks Si j in (2.17) correspond to i, j ∈ I1 . The next
proposition asserting that Schur complements preserve the structure imposed by Stein
identities is well known.

PROPOSITION 2.5. Let Pd be an invertible principal submatrix of Pn . Then its
Schur complement Sn−d satisfies the Stein identity

Sn−d −Tn−dSn−dT ∗
n−d = Gn−dG∗

n−d−Yn−dY
∗
n−d, (2.19)
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where the vectors

Gn−d = Col1�i�k Col0� j�ni−di−1 gi, j and Yn−d = Col1�i�k Col0� j�ni−di−1 yi, j (2.20)

are defined in terms of decompositions (2.13), (2.14) as

Gn−d = Ẽ +
(
R− (I−Tn−d)ΨP−1

d

)
(I−Td)−1Ed,

Yn−d = C̃+
(
R− (I−Tn−d)ΨP−1

d

)
(I−Td)−1Cd.

(2.21)

For the proof, it suffices to multiply both parts of identity (2.4) by the matrix[−ΨP−1
d I

]
on the left, by its adjoint on the right and then to invoke relations (2.15),

(2.16); computations are long but quite straightforward (see e.g., [11, Theorem 2.5] for
details).

REMARK 2.6. Let us assume that Pd is invertible and apply formulas (2.21) to
a tuple m such that d � m � n to define the vectors Gm−d and Ym−d (note that in
this formula, the entries Ẽ , C̃ , Ψ and R depend on the tuple m). Due to the Jordan
structure of Tn and Tm , it is readily seen from formulas (2.21) that Gm−d and Ym−d
are “structured subvectors” of Gn−d and Yn−d respectively:

Gm−d = Col1�i�k Col0� j�mi−di−1 gi, j = [Gn−d]m−d,

Ym−d = Col1�i�k Col0� j�mi−di−1 yi, j = [Yn−d]m−d.

The top entries gi,0 and yi,0 from the block entries of Gn−d and Yn−d will play a
special role in the subsequent analysis. It is helpful to have explicit formulas for them.

PROPOSITION 2.7. The formulas for the entries gi,0 and yi,0 in (2.20) are:

gi,0 =
(
ÊiPd(I−T ∗

d )+ (1− zi)ci,diC
∗
d

)
ΓiEd,

yi,0 = ci,di +
(
ÊiPd(I−T ∗

d )+ (1− zi)ci,diC
∗
d

)
ΓiCd,

if 0 < di < ni , (2.22)

and
gi,0 = 1+(1− zi)(ci,0C∗

d −E∗
d)ΓiEd,

yi,0 = ci,0 +(1− zi)(ci,0C∗
d −E∗

d)ΓiCd,
if di = 0 , (2.23)

where

Êi =
[
0 · · · 0 1 0 · · · 0

]
(2.24)

is the row of the length |d| with 1 in the (d1 + . . .+di)-th slot and where

Γi = (I− ziT
∗
d )−1P−1

d (I−Td)−1. (2.25)
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Proof. Formulas (2.21) hold for any tuple n � d . Let us apply it to n = d+ ei ,
where ei stands for the k -tuple with the i-th entry equals one and all other entries equal
zero. In this case,

Gn−d = gi,0, Yn−d = yi,0, Tn−d = zi, C̃ = ci,di (2.26)

and we can solve the second equality in (2.15) for Ψ to get

Ψ= (RPdT
∗
d + ẼE∗

d − ci,diC
∗
d)(I− ziT

∗
d )−1. (2.27)

If di > 0, then Ẽ = 0 (see (2.14)) and R = Êi which being substituted together with
(2.26) and (2.27) into (2.21) gives (2.22). Formulas (2.23) follow from (2.21) in much
the same way once we observe that if di = 0, then Ẽ = 1 and R = 0. �

Now we let Gn−d to be the block diagonal matrix with block entries equal to lower
triangular toeplitz matrices defined in terms of the entries gi, j of the vector Gn−d as

Gn−d =

⎡⎢⎣G1 0
. . .

0 Gk

⎤⎥⎦ , Gi =

⎡⎢⎢⎢⎢⎣
gi,0 0 . . . 0

gi,1 gi,0
. . .

...
...

. . .
. . . 0

gi,ni−di−1 . . . gi,1 gi,0

⎤⎥⎥⎥⎥⎦ (2.28)

and observe that

Gn−dTn−d = Tn−dGn−d and Gn−dEn−d = Gn−d, (2.29)

where the commutation relation follows due to the toeplitz structure of the diagonal
blocks Gi of Gn−d and the second relation is readily seen from definitions (2.1) and
(2.20) of En−d and Gn−d , respectively. If gi,0 �= 0 for every i ∈ I1 , then the matrix
Gn−d is invertible, in which case we let

Xn−d := G−1
n−dYn−d = Col1�i�k Col0� j�ni−di−1 xi, j ∈ C

|n−d| (2.30)

and

P̃ =
[
P̃i j

]k

i, j=1
:= G−1

n−dSn−dG−∗
n−d = G−1

n−d(Γ−ΨP−1
d Ψ∗)G−∗

n−d. (2.31)

The matrix P̃ is decomposed in blocks conformally with (2.17) so that P̃i j ∈
C(ni−di)×(n j−d j) . With a slight abuse of classical notation, we will call the matrix P̃
(along with the matrix Sn−d ) the Schur complement of Pd in Pn and we will use nota-
tion P̃ := Pn/Pd .

By construction, the matrix Pn/Pd exists if and only if Pd and Gn−d are invertible.
By the structure (2.28) of Gn−d , its invertibility is equivalent to the numbers gi,0 de-
fined in (2.22) and (2.23) be nonzero for every i ∈ I1 . The formulas (2.22) and (2.23)
are too heavy to verify inequalities gi,0 �= 0 directly. The next proposition provides
simple sufficient conditions for these inequalities to hold.
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PROPOSITION 2.8. Let Pd be invertible and let us assume that

det(Pd+ei) = 0 (2.32)

where ei is the i-th “coordinate” tuple in Zk
+ . Then |gi,0| = |yi,0| �= 0 .

Proof. As in the proof of Proposition 2.7, we apply Proposition 2.5 to the tuple
n = d+ ei . Identity (2.19) then takes the form

Sei −|zi|2Sei = |gi,0|2 −|yi,0|2, (2.33)

where Sei is the Schur complement of Pd in Pd+ei . It follows from (2.32) that Sei = 0
which together with (2.33) implies |gi,0| = |yi,0| . Let us assume that

gi,0 = yi,0 = 0. (2.34)

If di = 0, then we have from (2.23) and on account of (2.34), (2.15) and (2.25) that

0 = gi,0E
∗
d − yi,0C

∗
d

= E∗
d − ci,0C

∗
d +(1− zi)(ci,0C

∗
d −E∗

d)Γi(EdE
∗
d −CdC

∗
d)

= (ci,0C
∗
d −E∗

d) [I +(1− zi)Γi(Pd−TdPdT
∗
d )]

= (ci,0C
∗
d −E∗

d)Γi(ziI−Td)P(I−T ∗
d ). (2.35)

Since di = 0, it follows that zi �∈ spec(Td) . Therefore the matrix Γi(ziI−Td)P(I−T ∗
d )

is invertible and we conclude from (2.35) that

ci,0C
∗
d −E∗

d = 0.

But then the first formula in (2.23) gives gi,0 = 1 which contradicts (2.34). The case
where di > 0 is handled similarly: assuming (2.34) to be in force we get from (2.22)

0 = gi,0E
∗
d − yi,0C

∗
d

= −ci,diC
∗
d +

(
ÊiPd(I−T ∗

d )+ (1− zi)ci,diC
∗
d

)
Γi(EdE

∗
d −CdC

∗
d)

= −ci,diC
∗
d +

(
ÊiPd(I−T ∗

d )+ (1− zi)ci,diC
∗
d

)
Γi(Pd−TdPdT

∗
d )

= −ci,diC
∗
dΓi(ziI−Td)Pd(I−T ∗

d )+ ÊiPdΓi(Pd−TdPdT
∗
d ).

Multiplying both parts of the latter equality by (I −T ∗
d )−1P−1

d (I −Td)−1 on the right
we get

0 = −ci,diC
∗
d(I− ziT

∗
d )−1P−1

d (ziI−Td)

+ÊiPd(I− ziT
∗
d )−1 [P−1

d −T∗
d P−1

d Td
]

= (ÊiPdT
∗
d − ci,diC

∗
d)(I− ziT

∗
d )−1P−1

d (ziI−Td)+ Êi. (2.36)

Since di > 0, it follows that Td contains the nontrivial block Jdi(zi) and thus, all the
entries in the (d1 + . . . + di)-th column of the matrix ziI − Td equal zero. Then by
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definition (2.24) of Êi , the (d1 + . . .+ di)-th entry in the row vector on the right hand
side of (2.36) equals one which contradicts (2.36). Thus, equalities (2.34) cannot hold
and since |gi,0| = |yi,0| , the desired statement follows. �

For the rest of the section, we fix a tuple d = (d1, . . . ,dk) � n such that the corre-
sponding Pd is an invertible maximal submatrix of Pn in the sense that

det Pd �= 0 and det Pm = 0 for every d � m � n. (2.37)

The matrix Pn for which the only tuple d satisfying (2.37) is the zero tuple, is n-
singular (see Definition 2.1). It is clear that a maximal invertible principal submatrix
is not unique in general. We leave open the two following questions: Do all maximal
invertible principal submatrices have the same dimension (that is, does the property
(2.37) imply that det Pm = 0 for every m � n with |m| > |d|) and if yes, do they have
the same inertia?

PROPOSITION 2.9. Let Pd be a maximal invertible principal submatrix of Pn .
Then

(1) The Schur complement P̃ = Pn/Pd exists and is (n−d)-singular.

(2) The matrix P̃ satisfies the Stein identity

P̃−Tn−dP̃T ∗
n−d = En−dE

∗
n−d−Xn−dX

∗
n−d (i.e., P̃ = S(Xn−d)), (2.38)

where Xn−d is the vector given by (2.30). Furthermore,

π(P̃) = π(Pn)−π(Pd), ν(P̃) = ν(Pn)−ν(Pd), δ (P̃) = δ (Pn). (2.39)

(3) The entries xi,0 in Xn−d are subject to

xi,0 = γ (|γ| = 1) for every i ∈ I1. (2.40)

Proof. By the maximality assumption (2.37), condition (2.32) is satisfied for every
i∈I1 and therefore gi,0 �= 0 for every i∈I1 , by Proposition 2.8. Therefore the matrix
Gn−d given in (2.28) is invertible, and the matrix P̃ = Pn/Pd exists (by formula (2.31)).
Let us assume that P̃ is not (n−d)-singular, i.e., that there exists a tuple m � n−d
such that the principal submatrix P̃m of P̃ is invertible. Since G−1

n−d is block diagonal

with lower triangular diagonal blocks, it follows from (2.39) that P̃m is congruent to
the principal submatrix [Sn−d]m of Sn−d which therefore, is also invertible. Since
[Sn−d]m is the Schur complement of the block Pd in the matrix Pd+m , it then follows
that the principal submatrix Pd+m of Pn is invertible which contradicts the maximality
assumption (2.37). This completes the proof of part (1).

Multiplying the Stein identity (2.19) by G−1
n−d on the left and by its adjoint on

the right we get (2.38), due to relations (2.29) and definitions (2.30) and (2.31). Since
the matrices P̃ and Sn−d are congruent, their inertia coincide and then relations (2.39)
follow from well known formulas for inertia of the Schur complement Sn−d . This con-
pletes the proof of part (2). The last statement follows from Theorem 2.2 and Remark
2.4, since P̃ = S(Xn−d) is (n−d)-singular. �
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REMARK 2.10. The number γ from (2.40) can be defined explicitly as follows:

γ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ci,0 +(1− zi)(ci,0C∗

d −E∗
d)ΓiCd

1+(1− zi)(ci,0C∗
d −E∗

d)ΓiEd
if di = 0,

ci,di +(ÊiPd(I−T ∗
d )+ (1− zi)ci,diC

∗
d)ΓiCd

(ÊiPd(I−T ∗
d )+ (1− zi)ci,diC

∗
d)ΓiEd

if di � 1,

(2.41)

where Êi and Γi are given in (2.24), (2.25), and where i is any index from I1 .

Indeed, by definition (2.30), xi,0 = yi,0/gi,0 and formulas (2.41) follow from (2.22)
and (2.23). We next justify the existence of certain Schur complements which will
appear below.

PROPOSITION 2.11. Let Pd be a maximal invertible principal submatrix of Pn ,
let s = (s1, . . . ,sk) ∈ Zk

+ be a tuple such that si = 0 for every i ∈ I0 and let Pn+s be a
structured extension of Pn . Then

(1) The Schur complement Pd+s/Pd exists.

(2) The Schur complement Pn+s/Pd exists and extends Pn/Pd .

Proof. By Proposition 2.9, the Schur complement P̃ = Pn/Pd exists and therefore,
gi,0 �= 0 for every i∈I1 . Since we have assumed that si = 0 for every i∈I0 , it follows
that gi,0 �= 0 for every i such that si > 0, that is, for every i such that di < di + si . But
the latter condition is necessary and sufficient for the matrix Pd+s/Pd to exist.

To prove the second statement, note that the tuple s′ = (s′1, . . . ,s
′
k) := n− d + s

also satisfies s′i = 0 for every i ∈ I0 (by definition (2.18) of I0 ). Therefore, the
matrix Pd+s′/Pd = Pn+s/Pd exists, by part (1). To show that Pn+s/Pd extends Pn/Pd ,
we first apply formula (2.21) to the tuples d and n+ r to get the vectors Gn+r−d and
Yn+r−d . By Remark 2.6 applied to the tuples d � n � n+ s we conclude that Gn+s−d
and Yn+s−d extend the vectors Gn and Yn respectively:

Gn−d = [Gn+s−d]n−d, Yn−d = [Yn+s−d]n−d.

Therefore, the block diagonal matrix Gn+s−d constructed from the vector Gn+s−d via
formulas (2.28) extends the matrix Gn−d :

Gn−d = [Gn+s−d]n−d. (2.42)

Since the Schur complement Pn+s/Pd exists, the matrix Gn+s−d is invertible and we
can define the vector

Xn+s−d := G−1
n+s−dYn+s−d (2.43)

associated to Pn+s/Pd . By the lower triangular structure of diagonal blocks in Gn+s−d
and also by (2.42), we have G−1

n−d = [G−1
n+s−d]n−d . The latter formula and (2.43) imply

that Xn+s−d extends the vector Xn−d associated with Pn/Pd and therefore Pn+s/Pd =
S(Xn+r−d) extends the matrix Pn/Pd = S(Xn−d) . �
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For a maximal invertible principal submatrix Pd of Pn , we define the tuple

���� = (�1, . . . , �k), where �i := δ (Pd+(ni−di)ei
) (2.44)

and where by definition of the “coordinate” tuple ei ,

d+(ni−di)ei = (d1, . . . ,di−1,ni,di+1, . . . ,dk).

The tuple s = d + (ni − di)ei meets the conditions of Proposition 2.11 by part (2) of
which we then conclude that the Schur complement Pd+(ni−di)ei

/Pd exists. It is not

hard to see from (2.31), that this Schur complement equals the i-th diagonal block P̃ii

of P̃ = Pn/Pd . Thus, Pd+(ni−di)ei
/Pd = P̃ii and therefore,

δ (P̃ii) = �i for i = 1, . . . ,k, (2.45)

by (2.44) and Proposition 2.9. In particular,

�i � ni−di (i = 1, . . . ,k). (2.46)

We now break the set I1 from (2.18) into two parts:

I ′
1 = {i ∈ I1 : �i < ni−di} and I ′′

1 = {i ∈ I1 : �i = ni −di}, (2.47)

assigning to I ′
1 (I ′′

1 ) all indices i for which P̃ii is a nonzero matrix (the zero matrix).

PROPOSITION 2.12. Let Pd be a maximal invertible principal submatrix of Pn =
S(Cn) , so that the Schur complement P̃ = Pn/Pd exists (by Proposition 2.11) and equals
S(Xn−d) (by Proposition 2.9) where Xn−d is defined in (2.30). Let ���� ∈ Zk

+ be the tuple
defined in (2.44). Then

π(P̃) = ν(P̃) = |n−d− ����|/2, δ (P̃) = δ (P) = |����| (2.48)

and

ri(Xn−d) =
ni−di + �i

2
(i = 1, . . . ,k), (2.49)

where the integers ri(Xn−d) are defined via formula (2.9). Consequently,

ν(Pn) = ν(Pd)+ |n−d− ����|/2 and π(Pn) = π(Pd)+ |n−d− ����|/2. (2.50)

Proof. By Proposition 2.9, the matrix P̃ = S(Xn−d) is (n−d)-singular. Then it
follows by Remark 2.4 that Theorem 2.3 applies to Bm = Xn−d and gives in particular
(see the second equality in (2.11)),

δ (P̃ii) = 2ri(Xn−d)− (ni−di) for i = 1, . . . ,k.

Combining the latter formulas with (2.45) gives (2.49). Now equalities (2.48) follow
from (2.49) again by Theorem 2.3 applied to Bm = Xn−d . Finally, equalities (2.50)
follow from (2.48) and (2.39). �
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2.2. Structured extensions of the Pick matrix

We now apply the preceding results to estimate the inertia of some special struc-
tured extensions of the Pick matrix Pn .

THEOREM 2.13. Let Pd be a maximal invertible principal submatrix of Pn =
S(Cn) , let ���� ∈ Zk

+ be the tuple defined in (2.44) and let I ′
1 and I ′′

1 be defined as
in (2.47). Let Cn+���� of the form (2.7) be an extension of Cn and let Pn+���� = S(Cn+����) be
the corresponding extension of Pn . Then

1. δ (Pd+(ni−di+1)ei
) = �i−1 for every i ∈ I ′

1 .

2. For every i ∈ I ′′
1 , the number δ (Pd+(ni−di+1)ei

) equals either �i −1 or �i +1 .

3. The following are equivalent:

(a) Pn+���� is invertible, i.e., δ (Pn+����) = 0 .

(b) ν(Pn+����) = ν(Pn)+ δ (Pn) .

(c) For every i ∈ I ′′
1 , the extending number ci,ni is such that

δ (Pd+(ni−di+1)ei
) = �i−1. (2.51)

Proof. We will prove the statements of the theorem in the reversed order, thus
starting with part (3). By Proposition 2.9, the Schur complement P̃ = Pn/Pd exists
and equalities (2.39) hold. The tuple ���� defined in (2.44) meets the assumptions of
Proposition 2.11 and therefore, the Schur complement Pn+����/Pd exists and

ν(Pn+����) = ν(Pn+����/Pd)+ν(Pd), δ (Pn+����) = δ (Pn+����/Pd). (2.52)

Making subsequent use of the first relation in (2.52) and then of (2.39) we get

ν(Pn+����/Pd)−ν(P̃)− δ (P̃) = ν(Pn+����)−ν(Pd)−ν(P̃)− δ (P̃)
= ν(Pn+����)−ν(Pn)− δ (Pn). (2.53)

In order to prove the equivalence (a) ⇔ (b) , it suffices to show that

(a′) δ (Pn+����/Pd) = 0 ⇐⇒ (b′) ν(Pn+����/Pd) = ν(P̃)+ δ (P̃), (2.54)

since statements (a) and (b) are equivalent respectively to statements (a′) and (b′) ,
by (2.52) and (2.53). Let Xn−d and Xn+����−d be the vectors corresponding to P̃ and
Pn+����/Pd , respectively, so that

P̃ = S(Xn−d), Pn+����/Pd = S(Xn+����−d). (2.55)

We know from Proposition 2.11 that Xn+����−d extends Xn−d and Pn+����/Pd extends P̃ .
Equalities (2.40), (2.49) and (2.48) hold by Propositions 2.9 and 2.12. For the extended
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vector Xn−d+���� we have (by definition (2.9)), ri(Xn−d+����) � ri(Xn−d) with equality hold-
ing if and only if either i ∈ I0 ∪I ′

1 or i ∈ I ′′
1 and xi,ni−di �= 0. Then it follows from

(2.49) that
|r(Xn−d+����)| � |r(Xn)| = |n−d+ ����|/2 (2.56)

with equality holding if and only xi,ni−di �= 0 for every i∈I ′′
1 . Now we get by Theorem

2.3 (applied to Bm = Xn−d+���� ) and in view of (2.55), (2.56) and (2.48) that

ν(Pn+����/Pd) = |n−d+ ����|− |r(Xn−d+����)|
� |n−d+ ����|/2 = ν(P̃)+ δ (P̃) (2.57)

and
δ (Pn+����/Pd) = 2|r(Xn−d+����)|− |n−d+ ����| � 0 (2.58)

with equalities holding in (2.57) and (2.58) if and only xi,ni−di �= 0 for every i ∈ I ′′
1 .

This proves (2.54) and therefore, the equivalence (a) ⇔ (b) in part (3) of the theorem.
To complete the proof of part (3), it suffices to verify that condition (2.51) holds if and
only if xi,ni−di �= 0. To this end, note that Pd is the maximal invertible submatrix of
Pd+(ni−di)ei

and by Proposition 2.11 (which now applies to the tuple s = (ni − di)ei ),
the Schur complement

Pd+(ni−di+1)ei
/Pd = S(X(ni−di+1)ei

) (2.59)

exists and extends Pd+(ni−di)ei
/Pd = P̃ii = S(X(ni−di)ei

) . Since i ∈ I ′′
1 , we have P̃ii =

0 and therefore, the entries of the associated vector X(ni−di)ei
= Col0� j�ni−di−1 xi, j are

subject to
|xi,0| = 1, xi,1 = . . . = xi,ni−di−1 = 0. (2.60)

The vector X(ni−di+1)ei
extends X(ni−di)ei

by the bottom entry xi,ni−di which is either
zero or nonzero. By definition (2.9), we have

ri(X(ni−di+1)ei
) =

{
ni −di +1, if xi,ni−di = 0,

ni−di, if xi,ni−di �= 0.

Now we apply Theorem 2.3 to the matrix (2.59) and make use of equalities ni−di = �i

(by definition (2.47) of I ′′
1 ) to conclude that

δ (Pd+(ni−di+1)ei
) = δ (Pd+(ni−di+1)ei

/Pd) = δ (S(X(ni−di+1)ei
))

= 2ri(X(ni−di+1)ei
)− (ni−di +1)

=
{

�i +1, if xi,ni−di = 0,
�i−1, if xi,ni−di �= 0,

for i ∈ I ′′
1 . (2.61)

Thus, condition (2.51) holds if and only if xi,ni−di �= 0 which completes the proof of
statement (3) of the theorem. Statement (2) also follows from (2.61). Finally, if i ∈ I ′
so that �i < n1−di , then the vector X(ni−di)ei

already contains a nonzero entry (besides
xi,0 ) and therefore

ri(X(ni−di+1)ei
= ri(X(ni−di)ei

= ri(Xn−d) = (ni −di + �i)/2 (2.62)
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where the last equality follows from (2.49). Making use of (2.62) we repeat calculation
(2.61):

δ (Pd+(ni−di+1)ei
) = 2ri(X(ni−di+1)ei

)− (ni−di +1)
= (ni−di + �i)− (ni−di +1) = �i−1

which proves statement (1) and completes the proof of the theorem. �

We now use the numbers � j from (2.44) to define the tuples

����′ = ∑
i∈I ′

1

�iei and ����′′ = ∑
i∈I ′′

1

�iei, (2.63)

that is, the tuples ����′ = (�′1, . . . , �
′
k) and ����′′ = (�′′1 , . . . , �

′′
k ) where

�′i =
{

�i, if i ∈ I ′
1,

0, otherwise,
�′′i =

{
�i, if i ∈ I ′′

1 ,
0, otherwise.

(2.64)

THEOREM 2.14. Let Pd be a maximal invertible principal submatrix of Pn , let
the tuples ���� , ����′ and ����′′ be defined as in (2.44) and (2.64). Then

1. For every extension Pn+����′ of Pn ,

ν(Pn+����′) = ν(Pd)+ |n−d+ ����′ − ����′′|/2, δ (Pn+����′) = |����′′|. (2.65)

2. The matrix Pn+����′−����′′ is an invertible principal submatrix of Pn+����′ and

Pn+����′/Pn+����′−����′′ = 0. (2.66)

Proof. Define analogously to (2.63),

n′ = ∑
i∈I ′

1

niei, n′′ = ∑
i∈I ′′

1

niei, d′ = ∑
i∈I ′

1

diei, d′′ = ∑
i∈I ′′

1

diei,

and observe that by definitions (2.47) and (2.64), ����′′ = n′′ −d′′ so that

n+ ����′ − ����′′ = d+n′ −d′ + ����′.

By Proposition 2.11, the Schur complements

Pn/Pd = S(Xn−d), Pd+n′−d′/Pd = S(Xn′−d′), Pn+����′/Pd = S(Xn−d+����′)

and
Pn+����′−����′′/Pd = Pd+n′−d′+����′/Pd = S(Xn′−d′+����′)

exist and relations (2.40) hold (by the proof of Theorem 2.13). By formula (2.49),
ri(Xn−d) < ni−di for every i∈I ′

1 . Since Xn−d+����′ is obtained from Xn−d by extending
the blocks Col0� j�ni−di−1 xi, j which already contain nonzero entries (besides xi,0 ), the
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positions of these nonzero entries in the extended vector Xn−d+����′ (counted from the
top) remain the same. Therefore, r(Xn−d+����′) = r(Xn−d) . By formulas (2.49),

ri(Xn−d+����′) =
ni −di + �i

2
for i ∈ I1,

and in view of (2.40), Theorem 2.3 applies to Bm = Xn−d+����′ producing equalities

ν(Pn+����′/Pd) = |n−d+ ����′|− |n−d+ ����|/2 = |n−d+ ����′ − ����′′|/2,

which in turn, imply (2.65) since

ν(Pn+����′) = ν(Pd)+ν(Pn+����′/Pd) and δ (Pn+����′) = |n+ ����′|−π(Pn+����′)−ν(Pn+����′).

The same arguments apply to the extension Xn′−d′+����′ of Xn′−d′ :

ri(Xn′−d′+����′) = ri(Xn′−d′) =
ni−di + �i

2
for i ∈ I ′

1,

and by Theorem 2.3, δ (Pn+����′−����′′/Pd) = 0. Therefore, δ (Pn+����′−����′′) = 0 so that Pn+����′−����′′
is invertible. The Schur complement Pn+����′/Pn+����′−����′′ exists by Proposition 2.11 and we
conclude from the second relation in (2.65) that

δ (Pn+����′/Pn+����′−����′′) = δ (Pn+����′) = |����′′|.

Since Pn+����′/Pn+����′−����′′ is an |����′′|× |����′′| matrix, the latter equality implies (2.66). �

REMARK 2.15. |����′| = 0 (i.e., ����′ is the zero tuple) if and only if rank(Pd) =
rank(Pn ).

Proof. Equality rank(Pd) = rank(Pn) is equivalent to the Schur complement P̃ =
Pn/Pd be the |n−d| × |n− d| zero matrix, so that δ (P̃) = |n−d| . Comparing this
equality with the second equality in (2.48) gives |����| = |n−d| which in view of (2.46),
is equivalent to �i = ni−di for every i ∈ I1 . The latter means that the set I ′

1 defined
in (2.47) is empty , so that ����′ is the zero tuple, by definition (2.64). �

REMARK 2.16. It is obvious that in case ni = 1 for i = 1, . . . ,k (i.e., when the
problem IPκ amonts to the Nevanlinn-Pick problem), rank(Pd) = rank(Pn) for every
maximal invertible submatrix Pd of Pn . It is somewhat less obvious that the same
holds in case ni � 1 for i = 1, . . . ,k . Indeed, for each i ∈ I ′

1 we have di < n1 and
�i < ni − di . Since ni � 2, then we have di = �i = 0. Then ����′ is the zero tuple and
rank(Pd) = rank(Pn) by Remark 2.15.
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3. Reduction to an n-singular case

In case the Pick matrix Pn is invertible and κ � ν(Pn) , all solutions of the problem
IPκ can be parametrized by a linear fractional formula. If Pn is singular and not n-
singular, we can pick an invertible principal submatrix Pd of Pn (for some tuple d =
(d1, . . . ,dk) � n) which is the Pick matrix of the nondegenerate subproblem

f ( j)(zi) = j!ci, j (i = 1, . . . ,k; j = 0, . . . ,di −1). (3.1)

It is convenient to let di to be nonnegative integers with the understanding that if di = 0,
there are no interpolation conditions in (3.1) at the corresponding point zi . With the
subproblem (3.1), we associate the 2×2 matrix valued function

Θ(z) =
[
Θ11(z) Θ12(z)
Θ21(z) Θ22(z)

]
(3.2)

= I2 +(z−1)
[
E∗

d
C∗

d

]
(I− zT ∗

d )−1P−1
d (I−Td)−1 [Ed −Cd

]
where Td , Ed and Cd are defined via formulas (2.1) and (2.3). The following result
can be found in [8] (see also [3]–[5] for the case κ = ν(Pn)).

THEOREM 3.1. If Pd is invertible and κ � ν(Pd) , then all functions f ∈ Sκ
satisfying interpolation conditions (3.1) are parametrized by the formula

f =
Θ11S+Θ12B
Θ21S+Θ22B

, (3.3)

where the parameters S ∈S and B ∈ Bκ−ν(Pd) do not have common zeros and satisfy
conditions

Θ21(zi)S(zi)+Θ22(zi)B(zi) �= 0 (3.4)

for every i ∈ {1, . . . ,k} such that di > 0 . Furthermore, the correspondence f �→ S
B is

one-to-one and f is unimodular on T if and only if S is.

Also we will need some results on zero cancellation in linear fractional formula
(3.3). Let US,B and VS,B denote respectively the numerator and the denominator on the
right hand side of (3.3):

US,B = Θ11S+Θ12B, VS,B(z) = Θ21S+Θ22B (3.5)

and let N{g} stand for the total number of zeroes of a function g that fall inside D .

THEOREM 3.2. Let Pd be invertible, let S ∈ S , B ∈ Bκ , let Θ , US,B and VS,B

be given as in (3.2) and (3.5), and let Z = {zi : di > 0} . Then

1. N{VS,B} = ν(Pd)+κ . If, in addition, S is a finite Blaschke product of degree m
(i.e., if S ∈ Bm ), then N{US,B} = π(Pd)+m.

2. US,B and VS,B do not have common zeros in D\Z .
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3. If VS,B has zero of multiplicity mi < di at zi ∈ Z , then US,B has zero of multi-
plicity at least mi at zi . In this case the function f of the form (3.3) still satisfies
interpolation conditions

f ( j)(zi) = j!ci, j for j = 0, . . . ,di−mi−1.

4. If VS,B has the zero of multiplicity mi � di at zi ∈ Z , then US,B has the zero of
multiplicity di at zi .

REMARK 3.3. Parametrization (3.3) from Theorem 3.1 can be reformulated in
terms of the ratio

E =
S
B
∈ Sκ−ν(Pd) (3.6)

as follows: f must be of the form

f = TΘ[E ] :=
Θ11E +Θ12

Θ21E +Θ22
, (3.7)

where the parameter E ∈ Sκ−ν(P) either satisfies condition

Θ21(zi)E (zi)+Θ22(zi) �= 0 (3.8)

or has a pole at zi in case Θ21(zi) �= Θ22(zi) = 0 . The possibility of E to have a pole
at an interpolation node (see [9] for an example) makes the projective description (3.3)
more convenient.

In order for f of the form (3.3) to satisfy the remaining |n−d| conditions

f ( j)(zi) = j!ci, j (i = 1, . . . ,k; j = di, . . . ,ni −1) (3.9)

from (1.4) (with understanding that if di = ni , then there are no conditions at zi in
(3.9)), the parameter E must satisfy certain conditions which are specified in Theorem
3.5 below. For the proof, it is convenient to write interpolation conditions (1.4) in the
residue form [18], [4].

REMARK 3.4. For Tn and En of the form (2.1), it follows by residue calculus that
for every function f analytic at z1, . . . ,zk ,

k

∑
i=1

Resζ=zi(ζ I −Tn)−1En f (ζ ) = Col1�i�k Col0� j�ni−1

f ( j)(zi)
j!

.

Thus, the problem IPκ can be formulated in the residue form as follows: Find all
functions f ∈ Sκ analytic at z1, . . . ,zk and such that

k

∑
i=1

Resζ=zi(ζ I−Tn)−1En f (ζ ) = Cn.
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THEOREM 3.5. Let Pd be a maximal (in the sense of (2.37)) invertible principal
submatrix of Pn and let the index set I1 be defined as in (2.18). A function f of the
form (3.3) is a solution of the problem IPκ if and only if parameters S ∈ S and B ∈
Bκ−ν(Pd) meet conditions (3.4) for every i = 1, . . . ,k and the ratio E = S/B satisfies
interpolation conditions

E ( j)(zi) = j!xi, j (i ∈ I1; j = 0, . . . ,ni−di−1) (3.10)

where the vector X = Col1�i�k Col0� j�ni−di−1 xi, j ∈ C|n−d| is defined in (2.30).

Proof. Let us assume that f of the form (3.7) (or equivalently, of the form (3.3))
is a solution of the problem IPκ . Then conditions (3.4) are met for every i = 1, . . . ,k .
Indeed, if di > 0, this follows from Theorem 3.1. If di = 0, then zi �∈ spec(Td) and
since

detΘ(z) = ∏
z j∈spec(Td)

(
(z− z j)(1− z j)
(1− zz j)(1− z j)

)ni

(see e.g., [6] for the proof), it follows that

detΘ(zi) �= 0 if di = 0. (3.11)

Assuming that (3.4) fails, i.e., that the denominator in (3.3) vanishes at zi we con-
clude that the numerator vanishes at zi as well, since f is analytic at zi . But then

Θ(zi)
[
S(zi)
B(zi)

]
= 0 and since S and B do not share common zeroes, it follows that Θ(zi)

is singular which contradicts (3.11).

By Remark 3.4, interpolation conditions (1.4) can be written as

k

∑
i=1

Resζ=zi(ζ I −Tn)−1(En f (ζ )−Cn) = 0, (3.12)

where Tn , En and Cn are given by (2.1) and (2.3). Since conditions (3.4) are met,
equality (3.12) is equivalent to

k

∑
i=1

Resζ=zi(ζ I−Tn)−1(En f (ζ )−Cn)(Θ21(ζ )S(ζ )+Θ22(ζ )B(ζ )) = 0. (3.13)

It is readily checked that for an f of the form (3.3),

(En f −Cn)(Θ21S+Θ22B) =
[
En −Cn

]
Θ
[
S
B

]
(3.14)

which allows us to rewrite (3.13) as

k

∑
i=1

Resζ=zi(ζ I−Tn)−1 [En −Cn
]
Θ(ζ )

[
S(ζ )
B(ζ )

]
= 0. (3.15)
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Now we observe the identity

U(ζ I−Tn)−1 [En −Cn
]
Θ(ζ ) =

[
0

(ζ I−Tn−d)−1
[
Gn−d −Yn−d

]]+φ(z), (3.16)

holding for every ζ ∈ C\{z1, . . . ,zk} , where U is the permutation matrix constructed
in (2.12), Gn−d and Yn−d are the vectors given by (2.21), Tn−d is defined as in (2.1)
and where

φ(z) =
[
Pd
Ψ

]
(I− zT ∗

d )−1(I−T ∗
d )P−1

d (I−Td)−1 [Ed −Cd
]
. (3.17)

To verify (3.16), it suffices to plug in the formula (3.3) for Θ , decompositions (2.13),
(2.14) and

U(zI−Tn)−1U∗ =
[

(zI−Td)−1 0
(zI−Tn−d)−1R(zI−Td)−1 (zI−Tn−d)−1

]
into the left hand side part of (3.16) and then to invoke equalities (2.15). Note that φ
defined in (3.17) is a rational matrix function analytic on D and therefore

k

∑
i=1

Resζ=ziφ(z)
[
S(ζ )
B(ζ )

]
= 0. (3.18)

Multiplying both parts in (3.16) by

[
S(ζ )
B(ζ )

]
on the right and taking the residues we

obtain, on account of (3.15) and (3.18),

∑
zi∈spec(Tn−d)

Resζ=zi(ζ I−Tn−d)−1(Gn−dS(ζ )−Yn−dB(ζ )) = 0. (3.19)

The latter equality implies in particular, that

B(zi) �= 0 for every zi ∈ spec(Tn−d). (3.20)

Indeed, by the Jordan structure of Tn−d , it follows that

Resζ=zi(ζ − zi)−1(gi,0S(ζ )− yi,0B(ζ )) = 0

for every zi ∈ spec(Tn−d) which is equivalent to gi,0S(zi) = yi,0B(zi) . Assuming that
B(zi) = 0 we get from the latter equality and (2.37) that S(zi) = 0 which is impossi-
ble since S and B have no common zeros. On account of (3.20), equality (3.19) is
equivalent to

∑
zi∈spec(Tn−d)

Resζ=zi(ζ I−Tn−d)−1(Gn−dE (ζ )−Yn−d) = 0

where E = S/B . Multiplying the last equality by the matrix G−1
n−d on the left and

making use of (2.29), (2.30), we arrive at

∑
zi∈spec(Tn−d)

Resζ=zi(ζ I−Tn−d)−1(En−dE (ζ )−Xn−d) = 0 (3.21)
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which is equivalent to (3.10).

To prove the converse statement, we reverse the preceding arguments. Let us
assume that E satisfies interpolation conditions (3.10) which can be written in the
residue form (3.21). Multiplying both parts in (3.21) by the matrix Gn−d and mak-
ing use of (2.29) and (2.30) we get (3.19). Equality (3.15) now follows from (3.16),
(3.18) and (3.19). If f is defined by (3.7) (or equivalently, by (3.3)) we use formula
(3.14) to rewrite (3.15) in the form (3.13). Since conditions (3.4) are satisfied for every
i = 1, . . . ,k , condition (3.13) is equivalent to (3.12) which means that f is a solution of
the problem IPκ . �

COROLLARY 3.6. Let Pd be an invertible principal submatrix of Pn such that

rank(Pd) = rank(Pn). (3.22)

A function f of the form (3.3) is a solution of the problem IPκ if and only if parame-
ters S ∈ S and B ∈ Bκ−ν(Pd) meet conditions (3.4) for every i = 1, . . . ,k and satisfy
interpolation conditions

S( j)(zi) = γB( j)(zi) for all i ∈ I1 and j = 0, . . . ,ni −di−1, (3.23)

where γ is the unimodular number defined in (2.41).

Proof. Conditions (3.23) can be written in terms of the function E = S/B as fol-
lows:

E (zi) = γ and E ( j)(zi) = 0 for i ∈ I1 and j = 1, . . . ,ni−di−1 . (3.24)

Observe that condition (3.22) guarantees that Pd is a maximal invertible principal sub-
matrix of P (in the sense of (2.37)). Thus, the statement will follow from Theorem 3.5
once we will show that xi,0 = γ and xi, j = 0 for every i ∈I1 and j = 1, . . . ,ni−di−1
or equivalently, that Xn−d = γEn−d . To this end, we observe that by assumption (3.22),
the Schur complement P̃ = Pn/Pd equals the zero matrix. Then it follows from (2.38)
that En−dE∗

n−d = Xn−dX∗
n−d and therefore, Xn−d = γEn−d for some unimodular num-

ber γ . Comparing the nonzero entries in the latter equality we conclude that γ equals
xi,0 (for every i ∈ I1 ) and therefore, it is defined by formula (2.41). �

4. Proof of Theorem 1.3

The matrix P̃ defined in (2.31) is the Pick matrix of the interpolation problem
(3.10). Indeed, the Pick matrix of this problem can be defined as a unique solution of
the Stein equation (2.38) and the matrix (2.31) satisfies this equation by Proposition
2.9. Let us say that a function E is a solution of the associated (with the problem IPκ
and a particular choice of the maximal invertible submatrix Pd of Pn ) problem APκ if
E ∈ Sκ−ν(Pd) ,
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(1) E ( j)(zi) = j!xi, j for i ∈ I1 and j = 0, . . . ,ni −di−1. (4.1)

(2) Condition (3.8) holds for every i ∈ I1.

(3) For every i ∈ I0, either condition (3.8) holds or E has a pole at zi in case

Θ21(zi) �= Θ22(zi) = 0.

By Theorem 3.5, the problem IPκ has a solution if and only if the associated problem
APκ does. In this section we will explore this result to prove Theorem 1.3. As was
mentioned in introduction, the problem IPκ has no solutions if the Pick matrix Pn has
more than κ negative eigenvalues. The following proposition completes the proof of
part (3) in Theorem 1.3.

PROPOSITION 4.1. If ν(Pn) < κ < ν(Pn)+ δ (Pn) , then the problem IPκ has no
solutions.

Proof. Let us assume that the problem IPκ has a solution f which is necessarily
of the form (3.7) for some solution E ∈ Sκ−ν(Pd) of the problem APκ . Since κ −
ν(Pd) > 0, E is not a constant function. By (2.40) and definition (2.9) of integers
ri(Xn−d) , the function E satisfies interpolation conditions

E (zi) = γ and E ( j)(zi) = 0 for i ∈ I1 and j = 1, . . . ,ri(Xn−d)−1, (4.2)

which can be equivalently written in terms of the Krein-Langer representation (3.6) for
E as

S( j)(zi) = γB( j)(zi) for i ∈ I1 and j = 0, . . . ,ri(Xn−d)−1. (4.3)

Thus, the Schur class function γS (recall that |γ| = 1) coincides with B ∈ Bκ−ν(Pd)
(which is not constant since κ − ν(Pd) > 0) at |r(Xn−d)| points counted with multi-
plicities. Since by (2.48), (2.49), (2.39) and the assumption that κ < ν(Pn)+ δ (Pn) ,

|r(Xn−d)| = |n−d+ ����|/2

= ν(P̃)+ δ (Pn) = ν(Pn)−ν(Pd)+ δ (Pn) > κ−ν(Pd) = deg B,

it follows that γS is equal to B identically. Therefore E = S/B is a constant which is
a contradiction. �

The next proposition supplements Theorem 1.3 showing that the number π(Pn)
controls the degree of numerators of unimodular rational solutions to the problem IPκ
(for the Nevanlinna-Pick problem this result was established in [20]).

PROPOSITION 4.2. The problem IPκ has no solutions in Bm/Bκ for π(Pn) <
m < π(Pn)+ δ (Pn) .

Proof. Let us assume that the problem IPκ has a solution f ∈ Bm/Bκ which is
necessarily of the form (3.7) for some solution E ∈ Sκ−ν(Pd) of the problem APκ .
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Since f is rational and unimodular on T , the function E has the same properties and
therefore it is a ratio of two finite Blaschke products, i.e., the numerator S in (3.6) is
a finite Blaschke product. As in the proof of Proposition 4.2, we conclude that S and
B satisfy conditions (4.3). Now we take f in the form (3.3) (which is equivalent to
(3.7)) and note that the denominator in this representation does not vanish at z1, . . . ,zk

by (3.4) (which is equivalent to constraints (2) and (3) in the problem APκ ). Since
the numerator and the denominator in this representation do not have common zeros
outside {z1, . . . ,zk} (by part (2) of Theorem 3.2), they do not have common zeros at
all. By part (1) in Theorem 3.2, the numerator in (3.3) has deg S+π(Pd) zeroes. Since
there is no zero cancellation in (3.3) and since f ∈ Bm/Bκ , we have m = deg S +
π(Pd) . By (4.3), the Schur-class function γB coincides with S ∈ Bm at |r(Xn−d)|
points counted with multiplicities. Since by (2.48), (2.49), (2.39) and the assumption
that m < π(Pn)+ δ (Pn) ,

|r(Xn−d)| = |n−d+ ����|/2

= π(P̃)+ δ (Pn) = π(Pn)−π(Pd)+ δ (Pn) > m−ν(Pd) = deg S,

it follows that S is equal to γB identically. Therefore E = S/B is a constant and
therefore S is constant which is a contradiction since deg S = m−π(Pn) >0. �

In order to proceed, we need the following result concerning Schwarz-Pick matri-
ces (see formula (1.2) for definition) which perhaps is known. For the reader’s conve-
nience, we include the proof in Section 6.

THEOREM 4.3. Let f ∈ Bm/Bκ be a ratio of two finite Blaschke products, let
z1, . . . ,zk be distinct points in D∩ρ( f ) , and let n = (n1, . . . ,nk) ∈ Nk . If |n| = κ +m,
then the Schwarz-Pick matrix P f

n (z) is invertible. Moreover, if |n| � κ +m, then

ν(Pf
n (z)) = κ and π(Pf

n (z)) = m.

COROLLARY 4.4. If f belongs to Bm/Bκ , then the Schwarz-Pick matrix P f
n (z)

is n-saturated for every n ∈ Nk such that |n| > κ + m and any points z1, . . . ,zn ∈
D∩ρ( f ) .

Proof. By Theorem 4.3, r := rank(Pf
n (z)) = κ +m . On the other hand, any prin-

cipal submatrix [Pf
n (z)]m = Pf

m(z) of Pf
n (z) (with |m| = r ) is itself a Schwarz-Pick

matrix for f and then again by Theorem 4.3, rank(Pf
m(z)) = r , so that Pf

m(z) is invert-
ible. Therefore, Pf

n (z) is n-saturated by Definition 1.2. �

PROPOSITION 4.5. If κ = ν(Pn) , and Pn is singular, then the problem IPκ has
at most one solution.

Proof. We fix the maximal invertiple principal submatrix Pd of Pn and let I ′
1 to

be the set defined in (2.47). We first show that if κ = ν(Pn) and there exists an f ∈Sκ
satisfying conditions (1.4), then the set I ′

1 is empty. To this end, observe that the
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Schwarz-Pick matrix Pn+����′ := Pf
n+����′(z) has at most κ negative eigenvalues (being an

extension of Pn , it has in fact exactly κ negative eigenvalues). On the other hand, it
follows from the first equalities in (2.65) and (2.50) that

ν(Pn+����′)−κ = ν(Pd)−ν(Pn)+ |n−d+ ����′ − ����′′|/2

= |n−d+ ����′ − ����′′|/2−|n−d− ����|/2 = |����′|,

where the last equality holds since ���� = ����′ + ����′′ . Thus ν(Pf
n+����′(z)) > κ (which is a

contradiction) unless |����′|= 0. In this case rank(Pd) = rank(Pn) , by Remark 2.16, and in
particular, ν(Pd) = ν(Pn) = κ . Then by Corollary 3.6, every solution f of the problem
IPκ is necessarily of the form (3.7) with a function E ∈ Sκ−ν(Pd) = S satisfying
conditions (3.24). Since |γ|= 1, it follows by the maximum modulus principle that the
only E ∈ S satisfying (3.24) is the constant function E ≡ γ . Substituting this E into
(3.24) leads us to the function

f 0(z) =
Θ11(z)γ +Θ12(z)
Θ21(z)γ +Θ22(z)

(4.4)

which is the only possible solution of the problem IPκ , by Theorem 3.5. �

REMARK 4.6. f 0 of the form (4.4) is a ratio of two finite Blaschke products.

Indeed, since |γ| = 1 and Θ is rational, it follows that f 0 is rational and unimod-
ular on T . Therefore f 0 is a ratio of two finite Blaschke products.

REMARK 4.7. If f 0 of the form (4.4) is a solution to the problem IPκ , then f 0 ∈
Bπ(Pn)/Bν(Pn) .

Proof. If f 0 is a solution to the problem IPκ , then the function E ≡ γ is a solution
of the problem APκ (by Theorem 3.1). Constraints (2) and (3) in APκ guarantee that
Θ21γ+Θ22 does not vanish at z1, . . . ,zk . Therefore, by Theorem 3.2 (part (2)), there is
no zero cancellation in (4.4). By Theorem 3.2 (part (1)) applied to S ≡ γ and B ≡ 1,

N{Θ11γ +Θ12} = π(Pd) and N{Θ21γ+Θ22} = ν(Pd) (4.5)

and therefore, f 0 ∈ Bπ(Pd)/Bν(Pd) . Since E ≡ γ satisfies conditions (4.1), all the

numbers xi, j ( j � 1) are zeros. Then Xn−d = γEn−d and the unique solution P̃ of the
Stein equation (2.38) is the zero matrix. Then it follows from (2.39) that π(Pn) = π(Pd)
and ν(Pn) = ν(Pd) and the statement follows. �

PROPOSITION 4.8. f 0 of the form (4.4) satisfies conditions (1.4) for every i ∈
I1 .

Proof. By Theorem 3.1 (or by part (3) in Theorem 3.2), it suffices to show that
the function E ≡ γ satisfies conditions (3.8) for every i ∈ I1 . We will prove this for a
fixed i ∈ I1 separating the cases where di > 0 and where di = 0.
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If di > 0, we have relations (4.5) by Theorem 3.2 (part (1)). Let us assume that

Θ21(zi)γ +Θ22(zi) = 0.

Then Θ11(zi)γ +Θ12(zi) = 0 by Theorem 3.2 (parts (3) and (4)) and after zero cancel-
lation at zi in (4.4) we conclude that f 0 ∈Bm/Br for some m < π(Pd) and r < ν(Pd) .
Then the Schwarz-Pick matrix Pf 0

d (z) defined via formula (1.2) is singular by Theorem
4.3. On the other hand, since f 0 satisfies interpolation conditions (4.1) (by Theorem

3.1), the matrix Pf 0

d (z) is equal to the Pick matrix of the problem (4.1) which is Pd and
therefore, it is invertible. This contradiction completes the proof of the first case.

For the case di = 0, we will use formulas (2.23) which can be written in terms of
Θ as [

gi,0 −yi,0
]
=
[
1 −ci,0

]
Θ(zi). (4.6)

By (3.11), the matrix Θ(zi) is invertible. Since γ = xi,0 = yi,0
gi,0

, we have by (4.6),

Θ21(zi)γ+Θ22(zi) =
1

gi,0
· [gi,0 −yi,0

][ Θ22(zi)
−Θ21(zi)

]
=

detΘ(zi)
gi,0

· [1 −ci,0
]
Θ(zi)Θ(zi)−1

[
1
0

]
=

detΘ(zi)
gi,0

�= 0

which completes the proof. �

COROLLARY 4.9. The function f 0 is a solution of the problem IPκ if and only if

Θ21(zi)γ+Θ22(zi) �= 0 for every i ∈ I0.

The statement follows immediately from Theorem 3.1, Proposition 4.8 and the
observation that the constant function E ≡ γ has no poles.

THEOREM 4.10. The function f 0 is a solution of the problem IPκ (with κ =
ν(Pn)) if and only if the Pick matrix Pn is n-saturated.

Proof. If κ = ν(Pn) and Pn is singular, then the problem IPκ has at most one
solution by Proposition 4.5. The unique candidate is the function f 0 defined in (4.4).
If f 0 is a solution to problem IPκ , then it belongs to Bπ(Pn)/Bν(Pn) by Remark 4.6.

Since f 0 is a solution to the problem IPκ , we have Pf 0

n (z) = Pn and therefore, Pn is
n-saturated by Corollary 4.4.

Now we assume that Pn is n-saturated and show that the function f 0 defined by
(4.4) solves the problem IPκ . We first observe that since Pn is n-saturated and Pd is a
maximal invertible principal submatrix of Pn , it follows that rank(Pn)= rank(Pd)= |d| .



MULTI-POINT INTERPOLATION 179

Then we will argue via contradiction as follows. Let the function Θ21γ+Θ22 have zero
of multiplicity mi � 0 at zi :

(Θ21(zi)γ +Θ22(zi))
( j) = 0 for j = 0, . . . ,mi −1; i = 1, . . . ,k.

Since the case where mi = 0 is not excluded, the latter assumption is not restrictive. By
Theorem 4.8, mi = 0 for every i∈I1 . Thus, if f 0 is not a solution to the problem IPκ ,
then mi > 0 for some i ∈ I0 . With the tuple m = (m1, . . . ,mk) ∈ Zk

+ , we associate the
positive integer

μm =
k

∑
i=1

min{mi,ni} =
k

∑
i=1

min{mi,di} > 0 (4.7)

where the second equality follows since min{mi,ni} = min{mi,di} = mi = 0 for every
i ∈ I1 and on the other hand, since ni = di for every i ∈ I0 by the very definition
(2.18) of I0 . Inequality μm > 0 follows since at least one of the mi ’s is positive. Let
us define the tuple r = (r1, . . . ,rk) by letting

ri = ni (i ∈ I1), ri = ni−mi (i ∈ I0, mi < ni), ri = 0 (i ∈ I0, mi � ni)

and observe that
|r| = |n|− μm. (4.8)

By Theorem 3.2, there are exactly μm zero cancellations in (4.4); therefore, and in view
of (4.5), f 0 ∈ Bπ(Pd)−μm/Bν(Pd)−μm . On the other hand f 0 still satisfies interpolation
conditions

f ( j)(zi) = j!ci, j (i = 1, . . . ,k; j = 0, . . . ,ri −1)

by part (3) in Theorem 3.2. Therefore, the Schwarz-Pick matrix Pf 0

r (z) defined via
formula (1.2) is equal to the principal submatrix Pr of Pn . Since by (4.8),

|r| = |n|− μm > |d|−2μm = π(Pd)− μm +ν(Pd)− μm,

and since f 0 ∈ Bπ(Pd)−μm/Bν(Pd)−μm , it follows by Theorem 4.3, that

rank(Pr) = rank(Pf 0

r (z)) = π(Pd)− μm +ν(Pd)− μm = |d|−2μm. (4.9)

If |r| > |d| , then for every tuple r̃ � r such that |̃r| = |d| , we have

rank(P̃r) � rank(Pr) = |d|−2μm < |d|. (4.10)

On the other hand, if |r| � |d| , then for every tuple r̃ � r such that |̃r| = |d| , we have
inequality

rank(P̃r) � rank(Pr)+2(|d|− |r|),
since the dimension of P̃r exceeds the dimension of Pr by |d|− |r| . Now we substitute
(4.9) and (4.8) into the last inequality to get

rank(P̃r) � |d|−2μm +2(|d|− |n|+ μm) = 3|d|−2|n|< |d|. (4.11)
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Recall that rank(Pn) = |d| . Inequalities (4.10) and (4.11) show that in any case there
exists a singular |d|× |d| principal submatrix P̃r of Pn which contradicts the assump-
tion that Pn is n-saturated. The obtained contradiction completes the proof of the
theorem. �

Now we are ready to prove Theorem 1.3 and Theorem 1.5.

Proof of Theorem 1.3. Since the nodegenerate case is known, it suffices to consider
the case where the Pick matrix Pn of the problem IPκ is singular. If κ < ν(Pn) or if
ν(Pn) < κ < ν(Pn)+δ (Pn) , then the problem IPκ has no solutions by the explanation
given in introduction and by Proposition 4.1. If κ = ν(Pn) , then the problem has a
solution if and only if Pn is n-saturated by Theorem 4.10. If this is the case, the
unique solution is the ratio of two Blaschke products of desired degrees, by Remark 4.7.
Furthermore, by Theorem 2.13, the problem IPκ can be extended to a problem (1.11),
whose Pick matrix Pn+���� is invertible and has ν(Pn)+ δ (Pn) negative eigenvalues. By
virtue of Theorem 3.1, there are infinitely many functions f ∈Sκ satisfying conditions
(1.11) for every κ � ν(Pn)+ δ (Pn) . All these functions are solutions to the problem
IPκ . Thus, if κ � ν(Pn)+ δ (Pn) , then the problem IPκ has infinitely many solutions.
The “only if” parts in statements (1) and (2) of the theorem are now obvious. �

Proof of Theorem 1.5. The “only if” part is trivial. To prove the “if” part, let us
assume that Pm is an m-saturated principal submatrix of Pn with |m|= r+1 and such
that rank(Pm) = rank(Pn) = r . Pick any index i such that mi > 0 and let d = m− ei .
The matrix Pd is a maximal invertible principal submatrix of Pm . Since Pm is the Pick
matrix of the subproblem of IPκ with interpolation conditions

f ( j)(zi) = ci, j (i = 1, . . . ,k; j = 0, . . . ,mi −1)

and is singular and m-saturated, it follows by Theorem 1.3, that there exists a unique
function f 0 in the class Sκ−ν(Pd) satisfying (4.7) and this function f 0 is given by
formula (4.4). By Theorem 4.10, f 0 also satisfies conditions (1.4) for every i such that
di < ni . On the other hand, all conditions in (1.4) corresponding to i’s such that di = ni

are contained in (4.7). Thus, f 0 is (a unique) solution of the “whole” problem IPκ with

κ = ν(Pd) . Therefore Pn is equal to the Schwarz-Pick matrix Pf 0

d (z) and therefore, it
is n-saturated by Corollary 4.4. �

5. Description of all solutions in case κ = ν(Pn)+ δ (Pn)

In this section we present a description of all solutions of an indeterminate problem
IPκ for the minimally possible κ . The description is obtained by combining Theorems
2.13, 3.1 and the following auxiliary result.

THEOREM 5.1. Let f be a solution of the problem IPκ with κ = ν(Pn)+ δ (Pn)
and δ (Pn) > 0 , let Pd be a fixed maximal invertible principal submatrix of Pn and let
����∈Z

k
+ be the tuple given in (2.44). Then the Schwarz-Pick matrix P f

n+����(z) is invertible.
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Proof. Since f is a solution of the problem IPκ , we have Pf
n+����(z) = Pn and there-

fore, the matrix Pn+���� := Pf
n+����(z) is a structured extension of Pn . Let Xn−d and Xn+����−d

be the vectors associated to the Schur complements P̃ = Pn/Pd and Pn+����/Pd . Rela-
tions (2.40) hold by Proposition 2.9. By Theorem 3.5, f is of the form (3.7) for some
E ∈ Sκ−ν(Pd)) satisfying conditions (3.10). By (2.39), we have

κ−ν(Pd) = ν(Pn)+ δ (Pn)−ν(Pd) = ν(P̃)+ δ (P̃) > 0. (5.1)

Note also that since E is analytic at zi for every i ∈ I1 , we can define the numbers

xi, j :=
E ( j)(zi)

j!
(5.2)

for every i ∈ I1 and j � 1. If xi, j = 0 for some i ∈ I1 and every j � 1, then E ≡
xi,0 = γ and thus, E ∈ S0 which contradicts (5.1). Therefore, for every i ∈ I1 , there
exists an mi � 1 such that xi,mi �= 0. Define the tuple ñ = (ñ1, . . . , ñk) by

ñi =
{

ni if i ∈ I0 ∪I ′
1,

min{m ∈ N : xi,m−di �= 0} if i ∈ I ′′
1 .

(5.3)

Recall that for every i∈I ′′ , conditions (2.60) hold and thus, ñi � ni for every i∈I ′′ .
Therefore, ñ � n .

Let us assume that Pn+���� is singular. Combining part (3) in Theorem 2.13 with
formula (2.61) we then conclude that xi,ni−di = 0 for some i ∈ I ′′

1 so that for this
particular i , we have ñi > ni . Therefore |ñ| > |n| . Let us consider the column

X2ñ−2d = Col1�i�k Col0� j�2ñi−di−1 xi j

constructed from the numbers (5.2) and let S(X2ñ−2d) be the associated structured ma-
trix. By definition (2.9) of ri(·) and by (5.3) we have

ri(X2ñ−2d) = ñi−di.

Therefore (and in view of (2.40)), Theorem 2.3 applies to Bm = X2ñ−2d and gives

ν(S(X2ñ−2d)) = |2ñ−2d|− |r(X2ñ−2d)| = |ñ−d|> |n−d|.
Since |����| � |n−d| , we further get from (2.48)

|n−d|� |n−d+ ����|/2 = ν(P̃)+ δ (P̃)

and eventually, it follows that

ν(S(X2ñ−2d)) > ν(P̃)+ δ (P̃). (5.4)

By (5.2), the matrix S(X2ñ−2d) is equal to the Schwarz-Pick matrix PE
2ñ−2d(z) and since

by (5.1), E ∈ Sν(P̃)+δ (P̃) , it follows that

ν(S(X2ñ−2d)) = ν(PE
2ñ−2d(z)) � ν(P̃)+ δ (P̃)
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which contradicts (5.4) and completes the proof of the theorem. �

Now we will present a procedure describing the solution set to the problem IPκ in
case κ = ν(Pn)+ δ (Pn) and δ (Pn) > 0, where Pn is the Pick matrix of the problem.

Step 1: Find and fix a maximal invertible principal submatrix Pd of Pn .

We do not discuss here a computationally efficient way to find an invertible prin-
cipal submatrix Pd of Pn which is maximal in the sence of (2.37). An unefficient (but
finite) procedure to get one is the following: compute detPd for all tuples d � n and
pick one of the maximal size, i.e., such that

det Pd �= 0 and det Pr = 0 for every r � n : |r| > |d|. (5.5)

It is clear that every such Pd is also maximal in the sense of (2.37).

Step 2: For the chosen Pd , compute the tuple ���� ∈ Z+ via (2.44) and then the sets
I ′

1 and I ′′
1 as in (2.47).

DEFINITION 5.2. An extension Cn+���� of Cn will be called Pd -admissible if the
extending numbers ci,ni satisfy condition (2.51) for every i ∈ I ′′

1 .

For every Pd -admissible extension Cn+���� , the matrix Pn+���� := S(Cn+����) is invertible
(by part (3) in Theorem 2.13) and its entries can be computed from the formula similar
to (1.6). Then we define the function

ΘCn+����
(z) =

[
ΘCn+����,11(z) ΘCn+����,12(z)
ΘCn+����,21(z) ΘCn+����,22(z)

]
(5.6)

= I2 +(z−1)
[
E∗

n+����
C∗

n+����

]
(I− zT ∗

n+����)
−1P−1

n+����(I−Td)−1 [En+���� −Cn+����

]
,

where Tn+���� and En+���� are defined via formulas (2.1).

Step 3: Take any Schur-class function E such that

ΘCn+����,21(zi)E (zi)+ΘCn+����,22(zi) �= 0 for every i = 1, . . . ,k (5.7)

and compute the function

f = TΘCn+����
[E ] :=

ΘCn+����,11E +ΘCn+����,12

ΘCn+����,21E +ΘCn+����,22
. (5.8)

This function f solves the problem IPκ and all solutions to the problem can be obtained
in this way. The next theorem justifies this and shows that in fact, the solution set of the
problem IPκ is the disjoint union of the ranges of linear fractional fransfornmations
(5.8) where the union is taken over all Pd -admisssible extensions Cn+���� of Cn .
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THEOREM 5.3. Let Pd be a fixed maximal invertible principal submatrix of the
Pick matrix Pn of the problem IPκ and let κ = ν(Pn)+δ (Pn) > ν(Pn) . Let Ωd be the
set of all pairs {Cn+����,E } consisting of a Pd -admissible extension Cn+���� of Cn and of a
function E ∈ S satisfying conditions (5.7). Then the correspondence

{Cn+����,E } �→ f = TΘCn+����
[E ] (5.9)

establishes a bijection between Ωd and the solution set of the problem IPκ .

Proof. If Cn+���� is a Pd -admissible extension of Cn , then the matrix Pn+���� := S(Cn+����)
satisfies

δ (Pn+����) �= 0 and ν(Pn+����) = ν(P)+ δ (P),

by Theorem 2.13 (part (3)). Thus, κ − ν(Pn+����) = 0. Now it follows from Remark
3.3 that for every E ∈ Sκ−ν(Pn+����)

= S subject to constraints (5.7), the function f =
TΘCn+����

[E ] belongs to the class Sν(Pn+����)
= Sκ and satisfies interpolation conditions

(1.11). In particular, f is a solution of the problem IPκ .

To show that transformation (5.9) is one-to-one, take two pairs {Cn+����,E } and
{C̃n+����, Ẽ } in Ωd and let f := TΘCn+����

[E ] and f̃ := TΘC̃n+����
[Ẽ ] . If Cn+���� �= C̃n+���� , then

ci, j �= c̃i, j for some i ∈ I1 and j � ni . Since f ( j)(zi) = j!ci, j and f̃ ( j)(zi) = j! c̃i, j by

Remark 3.3, it follows that f �= f̃ . If Cn+���� = C̃n+���� but E �= Ẽ , then f �= f̃ since trans-
formation E �→ ΘCn+����

[E ] is invertible and therefore, it is one-to-one. Thus, different
pairs in Ωd correspond to different solutions of the problem IPκ .

To show that transformation (5.9) is onto, let f be a solution of the problem IPκ .
Then the vector

Cn+���� := Col1�i�k Col0� j�ni−1

f ( j)(zi)
j!

extends Cn . By Theorem 5.1, the matrix

Pn+���� := S(Cn+����) = Pf
n+����(z)

is invertible. Since Pn+���� is a structured extension of P = Pn , we conclude by Theorem
2.13 (part (3)) that ν(Pn+����) = ν(P)+ δ (P) = κ and that the extension Cn+���� of Cn is
Pd -admissible. The matrix Pn+���� is the Pick matrix of the extended problem (1.11) and
by Remark 3.3, f is of the form (5.8) for some E ∈ S satisfying conditions (5.7). An
additional possibility for E to have a pole at interpolation nodes is not realizable in the
present context since E is a Schur class function. �

In case κ > ν(Pn)+ δ (Pn) , one can modify Theorem 5.3 upon letting the param-
eter E to run through the class Sκ−ν(Pn)−δ (Pn) (and still satisfying conditions (5.7)).
Then description (5.8) provides infinitely many solutions of the problem IPκ , but not
all of them. It is not hard to see from the preceding analysis that formula (5.8) gives
all solutions f of the problem IPκ for which the Schwarz-Pick matrix Pf

n+����(z) is in-
vertible. Also it is easily seen that for κ > ν(Pn)+δ (Pn) , there are solutions f of IPκ
with singular Schwarz-Pick matrix Pf

n+����(z) .
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6. Extremal functions

Let H∞ be the space of bounded analytic functions on D and let H∞
k be the set of

all functions f of the form (1.8) where s ∈ H∞ and b ∈ Bk may have common zeros.
From this definition it follows that Sk = (H∞

k \H∞
k−1)∩BL∞ where BL∞ denotes the

unit ball of L∞(T) . Let

G :=

{
g :

g( j)(zi)
j!

= ci j for j = 0, . . . ,ni−1; i = 1, . . . ,k

}
(6.1)

be the set of all functions g satisfying interpolation conditions (1.4). Below we consider
the two related questions which originate to [1]:

1. Find the value of μk := infg∈G∩H∞
k
‖g‖∞ in terms of interpolation data (1.7).

2. Find necessary and sufficient condition for the existence of an extremal function
gk,min ∈ G∩H∞

k such that ‖gk,min‖∞ = μk .

In Theorem 6.1 below, the answers for these questions will be given in terms of the
matrix pencil Pn(λ )= λ 2 ·S(λ−1 ·Cn) defined as a unique solution of the Stein equation

Pn(λ )−TnPn(λ )T ∗
n = λ 2EnE

∗
n −CnC

∗
n

for every fixed λ ∈ R so that the Pick matrix Pn defined in (1.5), (1.6) equals Pn(1) .
The explicit formulas for Pn(λ ) are similar to (1.5), (1.6):

Pn(λ ) = [Pi j(λ )]ki, j=1 (6.2)

where the ni×n j blocks Pi j(λ ) are defined entry-wise by

[Pi j(λ )]�,r = λ 2 ·
min{�,r}
∑
s=0

(�+ r− s)!
(�− s)!s!(r− s)!

zr−s
i z �−s

j

(1− zi z j)�+r−s+1 (6.3)

−
�

∑
α=0

r

∑
β=0

min{α ,β}
∑
s=0

(α +β − s)!
(α− s)!s!(β − s)!

zβ−s
i zα−s

j ci,�−αc j,r−β
(1− zi z j)α+β−s+1

.

THEOREM 6.1. Let λ0 � λ1 � . . . � λm > 0 be all positive solutions of the equa-
tion detPn(λ ) = 0 . Let G be the set defined in (6.1) and let λ̃ ∈ R+\{λ0,λ1, . . . ,λm} .
Then

1. If λ̃ > λk , then there exists g ∈ G∩ (H∞
k \H∞

k−1) with ‖g‖∞ � λ̃ .

2. If λ̃ < λk , then ‖h‖∞ > λ̃ for every h ∈ G∩H∞
k .

3. For every k � 0 ,

μk := inf
g∈G∩H∞

k

‖g‖∞ = inf
g∈G∩(H∞

k \H∞
k−1)

‖g‖∞ =
{
λk if k � m,
0 if k > m.

(6.4)
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4. For every k � 0 , there exists a (unique) function g∈G∩H∞
k with ‖g‖∞ = μk = λk

if and only if the matrix P(λk) defined via formulas (6.2), (6.3) is n-saturated.
This extremal function belongs to H∞

k \H∞
k−1 if and only if either k = 0 or λk <

λk−1 .

Proof. The scaled matrix λ̃−2 ·Pn(λ ) is the Pick matrix of the problem with in-
terpolation conditions

f ( j)(zi)
j!

= λ̃−1ci j for j = 0, . . . ,ni−1; i = 1, . . . ,k, (6.5)

and this matrix is invertible, since λ̃ is not equal to any of λi ’s. If λ̃ > λk , then
ν(Pn(λ̃ )) � k and then by Theorem 1.4, there is a function f ∈Sk satisfying conditions
(6.5). Then the function g = λ̃ f satisfies conditions in (1.4) and belongs to H∞

k \H∞
k−1

with ‖g‖∞ � λ̃ . This proves part (1). On the other hand, if λ̃ < λk , then

ν(Pn(λ̃ )) � k+1. (6.6)

Assuming that there exists an h∈G∩H∞
k with ‖h‖∞ � λ̃ , we conclude that the function

f = λ̃−1h satisfies conditions (6.5) and belongs Sκ for some κ � k . But then the Pick
matrix λ̃−2 · Pn(λ̃ ) of the problem (6.5) has at most κ negative eigenvalues. This
contradicts to (6.6) and completes the proof of part (2). For every k � m we have

λk � inf
g∈G∩H∞

k

‖g‖∞ � inf
g∈G∩(H∞

k \H∞
k−1)

‖g‖∞ � λk, (6.7)

where the second inequality is obvious while the first and the third follow by parts (2)
and (1) respectively. Equalities (6.4) (for k � m) follow from (6.7). The case k > m is
proved in much the same way.

We start the proof of the last statement with the case k > m : the function g≡ 0 (the
only function in H∞

k with ‖g‖ = μk = 0) belongs to G if and only if all interpolation
conditions are homogeneous, in which case the equation detPn(λ ) = 0 has no positive
solutions).

Let us now assume that k � m . We seek a function g ∈ G∩H∞
k such that ‖g‖∞ =

λk or equivalently, such that ‖g‖∞ � λk ; this equivalence follows by part (2) according
to which ‖g‖∞ � λk for every g ∈ G∩H∞

k . It is convenient to seek g in the form
g = λk f where

f ∈ H∞
k ∩BL∞ and

f ( j)(zi)
j!

= λ−1
k ci j ( j = 0, . . . ,ni −1 : i = 1, . . . ,k). (6.8)

Thus, the extremal function gk,min with ‖gk,min‖∞ = λk exists if and only if the inter-
polation problem (6.8) has a solution in Sκ for some κ � k . The extremal function
belongs to G∩H∞

k \H∞
k−1 if and only if the problem (6.8) has a solution in Sk . The

Pick matrix of this problem equals λ−2
k ·Pn(λk) and is singular by the definition of λi ’s.

We will consider separately two cases.
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Case 1: Let λ0 = . . . = λk . Then ν(Pn(λk)) = 0 and δ (Pn(λk)) � k+1. By The-
orem 1.3, the problem (6.8) has a unique solution f ∈ S0 and does not have solutions
in Sκ for κ = 1, . . . ,k . Thus, the problem has a solution in Sk if and only if k = 0.

Case 2: Let λ�−1 > λ� = . . . = λk . Then Pn(λk) = Pn(λ�) ,

ν(Pn(λk)) = � and δ (Pn(λk)) � k− �+1.

By Theorem 1.3, the problem (6.8) has a (unique) solution in S� if and only if the
matrix Pn(λk) is n-saturated and it does not have solutions in Sκ for κ = �+1, . . . ,k .
Thus, the problem has a solution in Sk if and only if k = � in which case we have
λk−1 > λk . �

7. Appendix: The proof of Theorem 4.3

In this section we prove Theorem 4.3, showing that saturated Pick matrices (see
Definition 1.2) arise as Schwarz-Pick matrices of ratios of finite Blaschke products of
low degrees. The proof needs some preliminaries. We note that the case where ni = 1
for i = 1, . . . ,k was considered in [10, Theorem 3.4]. The present proof is based on
pretty much the same arguments.

Let H2 be the Hardy space of square integrable functions on the unit circle T that
admit analytic continuation inside the unit disk. The functions

kz, j(t) =
1
j!

∂ j

∂ z j

(
1

1− t z

)
=

t j

(1− t z) j+1 ( j � 0; z ∈ D) (7.1)

belong to H2 for every fixed j � 0 and z ∈ D and

〈h,kz, j〉H2 =
1
j!

h( j)(z) for every h ∈ H2. (7.2)

LEMMA 7.1. Let b(z) = ∏�
i=1

(
z−λi

1−zλ i

)ri
be a finite Blaschke product of degree κ

(λ1, . . . ,λ� ∈ D are distinct) and let Kb := H2�bH2 be the model space. Then

1. The functions
{kλi, j : i = 1, . . . , �, j = 0, . . . ,r j −1} (7.3)

defined via (7.1), form a basis for Kb ; therefore, dim Kb = κ .

2. A function g belongs to Kb if and only if it admits a representation

g(t) =
q(t)

∏�
j=1(1− tλ j)r j

(7.4)

for some polynomial q of degree degq � κ−1 .
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3. Let Pb denote the orthogonal projection of H2 onto Kb . Then

(
Pbkζ , j

)
(t) =

1
j!

∂ j

∂ζ
j

(
1−b(t)b(ζ )

1− tζ

)
for every ζ ∈ D. (7.5)

To verify the first statement one can check that the functions (7.3) belong to Kb

and that any H2 function orthogonal to them has a zero of multiplicity at least ri at λi .
It follows directly from (7.1) that a function g is a linear combination of the functions
(7.3) if and only if it is of the form (7.4), which proves the second statement. The last
statement follows from the observation that g1 + g2 = kζ , j for every fixed j � 0 and
ζ ∈ D , where the functions

g1(z) =
1
j!

∂ j

∂ζ
j

b(t)b(ζ )

1− tζ
and g2(z) =

1
j!

∂ j

∂ζ
j

1−b(t)b(ζ )

1− tζ

belong to bH2 and KB , respectively.

LEMMA 7.2. Let b ∈ Bκ and θ ∈ Bm be finite Blaschke products

b(z) =
�

∏
j=1

(
z−λ j

1− zλ j

)r j

and θ (z) =
�̃

∏
j=1

(
z−wj

1− zwj

)r̃ j

with no common zeros, let z1, . . . ,zk be distinct points in D and let n = (n1, . . . ,nk) ∈
N

k . If |n| = κ +m, then the difference of the Schwarz-Pick matrices

Pn := Pθ
n (z)−Pb

n(z) (7.6)

is invertible. Furthermore, if |n| � κ +m, then

ν(Pn) = κ and π(Pn) = m. (7.7)

Proof. Let K be the subspace of H2 defined as

K = span{kz j ,i : i = 0, . . . ,n j −1, j = 1, . . . ,k}. (7.8)

By (7.5) and by the reproducing property (7.2),〈
Pbkz j ,β , Pbkzi,α

〉
H2

=
〈
Pbkz j ,β , kzi,α

〉
H2

=
1

α!β !
∂α+β

∂ zα∂ζ
β

1−b(z)b(ζ )

1− zζ

∣∣∣∣∣∣ z = zi

ζ = z j

and thus, by definition of the Schwarz-Pick matrix,

PB
n (z) =

[[〈
Pbkz j ,β , Pbkzi,α

〉
H2

]β=0,...,n j−1

α=0,...,ni−1

]k

i, j=1
. (7.9)
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Similarly,

Pθ
n (z) =

[[〈
Pθkz j ,β , Pθkzi,α

〉
H2

]β=0,...,n j−1

α=0,...,ni−1

]k

i, j=1
, (7.10)

where Pθ stands for the orthogonal projection of H2 onto the subspace Kθ = H2 �
θH2 of H2 . Therefore, the matrix Pn defined as in (7.6) is nonsingular if and only if
the quadratic form

D(x,y) := 〈Pθx, Pθy〉H2 −〈Pbx, Pby〉H2 (7.11)

is not degenerate on K . Since the spaces Kb and Kθ are of dimensions κ and m
respectively (by Statement 1 in Lemma 7.2), it follows from (7.9) and (7.10) that for
every n ,

rank(Pb
n (z)) � κ and rank(Pθ

n (z)) � m

and, since the latter Schwarz-Pick matrices are positive semidefinite, we have for their
difference

ν(Pn) � κ and π(Pn) � m. (7.12)

Let us assume that |n| = κ+m and that the form D is degenerate, i.e., that there exists
x ∈ K such that D(x,y) = 0 for every y ∈ K . Then we have, by (7.11),

0 = 〈Pθ x, Pθ y〉H2 −〈Pbx, Pby〉H2

= 〈Pθ x, y〉H2 −〈Pbx, y〉H2 = 〈(Pθ −Pb)x, y〉H2

for every y ∈ K . Upon letting y = kz j ,i in the latter equality, we conclude, by the
reproducing property (7.2), that

(Pθ x−Pbx)
(i) (z j) = 0 for i = 0, . . . ,n j −1 and j = 1, . . . ,m. (7.13)

The functions Pbx and Pθx belong to the spaces Kb and Kθ , respectively, and
therefore, by the second statement in Lemma 7.2, they are of the form

(Pbx)(t) =
q(t)

∏�
j=1(1− tλ j)r j

and (Pθx)(t) =
q̃(t)

∏�̃
j=1(1− twj)r̃ j

(7.14)

for some polynomials q and q̃ with

degq � κ−1 and deg q̃ � m−1. (7.15)

The denominators in (7.14) are polynomials of degree κ and κ̃ , respectively, and thus,
it follows readily from (7.14) and (7.15)

(Pθx)(t)− (Pbx)(t) =
r(t)
p(t)

, (7.16)

where p and r are the polynomials whose degrees satisfy

deg p = κ +m = |n| and degr � κ +m−1 = |n|−1. (7.17)
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By (7.13), the rational function r
p has k distinct zeros of total multiplicity |n| which

together with (7.17) implies that r ≡ 0. Thus, we have from (7.16)

Pbx ≡ Pθx. (7.18)

By the first statement in Lemma 7.2, the spaces Kb and Kθ are spanned by functions
(7.3) and by functions

{kwj ,i : j = 1, . . . , �̃, i = 0, . . . , r̃ j −1},

respectively. Since all the functions in (7.3) are linearly independent and since λi �= wj

for i = 1, . . . , � and j = 1, . . . , �̃ , it follows that Kb ∩Kθ = {0} . Thus, relation (7.18)
implies

Pbx ≡ 0 and Pθx ≡ 0.

Therefore, x is orthogonal to both of Kb and Kθ and thus, x ∈ bH2 ∩θH2 . Since b
and θ have no common zeros, it follows that x ∈ (bθ )H2 . In particular, x has at least
κ +m = |n| zeros (counted with multiplicities). On the other hand, x belongs to K
and therefore, by definition (7.8),

x(t) =
m

∑
j=1

n j−1

∑
i=0

γ jit i

(1− t z j)i+1 =
q(t)

∏m
j=1(1− t z j)n j

,

where q is a polynomial with degq � |n| − 1. Therefore, if x �= 0, it cannot have
more than |n| − 1 zeros. Therefore, x = 0 and the form D is nondegenerate on K .
Therefore, the matrix Pn is invertible. Moreover, we have

κ +m = |n| = rank(Pn) = ν(Pn)+π(Pn),

which together with bounds (7.12) implies (7.7) for the case when n = κ +m .

Let |n|> κ+m , let ñ = (ñ1, . . . , ñm)∈ Nm be any tuple such that |ñ|= κ+m and
ñ j � n j for j = 1, . . . ,m . By the preceding analysis, the matrix

Pñ := Pθ
ñ (z)−Pb

ñ(z)

is invertible and ν(Pñ) = κ and π(Pñ) = m . On the other hand, since Pñ is a principal
submatrix of Pn , we have

ν(Pn) � ν(Pñ) = κ , π(Pn) � π(Pñ) = m

which together with bounds (7.12) complete the proof of (7.7). �

Proof of Theorem 4.3. Since f belongs to Bm/Bκ , it is of the form

f (z) =
θ (z)
b(z)

, degb = κ , degθ = κ̃. (7.19)
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Since z1, . . . ,zn ∈ ρ( f ) , it follows that b(zi) �= 0 for i = 1, . . . ,κ . We will show that

Pθ
n (z)−Pb

n (z) = Mb
nPf

n (z)(Mb
n)

∗ (7.20)

where Mb
n is the block diagonal matrix with lower triangular toeplitz diagonal blocks

Mb
n =

⎡⎢⎣Mb
1 0

. . .
0 Mb

k

⎤⎥⎦ , where Mb
i =

⎡⎢⎢⎢⎢⎣
bi,0 0 . . . 0

bi,1 bi,0
. . .

...
...

. . .
. . . 0

bi,ni−1 . . . bi,1 bi,0

⎤⎥⎥⎥⎥⎦ , (7.21)

where we have set gi, j = b( j)(zi)
j! . Indeed, the self-evident identity

1−θ (z)θ (ζ )∗

1− zζ
− 1−b(z)b(ζ )∗

1− zζ
= b(z)

1− f (z) f (ζ )

1− zζ
b(ζ )

can be written in terms of the associated kernels as

Kb(z,ζ )−Kθ (z,ζ ) = b(z)Kf (z,ζ )b(ζ ). (7.22)

Upon applying 1
�!r!

∂ �+r

∂ z�∂ζ
r to both parts of (7.22) and evaluating the obtained equality

at z = zi and ζ = z j for all needed values if i, j, � and r , we get equalities between the
corresponding entries in the matrix equality (7.21). The matrix Mb

n is invertible, since it
is lower triangular and its diagonal entries B(zi) are all nonzero. Now all the statements
in Theorem 4.3 follow from (7.20) by the corresponding statements in Lemma 7.2. �
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