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A NOTE ON k–PARANORMAL OPERATORS

C. S. KUBRUSLY AND B. P. DUGGAL

(Communicated by T. Furuta)

Abstract. It is still unknown whether the inverse of an invertible k -paranormal operator is nor-
maloid, and so whether a k -paranormal operator is totally hereditarily normaloid. We provide
sufficient conditions for the inverse of an invertible k -paranormal operator to be k -paranormal.

1. Preliminaries

Let B[H ] stand for the Banach algebra of all bounded linear transformations of
a nonzero complex Hilbert space H into itself. By an operator we mean an element
from B[H ] . If T lies in B[H ] , then T ∗ in B[H ] denotes the adjoint of X . The
range and kernel of T ∈ B[H ] will be denoted by R(T ) and N (T ) , respectively. By
a contraction we mean an operator T ∈ B[H ] such that ‖T‖ � 1. An isometry is a
contraction T such that ‖Tx‖ = ‖x‖ for every x ∈ H . If both T and T ∗ are isome-
tries, then T is a unitary operator. A contraction is said to be completely nonunitary if
it has no unitary direct summand. For any contraction T the sequence of positive num-
bers {‖Tnx‖} is decreasing (thus convergent) for every x ∈ H . A contraction T is of
class C 0· if it is strongly stable; that is, if {‖Tnx‖} converges to zero for every x∈H ,
and of class C 1· if {‖Tnx‖} does not converge to zero for every nonzero x ∈ H . It
is of class C ·0 or of class C ·1 if its adjoint T ∗ is of class C 0· or C 1· , respectively,
leading to the Nagy–Foiaş classes of contractions C 00 , C 01 , C 10 and C 11 [23, p .
72].

The classes of subnormal and hyponormal operators were introduced more than
half a century ago by Paul Halmos in [12] . Since then, these have been considered
in current literature along with a myriad of classes of close to normal operators . We
shall be concerned with just a few of these well-known classes of operators that prop-
erly include the hyponormals . An operator T is dominant if, for each λ ∈ C , there
exists a real number Mλ such that ‖(λ I−T )∗x‖ � Mλ‖(λ I−T)x‖ for every x ∈ H
or, equivalently, if R(λ I−T ) ⊆ R(λ I−T ∗) ; and it is called M-hyponormal if there
exists a real number M � 1 such that, for all λ ∈ C , ‖(λ I−T )∗x‖ � M‖(λ I−T )x‖
for every x ∈ H . A hyponormal is precisely a 1-hyponormal operator (i.e., an oper-
ator T such that T T ∗ � T ∗T or, equivalently, ‖(λ I−T )∗x‖ � ‖(λ I−T )x‖ for ev-
ery λ ∈ C and every x ∈ H ) . As usual, put |T | = (T ∗T )

1
2 , the absolute value of
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T. A p-hyponormal is an operator T such that |T ∗|2p � |T |2p for some real num-
ber 0 < p � 1. Again, a hyponormal is precisely a 1-hyponormal . An operator T is
k -quasihyponormal if T ∗k(T ∗T −T T ∗)Tk � O for some integer k � 1, and quasi- p-
hyponormal (also called p-quasihyponormal) if T ∗(|T |2p−|T∗|2p)T � O for some
real 0 < p � 1. A quasihyponormal is a 1-quasihyponormal or a quasi-1-hyponormal
operator or, equivalently, an operator T such that |T |4 � |T 2|2 ; and so a semi-quasi-
hyponormal is an operator T such that |T |2 � |T 2| (also called class A or class U ) .
An operator T is k -paranormal if ‖Tx‖k+1� ‖Tk+1x‖‖x‖k for some integer k�1 and
every x ∈ H . Equivalently, T is k -paranormal if ‖Tx‖k+1 � ‖Tk+1x‖ for some inte-
ger k�1 and every unit vector x ∈ H (i.e., for every x ∈ H such that ‖x‖ = 1). A
paranormal is simply a 1-paranormal operator.

See [3], [4], [8], [10], [14], [15], [22] and [25] for properties of operators belong-
ing to the above classes. Recall that a paranormal operator is k -paranormal for every
positive integer k (see e.g., [10, p . 271] or [14, Problem 9.17]), and so an operator
is paranormal if and only if it is k -paranormal for every k�1. The diagram below
summarizes the relationship among these classes.

p-hyponormal → quasi-p-hyponormal

↗ ↓1 ↘ 2

hyponormal → quasihyponormal → semi-quasihyponormal → paranormal → k-paranormal

↘ ↘
M-hyponormal k-quasihyponormal

↘
dominant

For the nontrivial implications in the central row (from hyponormal through k -para-
normal) see e.g., [14, p . 94]. Those in 1 and 2 can be found in [9]–[11] and [1],
respectively. The remaining implications are either readily verified or trivial.

2. Introduction

What all the above classes have in common besides including the hyponormal op-
erators? Putnam [18] gave the first proof that completely nonunitary hyponormal con-
tractions are of class C ·0 (also see [16]). This was extended to paranormal contractions
in [17] and to dominant contractions in [22] (also see [4], [24], and the references
therein). This was further extended to both k -paranormal and k -quasihyponormal con-
tractions in [7]. Therefore, every completely nonunitary contraction in any of those
classes appearing in the diagram of Section 1 is of class C ·0 — all of them are in-
cluded in the union of dominant, k -quasihyponormal and k -paranormal contractions .
We show that in this sense (that is, in the sense that completely nonunitary contrac-
tions are of class C ·0 ) the diagram of Section 1 is tight enough. Posinormal operators
(defined in Section 5) comprise a class that properly includes the dominant operators .
Hereditarily normaloid operators (defined in Section 3) comprise a class that properly
includes the k -paranormal operators . We exhibit in Section 5 a completely nonunitary
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posinormal contraction and a completely nonunitary hereditarily normaloid contraction
that are not of class C ·0 ,

It is known that every k -paranormal operator is hereditarily normaloid (every part
of it is normaloid), and that a paranormal operator (i.e., a 1-paranormal operator) is
totally hereditarily normaloid (it is hereditarily normaloid and every invertible part of it
has a normaloid inverse) . However it remains as an open question whether the inverse
of an invertible k -paranormal operator for k � 2 is normaloid, and so whether a k -
paranormal operator for k � 2 is totally hereditarily normaloid. Sufficient conditions
for an invertible k -paranormal operator to have a k -paranormal inverse are given in
Theorems 1 and 2 of Section 4, and hence for a k -paranormal operator to be totally
hereditarily normaloid.

3. Intermediate Results: k -Paranormal

Recall that a part T |M of an operator T is a restriction of it to an invariant sub-
space M , and that an operator T is normaloid if its spectral radius coincides with
its norm (i.e., if r(T ) = ‖T‖ ) or, equivalently, if ‖Tn‖ = ‖T‖n for every nonnegative
integer n . An operator is hereditarily normaloid if every part of it (including itself)
is normaloid (also called invariant normaloid [10, p . 275]) and totally hereditarily
normaloid if it is hereditarily normaloid and the inverse of every invertible part of it
(including its own inverse if it is invertible) is normaloid [5]. Paranormal operators are
totally hereditarily normaloid (which are trivially hereditarily normaloid, and tautologi-
cally normaloid), and all these inclusions are proper (cf . [6]) . We start with a new,
short and simple proof of a proposition that extends the right end of the above diagram,
asserting that k -paranormal operators are hereditarily normaloid, as follows.

totally hereditarily normaloid

↗ ↘
paranormal → k-paranormal → hereditarily normaloid → normaloid

For a different proof see [10, p . 267–273]).

PROPOSITION 1. Every k -paranormal operator is hereditarily normaloid.

Proof. The proof is split into two parts.

(a) Every k -paranormal operator is normaloid.

(b) Every part of a k -paranormal operator is again k -paranormal.

Proof of (a). Let T 
= O in B[H ] be k -paranormal so that, for some integer k�1,

‖Tx‖k+1 � ‖Tk+1x‖‖x‖k for every x ∈ H .

Take any integer j�1. Observe that

‖T jx‖k+1 � ‖Tk+ j‖‖T j−1‖k‖x‖k+1
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for every x ∈ H , which implies ‖T j‖k+1 � ‖Tk+ j‖‖T j−1‖k . Suppose ‖T j‖ = ‖T‖ j

for some j�1 (which holds tautologically for j = 1). Then, by the above inequality,

‖T‖(k+1) j = (‖T‖ j)k+1 = ‖T j‖k+1 � ‖Tk+ j‖‖T j−1‖k � ‖Tk+ j‖‖T‖( j−1)k,

and therefore ‖Tk+ j‖ = ‖T‖k+ j.

Thus, by induction, ‖T 1+ jk‖ = ‖T‖1+ jk for every j�1. This yields a subsequence

{Tnj} of {Tn} , say Tnj = T 1+ jk, such that lim j ‖Tnj‖ 1
n j = lim j(‖T‖n j)

1
n j = ‖T‖ .

Since {‖Tn‖ 1
n } is a convergent sequence that converges to the spectral radius of T

(Beurling–Gelfand formula for the spectral radius), and since it has a subsequence that
converges to ‖T‖ , it follows that r(T ) = ‖T‖ , which means that T is normaloid.

Proof of (b). If M is a T -invariant subspace, then, for every u in M ,

‖T |M u‖k+1 = ‖Tu‖k+1 � ‖Tk+1u‖‖u‖k = ‖(T |M )k+1u‖‖u‖k,

and so T |M is k -paranormal whenever T ∈ B[H ] is k -paranormal for some k�1.

Observe that k -paranormality and normaloidness are closed under nonzero scal-
ing (i.e., for every α 
= 0, α T is k -paranormal or normaloid if and only if T is), and
so is hereditarily and totally hereditarily normaloidness (since the lattice of invariant
subspaces and inversion are closed under nonzero scaling). Moreover, since any power
of a paranormal operator is paranormal, it follows that if the power Tm for some m�1
is paranormal, then Tmn is paranormal for every n�1, but T itself may not be para-
normal.

However if T k+1 is a multiple of an isometry for some k�1 (i.e.,if
‖Tk+1x‖= ‖T‖k+1‖x‖ for every x ∈ H ) then T is k -paranormal.

Indeed, in this case, ‖Tx‖k+1 � ‖T‖k+1‖x‖k+1 = ‖Tk+1x‖‖x‖k for each x ∈ H . Note
that if Tk+1 is a multiple of an isometry then Tk+1 is paranormal, since isometries are
hyponormal — quasinormal, actually — and so Tk+1 is j -paranormal for every j�1.
Further conditions for k -paranormality are given in the next lemmas.

LEMMA 1. Take any T ∈ B[H ] and an arbitrary integer k�1 . Suppose either

‖Tkx‖k+1 � ‖Tk+1x‖k (1)
or

‖Tkx‖‖Tx‖ � ‖Tk+1x‖ (2)

for every unit vector x ∈ H . If T is (k -1)-paranormal, then T is k -paranormal.
Conversely, suppose either

‖Tk+1x‖k � ‖Tkx‖k+1 (1′)
or

‖Tk+1x‖ � ‖Tkx‖‖Tx‖ (2′)

for every unit vector x ∈ H . If T is k -paranormal, then T is (k -1)-paranormal.
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Proof. Take an operator T ∈ B[H ] and an integer k�1. Suppose T is (k -1)-
paranormal (i.e., ‖Tx‖k � ‖Tkx‖ for every unit vector x ∈ H ). If (1) holds true, then

‖Tx‖k(k+1) � ‖Tkx‖k+1 � ‖Tk+1x‖k,

and, if (2) holds true, then

‖Tx‖k+1 = ‖Tx‖k‖Tx‖ � ‖Tkx‖‖Tx‖ � ‖Tk+1x‖,
and so, in both cases, ‖Tx‖k+1 � ‖Tk+1x‖ for every unit vector x ∈ H , which means
that T is k -paranormal. Conversely, suppose T is k -paranormal (i.e., ‖Tx‖k+1 �
‖Tk+1x‖ for every unit vector x ∈ H ). If (1′) holds true, then

‖Tx‖k(k+1) � ‖Tk+1x‖k � ‖Tkx‖k+1,

and, if (2′) holds true, then

‖Tx‖‖Tx‖k = ‖Tx‖k+1 � ‖Tk+1x‖ � ‖Tkx‖‖Tx‖,
and so, in both cases, ‖Tx‖k � ‖Tkx‖ for every unit vector x ∈ H , which means that
T is (k -1)-paranormal.

We assume in (3) of Lemma 2 below that Tk+1 is injective. If T is k -paranormal,
then this means that T is injective itself because for a k -paranormal operator we have
N (Tk+1) ⊆ N (T ) . A similar observation holds for (2) in Lemma 3.

LEMMA 2. Take any T ∈ B[H ] and an arbitrary integer k�1 . If

‖Tkx‖k+1 � ‖Tk+1x‖k (1)

and
0 < ‖Tk+1x‖k−1 and ‖Tx‖k+1‖Tk+1x‖k−1 � ‖Tkx‖k+1 (3)

for every unit vector x ∈ H , then T is k -paranormal. Conversely, if T is k -para-
normal and

‖Tkx‖k+1 � ‖Tx‖k+1‖Tk+1x‖k−1 (3′)

for every unit vector x ∈ H , then (1) holds for every unit vector x ∈ H .

Proof. If (1) and (3) hold true, then 0 
= ‖Tk+1x‖k−1 and

‖Tx‖k+1‖Tk+1x‖k−1 � ‖Tkx‖k+1 � ‖Tk+1x‖k = ‖Tk+1x‖k−1‖Tk+1x‖,
and so ‖Tx‖k+1 � ‖Tk+1x‖
for every unit vector x ∈ H . Conversely if (3′) and the above inequality hold true for
every unit vector x ∈ H , then

‖Tkx‖k+1 � ‖Tx‖k+1‖Tk+1x‖k−1 � ‖Tk+1x‖‖Tk+1x‖k−1 = ‖Tk+1x‖k,

and so (1) holds true for every unit vector x ∈ H .
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LEMMA 3. Take any T ∈ B[H ] and an arbitrary integer k�1 . If

‖Tk+1x‖k � ‖Tkx‖k+1 (1′)
and

0 < ‖Tkx‖ and ‖Tkx‖‖Tx‖ � ‖Tk+1x‖ (2)

for every unit vector x ∈ H , then T is both (k -1)-paranormal and k -paranormal.
Conversely, if T is either (k -1)-paranormal or k -paranormal and

‖Tk+1x‖ � ‖Tkx‖‖Tx‖ (2′)

for every unit vector x ∈ H , then (1′) holds for every unit vector x ∈ H .

Proof. If (1′) and (2) hold true, then 0 
= ‖Tkx‖ and

‖Tkx‖k‖Tx‖k � ‖Tk+1x‖k � ‖Tkx‖k+1 = ‖Tkx‖k‖Tkx‖,
and hence ‖Tx‖k � ‖Tkx‖
for every unit vector x ∈ H so that T is (k -1)-paranormal. But if T is (k -1)-para-
normal and (2) holds, then Lemma 1 says that T is k -paranormal. Conversely if (2′)
and the above inequality hold true for every unit vector x ∈ H (i.e., if T is (k -1)-
paranormal and (2′) hold true), then

‖Tk+1x‖k � ‖Tkx‖k‖Tx‖k � ‖Tkx‖k‖Tkx‖ = ‖Tkx‖k+1

and so (1′) holds true for every unit vector x ∈ H . But if T is k -paranormal and (2′)
holds, then Lemma 1 says that T is (k -1)-paranormal, and so (1′) holds by the above
argument.

LEMMA 4. Take any T ∈ B[H ] and an arbitrary integer k�1 . If

‖Tkx‖k+1 � ‖Tk+1x‖k (1)

for every unit vector x ∈ H , and if T k+1 is (k -1)-paranormal, then Tk is k -para-
normal. Conversely, if

‖Tk+1x‖k � ‖Tkx‖k+1 (1′)

for every unit vector x ∈ H , and if T k is k -paranormal, then T k+1 is (k -1)-para-
normal.

Proof. If (1) holds true, and if Tk+1 is (k -1)-paranormal, then

‖Tkx‖k+1 � ‖Tk+1x‖k � ‖T (k+1)kx‖ = ‖Tk(k+1)x‖
for every unit vector x ∈ H , which ensures that Tk is k -paranormal. Conversely, If
(1′) holds true, and if Tk is k -paranormal, then

‖Tk+1x‖k � ‖Tkx‖k+1 � ‖Tk(k+1)x‖ = ‖T (k+1)kx‖
for every unit vector x ∈ H , which ensures that Tk+1 is (k -1)-paranormal.
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4. Main Results: Invertible k -Paranormal

Note that every operator is trivially 0-paranormal since the inequality that defines
a k -paranormal holds trivially for every operator T ∈ B[H ] if we set k = 0.

THEOREM 1. If T ∈ B[H ] is an invertible k -paranormal operator for some in-
teger k�1 , and if its inverse is (k -1)-paranormal, then T−1 is k -paranormal.

Proof. Let T ∈ B[H ] be an invertible operator. If T is k -paranormal, then

‖T jx‖k+1 = ‖T T j−1x‖k+1 � ‖Tk+1(T j−1x)‖‖T j−1x‖k = ‖Tk+ jx‖‖T j−1x‖k

for every x ∈ H and every integer j ∈ Z . Summing up, for each integer j ∈ Z ,

‖T jx‖k+1 � ‖Tk+ jx‖‖T j−1x‖k (∗)
for every x ∈ H . Put j = −k in (∗) and get ‖T−kx‖k+1 � ‖x‖‖T−(k+1)x‖k for every
x ∈ H . Equivalently,

‖T−kx‖k+1 � ‖T−(k+1)x‖k (1∗)

for every unit vector x ∈ H . Thus the inequality (1) in Lemma 1 holds for T−1 , and
so Lemma 1 ensures that, if T−1 is (k -1)-paranormal, then T−1 is k -paranormal.

REMARK 1. If T ∈ B[H ] is an invertible k -paranormal for some k�1, then

‖Tkx‖−1 � ‖T−1x‖k

for every unit vector x ∈ H and therefore, if T−1 is (k -1)-paranormal (which com-
pletes the hypothesis in Theorem 1), then

‖Tkx‖−1 � ‖T−1x‖k � ‖T−kx‖
for every unit vector x ∈ H . Indeed, if T is an invertible k -paranormal, then the
inequality (∗) in the proof of Theorem 1 holds for every x ∈ H and every j ∈ Z .
Put j = 0 in (∗) and get ‖x‖k+1 � ‖Tkx‖‖T−1x‖k for every x ∈ H . Equivalently,
‖Tkx‖−1 � ‖T−1x‖k for every unit vector x ∈ H .

The next result is an immediate consequence of Theorem 1.

COROLLARY 1. If an operator T ∈ B[H ] is invertible and k -paranormal for
every integer i � k � j , for some integers 2 � i � j , and if its inverse is (i − 1)-
paranormal, then T−1 is k -paranormal for every integer i−1 � k � j .

THEOREM 2. If T ∈ B[H ] is an invertible k -paranormal for some k�1 , and if

‖Tkx‖k+1 � ‖Tx‖k+1‖Tk+1x‖k−1 (3′)

for every unit vector x ∈ H , then T−1 is k -paranormal.
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Proof. If T is an invertible k -paranormal, then (1) of Lemma 1 holds for T−1 :

‖T−ky‖k+1 � ‖T−(k+1)y‖k (1∗)

for every unit vector y ∈ H (cf . proof of Theorem 1). Now (3′) is equivalent to

‖Tkx‖k+1‖x‖k−1 � ‖Tx‖k+1‖Tk+1x‖k−1

for every x ∈ H . Since Tk+1 is invertible, take any y in H = R(Tk+1) so that y =
Tk+1x for some x in H , and hence x = T−(k+1)y. Thus, by the above inequality,

‖T−1y‖k+1‖T−(k+1)y‖k−1 � ‖T−ky‖k+1‖y‖k−1

for every y ∈ H , which is equivalent to

‖T−1y‖k+1‖T−(k+1)y‖k−1 � ‖T−ky‖k+1 (3∗)

for every unit vector y ∈ H . Since T−(k+1) is invertible, thus injective, it follows by
Lemma 2 that (1∗) and (3∗) imply that T−1 is k -paranormal.

Therefore, according to Proposition 1, the subclass of all k -paranormal operators
such that their invertible parts (which are k -paranormal) satisfy either the hypothesis
of Theorem 1 or condition (3′) in Theorem 2 are included in the class of the totally
hereditarily normaloid operators.

REMARK 2. Put k = 1 in Theorem1 and recall that every operator is 0-paranormal.
Similarly, if k = 1 in Theorem 2, then (3′) holds trivially . Thus Theorems 1 and 2
show, in particular (and with different proofs), that the inverse of a paranormal opera-
tor is again paranormal. Therefore, an immediate particular case of Theorems 1 and 2
(cf . Proposition 1) leads to the known result that every paranormal operator is totally
hereditarily normaloid. Moreover, since an operator is paranormal if and only if it is
k -paranormal for every k�1, it follows that if T is an invertible paranormal operator,
then both T and T−1 are k -paranormal for every k�1.

Open questions: Suppose k � 2. Is the inverse of every invertible k -paranormal
operator normaloid? Equivalently (cf . Proposition 1), is every k -paranormal opera-
tor totally hereditarily normaloid? Is the inverse T−1 of an invertible k -paranormal
operator k -paranormal if and only if T−1 is normaloid?

5. Completeness of the Diagram of Section 1

Posinormal operators were introduced in [19]. An operator T is posinormal if
there exists a real number α such that ‖T ∗x‖ � α‖Tx‖ for every x ∈ H or, equiva-
lently, if R(T ) ⊆ R(T ∗) . Thus

dominant → posinormal.

Actually, an operator T is dominant if and only if λ I−T is posinormal for every
λ ∈ C . If T is posinormal then N (T ) ⊆ N (T ∗) , and the converse holds if R(T )
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is closed. For a survey on posinormal operators see [15]. Posinormal operators are
not necessarily normaloid (not even M -hyponormal are normaloid), and normaloid
operators are not necessarily posinormal (in fact, not even paranormal operators are
posinormal) — see e.g., [15].

As we saw in Section 2, all operator classes in the diagram of Section 1 have the
property that every completely nonunitary contraction is of class C ·0. First we show
that such a property cannot be extended from dominant to posinormal contractions, and
then that it cannot be extended from k -paranormal to hereditarily normaloid contrac-
tions.

EXAMPLE 1. There exist completely nonunitary posinormal contractions that are
not of class C ·0 . For instance, consider the bilateral weighted shift

T = shift{ωk}∞k=−∞

on �2 with weights ωk = 1 if k � 0 and ωk = 1
2 if k > 0. This is an invertible contrac-

tion. Indeed, the spectrum of T is the annulus

σ(T ) =
{
λ ∈ C : 1

2 � |λ | � 1
}

and ‖T‖ = 1 (cf . [20, p . 67]). Then T is posinormal (since every invertible operator is
posinormal). Moreover, ∏n

k=0ωk = ( 1
2 )n → 0 as n → ∞ , which means that the product

∏∞
k=0ωk diverges to 0, and ∏0

k=−∞ωk = 1. Hence T is of class C 01 (cf . [2, p . 181]),
and so it is not of class C ·0 . Since the contraction T is strongly stable, it is completely
nonunitary. Thus T is a completely nonunitary posinormal contraction that is not of
class C ·0 (and so not a dominant contraction according to [22]).

EXAMPLE 2. There exist completely nonunitary hereditarily normaloid contrac-
tions that are not of class C ·0 . In fact, let

T = shift{ωk}∞k=−∞

be a bilateral weighted shift on �2 with weights ωk = 1 for all k except for k = 0 where
ω0 = 1

2 . This is a nonunitary C 11 -contraction similar to a unitary operator [13, p . 69].
Moreover, T is an hereditarily normaloid that is not totally hereditarily normaloid. Ac-
tually, it is hereditarily normaloid because every C 1· -contraction is [6, Proposition 1];
and it is not totally hereditarily normaloid because if an operator is similar to a unitary
operator, then it is invertible with a power bounded inverse, and a totally hereditarily
normaloid contraction in C 1· with a power bounded inverse must be unitary [6, Propo-
sition 4]. If the contraction T is not completely nonunitary itself, then there exists a
nonzero subspace M of �2 that reduces T so that, by the well-known Nagy–Foiaş–
Langer decomposition for contractions (see e.g., [23, Theorem 3.2] or [13, Theorem
5.1]),

T = C⊕U on �2 = M⊥⊕M
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where U = T |M is unitary and C = T |M⊥ is a nonzero completely nonunitary con-
traction (acting on a nonzero subspace, because T is not unitary), which is hereditarily
normaloid (but not totally hereditarily normaloid) since T is, and of class C 11 since
T is. (Indeed, Cnv = (T |M⊥)nv = Tn|M⊥v = Tnv ; similarly, C∗nv = T ∗nv , for every
v ∈ M⊥, because M⊥ reduces T .) Thus either T or C is a completely nonunitary
hereditarily normaloid contraction (not totally hereditarily normaloid) that is not of
class C ·0 (and so not a k -paranormal contraction according to [7]).

Recall the following standard concepts. The defect operator of a contraction T
is the nonnegative contraction (I−T ∗T )

1
2 . A T -invariant subspace M is a normal

subspace for T if the restriction T |M of T to M is a normal operator in B[M ] . The
class of all operators for which normal subspaces are reducing characterizes a class of
operators that lies between the dominant and the posinormal operators. Indeed, every
normal subspace for a dominant operator reduces it [21], and every operator with closed
range for which normal subspaces are reducing is posinormal [15]. We close the paper
with a sufficient condition for a completely nonunitary totally hereditarily normaloid
contraction to be of class C ·0 , which is an immediate consequence of [6, Theorem 1]:

Let T ∈ B[H ] be a completely nonunitary contraction with a Hil-
bert–Schmidt defect operator. Suppose T is totally hereditarily
normaloid. If normal subspaces of T reduce T , then T is of class
C ·0 .

Acknowledgement. The authors thank an anonymous referee for clarifying the
implications concerning the class of quasi- p -hyponormal operators in the diagram of
Section 1.

RE F ER EN C ES

[1] H.K. CHA, K.I. SHIN AND J.K. KIM, On the superclasses of quasihyponormal operators, J. Korea
Soc. Math. Educ., 7 (2000), 79–86.

[2] R.G. DOUGLAS, Canonical models, Topics in Operator Theory (Mathematical Surveys No.13, Amer.
Math. Soc., Providence, 2nd pr. 1979), 161–218.

[3] B.P. DUGGAL, On dominant operators, Arch. Math. (Basel), 46 (1986), 353–359.
[4] B.P. DUGGAL, On characterising contractions with C10 pure part, Integral Equations Operator The-

ory, 27 (1997), 314–323.
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