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DERIVATIONS WHICH ARE INNER AS COMPLETELY BOUNDED MAPS

ILJA GOGIĆ

(Communicated by P. Šemrl)

Abstract. We consider derivations in the image of the canonical contraction θA from the Haagerup
tensor product of a C∗ -algebra A with itself to the space of completely bounded maps on A .
We show that such derivations are necessarily inner if A is prime or if A is central. We also pro-
vide an example of a C∗ -algebra which has an outer derivation implemented by an elementary
operator.

1. Introduction

Let A be a C∗ -algebra and let ICB(A) be the space of all completely bounded
maps T : A → A such that T (J)⊆ J , for every closed two-sided ideal J of A . If A⊗h A
denotes the Haagerup tensor product of A with itself, there is a canonical contraction
θA : A⊗h A → ICB(A) given on elementary tensors a⊗b∈ A⊗A by

θA(a⊗b)(x) := axb, for all x ∈ A.

Mathieu showed that θA is isometric if and only if A is a prime C∗ -algebra (see [3,
5.4.11]). If A is not prime then θA is not even injective, and then it is natural to
consider the central Haagerup tensor product A⊗Z,h A , and the induced contraction
θZ

A : A⊗Z,h A → ICB(A) (see [22], [8] and [7] for the further details and results in this
subject).

Since every derivation on a C∗ -algebra A is an operator in ICB(A) , it is natural
to study how large can the set Der(A)∩ ImθA be (where Der(A) denotes the space of
all derivations on A and ImθA denotes the image of θA ). To ensure that at least all the
inner derivations on A are in ImθA (A is not assumed to be unital), we shall require
that A is quasicentral (see section 3). In this paper we shall be mainly interested in
the question when is the set Der(A)∩ ImθA as small as possible, and hence (in the
quasicentral case) equal to the set Inn(A) of all inner derivations on A . This is certainly
true for all von Neumann algebras (since by the Kadison-Sakai theorem [20, 4.1.6],
every derivation on a von Neumann algebra is inner). As we shall see, this property
is also satisfied for the class of all unital prime C∗ -algebras and for the class of all
central C∗ -algebras. We also conjecture that this property holds for the larger class of
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all quasicentral C∗ -algebras in which every Glimm ideal is primal, but we were not
able to prove this.

The paper is organized as follows. In section 3 we provide some basic facts about
quasicentral and central C∗ -algebras.

In Section 4, we concentrate on prime C∗ -algebras. We show that every derivation
δ ∈ ImθA on a unital prime C∗ -algebra A is necessarily inner in A . If a prime C∗ -
algebra A is non-unital (and hence non-quasicentral) we show that the only derivation
δ ∈ ImθA is in fact the zero-derivation.

In Section 5, we concentrate on C∗ -algebras with Hausdorff primitive spectrum.
We show that every derivation δ ∈ ImθA is smooth (see Definition 5.1) and hence inner
in its multiplier algebra M(A) . Moreover, if A is central, we prove that every derivation
δ ∈ ImθA is in fact inner in A . We also show that a quasicentral C∗ -algebra A is central
if and only if every inner derivation on A is smooth.

In Section 6, we give an example of a unital separable 2-subhomogeneous C∗ -
algebra A for which the space of elementary operators E(A) is a (cb-)closed subspace
of ICB(A) (and hence ImθA = E(A)), but for which the space of inner derivations is
not closed in Der(A) . It follows that such C∗ -algebra must have an outer derivation
which is implemented by an elementary operator.

2. Notation and Preliminaries

Through this paper A will denote a C∗ -algebra, A+ the positive part and Ah the
self-adjoint part of A . By Z(A) we denote the center of A . By an ideal of A we shall
always mean a closed two-sided ideal. The set of all ideals of A is denoted by Id(A) .
By Â we shall denote the spectrum of A (i.e. the set of all equivalence classes of
irreducible representations of A) and by Prim(A) the primitive spectrum of A (i.e. the
set of all primitive ideals of A), equipped with the Jacobson topology. By M(A) we
denote the multiplier algebra of A and by Ã we denote the minimal unitization of A .

We now recall the definition of the complete regularization of Prim(A) (see [6] for
further details). For P,Q ∈ Prim(A) let

P ≈ Q if f (P) = f (Q), for all f ∈Cb(Prim(A)). (2.1)

Then ≈ is an equivalence relation on Prim(A) and the equivalence classes are
closed subsets of Prim(A) . It follows that there is one-to-one correspondence between
the quotient set Prim(A)/ ≈ and the set of ideals of A given by

[P]≈ ↔
⋂

[P]≈ (P ∈ Prim(A)),

where [P]≈ denotes the equivalence class of P . The set of ideals obtained in this way
is denoted by Glimm(A) , and its elements are called Glimm ideals of A . The quotient
map φA : Prim(A) → Glimm(A) is known as the complete regularization map.

For f ∈Cb(Prim(A)) let f≈ : Glimm(A) → C be a (bounded) function defined by
f≈(G) := f (P) , where P ∈ Prim(A/G) (of course, f≈ is well defined).

There are two natural topologies on Glimm(A) :
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— the quotient topology τq , for which the space (Glimm(A),τq) is Hausdorff;

— the completely regular topology τcr , which is the weakest topology for which all
the functions f≈ ( f ∈Cb(Prim(A)) are continuous. Of course, (Glimm(A),τcr)
is a Tychonoff space.

Note that τq is stronger than τcr and that

Cb(Glimm(A)) := Cb(Glimm(A),τq) = Cb(Glimm(A),τcr)
= { f≈ : f ∈Cb(Prim(A))}.

In many cases we have τq = τcr (for example, if A is unital or if φA is τq -open or
τcr -open, see [6]). We also note that if A is unital, then by [6] for P,Q ∈ Prim(A)

P ≈ Q ⇔ P∩Z(A) = Q∩Z(A), (2.2)

and

Glimm(A) = {JA : J ∈ Max(Z(A))}, (2.3)

where Max(Z(A)) denotes the maximal ideal space of Z(A) (for J ∈ Max(Z(A)) , JA
is closed ideal by Cohen’s factorization theorem [10, A.6.2]).

A derivation on a C∗ -algebra A is a linear map δ : A → A satisfying the Leibniz
rule

δ (xy) = δ (x)y+ xδ (y), for all x,y ∈ A. (2.4)

The inner derivation implemented by the element a ∈ A is a map δa : A → A , given by

δa(x) := ax− xa, for all x ∈ A.

If a derivation δ ∈ Der(A) is not inner, we say that δ is outer. By Der(A) and Inn(A)
we denote, respectively, the set of all derivations on A and the set of all inner derivations
on A . It is well known that Der(A) ⊆ ICB(A) , and that for δ ∈ Der(A) we have

‖δ‖cb = ‖δ‖ = sup{‖δP‖ : P ∈ Prim(A)},

where δJ (J ∈ Id(A)) denotes the induced derivation on A/J ;

δJ(x+ J) = δ (x)+ J (x ∈ A).

When A is a primitive and unital C∗ -algebra, a ∈ A , and λ (a) the nearest scalar to a
(i.e. ‖a−λ (a)‖= d(a,C)), by Stampfli’s formula [3, 4.1.17] we have

‖δa‖cb = ‖δa‖ = 2‖a−λ (a)‖. (2.5)
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3. Quasicentral and central C∗ -algebras

DEFINITION 3.1. [12, Def. 1] A C∗ -algebra A is said to be quasicentral if no
primitive ideal of A contains Z(A) (or equivalently, if no Glimm ideal of A contains
Z(A)).

The next proposition gives a useful characterization of quasicentral C∗ -algebras:

PROPOSITION 3.2. Let A be a C∗ -algebra. The following conditions are equiva-
lent:

(i) A is quasicentral;

(ii) A has a central approximate unit (that is, there exists an approximate unit (eα)
of A such that eα ∈ Z(A) for each α );

(iii) A = Z(A)A;

(iv) A is unital or A ∈ Glimm(Ã) .

Proof. If A is unital, we have nothing to prove, so assume that A is non-unital.
(i)⇔(ii). This follows from [4, Thm. 1].
(ii)⇒(iii). This follows directly from Cohen’s factorization theorem [10, A.6.2],

since A is a nondegenerate Banach Z(A)-module.
(iii)⇒(iv). Since A is non-unital, the equality Z(A)A = A implies that Z(A) 
=

{0} , so Z(A) is a maximal ideal of Z(Ã) and Z(A)Ã = A . By (2.3) A ∈ Glimm(Ã) .
(iv)⇒(i). Suppose that A is non-quasicentral. If Z(A) = {0} , then Z(Ã) = C1.

It follows that Glimm(Ã) = {0} , so A 
∈ Glimm(Ã) . If Z(A) 
= {0} , then Z(A) is a
maximal ideal of Z(Ã) . Since A is non-quasicentral, there exists P ∈ Prim(A) such
that Z(A)⊆ P . Then P∈ Prim(Ã) , and since A is a maximal (primitive) ideal of Ã and
Z(A) ⊆ A (trivially), (2.2) implies that P ≈ A in Ã . Hence,

⋂
[A]≈ ⊆ P � A,

so A 
∈ Glimm(A) . �

LEMMA 3.3. Let A be a quasicentral C∗ -algebra. Then Inn(A) ⊆ ImθA .

Proof. By Proposition 3.2, each a∈ A can be written in the form a = zb , for some
z ∈ Z(A) and b ∈ A . It follows that δa = θA(z⊗b−b⊗ z) . �

QUESTION 3.4. If A is a C∗ -algebra with the property that Inn(A) ⊆ ImθA , is A
necessarily quasicentral?
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Let A be a C∗ -algebra. By Dauns-Hofmann theorem [19, A.34], there exists an
isomorphism ΨA : Z(M(A)) →Cb(Prim(A)) such that

za+P = ΨA(z)(P)(a+P), for all z ∈ Z(M(A)), a ∈ A and P ∈ Prim(A).

Since the norm functions P �→ ‖a+P‖ (a ∈ A) , Prim(A) → R+ vanish at infinity (see
[18, 4.4.4]), we have ΨA(Z(A)) ⊆ C0(Prim(A)). If A is quasicentral then it follows
from [11, Prop. 1] (see also [4]) that

ΨA(Z(A)) = C0(Prim(A)). (3.1)

Using (3.1) it is easy to prove the following fact:

PROPOSITION 3.5. Let A be a quasicentral C∗ -algebra. The following condi-
tions are equivalent:

(i) A is unital;

(ii) Prim(A) is compact.

Proof. Implication (i)⇒(ii) follows from [13, 3.1.8].
(ii)⇒(i). If Prim(A) is compact, then by (3.1) we have Z(A) ∼= C0(Prim(A)) =

C(Prim(A)) . Hence, Z(A) is unital. By Proposition 3.2 (iii) it follows that the unit of
Z(A) must also be the unit of A . �

REMARK 3.6. If A is a quasicentral C∗ -algebra, it follows that for each P ∈
Prim(A) there exists a positive element zP ∈ Z(A)+ such that ‖zP‖= 1 and ΨA(zP)(P)
= 1. Hence, each primitive quotient A/P is unital with the unit zP +P . Moreover,
using the Gelfand transform of Z(A) , it can be easily seen (like in the proof of [4, Thm.
5]) that for each compact subset K ⊆ Prim(A) there exists z∈ Z(A)+ such that ‖z‖= 1
and ΨA(z)(P) = 1, for each P ∈ K .

LEMMA 3.7. Let A be a quasicentral C∗ -algebra and let P,Q ∈ Prim(A) . The
following conditions are equivalent:

(i) P ≈ Q (in the sense of (2.1));

(ii) f (P) = f (Q) , for all f ∈C0(Prim(A));

(iii) P∩Z(A) = Q∩Z(A) .

Proof. Implications (i)⇒(ii) and (i)⇒(iii) follow immediately.
(ii)⇒(i). Let g ∈ Cb(Prim(A)) and let f := ΨA(zP) , where zP ∈ Z(A)+ is as

in Remark 3.6. Then f ∈ C0(Prim(A)) and f (P) = 1. By the assumption, we have
f (Q) = 1 and ( f g)(P) = ( f g)(Q) (since f g ∈C0(Prim(A))). Hence

g(P) = f (P)g(P) = ( f g)(P) = ( f g)(Q) = f (Q)g(Q) = g(Q).
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(iii)⇒(ii). Let f ∈C0(Prim(A)) . By (3.1) there exists z∈ Z(A) such that ΨA(z) =
f . Let zP,zQ ∈ Z(A)+ be as in Remark 3.6, and let u := max{zP,zQ} . Then for v :=
z− f (P)u we have v ∈ P∩Z(A) = Q∩Z(A) , and so

0 = ΨA(v)(Q) = f (Q)− f (P). �

If A is unital, it follows from [6] that τq = τcr and that Glimm(A) is a compact
Hausdorff space. Also, the map ζA : G �→ G∩Z(A) , from Glimm(A) onto Max(Z(A))
is a homeomorphism with the inverse ζ−1

A (J) = JA (J ∈Max(Z(A))). The next propo-
sition gives a generalization of this result for quasicentral C∗ -algebras.

PROPOSITION 3.8. Let A be a quasicentral C∗ -algebra. Then τq = τcr , Glimm(A)
is a locally compact Hausdorff space and the map

ζA : Glimm(A) → Max(Z(A)), ζA : G �→ G∩Z(A)

is a homeomorphism with the inverse ζ−1
A (J) = JA (J ∈ Max(Z(A))).

Proof. Let G ∈ Glimm(A) be fixed. Since A is quasicentral, there exists z ∈
Z(A)+ such that ‖z+G‖> 0. By Dauns-Hofmann theorem, P �→ ‖z+P‖=ΨA(z)(P)
is a continuous function on Prim(A) . Let P ∈ Prim(A/G) . If Q ∈ Prim(A/G) , then
Q ≈ P , so ‖z+Q‖= ‖z+P‖ . It follows that

‖z+G‖= sup{‖z+Q‖ : Q ∈ Prim(A/G)} = ‖z+P‖.
Hence, the function H �→ ‖z+H‖ (H ∈Glimm(A)) coincides with the function ΨA(z)≈ .
Let

U :=
{

H ∈ Glimm(A) : ‖z+H‖� 1
2
‖z+G‖

}
.

We claim that U is a τq -compact neighborhood of G in Glimm(A) . Indeed, since
[H �→ ‖z+H‖] ∈Cb(Glimm(A)) , U is a τq -neighborhood of G . To show that U is
τq -compact, note that U = φA(O) , where

O :=
{

P ∈ Prim(A) : ‖z+P‖� 1
2
‖z+G‖

}

is a compact subset of Prim(A) (by (3.1)). It follows that (Glimm(A),τq) is locally
compact Hausdorff space, and hence τq coincides with the weak topology induced by
C0(Glimm(A),τq) ⊆Cb(Glimm(A)) . Thus, τq = τcr .

We now prove that ζA is a homeomorphism. Since each irreducible representation
of Z(A) can be lifted to the irreducible representation of A (see [9, II.6.4.11]), ζA is
surjective. That ζA is also injective follows from Lemma 3.7 (iii). Since the topology
of (the locally compact Hausdorff space) Glimm(A) coincides with the weak topology
induced by C0(Glimm(A))+ and since

C0(Glimm(A))+ = { f≈ : f ∈C0(Prim(A))+} = {ΨA(z)≈ : z ∈ Z(A)+},
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for a net (Gα ) in Glimm(A) and G ∈ Glimm(A) we have

Gα → G ⇐⇒ ΨA(z)≈(Gα) →ΨA(z)≈(G), for all z ∈ Z(A)+
⇐⇒ ‖z+Gα‖→ ‖z+G‖, for all z ∈ Z(A)+
⇐⇒ ‖z+Gα ∩Z(A)‖ → ‖z+G∩Z(A)‖, for all z ∈ Z(A)+
⇐⇒ Gα ∩Z(A) → G∩Z(A).

It follows that ζA is a homeomorphism.
Finally, if J ∈ Max(Z(A)) , note that JA is a proper ideal of A (which is closed

by Cohen’s factorization theorem) and JA∩Z(A) = J . Then for P ∈ Prim(A) we have
P∩Z(A) = J if and only if JA ⊆ P . Hence, JA ∈ Glimm(A) and ζ−1

A (J) = JA . �

REMARK 3.9. If A is a non-unital quasicentral C∗ -algebra, then by Proposition
3.5 Prim(A) and (hence) Glimm(A) are non-compact spaces. For J ∈ Id(A) let J∼ be
the unique ideal of Ã such that A∩J∼ = J . By Proposition 3.2 (iv) and Proposition 3.8
it follows that the map G �→ G∼ is a homeomorphism from Glimm(A) onto its image
Glimm(Ã) \ {A} in Glimm(Ã) . Since Ã is unital, Glimm(Ã) is a compact Hausdorff
space, and hence Glimm(Ã) is the Alexandroff compactification of Glimm(A) . Since
ζÃ(A) = Z(A) , we have the following commutative diagram:

Prim(A)
φA−→ Glimm(A)

ζA−→ Max(Z(A))⏐� ⏐� ⏐�
Prim(Ã)

φÃ−→ Glimm(Ã)
ζÃ−→ Max(Z(Ã))

where the vertical maps denote the canonical embeddings.

DEFINITION 3.10. [15, §9] A C∗ -algebra A is said to be central if it satisfies the
following two conditions:

(i) A is quasicentral;

(ii) If P,Q ∈ Prim(A) and P∩Z(A) = Q∩Z(A) , then P = Q .

REMARK 3.11. By [11, Prop. 3] (see also [15, 9.1]) a quasicentral C∗ -algebra
A is central if and only if Prim(A) is Hausdorff. Note that this fact follows immedi-
ately from Lemma 3.7, since a locally compact space Prim(A) is Hausdorff if and only
C0(Prim(A)) is a separating family for Prim(A) . In this case Glimm(A) = Prim(A) ,
so by Proposition 3.8 ζA : P �→ P∩ Z(A) is a homeomorphism from Prim(A) onto
Max(Z(A)) .

The proof of the next fact can be found in [11, Prop. 3], but let us nevertheless
present the short argument for completeness.

PROPOSITION 3.12. Let A be a C∗ -algebra. Then A is central if and only if Ã
is central.
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Proof. If A is unital, we have nothing to prove, so assume that A is non-unital.
Suppose that A is central and let P,Q ∈ Prim(Ã) such that P 
= Q . Then P∩A

and Q∩A are distinct elements of Prim(A)∪{A} . Since A is central, it follows that
they have distinct intersection with Z(A) ⊆ Z(Ã) .

Conversely, suppose that A is central. By Remark 3.11 Prim(Ã) is Hausdorff.
Then Glimm(Ã) = Prim(Ã) , so A ∈ Glimm(Ã) . By Proposition 3.2 A is quasicentral.
Since Prim(A) is homoeomorphic to the (open) subset Prim(Ã) \ {A} of Prim(Ã) ,
Prim(A) is also Hausdorff. By Remark 3.11 A is central. �

4. Derivations in ImθA on Prime C∗ -algebras

Recall that a C∗ -algebra A is called prime if the zero ideal {0} is a prime ideal of
A . Since by [3, 1.2.47] the center Z(A) of a prime C∗ -algebra A is either zero (if A is
non-unital) or isomorphic to C (if A is unital), it follows from Proposition 3.5 that A
is unital if and only if it is quasicentral.

REMARK 4.1. Mathieu showed that the canonical contraction θA is an isometry
if and only if A is prime C∗ -algebra (see [3, 5.4.11]). Since by [3, 1.1.7] A is prime if
and only if M(A) is prime, it follows (using the Kaplansky’s density theorem) that in
this case the map

ΘA : M(A)⊗h M(A) → ICB(A), ΘA(t) := θM(A)(t)|A
is also an isometry.

Recall from [21, 3.2] that a subset {an} of a C∗ -algebra A such that the series
∑∞

n=1 a∗nan is norm convergent is said to be strongly independent if whenever (αn) ∈ �2

is a square summable sequence of complex numbers such that ∑∞
n=1αnan = 0, we have

αn = 0, for all n ∈ N .
The next lemma is a combination of [10, 1.5.6], [21, 4.1] and [2, 2.3].

LEMMA 4.2. Let A be a C∗ -algebra.

(i) Every tensor t ∈A⊗hA has a representation as a convergent series t =∑∞
n=1 an⊗

bn, where (an) and (bn) are sequences of A such that the series ∑∞
n=1 ana∗n and

∑∞
n=1 b∗nbn are norm convergent. Moreover, {bn} can be chosen to be strongly

independent.

(ii) If t = ∑∞
n=1 an ⊗ bn is a representation of t as above, with {bn} strongly inde-

pendent, then t = 0 if and only if an = 0 , for all n ∈ N .

THEOREM 4.3. Let A be a prime C∗ -algebra. Every derivation δ ∈ Der(A)∩
ImθA is inner in A. If A is non-unital, then Der(A)∩ ImθA = {0} .

Proof. Let ΘA be the map as in Remark 4.1 and let t ∈ A⊗h A be a tensor such
that ΘA(t) = δ (we assume that A⊗h A ⊆ M(A)⊗h M(A) , by the injectivity of the
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Haagerup tensor product). Suppose that t = ∑∞
n=1 an⊗bn is a representation of t as in

Lemma 4.2 (i), with {bn} strongly independent. Since δ is a derivation on A , Leibniz
rule (2.4) implies that

δ (x)y =
∞

∑
n=1

(anx− xan)ybn, for all x,y ∈ A,

or equivalently

ΘA(δ (x)⊗1) = ΘA

( ∞

∑
n=1

(anx− xan)⊗bn

)
, for all x ∈ A. (4.1)

By Remark 4.1 ΘA is an isometry (and hence injective), so the equality (4.1) is equiv-
alent to the equality

δ (x)⊗1 =
∞

∑
n=1

(anx− xan)⊗bn, for all x ∈ A, (4.2)

of tensors in M(A)⊗h M(A) . Suppose that δ 
= 0. Then (4.2) implies that A must be
unital, so A = M(A) . Indeed, choose x0 ∈ A such that δ (x0) 
= 0, and let ϕ ∈ M(A)∗
be an arbitrary bounded linear functional such that ϕ(δ (x0)) 
= 0. If we act on the
equality (4.2) (for x = x0 ) with the right slice map Rϕ (recall that for a C∗ -algebra B
and ψ ∈ B∗ , the right slice map Rψ is a unique bounded map B⊗h B → B given on
elementary tensors by Rψ (a⊗b) = ψ(a)b , see [21, Section 4]), we obtain

1 =
1

ϕ(δ (x0))

∞

∑
n=1

ϕ(anx0− x0an)bn, (4.3)

and hence 1 ∈ A . Let

αn :=
ϕ(anx0 − x0an)

ϕ(δ (x0))
(n ∈ N).

Since each bounded functional on a C∗ -algebra is completely bounded (see [17, 3.8]),
and since the series ∑∞

n=1(anx0 − x0an)(anx0 − x0an)∗ is norm convergent, we have
(αn) ∈ �2 , and (4.3) implies that ∑∞

n=1αnbn = 1. Then it follows from (4.2) that

∞

∑
n=1

(αnδ (x)−anx+ xan)⊗bn = 0, for all x ∈ A,

and consequently, since {bn} is strongly independent, Lemma 4.2 (ii) implies that

αnδ (x) = anx− xan for all x ∈ A and n ∈ N. (4.4)

Since ∑∞
n=1αnbn = 1, there is some k ∈ N such that αk 
= 0. If a := ak

αk
, then the

equality (4.4) implies that δ = δa ∈ Inn(A) . �
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5. Derivations in ImθA on C∗ -algebras with Hausdorff primitive spectrum

DEFINITION 5.1. Let A be a C∗ -algebra, and let δ be a derivation on A . We
define a bounded function

|δ | : Prim(A) → R+ by |δ |(P) := ‖δP‖ (P ∈ Prim(A)).

By [1, 2.2] |δ | is a lower semi-continuous function on Prim(A) . If |δ | is continuous
on Prim(A) , we say that δ is smooth.

REMARK 5.2. The function |δ | is usually defined on the spectrum Â of A , by
|δ |([π ]) := ‖δπ‖ ([π ] ∈ Â) , where π ∈ [π ] , and δπ denotes the induced derivation on
π(A) (δπ(π(a)) = π(δ (a)) (a ∈ A)). In this case δ is said to be smooth if |δ | , as a
function on Â , is continuous (see [1, 2.3] or [3, 4.2.6]). Since ‖δπ‖ = ‖δP‖ , where
P := kerπ , we note that this two definitions are consistent with each other.

The notion of the smooth derivation is important, since by [1, 2.4] (or [3, 4.2.7])
each smooth derivation on a C∗ -algebra A is inner in M(A) .

Let A be a C∗ -algebra and let I,J ∈ Id(A) . If qI : A → A/I and qJ : A → A/J
denote the quotient maps, it follows from [2, 2.8] that the induced map qI ⊗ qJ : A⊗h

A → (A/I)⊗h (A/J) is also a quotient map and that

ker(qI ⊗qJ) = I⊗h A+A⊗h J.

Hence, we have

(A⊗h A)/(I⊗h A+A⊗h J) ∼= (A/I)⊗h (A/J),

isometrically.
For t ∈ A⊗h A we define a bounded function

|t| : Prim(A) → R+ by |t|(P) := ‖qP ⊗qP(t)‖h (P ∈ Prim(A)).

Recall from [5] that the strong topology τs on Id(A) is the weakest topology that
makes all norm functions J �→ ‖a+ J‖ (a ∈ A) continuous on Id(A) .

LEMMA 5.3. Let A be a C∗ -algebra with Hausdorff primitive spectrum. For each
tensor t ∈ A⊗h A the function |t| is continuous on Prim(A) .

Proof. Since Prim(A) is Hausdorff, by [18, 4.4.5] the functions P �→ ‖a + P‖
(a∈ A) are continuous on Prim(A) . Hence, the Jacobson topology and the τs -topology
restricted to Prim(A) coincide. By [22, Prop. 2] for each t ∈ A⊗h A the map

Id(A)× Id(A) → R+, (I,J) �→ ‖t +(I⊗h A+A⊗h J)‖ = ‖qI ⊗qJ(t)‖h

is continuous for the product τs -topology on Id(A)× Id(A) . If D denotes the diagonal
of Prim(A)×Prim(A) , the map

(P,P) �→ ‖qP⊗qP(t)‖h = |t|(P)

is continuous on D , and so the map |t| is continuous on Prim(A) . �
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REMARK 5.4. Let A be a C∗ -algebra. It is easy to check that for all J ∈ Id(A)
the following diagram

A⊗h A
θA−→ ICB(A)

qJ ⊗qJ

⏐� QJ

⏐�
(A/J)⊗h (A/J)

θA/J−→ ICB(A/J)

commutes, where QJ denotes the induced map QJ : ICB(A) → ICB(A/J) ,

QJ(T )(qJ(x)) := qJ(T (x)), for all T ∈ ICB(A) and x ∈ A. (5.1)

Hence, if δ ∈ Der(A)∩ ImθA and t ∈ A⊗h A such that δ = θA(t) , we have

δJ = QJ(θA(t)) = θA/J(qJ ⊗qJ(t)). (5.2)

REMARK 5.5. Let A be a C∗ -algebra and let δ ∈Der(A)∩ImθA , with δ = θA(t) ,
for some tensor t ∈ A⊗h A . If we embed A into its von Neumann envelope A∗∗ , then
by [3, 4.2.3] δ can be extended (by ultraweak continuity) to the derivation δ ∗∗ on
A∗∗ . It follows that δ ∗∗ = θA∗∗(t) (where A⊗h A⊆ A∗∗⊗h A∗∗ , by the injectivity of the
Haagerup tensor product), and hence δ̃ = δ ∗∗|Ã = θÃ(t) , where δ̃ denotes the (unique)
extension of δ to the derivation on the minimal unitization Ã of A .

THEOREM 5.6. Let A be a C∗ -algebra with Hausdorff primitive spectrum. Every
derivation δ ∈ ImθA is smooth and hence inner in M(A) . Moreover, if A central, then
every derivation δ ∈ ImθA is inner in A.

Proof. Let t ∈ A⊗h A be a tensor such that δ = θ (t) , and let P ∈ Prim(A) . By
(5.2) we have δP = θA/P(qP ⊗ qP(t)) . Since A/P is primitive (simple in fact, since
Prim(A) is Hausdorff), θA/P is an isometry, and hence

|δ |(P) = ‖δP‖ = ‖δP‖cb = ‖θA/P(qP⊗qP(t))‖cb = ‖qP⊗qP(t)‖h = |t|(P).

Since P ∈ Prim(A) was arbitrary, Lemma 5.3 implies that |δ | = |t| is a continuous
function on Prim(A) , and hence, δ is smooth. By [1, 2.4] (or [3, 4.2.7]) there exists an
element b ∈ M(A) such that δ = δb .

Now suppose that A is central, and let δ̃ be the (unique) extension of δ to the
derivation on Ã . By Remark 5.5 we have θÃ(t) = δ̃ . Since Ã is also central (Proposi-
tion 3.12), by Remark 3.11 Prim(Ã) is Hausdorff. Hence, by the first part of the proof,
there exists b∈ Ã which implements δ̃ . If we choose α ∈C such that a := b−α1∈A ,
then obviously a also implements δ̃ . It follows that δ = δ̃ |A is inner in A . �

QUESTION 5.7. Can one always (without the assumption of quasicentrality) con-
clude that Der(A)∩ ImθA ⊆ Inn(A) , when Prim(A) is Hausdorff?

COROLLARY 5.8. Let A be a C∗ -algebra.

(i) If A is central then each inner derivation on A is smooth.
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(ii) If each inner derivation on A is smooth then Prim(A) is Hasudorff.

Hence, a quasicentral C∗ -algebra A is central if and only if each inner derivation on
A is smooth.

Proof. (i). Since A is central, by Lemma 3.3 Inn(A) ⊆ ImθA , so by Theorem 5.6
each inner derivation on A is smooth.

(ii). Let a ∈ Ah . Since δa is smooth, by [1, 2.10] the function P �→ ‖(a + z)+
P∼‖ is continuous on Prim(A) , for each z ∈ Z(M(A))h , where P∼ (for P ∈ Prim(A))
denotes the unique primitive ideal of M(A) such that A∩P∼ = P . Hence, for z = 0,
the function P �→ ‖a+P∼‖= ‖a+P‖ is continuous on Prim(A) , and since a∈ Ah was
arbitrary, by [18, 4.4.5] Prim(A) is Hausdorff. �

The result of Corollary 5.8 is not true in general for non-central C∗ -algebras, even
if Prim(A) is Hausdorff and every primitive quotient of A is unital.

EXAMPLE 5.9. Let A be a C∗ -algebra consisting of all continuous functions a :
[0,1]→ M2(C) such that

a(1) =
(
λ (a) 0

0 0

)
, for some λ (a) ∈ C.

It is easy to check that every irreducible representation of A is equivalent to some
representation πt (t ∈ [0,1]) , where πt : a �→ a(t) , for t ∈ [0,1) , and π1 : a �→ λ (a) ,
and that the map t �→ Pt := kerπt is a homeomorphism from [0,1] onto Prim(A) . Since

Z(A) =
{(

f 0
0 f

)
: f ∈C0([0,1))

}
⊆ P1,

A is not quasicentral. Let a be an element of A such that

a(t) =
(

1 0
0 0

)
, for all t ∈ [0,1],

and let δ := δa . By Stampfli’s formula (2.5) we have

‖δPt‖ = 2d(a+Pt,C) =
{

1, if 0 � t < 1,
0, if t = 1

and hence, δ is not smooth.

6. An example of a C∗ -algebra with outer elementary derivations

In this section we shall give an example of a unital C∗ -algebra A which has an
outer elementary derivation (that is, an outer derivation δ ∈ E(A)). For this C∗ -algebra
A the space Inn(A) is not closed in the space Der(A) . By [23, 4.6] this happens if and
only if Orc(A) = ∞, where Orc(A) is a constant arising from a certain graph structure
on Prim(A) which is defined as follows.
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We say that two primitive ideals P,Q ∈ Prim(A) are adjacent (and write P ∼ Q)
if P and Q cannot be separated by disjoint open subsets of Prim(A) . A path of length
n from P to Q is a sequence of points P = P0,P1, . . . ,Pn = Q such that Pi−1 ∼ Pi , for
all 1 � i � n . The distance d(P,Q) from P to Q is defined as follows:

— If P = Q , d(P,Q) = d(P,P) := 1,

— If P 
= Q and there exists a path from P to Q , then d(P,Q) is equal to the
minimal length of a path from P to Q .

— If there is no path from P to Q , d(P,Q) := ∞ .

The connecting order Orc(A) of A is defined by

Orc(A) := sup{d(P,Q) : P,Q ∈ Prim(A) such that d(P,Q) < ∞}.

Note that Orc(A) = 1 if Prim(A) is Hausdorff, but that the converse does not hold
in general (as noted in [22], Orc(A) = 1 if and only if every Glimm ideal of A is
2-primal).

We shall also use the following notation. Let B be a unital C∗ -algebra and let
A ⊆ B be a C∗ -subalgebra of B . An elementary operator on B with the coefficients in
A is a map T : B → B which can be expressed in the form

T =
d

∑
k=1

ak �bk, for some ak,bk ∈ A (1 � k � d),

where (
d

∑
k=1

ak �bk

)
(x) := θB

(
d

∑
k=1

ak ⊗bk

)
(x) =

d

∑
k=1

akxbk (x ∈ B).

The space of all elementary operators on B with the coefficients in A is denoted by
EA(B) . If A = B then (as usual) we write E(B) for EB(B) ; the set of all elementary
operators on B . We also denote by E(B → A) the subspace of all T ∈ E(B) such that
T (B) ⊆ A .

EXAMPLE 6.1. Let X̃ := [1,∞] be the Alexandroff compactification of the in-
terval X := [1,∞) , let B := C(X̃ ,M2(C)) , and let A be a C∗ -subalgebra of B which
consists of all a ∈ B such that

a(n) =
(
λn(a) 0

0 λn+1(a)

)
(n ∈ N) and a(∞) =

(
λ (a) 0

0 λ (a)

)
,

for some convergent sequence (λn(a)) of complex numbers with limnλn(a) = λ (a) .
Then Orc(A) = ∞ and E(A) is a cb-closed subspace of ICB(A) . Consequently, A has
an outer elementary derivation.



206 ILJA GOGIĆ

This example is just a slightly modified version of the C∗ -algebra A(∞) in [23,
2.8]. We indicate that the justification of the example will occupy most of this section.

First recall, that a primitive ideal P ∈ Prim(A) is said to be separated in Prim(A)
if whenever Q ∈ Prim(A) and P � Q then there exist disjoint open neighborhoods of
P and Q in Prim(A) . In our example it is easy to check that

Prim(A) = {Pt : t ∈ X \N}∪{Qn : n ∈ N}∪{Q},
where Pt (t ∈ X \N) denotes a kernel of a �→ a(t) , Qn (n ∈ N) denotes a kernel
of a �→ λn(a) , and Q denotes the kernel of a �→ λ (a) . Also note that the points Pt

(t ∈ X \N) and Q are separated in Prim(A) , while Qi ∼ Qj if and only if |i− j| � 1.
It follows that d(Q1,Qn+1) = n , for all n ∈ N , and hence Orc(A) = ∞ . By [23, 4.6]
Inn(A) is not closed in Der(A) . One can also check this by direct calculations. For
example, it is not difficult to see that for each function f ∈C0(X) such that the series
∑∞

n=1 f (n) does not converge, the element

b =
(

f 0
0 0

)
∈ B

derives A (that is bx− xb ∈ A , for all x ∈ A) and the induced derivation (which is
obviously not inner in A) is in the closure of Inn(A) .

To prove that E(A) is closed in ICB(A) we shall first need some additional tech-
nical results which will be stated in a more general setting.

Let A be a C∗ -algebra. Recall that A is called n -homogeneous (n∈N) if dimπ =
n , for all [π ] ∈ Â . Then by [14, 3.2] Δ := Prim(A) is a (locally compact) Hausdorff
space and A is isomorphic to the C∗ -algebra Γ0(E) of all continuous sections vanishing
at infinity of a locally trivial C∗ -bundle E over Δ with fibres isomorphic to Mn(C) . If
the base space Δ of E admits a finite open covering {Uj} such that each E|Uj is trivial
(as a C∗ -bundle) we say that E (and hence A) is of finite type.

If
sup{dimπ : [π ] ∈ Â} = n

then we say that A is n -subhomogeneous. In this case

J :=
⋂
{kerπ : [π ] ∈ Â such that dimπ < n}

is called n -homogeneous ideal of A , and is the largest ideal of A which is n -homogeneous,
as a C∗ -algebra.

REMARK 6.2. If A is n -subhomogeneous C∗ -algebra, note that for each operator
T ∈ ImθA we have

‖T‖cb � n‖T‖.
Indeed, if for J ∈ Id(A) we put TJ := QJ(T ) (where QJ is the map from (5.1)), then
this can be easily seen by using the formulas

‖T‖ = sup{‖TP‖ : P ∈ Prim(A)} and ‖T‖cb = sup{‖TP‖cb : P ∈ Prim(A)},
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(see [3, 5.3.12]) and noting that each operator S : Mm(C) → Mm(C) is completely
bounded (elementary in fact) with ‖S‖cb � m‖S‖ (see [17, Exercise 3.11]). Hence, if
A is subhomogeneous, we do not have to specify which norm do we consider when
speaking about closures of ImθA or E(A) .

LEMMA 6.3. Let B be a unital n-homogeneous C∗ -algebra and let J ∈ Id(B) .
Then EJ(B) = E(B → J) . In particular, EJ(B) is a closed subspace of E(B) .

Proof. Let E be a locally trivial C∗ -bundle E over Δ := Prim(B) (which is com-
pact since B is unital) whose fibres are isomorphic to Mn(C) such that B = Γ(E) (we
identify B with Γ(E) via the canonical isomorphism). By compactness of Δ and local
triviality of E , there exists a finite open cover {Uj}1� j�m of Δ such that each E|Uj

is
trivial. Using a finite partition of unity (subordinated to the cover {Uj}1� j�m ) one can
reduce the proof to the situation when m = 1, so we may assume E is trivial. Then
B = C(Δ,Mn(C)) , and since J is an ideal of B , there is a closed subset Y of Δ such
that

J = {a ∈ B : a|Y = 0}.
Let (Ei, j)1�i, j�n denote the standard matrix units of Mn(C) considered as constant
elements of B = C(Δ,Mn(C)) , and let T ∈ E(B → J) . Then T can be written in the
form

T =
n

∑
i, j,p,q=1

fi, j,p,qEi, j �Ep,q, (6.1)

for some functions fi, j,p,q ∈C(Δ)∼= Z(B) . Let 1 � r,s � n be the fixed numbers. Since
T (B) ⊆ J , we have

T (Er,s) =
n

∑
i, j,p,q=1

fi, j,p,qEi, jEr,sEp,q =
n

∑
i,q=1

fi,r,s,qEi,q ∈ J.

Thus, fi,r,s,q|Y = 0, for all i,q = 1, . . . ,n . Since r,s were arbitrary, we have

fi, j,p,q|Y = 0, for all 1 � i, j, p,q � n

Note that every function f ∈C(Δ) with the property f |Y = 0 can be factorized in the
form f = gh , where g,h ∈ C(Δ) such that g|Y = 0 and h|Y = 0 (for example, put
g :=

√| f | i h := f/
√| f | ). If we apply this factorization to the functions fi, j,p,q ,

fi, j,p,q = gi, j,p,q ·hi, j,p,q,

then it follows from (6.1) that

T =
n

∑
i, j,p,q=1

fi, j,p,qEi, j �Ep,q =
n

∑
i, j,p,q=1

gi, j,p,qEi, j �hi, j,p,qEp,q.

Thus T ∈ EJ(B) . �
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REMARK 6.4. Suppose that

0 −→ X −→ Y
q−→ Z −→ 0

is an exact sequence of normed spaces, where q is a bounded linear map. If q is also
open, note that Y is a Banach space if and only if X and Z are Banach spaces. Also
note that if Ẏ ⊆Y and Ż ⊆ Z are (not necessarily closed) subspaces such that q(Ẏ ) = Ż
and which fit into the exact sequence

0 −→ X −→ Ẏ
q̇−→ Ż −→ 0,

where q̇ := q|Ẏ (and hence Ẏ = q̇−1(Ż) = q−1(Ż)), then q̇ is open whenever q is open.

LEMMA 6.5. Suppose that A is a unital n-subhomogeneous C∗ -algebra with n-
homogeneous ideal J which is of finite type. If B is any unital n-homogeneous C∗ -
algebra which contains A and such that J is the essential ideal of B, then E(A) is
closed subspace of ICB(A) if and only if EA/J(B/J) is a closed subspace of ICB(B/J) .

Proof. First note that J is also essential in A . Also note that such B exists, since
by [16, 3.3] M(J) is n -homogeneous, and A ⊆ M(J) , since J is essential in A . By
Kaplansky’s density theorem the restriction map T �→ T |A is an isometric isomorphism
from EA(B) onto E(A) . Hence, we may identify E(A) with EA(B) . Let qJ : B → B/J
be a quotient map, and let Q̇J be the restriction of the induced contraction QJ to E(B)
(see (5.1)). Obviously Q̇J(E(B)) = E(B/J) and the kernel of Q̇J is the set E(B → J) ,
which can be identified with the set EJ(B) , by Lemma 6.3. Since B and B/J are
unital homogeneous C∗ -algebras, by [16, 1.1] we have equalities ICB(B) = E(B) and
ICB(B/J) = E(B/J) . Thus E(B) and E(B/J) are Banach spaces, and by the open
mapping theorem, Q̇J is an open map. Since Q̇J(EA(B)) = EA/J(B/J) , note that the
exact sequence

0 −→ EJ(B) −→ E(B)
Q̇J−→ E(B/J) −→ 0

of Banach spaces induces the exact sequence of normed spaces

0 −→ EJ(B) −→ EA(B)
Q̈J−→ EA/J(B/J) −→ 0,

where Q̈J denotes a restriction of Q̇J to the set EA(B) , since ker Q̈J = ker Q̇J = EJ(B) .
By Remark 6.4, Q̈J is also an open map, and since EJ(B) is a Banach space (Lemma
6.3), EA(B) is a Banach space if and only if EA/J(B/J) is a Banach space. �

Now we prove the second claim of the example 6.1.

LEMMA 6.6. Let A and B be the C∗ -algebras from the Example 6.1. Then E(A)
is a closed subspace of ICB(A) .

Proof. Let
J := {a ∈ A : a(n) = 0, for all n ∈ N}
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be the 2-homogeneous (Glimm) ideal of A . Then J is an essential ideal of A and B ,
and it follows from Lemma 6.5 that it is sufficient to show that EA/J(B/J) is a closed
subspace of ICB(B/J) which is equal to E(B/J) , by [16, 1.1]. Let

Ḃ := C(Ñ,M2(C)) and Ȧ :=
{(

f 0
0 f̃

)
: f ∈C(Ñ)

}
,

where Ñ := N∪{∞} denotes the Alexandroff compactifcation of N , and for f ∈C(Ñ) ,
f̃ is a function defined by f̃ (n) := f (n+1) (n∈N) . Obviously B/J ∼= Ḃ and A/J ∼= Ȧ ,
and in the following, we shall identify this C∗ -algebras. If (Ei, j)1�i, j�2 denote the
standard matrix units of M2(C) considered as constant elements of Ḃ , we claim that
the set EȦ(Ḃ) can be identified with the set of all operators T ∈ E(Ḃ) which can be
written in the form

T = f E1,1 �E1,1 +gE1,1�E2,2 +hE2,2�E1,1 + f̃ E2,2�E2,2, (6.2)

where f ,g,h ∈C(Ñ) are functions such that

L(T ) := f (∞) = g(∞) = h(∞).

One can easily show that every T ∈ EȦ(Ḃ) can be written in the form (6.2). Conversely,
if T ∈ E(Ḃ) is of the form (6.2), then

T = ( f −L(T ))E1,1�E1,1 +(g−L(T))E1,1�E2,2

+(h−L(T ))E2,2�E1,1 +( f̃ −L(T ))E2,2�E2,2 +L(T )Id,

where Id denotes the identity map on Ḃ . Hence, to prove that T ∈EȦ(Ḃ) , it is sufficient
to prove that for arbitrary functions f ,g,h ∈C0(N) all operators T1,T2 and T3 are the
elements of EȦ(Ḃ) , where

T1 := f E1,1�E1,1 + f̃ E2,2�E2,2, T2 := gE1,1�E2,2 and T3 := hE2,2�E1,1.

Claim 1. T1 can be written in the form

T1 = a1�b1 +a2�b2, for some ai,bi ∈ Ȧ.

To prove this, by looking at the entries of the corresponding decomposition of
T1 , it is sufficient to find two sequences of vectors (�vn) and (�wn) in C2 such that
limn�vn = limn�wn = (0,0) , and

�vn ·�w∗
n = f (n), �vn ·�w∗

n+1 =�vn+1 ·�w∗
n = 0, for all n ∈ N, (6.3)

where · denotes a standard inner product of C2 , and for �v = (α,β )∈C2 , �v∗ := (α ,β ) .
Let ϕ ,ψ ∈ C0(N) be any functions such that f = ϕψ . Then we can achieve (6.3) by
putting

�vn = ([n+1]ϕ(n), [n]ϕ(n)) and �wn = ([n+1]ψ(n), [n]ψ(n)) (n ∈ N)
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where [n] = 1 if n is even and [n] = 0 if n is odd.
Claim 2. T2 can be written in the form

T2 = a1�b1 +a2�b2 +a3�b3, for some ai,bi ∈ Ȧ.

To prove this, like in the proof of Claim 1, it is sufficient to find two sequences of
vectors (�vn) and (�wn) in C3 such that limn�vn = limn �wn = (0,0,0) , and

�vn ·�w∗
n =�vn+1 ·�w∗

n = 0, �vn ·�w∗
n+1 = g(n), for all n ∈ N. (6.4)

Let ϕ ,ψ ∈C0(N) be any functions such that g =ϕψ . If (�ei)1�i�3 denote the canonical
basis of C3 , we can achieve (6.4) by putting

�vn = ϕ(n)�e〈n〉 and �wi = ψ(n−1)�e〈n+2〉 (n ∈ N),

where ψ(0) := 1, and for n = 3k+ l , 〈n〉 = l if l = 1,2 and 〈n〉 = 3 if l = 0.
Claim 3. T3 can be written in the form

T3 = a1�b1 +a2�b2 +a3�b3, for some ai,bi ∈ Ȧ.

This can be proved like Claim 2.
Using (6.2) it is now easy to vertify that EȦ(Ḃ) is closed in ICB(Ḃ) = E(Ḃ) . �

QUESTION 6.7. Does every unital C∗ -algebra A with Orc(A) =∞ have an outer
elementary derivation, or at least an outer derivation δ ∈ ImθA ?

Let A be a separable C∗ -algebra, and let J ∈ Id(A) . By [18, 8.6.15] we know that
each derivation δ̇ ∈ Der(A/J) can be lifted to the derivation δ ∈ Der(A) . Obviously,
each operator Ṫ ∈ ImθA/J can also be lifted to an operator T ∈ ImθA . The next ex-

ample shows that in general we cannot expect that a derivation δ̇ ∈ Der(A/J)∩ ImθA/J
has a lift to a derivation δ ∈ Der(A)∩ ImθA .

EXAMPLE 6.8. Let A be the C∗ -algebra from the Example 6.1 and choose any
faithful unital representation π : A →B(H ) on a separable Hilbert space H such that
π(A)∩K(H ) = {0} , where K(H ) denotes the C∗ -algebra of all compact operators
on H . To justify the existence of such π , we may may first choose a faithful represen-
tation ρ of A on a separable Hilbert space Hρ (such ρ exists since A is separable),

and then we may put H := H
(∞)
ρ and π := ρ (∞) , where ρ (∞) denotes the correspond-

ing amplification of ρ . Let B := π(A)+K(H ) . Obviously B is a unital, separable and
primitive C∗ -algebra and hence, by Theorem 4.3, we have Der(B)∩ ImθB = Inn(B) .
On the other hand, since

B/K(H ) ∼= π(A)/(π(A)∩K(H )) ∼= π(A) ∼= A,

by Example 6.1 there exists an outer derivation δ̇ ∈ ImθB/K(H ) . It follows that such
derivation cannot be lifted to a (necessarily inner) derivation δ ∈ ImθB .
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