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A NOTE ON k-PARANORMAL OPERATORS

C. S. KUBRUSLY AND B. P. DUGGAL

(Communicated by T. Furuta)

Abstract. 1t is still unknown whether the inverse of an invertible k-paranormal operator is nor-
maloid, and so whether a k-paranormal operator is totally hereditarily normaloid. We provide
sufficient conditions for the inverse of an invertible k-paranormal operator to be k-paranormal.

1. Preliminaries

Let B[] stand for the Banach algebra of all bounded linear transformations of
a nonzero complex Hilbert space ¢ into itself. By an operator we mean an element
from B[A]. If T lies in B[], then T* in B[] denotes the adjoint of X. The
range and kernel of T € Z[¢] will be denoted by Z(T) and A (T), respectively. By
a contraction we mean an operator T € A[.7] such that ||T|| < 1. An isometry is a
contraction 7' such that || Tx|| = ||x|| for every x € . If both T and T* are isome-
tries, then 7 is a unitary operator. A contraction is said to be completely nonunitary if
it has no unitary direct summand. For any contraction 7 the sequence of positive num-
bers {||T"x||} is decreasing (thus convergent) for every x € .. A contraction T is of
class €. if itis strongly stable; that is, if {||7"x||} converges to zero for every x € 7,
and of class €. if {||T"x||} does not converge to zero for every nonzero x € JZ. It
is of class €’.¢ or of class %1 if its adjoint T* is of class €. or 1., respectively,
leading to the Nagy—Foiag classes of contractions %oy, €01, €10 and €11 [23, p-
72].

The classes of subnormal and hyponormal operators were introduced more than
half a century ago by Paul Halmos in [12]. Since then, these have been considered
in current literature along with a myriad of classes of close to normal operators. We
shall be concerned with just a few of these well-known classes of operators that prop-
erly include the hyponormals. An operator T is dominant if, for each A € C, there
exists a real number M, such that |[(Al—T)*x|| < M, [|[(AI—T)x| for every x € 5
or, equivalently, if Z(AI—T) C Z(AI—T*); and it is called M -hyponormal if there
exists a real number M > 1 such that, forall A € C, [[(AI—T)*x|| < M|[(AI—T)x||
for every x € J€. A hyponormal is precisely a 1-hyponormal operator (i.e., an oper-
ator T such that TT* < T*T or, equivalently, ||(AI—T)*x|| < |[(Al—T)x|| for ev-

1
ery A € C and every x € ). As usual, put |T| = (T*T)2, the absolute value of
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T. A p-hyponormal is an operator T such that |T*|?” < |T|*” for some real num-
ber 0 < p < 1. Again, a hyponormal is precisely a 1-hyponormal. An operator T is
k-quasihyponormal if T**(T*T —T T*)T* > O for some integer k > 1, and quasi-p-
hyponormal (also called p-quasihyponormal) if T*(|T|*? —|T*|*P)T > O for some
real 0 < p < 1. A quasihyponormal is a 1-quasihyponormal or a quasi- 1 -hyponormal
operator or, equivalently, an operator 7 such that |T|* < |T?|?; and so a semi-quasi-
hyponormal is an operator T such that |T|> < |T?| (also called class <7 or class U ).
An operator T is k-paranormal if || Tx|**' < || T*x||||x||¥ for some integer k > 1 and
every x € . Equivalently, T is k-paranormal if ||Tx|/**! < ||T* x| for some inte-
ger k>1 and every unit vector x € .7 (i.e., for every x € J# such that ||x]| =1). A
paranormal is simply a 1 -paranormal operator.

See [3], [4], [8], [10], [14], [15], [22] and [25] for properties of operators belong-
ing to the above classes. Recall that a paranormal operator is k-paranormal for every
positive integer k (see e.g., [10, p. 271] or [14, Problem 9.17]), and so an operator
is paranormal if and only if it is k-paranormal for every k>1. The diagram below
summarizes the relationship among these classes.

p-hyponormal — quasi-p-hyponormal

/! L N
hyponormal — quasihyponormal — semi-quasihyponormal — paranormal — k-paranormal
M-hyponormal k-quasihyponormal
dominant

For the nontrivial implications in the central row (from hyponormal through k-para-
normal) see e.g., [14, p. 94]. Those in 1 and 2 can be found in [9]-[11] and [1],
respectively. The remaining implications are either readily verified or trivial.

2. Introduction

What all the above classes have in common besides including the hyponormal op-
erators? Putnam [18] gave the first proof that completely nonunitary hyponormal con-
tractions are of class % .¢ (also see [16]). This was extended to paranormal contractions
in [17] and to dominant contractions in [22] (also see [4], [24], and the references
therein). This was further extended to both k-paranormal and k-quasihyponormal con-
tractions in [7]. Therefore, every completely nonunitary contraction in any of those
classes appearing in the diagram of Section 1 is of class % .9 — all of them are in-
cluded in the union of dominant, k-quasihyponormal and k-paranormal contractions.
We show that in this sense (that is, in the sense that completely nonunitary contrac-
tions are of class % .o) the diagram of Section 1 is tight enough. Posinormal operators
(defined in Section 5) comprise a class that properly includes the dominant operators.
Hereditarily normaloid operators (defined in Section 3) comprise a class that properly
includes the k-paranormal operators. We exhibit in Section 5 a completely nonunitary
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posinormal contraction and a completely nonunitary hereditarily normaloid contraction
that are not of class % .q,

It is known that every k-paranormal operator is hereditarily normaloid (every part
of it is normaloid), and that a paranormal operator (i.e., a 1-paranormal operator) is
totally hereditarily normaloid (it is hereditarily normaloid and every invertible part of it
has a normaloid inverse). However it remains as an open question whether the inverse
of an invertible k-paranormal operator for k£ > 2 is normaloid, and so whether a k-
paranormal operator for k > 2 is totally hereditarily normaloid. Sufficient conditions
for an invertible k-paranormal operator to have a k-paranormal inverse are given in
Theorems 1 and 2 of Section 4, and hence for a k-paranormal operator to be totally
hereditarily normaloid.

3. Intermediate Results: k-Paranormal

Recall that a part T| 4, of an operator T is a restriction of it to an invariant sub-
space .# , and that an operator T is normaloid if its spectral radius coincides with
its norm (i.e., if #(T) =||T||) or, equivalently, if ||T"|| = ||T||" for every nonnegative
integer n. An operator is hereditarily normaloid if every part of it (including itself)
is normaloid (also called invariant normaloid [10, p. 275]) and totally hereditarily
normaloid if it is hereditarily normaloid and the inverse of every invertible part of it
(including its own inverse if it is invertible) is normaloid [5]. Paranormal operators are
totally hereditarily normaloid (which are trivially hereditarily normaloid, and tautologi-
cally normaloid), and all these inclusions are proper (cf. [6]). We start with a new,
short and simple proof of a proposition that extends the right end of the above diagram,
asserting that k-paranormal operators are hereditarily normaloid, as follows.

totally hereditarily normaloid

/ N\

paranormal — k-paranormal — hereditarily normaloid — normaloid

For a different proof see [10, p. 267-273]).

PROPOSITION 1. Every k-paranormal operator is hereditarily normaloid.

Proof. The proof is split into two parts.
(a) Every k-paranormal operator is normaloid.
(b) Every part of a k-paranormal operator is again k-paranormal.
Proof of (a). Let T # O in B[] be k-paranormal so that, for some integer k> 1,

[ Tx|[*FE < || T x| ||x||* forevery xe 2.

Take any integer j > 1. Observe that

i 1k+1 k+j i—1 1k k+1
[ 1 e[
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for every x € 2, which implies ||77/|**!1 < ||T*/||||T/-1||*. Suppose ||T/]| =T’
for some j>1 (which holds tautologically for j = 1). Then, by the above inequality,

k- j i\ k j [1k k+j i—1 1k k+j i—1)k
T ® = (T = 77 < T e T o,

and therefore . .
[T || = (||

Thus, by induction, ||T'*7%|| = ||T||'*7* for every j>1. This yields a subsequence
, i i

{1} of {T"}, say T" =Tk such that lim;||77|" = lim;(|T||")" = ||T|.

Since {||T"|| %} is a convergent sequence that converges to the spectral radius of T

(Beurling—Gelfand formula for the spectral radius), and since it has a subsequence that
converges to ||T|, it follows that »(T') = ||T||, which means that T is normaloid.

Proof of (b). If .4 is a T -invariant subspace, then, for every u in .# ,

T Lul Y = I Tul < N7l el = /(T LYl

and so T| 4 is k-paranormal whenever T € B[] is k-paranormal for some k> 1.

Observe that k-paranormality and normaloidness are closed under nonzero scal-
ing (i.e., for every o # 0, aT is k-paranormal or normaloid if and only if T is), and
so is hereditarily and totally hereditarily normaloidness (since the lattice of invariant
subspaces and inversion are closed under nonzero scaling). Moreover, since any power
of a paranormal operator is paranormal, it follows that if the power T" for some m > 1
is paranormal, then 7" is paranormal for every n> 1, but T itself may not be para-
normal.

However if T is a multiple of an isometry for some k>1 (i.e.,if
| 7% x|| = || T||¥1||x|| for every x € ) then T is k-paranormal.

Indeed, in this case, ||Tx|[*"! < ||T|**!|x||*1 = || 7%+ 1x|| ||x||* for each x € 5. Note
that if 75! is a multiple of an isometry then 7**! is paranormal, since isometries are
hyponormal — quasinormal, actually — and so T*¥*! is j-paranormal for every j>1.
Further conditions for k-paranormality are given in the next lemmas.

LEMMA 1. Take any T € B[H] and an arbitrary integer k > 1. Suppose either
Tl < YT e (1)
or k k+1
Tl ([Tl < [T ]| (2)
Sor every unit vector x€ €. If T is (k-1)-paranormal, then T is k-paranormal.
Conversely, suppose either
1T e E < TR (1)
or

T ]| < 7% 1T (2')

Sor every unit vector x € . If T is k-paranormal, then T is (k-1)-paranormal.
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Proof. Take an operator T € Z[5] and an integer k> 1. Suppose T is (k-1)-

paranormal (i.e., || Tx||¥ < || T*x|| for every unit vector x € 7). If (1) holds true, then
T D < Tl < T

and, if (2) holds true, then
7] = (Tl M1 Toxl] < [T ) | el < [T e,
and so, in both cases, ||Tx||*"! < ||T¥ x|| for every unit vector x € 7, which means

that T is k-paranormal. Conversely, suppose T is k-paranormal (i.e., ||T)CH"Jrl <
|T¥1x|| for every unit vector x € 7). If (1') holds true, then

[V [ At [ [ e L
and, if (2’) holds true, then
k k k k
I Tx|| | 7] = || T < | T4 ]| < | T | T

and so, in both cases, ||Tx|* < ||T*x|| for every unit vector x € ., which means that
T is (k-1)-paranormal.

We assume in (3) of Lemma 2 below that 7%+ is injective. If T is k-paranormal,
then this means that T is injective itself because for a k-paranormal operator we have
N (TH1) C 4 (T). A similar observation holds for (2) in Lemma 3.

LEMMA 2. Take any T € B[] and an arbitrary integer k> 1. If
Tl < (|75 e (1)

and
O< TN and || 7| T k1 < | T 3)

for every unit vector x € 7, then T is k-paranormal. Conversely, if T is k-para-
normal and

7] < e |7 e (3"
Sor every unit vector x € F, then (1) holds for every unit vector x € .
Proof. If (1) and (3) hold true, then 0 # || 7% 'x||*~! and
Tl T ST e < T el = (| T

and so
I Tx]| ! < | T4 x|

for every unit vector x € . Conversely if (3’) and the above inequality hold true for
every unit vector x € 7, then

Tl < Tl T S < T T el = T e

and so (1) holds true for every unit vector x € 7.
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LEMMA 3. Take any T € B[] and an arbitrary integer k> 1. If
75 el < (|75l (1)
and
0<% and ||| | Tx| < T x| (2)

Sor every unit vector x € F, then T is both (k-1)-paranormal and k-paranormal.
Conversely, if T is either (k-1)-paranormal or k-paranormal and

1T el < [T | 7] (2)
for every unit vector x € S, then (1') holds for every unit vector x € .
Proof. 1If (1') and (2) hold true, then 0 # ||T¥x|| and
Tl < T el < T ) = T8 41T

and hence & "
[T < || 75|

for every unit vector x € 5 so that T is (k-1)-paranormal. But if T is (k-1)-para-
normal and (2) holds, then Lemma 1 says that T is k-paranormal. Conversely if (2')
and the above inequality hold true for every unit vector x € 5 (i.e., if T is (k-1)-
paranormal and (2) hold true), then

K1k k11K | 71K k ik K ki
T el < Tl el < T T = (75

and so (1’) holds true for every unit vector x € 7. Butif T is k-paranormal and (2')
holds, then Lemma 1 says that T is (k-1)-paranormal, and so (1’) holds by the above
argument.

LEMMA 4. Take any T € B[] and an arbitrary integer k> 1. If
Tl < (|75 el (1)

for every unit vector x € , and if T**' is (k-1)-paranormal, then T* is k-para-
normal. Conversely, if

K1k ko jk+1
1T x| < T (1)

for every unit vector x € €, and if T* is k-paranormal, then T**' is (k-1)-para-
normal.

Proof. If (1) holds true, and if T**! is (k-1)-paranormal, then
||Tkx||k+l < HTk+1x||k< HT(kJrl)ka _ ||Tk(k+l)x||

for every unit vector x € #, which ensures that T* is k-paranormal. Conversely, If
(1') holds true, and if T* is k-paranormal, then

K11k ko jk+1 k(41 K1)k
T F < 7] < (T D] = T Dy

for every unit vector x € .7, which ensures that 7! is (k-1)-paranormal.
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4. Main Results: Invertible k-Paranormal

Note that every operator is trivially 0-paranormal since the inequality that defines
a k-paranormal holds trivially for every operator T € B[] if we set k =0.

THEOREM 1. If T € B[] is an invertible k-paranormal operator for some in-
teger k> 1, and if its inverse is (k- 1)-paranormal, then T~ is k-paranormal.

Proof. Let T € B[] be an invertible operator. If T is k-paranormal, then
T2 = T 77 e < T T R T = T 77 e
for every x € 57 and every integer j € Z. Summing up, for each integer j € Z,
7| T |77 e (%)
for every x € 2. Put j = —k in (%) and get ||T%x|[*t! < ||| |7~*+Dx||* for every
x € 7. Equivalently,
1T < 7= D (17)
for every unit vector x € .#. Thus the inequality (1) in Lemma 1 holds for 7!, and
so Lemma 1 ensures that, if 77! is (k-1)-paranormal, then T lis k-paranormal.
REMARK 1. If T € &[] is an invertible k-paranormal for some k > 1, then
1%~ < 7
for every unit vector x € . and therefore, if T~! is (k-1)-paranormal (which com-
pletes the hypothesis in Theorem 1), then
7% < T e < 1T
for every unit vector x € 7. Indeed, if T is an invertible k-paranormal, then the
inequality (*) in the proof of Theorem 1 holds for every x € % and every j€ Z.

Put j=0 in () and get |x|**! < ||T*x||||T~'x||* for every x € 7. Equivalently,
| T*x|| =1 < || T~ 'x||* for every unit vector x € 7.

The next result is an immediate consequence of Theorem 1.

COROLLARY 1. If an operator T € B|.H] is invertible and k-paranormal for
every integer i <k < j, for some integers 2 <i< j, and if its inverse is (i —1)-
paranormal, then T~ is k-paranormal for every integer i — 1 < k < j.

THEOREM 2. If T € B[] is an invertible k-paranormal for some k> 1, and if
Tl < T T el (3)

or every unit vector x € #, then T~V is k-paranormal.
y 14
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Proof. If T is an invertible k-paranormal, then (1) of Lemma 1 holds for 77!:
1T~ *y) < T EH Dy ¢ (17)

for every unit vector y € 5# (cf. proof of Theorem 1). Now (3') is equivalent to

ko ik k- k k e
Tl el < Tl 7 ]

for every x € 2. Since T**! is invertible, take any y in J# = Z(T**!) so that y =
T*+1x for some x in ., and hence x = T~ **1y. Thus, by the above inequality,

1k = (kD) k= ke |1k k—
Ty T Dy Ty

for every y € ¢, which is equivalent to
[ [ s N T (3%)

for every unit vector y € . Since T~**1) is invertible, thus injective, it follows by
Lemma 2 that (1*) and (3*) imply that T~! is k-paranormal.

Therefore, according to Proposition 1, the subclass of all k-paranormal operators
such that their invertible parts (which are k-paranormal) satisfy either the hypothesis
of Theorem 1 or condition (3') in Theorem 2 are included in the class of the totally
hereditarily normaloid operators.

REMARK 2. Put k =1 in Theorem 1 and recall that every operator is 0-paranormal.
Similarly, if k=1 in Theorem 2, then (3) holds trivially. Thus Theorems 1 and 2
show, in particular (and with different proofs), that the inverse of a paranormal opera-
tor is again paranormal. Therefore, an immediate particular case of Theorems 1 and 2
(cf. Proposition 1) leads to the known result that every paranormal operator is totally
hereditarily normaloid. Moreover, since an operator is paranormal if and only if it is
k-paranormal for every k> 1, it follows that if T is an invertible paranormal operator,
then both 7 and T~! are k-paranormal for every k> 1.

Open questions: Suppose k > 2. Is the inverse of every invertible k-paranormal
operator normaloid? Equivalently (cf. Proposition 1), is every k-paranormal opera-
tor totally hereditarily normaloid? Is the inverse T~ of an invertible k-paranormal
operator k-paranormal if and only if T~ is normaloid?

5. Completeness of the Diagram of Section 1

Posinormal operators were introduced in [19]. An operator T is posinormal if
there exists a real number o such that ||T*x|| < o||Tx| for every x € S or, equiva-
lently, if Z(T) C %2(T*). Thus

dominant — posinormal.

Actually, an operator T is dominant if and only if Al —T is posinormal for every
A €C. If T is posinormal then .4 (T) C .4 (T*), and the converse holds if Z(T)
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is closed. For a survey on posinormal operators see [15]. Posinormal operators are
not necessarily normaloid (not even M -hyponormal are normaloid), and normaloid
operators are not necessarily posinormal (in fact, not even paranormal operators are
posinormal) — see e.g., [15].

As we saw in Section 2, all operator classes in the diagram of Section 1 have the
property that every completely nonunitary contraction is of class € .g. First we show
that such a property cannot be extended from dominant to posinormal contractions, and
then that it cannot be extended from k-paranormal to hereditarily normaloid contrac-
tions.

EXAMPLE 1. There exist completely nonunitary posinormal contractions that are
not of class € .o . For instance, consider the bilateral weighted shift

T = shift{w } 5 _..
on /2 with weights @y = 1 if k <0 and @y, = % if k> 0. This is an invertible contrac-
tion. Indeed, the spectrum of T is the annulus

o(T)={AeC: ;<A< 1}

and ||T|| =1 (cf. [20, p. 67]). Then T is posinormal (since every invertible operator is
posinormal). Moreover, [T;_, & = (%)" — 0 as n — oo, which means that the product
[Tr—o wx divergesto 0, and ngﬂo wy = 1. Hence T is of class € (cf. [2,p. 181]),
and so it is not of class & .¢. Since the contraction T is strongly stable, it is completely
nonunitary. Thus T is a completely nonunitary posinormal contraction that is not of

class %.o (and so not a dominant contraction according to [22]).

EXAMPLE 2. There exist completely nonunitary hereditarily normaloid contrac-
tions that are not of class € .. In fact, let

T = shift{ o } oo

be a bilateral weighted shift on ¢ with weights @y = 1 for all k except for k = 0 where
Wy = % This is a nonunitary %) -contraction similar to a unitary operator [13, p. 69].
Moreover, T is an hereditarily normaloid that is not totally hereditarily normaloid. Ac-
tually, it is hereditarily normaloid because every %’;.-contraction is [6, Proposition 1];
and it is not totally hereditarily normaloid because if an operator is similar to a unitary
operator, then it is invertible with a power bounded inverse, and a totally hereditarily
normaloid contraction in €’;. with a power bounded inverse must be unitary [6, Propo-
sition 4]. If the contraction T is not completely nonunitary itself, then there exists a
nonzero subspace .# of (2 that reduces T so that, by the well-known Nagy—Foias—
Langer decomposition for contractions (see e.g., [23, Theorem 3.2] or [13, Theorem
5.1]),

T=C®U on P=H"dH
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where U =T| 4 is unitary and C=T| ,. is a nonzero completely nonunitary con-
traction (acting on a nonzero subspace, because 7T is not unitary), which is hereditarily
normaloid (but not totally hereditarily normaloid) since 7 is, and of class %1, since
T is. (Indeed, C"v = (T| ,1)"v=T"| 41v = T"v; similarly, C*"v = T*"v, for every
v € .4+, because .#Z* reduces T.) Thus either T or C is a completely nonunitary
hereditarily normaloid contraction (not totally hereditarily normaloid) that is not of
class %.o (and so not a k-paranormal contraction according to [7]).

Recall the following standard concepts. The defect operator of a contraction T
is the nonnegative contraction (I — T*T)% . A T -invariant subspace .# is a normal
subspace for T if the restriction T'| 4 of T to .# is anormal operator in Z[.#]. The
class of all operators for which normal subspaces are reducing characterizes a class of
operators that lies between the dominant and the posinormal operators. Indeed, every
normal subspace for a dominant operator reduces it [21], and every operator with closed
range for which normal subspaces are reducing is posinormal [15]. We close the paper
with a sufficient condition for a completely nonunitary totally hereditarily normaloid
contraction to be of class % .¢, which is an immediate consequence of [6, Theorem 1]:

Let T € B[] be a completely nonunitary contraction with a Hil-
bert—Schmidt defect operator. Suppose T is totally hereditarily

normaloid. If normal subspaces of T reduce T, then T is of class
%.0.

Acknowledgement. The authors thank an anonymous referee for clarifying the
implications concerning the class of quasi- p-hyponormal operators in the diagram of
Section 1.
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