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SOME QUADRATIC CORRECT EXTENSIONS

OF MINIMAL OPERATORS IN BANACH SPACES

I. N. PARASIDIS AND P. C. TSEKREKOS

(Communicated by B. Jacob)

Abstract. Let A0 be a minimal operator from a complex Banach space X into X with finite de-

fect, def A0 = m , and Â is a linear correct extension of A0 . Let Ec(A0, Â)
(

resp. Ec(A2
0, Â

2)
)

denote the set of all correct extensions B of A0 with domain D(B) = D(Â)
(
resp. B1 of A2

0

with D(B1) = D(Â2)
)

and let Em
c (A0, Â)

(
resp. Em+k

c (A2
0, Â

2),k � m, k,m ∈ N
)

denote the

subset of Ec(A0, Â)
(

resp. Ec(A2
0, Â

2
)

consisting of all B ∈ Ec(A0, Â)
(
resp. Ec(A2

0, Â
2)
)

such that dimR(B− Â) = m
(
resp. dimR(B1− Â2) = m+ k

)
. In this paper:

1. we characterize the set of all operators B1 ∈ Em+k
c (A2

0, Â
2) with the help of Â and

some vectors S and G and give the solution of the problem B1x = f ,

2. we describe the subset E2m
2c (A2

0, Â
2) of all operators B2 ∈ E2m

c (A2
0, Â

2) such that

B2 = B2 , where B is an operator of Em
c (A0, Â) corresponding to B2 ,

3. we give the solution of problems B2x = f .

1. Introduction

An important tool in creating correct operators and solving boundary value prob-
lems containing differential or integro-differential equations is the correct extensions
of minimal operators. Correct extensions of densely defined minimal operators in Ba-
nach and Hilbert spaces have been investigated by M. I. Vishik [6], A. A. Dezin [5],
M. Otelbaev [13], R. Oinarov [1] and many others. Self-adjoint extensions of a densely
defined minimal symmetric operator A0 have been studied by a number of authors as
Neumann J. Von [2], E. A. Coddington, A. Dijksma [8], A. N. Kochubei [10], V. A.
Mikhailets [12], V. I. Gorbachuk and M. L. Gorbachuk [3]. Often they described the
extensions as restrictions of some operators, usually of the adjoint operator A∗

0 of A0 .
In [7] and [11] have been studied extensions of nondensely defined symmetric opera-
tors. The correct restrictions B of some maximal operator A , when B is a product of
correct restrictions B1,B2 of A , have been investigated by Shynibekov [14]. Our cor-
rect extensions are not, generally, restrictions of some maximal operator. The essential
ingredient in our approach is the extension of the main idea in [1].
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The paper is organized as follows. In Section 2 we recall some basic terminology
and notation about operators. In Sections 3, 4 we prove the main general results. Fi-
nally, in Section 5 we discuss some examples of integro-differential equations which
are of mathematical interest and show the usefulness of our results.

2. Terminology and notation

Let X be a complex Banach space and X∗ its adjoint space, i.e. the set of all
complex-valued linear and bounded functionals on X . We denote by f (x) the value of
f on x or in scalar product form ( f ,x)X , where f ∈ X∗, x ∈ X . So we have ( f ,x)X =
f (x) as in [16, p.191]. We consider f to be linear on x and x to be anti-linear on f ,
i.e. we have

( f ,a1x1 +a2x2)X = a1( f ,x1)X +a2( f ,x2)X = a1 f (x1)+a2 f (x2),

(b1 f1 +b2 f2,x)X = b1( f1,x)X + b2( f2,x)X = b1 f1(x)+ b2 f2(x),

where a1,a2,b1,b2 are complex numbers and b1, b2 are complex conjugates.
We note that in [9, p.11] ( f ,x) is defined by ( f ,x) = f (x).
We write D(A) and R(A) for the domain and the range of the operator A , respec-

tively. An operator A2 is said to be an extension of an operator A1 , or A1 is said to
be a restriction of A2 , in symbol A1 ⊂ A2 , if D(A2) ⊇ D(A1) and A1x = A2x , for all
x ∈ D(A1) . An operator A : X → X is called closed if for every sequence xn in D(A)
converging to x0 with Axn → f0 , it follows that x0 ∈ D(A) and Ax0 = f0 . A closed op-
erator A0 : X → X is called minimal if R(A0) �= X and the inverse A−1

0 exists on R(A0)
and is continuous. A is called maximal if R(A) = X and kerA �= {0} . An operator Â is
called correct if R(Â) = X and the inverse Â−1 exists and is continuous. An operator Â
is called a correct extension (resp. restriction) of the minimal (resp. maximal) operator
A0 (resp. A) if it is a correct operator and A0 ⊂ Â (resp. Â ⊂ A).

Let A be an operator from X into X with domain D(A) dense in X . The ad-
joint operator A∗ : X∗ −→ X∗ of A with domain D(A∗) is defined by the equation
(A∗y,x)X = (y,Ax)X for every x ∈ D(A) and every y ∈ D(A∗) . The domain D(A∗) of
A∗ consists of all y∈X∗ for which the functional x �−→ (y,Ax)X is continuous on D(A) .
The defect, defA0, of an operator A0 is the dimension of the annihilator R(A0)⊥ ⊂ X∗
of its range R(A0) .

If Φi ∈X∗, i = 1, . . . ,m , then we will write Φ= (Φ1, . . . ,Φm), Φk =(Φ1, . . . ,Φk) ,
k � m , (Φm = Φ) , F1 = (Â∗−1Φk,Φ) = (Â∗−1Φ1, . . . , Â∗−1Φk,Φ1, . . . ,Φm) , k � m
and Â−2 = (Â−1)2. We will also write Φt and (Φt ,Ax)Xm for the column vectors
col(Φ1, . . . ,Φm) and col((Φ1,Ax)X , . . . ,(Φm,Ax)X ) , respectively. Let G = (G1, . . . ,Gm)
be a vector of Xm . We will denote by Mt the transpose matrix of M and by (Φt ,G)Xm

the m×m matrix whose i, j -th entry is the value of functional Φi on element Gj and

by (Φkt
,G)Xk,m the k×m matrix whose i, j -th entry is the value of Φi on Gj . We will

also denote by Im and [0]m the identity m×m and the zero m×m matrices, respec-
tively. By �0 we will denote the zero vector.

It is evident that for m×m matrix C holds (Φt ,GC)Xm = (Φt ,G)XmC .
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3. Some correct extensions of minimal operators in Banach spaces

We begin with the following lemma

LEMMA 3.1. Let X be a complex Banach space and Â : X →X a correct, densely
defined operator.

(i) The operator A0 ⊂ Â is minimal with def A0 = dimR(A0)⊥ = m if and only if
there exist linearly independent elements Φ1, . . . ,Φm of X∗ such that

D(A0) = {x ∈ D(Â) : (Φt , Âx)Xm =�0}, (3.1)

where Φ= (Φ1, . . . ,Φm) .
(ii) The adjoint operator Â∗ : X∗ → X∗ is correct.

Proof. (i) First we show the “if” part of the theorem. From A0 ⊂ Â , ker Â = {0} ,
R(Â) = X and (3.1) it follows easily that kerA0 = {0} , the inverse operator A−1

0 is a
restriction of Â−1 and

R(A0) = { f ∈ X : (Φt , f )Xm =�0} or R(A0) =
m⋂

i=1

kerΦi. (3.2)

From (3.2) and the linear independence of Φ1, . . . ,Φm it follows that defA0 = dimR(A0)⊥
= m and Φ1, . . . ,Φm is a basis of R(A0)⊥ . Now we show that A0 is a closed op-
erator. Let xn ∈ D(A0) , xn → x0 and A0xn → f0 . We put fn = A0xn . Then fn →
f0, xn = A−1

0 fn = Â−1 fn → x0 . The operator Â−1 is closed because Â is correct.
So Â−1 f0 = x0 i.e. f0 = Âx0. From (3.1) and A0xn → f0 = Âx0 it follows that
(Φt , Âxn)Xm → (Φt , Âx0)Xm =�0, so x0 ∈ D(A0) . Hence A0x0 = f0 and so A0 is a
closed operator. The boundedness of Â−1 and that A−1

0 ⊂ Â−1 imply the boundedness
of A−1

0 . Hence A0 is minimal.
Now we show the “only if” part of the theorem. Let Φ1, . . . ,Φm a basis of

R(A0)⊥. We will show (3.1). Let x ∈ D(A0) . Then (Φt ,A0x)Xm =�0 and, since A0 ⊂
Â, (Φt , Âx)Xm =�0. Let now x ∈ D(Â) such that (Φt , Âx)Xm =�0. Then Âx ∈ R(A0)⊥⊥.
By the Bipolar theorem R(A0)⊥⊥ = R(A0) = R(A0), since R(A0) is closed. Hence
x ∈ D(A0).

(ii) It has been proved in [4, Theorem 5.3]
Throughout this paper Â will denote a correct densely defined operator on a com-

plex Banach space X and A0 a minimal restriction of Â with finite defect, def A0 = m.
Our first Theorem 3.6 is implied from the following two Theorems 3.2, 3.4 proved

in [1] [ Theorem 2 and Theorem 3,i=2 respectively], which we present hear without
proof. At first few words about the notation in these theorems. X ,Y are complex
Banach spaces, A0, Ap, A : X → Y stand for, respectively, a minimal, a correct and a
maximal operator. It holds that A0 ⊂ Ap ⊂ A and

Y = R(A0)�M, R(A0)
⋂

M = {0}, (3.3)
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where dimM = n. For the operator Ap holds

D(Ap) = {x : x ∈ D(A), Γx = 0}, (3.4)

where Γ is a closed linear operator from D(Γ) ⊂ X into the boundary values space Z
with D(Γ) ⊇ D(A). The elements F1, . . . ,Fn ∈ Y ∗ is a biorthogonal system to a basis
φ1, . . . ,φn of M. The symbol Rr(A0,A) denotes the set of all correct extensions of
A0 with domain in D(A) and Ψ is the set of the vectors ψ = (ψ1, . . . ,ψn) ∈ D(A)n

satisfying the condition α :
ΓψF( f ) = 0. (3.5)

[In +F(Aψ)]F( f ) =�0 or dF( f ) =�0 (3.6)

implies F( f ) =�0, where F = col(F1, . . . ,Fn).

THEOREM 3.2. Let A0 be a minimal operator satisfying (3.3). Then:
(i) For every Aψ ∈ Rr(A0,A), there exists a vector ψ ∈Ψ such that

A−1
ψ f = A−1

p f +ψF( f ), f ∈ Y, (3.7)

where F = col(F1, . . . ,Fn) , Fi ∈ Y ∗ ,
⋂n

i=1 kerFi = R(A0).
(ii) Conversely, for every ψ ∈ Ψ, there exists an operator Aψ ∈ Rr(A0,A) such

that (3.7) holds.

REMARK 3.3. The vector ψ ∈ Ψ in Theorem 3.2 (i) is unique. Indeed, suppose
that for an Aψ ∈ Rr(A0,A) and two vectors ψ(1) , ψ(2) ∈ Ψ holds A−1

ψ f = A−1
p f +

ψ(1)F( f ) = A−1
p f +ψ(2)F( f ) , ∀ f ∈Y. Then (ψ(1)−ψ(2))F( f ) = 0, for every f ∈Y.

The last, since the components of the vector F are linearly independent, implies ψ(1) =
ψ(2).

By virtue of the previous theorem the following set is defined R2
r (A0,A) def= {Aψ ∈

Rr(A0,A) : A−1
ψ f

Th. 3.2= A−1
p f +ψF( f ), ψ ∈Ψ2, f ∈Y}, where Ψ2 = {ψ ∈Ψ : det[In +

F(Aψ)] = detd �= 0} [1, p.44].
Next theorem is Theorem 3 of [1] for i=2.

THEOREM 3.4. (i) For every Aψ ∈ R2
r (A0,A), there exists a vector ψ ∈Ψ2 such

that
Aψx = Ax−Aψd−1F(Ax), x ∈ D(Aψ), (3.8)

D(Aψ ) = {x ∈ D(A) : Γx = Γψd−1F(Ax)}. (3.9)

(ii) Conversely, for every ψ ∈ Ψ2, the operator Aψ defined by (3.9) and (3.8)
belongs to R2

r (A0,A).

We define

R2
r (A0,Ap)

def= {Aψ ∈ R2
r (A0,A) : D(Aψ) = D(Ap)}
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and
Ψ2(Ap)

def= {ψ ∈Ψ2 : ψ ∈ D(Ap)n}.
It is evident that

R2
r (A0,Ap) ⊂ R2

r (A0,A) ⊂ Rr(A0,A) and Ψ2(Ap) ⊂Ψ2 ⊂Ψ. (3.10)

From Theorem 3.4 follows the next corollary

COROLLARY 3.5. (i) For every Aψ ∈R2
r (A0,Ap), there exists a vector ψ ∈Ψ2(Ap)

such that
Aψx = Apx−Apψd−1F(Apx) = f , D(Aψ) = D(Ap). (3.11)

(ii) Conversely, for every ψ ∈Ψ2(Ap), the operator Aψ defined by (3.11) belongs
to R2

r (A0,Ap).
(iii) The unique solution of (3.11) , when B is correct, is given by

x = A−1
p f +ψF( f ), f ∈ Y. (3.12)

Proof. (i) Let Aψ ∈ R2
r (A0,Ap). Then D(Aψ) = D(Ap) and, since (3.10), Aψ ∈

R2
r (A0,A). By Theorem 3.4, there exists the vector ψ ∈Ψ2 such that (3.8), (3.9) hold.

From (3.9), since D(Aψ ) = D(Ap), and (3.4), it follows that Γψd−1F(Ax) = 0. This,
since the components of the vector F are linearly independent elements and R(A) =Y,
implies Γψ =�0. Hence ψ ∈ D(Ap)n and so ψ ∈ Ψ2(Ap). From (3.8) follows easily
(3.11).

(ii) Let ψ ∈ Ψ2(Ap) . Then ψ ∈ Ψ2
⋂

D(Ap)n , Γψ =�0. By Theorem 3.4, the
corresponding operator Aψ defined by (3.8), (3.9) belongs to R2

r (A0,A). Also (3.9)
implies D(Aψ) = D(Ap). This equality and (3.8) imply (3.11) and so Aψ ∈ R2

r (A0,Ap).
(iii) Let Aψ ∈ R2

r (A0,Ap) and Aψx = f . Then x = A−1
ψ f . By Theorem 3.2 and

Remark 3.3, there exists the unique vector ψ ∈Ψ such that (3.7) holds. So the unique
solution of (3.11) is given by (3.12).

If in the above corollary instead of Aψ ,Ap,F,Y and R2
r (A0,Ap) we use the sym-

bols B, Â,Φ,X and Ec(A0, Â) respectively, then we get the next theorem.

THEOREM 3.6. Suppose that Φ,A0, Â are as in Lemma 3.1 . Then:
(i) For every B ∈ Ec(A0, Â) , there exists a vector ψ = (ψ1, . . . ,ψm) with ψi ∈

D(Â), i = 1, . . . ,m such that

det d = det
[
Im +(Φt , Âψ)Xm

]
�= 0, (3.13)

Bx = Âx− Âψd−1(Φt , Âx)Xm = f , D(B) = D(Â), f ∈ X . (3.14)

(ii) Conversely, for every vector ψ = (ψ1, . . . ,ψm) with ψi ∈ D(Â), i = 1, . . . ,m,

which satisfies (3.13) , the operator B defined by (3.14) belongs to Ec(A0, Â).
(iii) If B is correct, then the unique solution of (3.14) is given by

x = B−1 f = Â−1 f +ψ(Φt , f )Xm . (3.15)
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From this theorem follows the next one:

THEOREM 3.7. We suppose that Φ,A0, Â are as in Lemma 3.1 . Then:
(i) For every B ∈ Em

c (A0, Â) , there exists a unique vector G = (g1, . . . ,gm) , where
g1, . . . ,gm are linearly independent elements of X , such that

detW = det
[
Im− (Φt ,G)Xm

]
�= 0, (3.16)

Bx = Âx−G(Φt , Âx)Xm = f , D(B) = D(Â), f ∈ X . (3.17)

(ii) Conversely, for every vector G = (g1, . . . ,gm), g1, . . . ,gm ∈ X which satisfies
(3.16) and has exactly n linearly independent components ( n � m), the operator B
defined by (3.17) belongs to En

c (A0, Â).
(iii) The unique solution of (3.17) , when B is correct, is given by

x = B−1 f = Â−1 f +(Â−1G)
[
Im− (Φt ,G)Xm

]−1
(Φt , f )Xm . (3.18)

Proof. (i) Let B ∈ Em
c (A0, Â) . Then, by Theorem 3.6, there exists a vector ψ such

that (3.13) and (3.14) hold true. We put G = Âψd−1 . Then (Φt ,G)Xm = (Φt , Âψ)Xmd−1

=
[(

(Φt , Âψ)Xm + Im
)− Im

]
d−1 = (d− Im)d−1 = Im−d−1 . Then d−1 = Im−(Φt ,G)Xm

= W and detW �= 0. From (3.14), by putting Âψd−1 = G , we obtain (3.17) or (B−
Â)x =−G(Φt , Âx)Xm for all x∈D(Â) . Since dimR(B−Â)= m, the elements Φ1, . . . ,Φm

are linearly independent and Â is correct, it follows that the elements g1, . . . ,gm are
linearly independent. Suppose now there exist two vectors G1 and G2 such that
Bx = Âx−G1(Φt , Âx)Xm = Âx−G2(Φt , Âx)Xm . Then (G1 −G2)(Φt , Âx)Xm = 0 for all
x ∈ D(Â) , which implies, since the vector Φ has m linearly independent components
and R(Â) = X , G1 = G2.

(ii) Conversely, let G be a vector defined as in (ii) such that detW �= 0. Since
R(Â) =X , there exists a vector ψ =(ψ1, . . . ,ψm) with ψi ∈D(Â), i = 1, . . . ,m such that
Âψ = GW−1. Then d = Im +(Φt , Âψ)Xm = Im+(Φt ,G)XmW−1 = Im+(Im−W )W−1 =
W−1. Hence d = W−1 and detd �= 0. Then G = ÂψW = Âψd−1. If we substitute G
in (3.17) we take (3.14) and, by Theorem 3.6, the operator B is correct. Now using the
proof of (i) it is easy to see that dimR(B− Â) = n.

(iii) From G = ÂψW we get ψ = (Â−1G)W−1 and if substitute this in (3.15) we
get (3.18). The theorem has been proved.

Next theorem gives a criterion of correctness and is useful in applications.

THEOREM 3.8. Let Â be a correct operator on X , the components of the vector
Φ= (Φ1, . . . ,Φm) be linearly independent elements of X∗ and G = (g1, . . . ,gm) ∈ Xm.
Then:

(i) The operator B defined by (3.17) is correct if and only if (3.16) holds true.
(ii) If B is correct, then dimR(B− Â) = n � m iff the vector G has exactly n

linearly independent components (n � m).
(iii) If B is correct, then the unique solution of (3.17) is given by (3.18) .
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Proof. (i) Let the operator B defined by (3.17) is correct. We define for the prob-
lem (3.17) the minimal operator A0 by (3.1).

If n = m , then the theorem is true by Theorem 3.7.
If n < m , then by using (3.17) we have

(Φt , f )Xm = (Φt , Âx)Xm − (Φt ,G)Xm(Φt , Âx)Xm

=
[
Im − (Φt ,G)Xm

]
(Φt , Âx)Xm

or [
Im − (Φt ,G)Xm

]
(Φt , Âx)Xm = (Φt , f )Xm , for all f ∈ X .

Let z1, . . . ,zm biorthogonal to Φ1, . . . ,Φm , i.e. (Φi,z j) = δi, j , i, j = 1, . . . ,m and W =
Im− (Φt ,G)Xm . Suppose that rankW = k < m and that the first k lines of the matrix W
are linearly independent. Then for f = zk+1 the system W (Φt , Âx)Xm = (Φt , f )Xm has
no solution since the rank of the augmented matrix is k+ 1 �= k . Then Bx = zk+1 has
no solution and R(B) �= X . Consequently B is not a correct operator. So (3.16) holds
true.

Conversely, let detW �= 0 and that G has n linearly independent components,
n � m. Then, by Theorem 3.7, B ∈ En

c (A0, Â).
The cases (ii) and (iii) are proved as in Theorem 3.7.
If the elements Φ1, . . . ,Φm are not linearly independent, then we have the follow-

ing theorem.

THEOREM 3.9. Let the operator B be defined by (3.17) , where Φ ∈ X∗m,G ∈
Xm . We suppose that the components of Φk = (Φ1, . . . ,Φk)(k < m) are linearly in-
dependent elements and the components of ΦΦΦΦm−k = (Φk+1, . . . ,Φm) are linear combi-
nations of Φ1, . . . ,Φk . Let Φ = (Φk,ΦΦΦΦm−k), G = (Gk,Gm−k) and Mm−k,k the matrix

such that ΦΦΦΦt
m−k = Mm−k,kΦkt

. Then:

(i) Bx = Âx−Gk
M(Φkt

, Âx)Xk = f , D(B) = D(Â), (3.19)

where Gk
M = Gk +Gm−kMm−k,k.

(ii) B is correct if and only if (3.16) holds true, or equivalently

detWk = det
[
Ik − (Φkt ,Gk

M)Xk

]
�= 0. (3.20)

(iii) If B is correct, then the unique solution of (3.17) or (3.19) is given by (3.18) ,
or by

x = B−1 f = Â−1 f +(Â−1Gk
M)
[
Ik − (Φkt

,Gk
M)Xk

]−1
(Φkt

, f )Xk . (3.21)

Proof. (i) Using the symbolism Φ = (Φk,ΦΦΦΦm−k) , G = (Gk,Gm−k) we obtain

G(Φt , Âx)Xm = Gk(Φkt
, Âx)Xk +Gm−kMm−k,k(Φkt

, Âx)Xk

= (Gk +Gm−kMm−k,k)(Φkt
, Âx)Xk = Gk

M(Φkt
, Âx)Xk .
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Hence, by substituting in (3.17) G(Φt , Âx)Xm by Gk
M(Φkt

, Âx)Xk , we get (3.19).
(ii) Using again the symbolism Φ = (Φk,ΦΦΦΦm−k) , G = (Gk,Gm−k) , we find:

detW = det
[
Im − (Φt ,G)Xm

]
= (−1)m det

(
(Φkt

,Gk)Xk − Ik (Φkt
,Gm−k)Xk,m−k

(ΦΦΦΦt
m−k,G

k)Xm−k,k (ΦΦΦΦt
m−k,Gm−k)Xm−k − Im−k

)
= (−1)m det

(
(Φkt

,Gk)Xk − Ik (Φkt
,Gm−k)Xk,m−k

Mm−k,k(Φkt
,Gk)Xm−k,k Mm−k,k(Φkt

,Gm−k)Xm−k − Im−k

)
.

Multiplying from the left the first line of the last determinant by the matrix −Mm−k,k

and adding to the second line of the determinant, we take

detW = (−1)m det

(
(Φkt

,Gk)Xk − Ik (Φkt
,Gm−k)Xk,m−k

Mm−k,k −Im−k

)
= (−1)m det

(
(Φkt

,Gk)Xk − Ik +(Φkt ,Gm−k)Xk,m−kMm−k,k (Φkt
,Gm−k)Xk,m−k

[0]m−k,k −Im−k

)
= det

[
Ik − (Φkt ,Gk)Xk − (Φkt ,Gm−k)Xk,m−kMm−k,k

]
= det

[
Ik − (Φkt ,Gk +Gm−kMm−k,k)Xk

]
= det

[
Ik − (Φkt ,Gk

M)Xk

]
= detWk.

By Theorem 3.8 (i), since Φ1, . . . ,Φk are linearly independent and G(Φt , Âx)Xm =
Gk

M(Φkt
, Âx)Xk , detW = detWk, the operator B defined by (3.19) is correct iff detWk �=

0 and
(iii) then the unique solution of (3.19) is given by (3.21).

REMARK 3.10.

1. If Φ1, . . . ,Φm are linearly dependent, then the operator B , as we saw in the pre-
vious theorem, can be defined either by (3.17) or by (3.19). Since the solution of
Bx = f is unique, it follows, by comparing (3.18) and (3.21), that

(Â−1G)W−1(Φt , f )Xm = (Â−1Gk
M)W−1

k (Φkt
, f )Xk .

2. The previous theorem shows that the correctness of the operator B and the so-
lution of Bx = f do not depend on the linear independence of the elements
Φ1, . . . ,Φm . The correctness condition of Bx = f is detW �= 0 or detWk �= 0. The
linear independence of Φ1, . . . ,Φm is needed to determine the dimR(B− Â) and
to prove the existence of the unique vector G for every operator B ∈ Em

c (A0, Â).

3. The determinant detWk and the solution (3.21) are simpler than detW and the
solution (3.18) respectively.

From Theorems 3.8, 3.9, since detW = detWk and G(Φt , Âx)Xm = Gk
M(Φkt

, Âx)Xk ,
it follows (see Remark 3.10 (2)) next corollary, where the components of the vectors Φ
and G are arbitrary elements of X∗ and X respectively.



QUADRATIC CORRECT EXTENSIONS OF MINIMAL OPERATORS 233

COROLLARY 3.11. Let Â be a correct operator on X and the components of
the vectors Φ= (Φ1, . . . ,Φm), G = (g1, . . . ,gm) are arbitrary elements of X∗ and X
respectively. Then the operator B defined by (3.17) is correct if and only if (3.16)
holds true. If B is correct, then the unique solution of (3.17) is given by (3.18) .

4. Some quadratic correct extensions of minimal operators in Banach spaces

Next lemma holds true for any minimal operator A0 and its correct extension Â .

LEMMA 4.1. Let A0 : X → X be a minimal operator and Â a correct extension
of A0 . Then:

(i) A2
0 is a minimal operator on X .

(ii) Â2 is a correct extension of A2
0 on X .

Proof. (i) First we show that A2
0 is a closed operator. Suppose that xn → x and

A2
0xn = fn → f , where xn ∈D(A2

0) , fn ∈R(A2
0) and x, f ∈X , n∈N. We denote by yn =

A0xn = A−1
0 fn, where yn ∈ D(A0). Since A−1

0 is bounded and ( fn)∞n=1 is a convergent
sequence, yn converges to some y ∈ X . But A0 is closed, therefore x ∈ D(A0) and
A0x = y . Then we have yn → y , A2

0 xn = A0yn → f . Since A0 is closed, it follows
y∈D(A0) and A0y = f or x∈D(A2

0) and A2
0x = f . Hence A2

0 is a closed operator. Now
we show that R(A2

0) �= X and that there exists the inverse operator (A2
0)

−1 , denoted by
A−2

0 , and that this is a bounded operator. From the evident inclusion R(A2
0)⊆R(A0) and

R(A0) �= X it follows that R(A2
0) �= X . From A2

0x = f , where x∈D(A2
0) , f ∈R(A2

0) , we
have A0x = A−1

0 f and x = (A−1
0 )2 f , which is the unique solution of A2

0x = f . Hence,
there exists the operator (A2

0)
−1 on R(A2

0) and is equal (A−1
0 )2 . The operator A−2

0 is
bounded since (A−1

0 )2 is bounded and so A2
0 is minimal.

(ii) Since Â is a correct operator, the equation Â2u = f , for each f ∈ X , has the
unique solution u = (Â−1)2 f = Â−2 f . Then R(Â2) = X and Â−2 is bounded on X .
Hence Â2 is correct. Let x ∈ D(A2

0) . Then x ∈ D(Â2) and since A0 ⊂ Â we obtain
A2

0x = Â2x. Hence A2
0 ⊂ Â2 . So the lemma has been proved.

REMARK 4.2. From the proof of (ii) it is evident that if Â is correct on X , then
Â2 is also correct.

Let the operators Â and A0 and vector Φ be defined as in Lemma 3.1, k � m and
the elements

Â∗−1Φk+1, . . . , Â
∗−1Φm ∈ L (Φ1, . . . ,Φm, Â∗−1Φ1, . . . , Â

∗−1Φk). (4.1)

In the sequel we will make use of the following condition (LI): the components of the
vector

F1 = (Â∗−1Φk,Φ) = (Â∗−1Φ1, . . . , Â
∗−1Φk,Φ1, . . . ,Φm), k � m

are linearly independent elements of R(A2
0)

⊥ ⊂ X∗ .



234 I. N. PARASIDIS AND P. C. TSEKREKOS

From (3.1) and (4.1) it follows that

D(A2
0) = {x ∈ D(Â2) : (Φkt

, Âx)Xk =�0, (Φt , Â2x)Xm =�0} (4.2)

or
D(A2

0) = {x ∈ D(Â2) : (F t
1, Â

2x)Xk+m =�0}. (4.3)

Then R(A2
0) = { f ∈ X : (F t

1, f )Xk+m =�0}. It is evident that defA2
0 = dimR(A2

0)
⊥ =

m + k and that the components of the vector F1 is a basis of R(A2
0)

⊥ ⊂ X∗ . From
Lemma 4.1 it follows that the operator A2

0 is a minimal restriction of the correct operator
Â2 . Then, by Theorem 3.7, we can easily describe the set Ek+m

c (A2
0, Â

2) of all correct
extensions B1 of the minimal operator A2

0 using its correct extension Â2 . We have the
following theorem.

THEOREM 4.3. We suppose that A0, Â are as in Lemma 3.1, A2
0 is defined by

(4.3) and F1 satisfies condition (LI). Then:
(i) For every B1 ∈ Ek+m

c (A2
0, Â

2) , there exists a unique vector G ∈ Xk+m with
linearly independent components of X , such that

detW1 = det
[
Ik+m − (F t

1,G )Xk+m

] �= 0, (4.4)

B1x = Â2x−G (F t
1, Â

2x)Xk+m = f , D(B1) = D(Â2), f ∈ X . (4.5)

(ii) Conversely, for every vector G ∈ Xk+m which satisfies (4.4) and has exactly
n linearly independent components (n � k + m), the operator B1 defined by (4.5)
belongs to En

c (A2
0, Â

2).
(iii) If B1 is correct, then the unique solution of (4.5) is given by

x = B−1
1 f = Â−2 f +(Â−2G )

[
Ik+m− (F t

1,G )Xk+m

]−1(F t
1, f )Xk+m . (4.6)

From the above theorem it follows the next one which shows that every operator
B1 ∈ Ek+m

c (A2
0, Â

2) can be uniquely determined by two vectors S and G of length k
and m respectively. The solution of B1x = f is also obtained.

THEOREM 4.4. We suppose that A0, Â are as in Lemma 3.1, A2
0 is defined by

(4.3) and F1 satisfies condition (LI). Then:
(i) For every B1 ∈Ek+m

c (A2
0, Â

2) , there exists a unique pair of vectors S = (s1, . . . ,sk) ,
G = (g1, . . . ,gm) , with s1, . . . ,sk, g1, . . . ,gm (k � m) linearly independent elements of
X such that

detW1 = det

(
(Φkt

, Â−1S)Xk − Ik (Φkt
, Â−1G)Xkm

(Φt ,S)Xmk (Φt ,G)Xm − Im

)
�= 0 (4.7)

and for all x ∈ D(B1) = D(Â2) we have

B1x = Â2x−S(Φkt , Âx)Xk −G(Φt , Â2x)Xm = f . (4.8)
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(ii) Conversely, for every pair of vectors S = (s1, . . . ,sk) , G = (g1, . . . ,gm) with
components from X and such that the vector G = (S,G) = (s1, . . . ,sk,g1, . . . ,gm) sat-
isfies (4.7) and has exactly n linearly independent elements, n � k +m, the operator
B1 defined by (4.8) belongs to En

c (A2
0, Â

2) .
(iii) If B1 is correct, then the unique solution of (4.8) , for every f ∈ X , is given

by

x = Â−2 f − Â−2(S,G)· (4.9)

·
(

(Φkt
, Â−1S)Xk − Ik (Φkt

, Â−1G)Xkm

(Φt ,S)Xmk (Φt ,G)Xm − Im

)−1(
(Φkt

, Â−1 f )Xk

(Φt , f )Xm

)
.

Proof. (i) From Theorem 4.3, there exists a unique vector G ∈ Xk+m with linearly
independent components such that (4.4) and (4.5) hold true. If we put G = (S,G) =
(s1, . . . ,sk,g1, . . . ,gm) we obtain for the matrix W1 in (4.4)

Ik+m− (F t
1,G )Xk+m = −

(
(Â∗−1Φkt

,S)Xk − Ik (Â∗−1Φkt
,G)Xkm

(Φt ,S)Xmk (Φt ,G)Xm − Im

)
.

Since Â is a correct operator, we have Â∗−1 = Â−1∗ [15]. Taking this into account the
above equality is written in the form

Ik+m − (F t
1,G )Xk+m = −

(
(Φkt

, Â−1S)Xk − Ik (Φkt
, Â−1G)Xkm

(Φt ,S)Xmk (Φt ,G)Xm − Im

)
, (4.10)

which shows that (4.4) is equivalent to (4.7). Since G (F t
1, Â

2x)Xk+m = S(Φkt
, Âx)Xk +

G(Φt , Â2x)Xm , (4.5) implies (4.8) and conversely. The uniqueness of the vectors S , G
follows immediately from the uniqueness of the vector G (Theorem 4.3).

(ii) If the vector G = (S,G) has n linearly independent components, then, from
the previous theorem, the operator B1 defined by (4.5) belongs to En

c (A2
0, Â

2).
(iii) Using (4.10), from (4.6) we get (4.9) .
Below by BG and BSG we will denote the operators defined by the vector G and

the pair of vectors (S, G) , respectively, by

BGx = Âx−G(Φt , Âx)Xm = f , D(BG) = D(Â), (4.11)

BSG x = Â2x−S(Φt , Âx)Xm −G(Φt , Â2x)Xm = f , D(BSG) = D(Â2), (4.12)

where S = (s1, . . . ,sm) , G = (g1, . . . ,gm) ∈ Xm , the components of the vector Φ =
(Φ1, . . . ,Φm) are linearly independent elements of X∗ and Â is a correct densely de-
fined operator on X . We note that the operator BG (resp. BSG) is an extension of the
minimal operator A0 (resp. A2

0) , where

A0 ⊂ Â, D(A0) = {x ∈ D(Â) : (Φt , Âx)Xm =�0}, (4.13)

A2
0 ⊂ Â2, D(A2

0) = {x ∈ D(Â2) : (Φt , Âx)Xm =�0, (Φt , Â2x)Xm =�0}. (4.14)
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We define the set

E2c(A2
0, Â

2) = {B2 ∈ Ec(A2
0, Â

2) : there exists an operatorB ∈ Ec(A0, Â)

such thatB2 = B2}. (4.15)

LEMMA 4.5. For the operator BG , defined by (4.11) , hold true the statements:
(i) D(B2

G) = D(Â2) if and only if G ∈ D(Â)m.

(ii) If G ∈ D(Â)m then the operator B2
G is defined by

B2
Gx = Â2x− [ÂG−G(Φt , ÂG)Xm

]
(Φt , Âx)Xm −G(Φt , Â2x)Xm . (4.16)

or B2
Gx = Â2x−BGG(Φt , Âx)Xm −G(Φt , Â2x)Xm . (4.17)

Proof. (i) Let x ∈ D(B2
G) = D(Â2). Then BGx = Âx−G(Φt , Âx)Xm ∈ D(Â) and

since the operator Â is correct, it follows that G ∈ D(Â)m.

Conversely, let G ∈ D(Â)m . If x ∈ D(B2
G) , then x ∈ D(Â) and BGx = Âx−

G(Φt , Âx)Xm ∈ D(Â) , which implies x ∈ D(Â2) .
If x ∈ D(Â2), then BGx ∈ D(Â) = D(BG). So x ∈ D(B2

G).
(ii) We find the formula of the operator B2

G . Let x ∈ D(B2
G) , y = BGx . Then since

(4.11) and the statement (i) we have D(B2
G) = D(Â2) and

B2
Gx = BGy = Ây−G(Φt , Ây)Xm = ÂBGx−G(Φt , ÂBGx)Xm

= Â[Âx−G(Φt , Âx)Xm ]−G
(
Φt , Â[Âx−G(Φt , Âx)Xm ]

)
Xm

= Â2x− ÂG(Φt , Âx)Xm −G(Φt , Â2x)Xm +G(Φt , ÂG)Xm(Φt , Âx)Xm ,

which gives (4.16). It is easy to verify, by using (4.11), that BGG = ÂG−G(Φt , ÂG)Xm .
From this and (4.16) immediately follows (4.17).

In the next theorem we investigate the relation between BG and BSG defined by
(4.11) and (4.12) respectively.

THEOREM 4.6. We consider the operators Â,BG,BSG : X → X , where Â is cor-
rect and densely defined and BG,BSG are defined by (4.11) , (4.12) respectively. Then:

(i) BSG = B2
G if and only if G ∈ D(Â)m and S = ÂG−G(Φt , ÂG)Xm .

(ii) For each G ∈ D(Â)m and S = ÂG−G(Φt , ÂG)Xm ,

BSG is correct iff BG is correct iff detW = det
[
Im − (Φt ,G)Xm

] �= 0 .

Proof. (i) BSG = B2
G if and only if D(BSG) = D(Â2) = D(B2

G) and BSGx = B2
Gx

for each x ∈ D(Â2). By Lemma 4.5, the first relation holds true if and only if G ∈
D(Â)m. By comparing (4.12) with (4.16), it is easy to verify that BSGx = B2

Gx for each
x ∈D(Â2) if and only if G ∈D(Â)m and S = ÂG−G(Φt , ÂG)Xm , since the elements
Φ1, . . . ,Φm are linearly independent and Â is correct.
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(ii) The operator BSG can be written in the form

BSGx = Â x−G (F t
2,Â x)X2m = f , D(BSG) = D(Â ), (4.18)

where Â = Â2 , G = (S,G) , F2 = (Â∗−1Φ,Φ). By Corollary 3.11 the operator BSG is
correct iff

detW2 = det
[
I2m− (F t

2,G )X2m

] �= 0. (4.19)

By substituting in (4.19) G = (S,G), F2 = (Â∗−1Φ,Φ), S = ÂG−G(Φt , ÂG)Xm and

using the formula det

(
A B
G D

)
= det

(
A+BC B
G+DC D

)
, where A,B,G,D,C are a m×m

matrices and C = (Φt , ÂG)Xm , we take

det W2 = det

((
Φt ,G− Â−1G(Φt , ÂG)Xm

)
Xm − Im (Φt , Â−1G)Xm

(Φt , ÂG−G(Φt , ÂG)Xm)Xm (Φt ,G)Xm − Im

)

= det

(
(Φt ,G)Xm − Im (Φt , Â−1G)Xm

[0]m (Φt ,G)Xm − Im

)
=
(
det
[
Im − (Φt ,G)Xm

])2
.

So detW2 = (detW )2, since, from (3.16), W = Im − (Φt ,G)Xm . Now by Theorem 3.8
BG is correct iff detW �= 0 iff detW2 �= 0 iff BSG is correct.

COROLLARY 4.7. Let Â be a correct and densely defined operator on X and
A0,A2

0,BG,BSG are defined by (4.13) , (4.14) , (4.11) , (4.12) respectively. Then, for
each G ∈ D(Â)m and S = ÂG−G(Φt , ÂG)Xm , it holds

BSG = B2 ∈ E2c(A2
0, Â

2) if and only if BG ∈ Ec(A0, Â) .

Proof. It is evident that BG (resp. BSG ) is an extension of A0 (resp. A2
0 ). So, by

the previous result, we have BSG = B2 ∈ E2c(A2
0, Â

2) if and only if BG ∈ Ec(A0, Â) .
The next theorem follows from Theorem 4.4 and corollary 4.7 and shows that

every operator B2 of E2m
2c (A2

0, Â
2) can be uniquely determined by only one vector G .

It also gives the solution of B2x = f .

THEOREM 4.8. We suppose that Â is as usually, A0, A2
0 are defined by (4.13) ,

(4.14) , respectively, and the components of the vector F2 = (Â∗−1Φ,Φ) are linearly
independent. Then:

(i) For every B2 ∈ E2m
2c (A2

0, Â
2) , there exists a unique vector G = (g1, . . . ,gm) ∈

D(Â)m such that the 2m components of the vector
(
ÂG−G(Φt , ÂG)Xm ,G

)
are linearly

independent and hold

detW = det
[
Im − (Φt ,G)Xm

] �= 0 (4.20)

and

B2x = Â2x− [ÂG−G(Φt, ÂG)Xm
]
(Φt , Âx)Xm −G(Φt , Â2x)Xm = f . (4.21)
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(ii) Conversely, for every vector G ∈ D(Â)m , such that the vector
(
ÂG −

G(Φt , ÂG)Xm ,G
)

has n (n � 2m) exactly linearly independent components and (4.20)

holds true, the operator B2 with D(B2)= D(Â2) defined by (4.21) belongs to En
2c(A

2
0, Â

2) .
(iii) If B2 is correct, then the unique solution of (4.21) is given by

x = B−1
2 f = Â−2 f+

[
Â−2G+(Â−1G)W−1(Φt , Â−1G)Xm

]
W−1(Φt , f )Xm

+(Â−1G)W−1(Φt , Â−1 f )Xm . (4.22)

Proof. (i) Let B2 ∈ E2m
2c (A2

0, Â
2). Then, since (4.15), B2 ∈ E2m

c (A2
0, Â

2) and there
exists an operator B ∈ Ec(A0, Â) such that B2 = B2 . By Theorem 4.4 there exists
a pair of vectors S, G ∈ Xm such that the components of the vector (S,G) are lin-
early independent elements of X and B2 = BSG. By Theorem 3.7 there exists G1 ∈ Xm

such that B = BG1 with D(BG1) = D(Â) . Hence BSG = B2
G1

and so D(B2
G1

) = D(Â2).
The last equation implies that G1 ∈ D(Â)m. Then since (4.16) we have B2

G1
x = Â2x−

S1(Φt , Âx)Xm −G1(Φt , Â2x)Xm , where S1 = ÂG1 −G1(Φt , ÂG1)Xm . From BSG = B2
G1

we take (S−S1)(Φt , Âx)Xm +(G−G1)(Φt , Â2x)Xm = 0 or (S−S1,G−G1)(F2, Â2x)Xm

= 0 for all x ∈ D(Â2) . By definition, Â is correct, the components of F2 are lin-
early independent and this implies S = S1, G = G1. Hence BG = BG1 , BSG = B2

G, S =
ÂG−G(Φt, ÂG)Xm and by Theorem 4.6, detW �= 0.

(ii) Conversely, let G ∈ D(Â)m, and S = ÂG−G(Φt , ÂG)Xm . The vectors S,G
define the operators BG, BSG = B2 by (4.11), (4.12) respectively and by Theorem 4.6
BSG = B2

G and BSG is correct. It is evident that A2
0 ⊂ B2 . Now we show that dimR(B2−

Â2) = n . The equation (4.21) can be written as (B2 − Â2)x = −(S,G)(F t
2, Â

2x)X2m ,

which since the dimension of (S,G) equal n , R(Â2) = X and the components of the
vector F2 are linearly independent elements of X∗ implies dimR(B2 − Â2) = n . So
B2 ∈ En

2c(A
2
0, Â

2) .
(iii) Finally we find the solution of (4.21) by using Theorem 4.4. If we substitute

in the matrix W1 (with k = m) of (4.7) S = ÂG−G(Φt , ÂG)Xm we take

W1 =
(

(Φt ,G)Xm − (Φt , Â−1G)Xm(Φt , ÂG)Xm − Im (Φt , Â−1G)Xm

(Φt , ÂG)Xm − (Φt ,G)Xm(Φt , ÂG)Xm (Φt ,G)Xm − Im

)
.

We put M = (Φt , Â−1G)Xm ,N = (Φt , ÂG)Xm and recall that (Theorem 3.7) W = Im −
(Φt ,G)Xm . Then Â−2(S,G) = (Â−1G− Â−2GN, Â−2G) . We rewrite the matrix W1

and find its inverse W−1
1 in terms of W,M,N .

W1 =
(−W −MN M

WN −W

)
, W−1

1 = −
(

W−1 W−1MW−1

NW−1 NW−1MW−1 +W−1

)
.
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It follows that Â−2(S,G)W−1
1 = −(Y,U) , where

Y = (Â−1G− Â−2GN)W−1 + Â−2GNW−1 = Â−1GW−1,

U = (Â−1G− Â−2GN)W−1MW−1 + Â−2G(NW−1MW−1 +W−1)

= Â−1GW−1MW−1 + Â−2GW−1.

Hence Â−2(S,G)W−1
1 = −(Â−1GW−1, Â−1GW−1MW−1 + Â−2GW−1

)
and substitut-

ing this into (4.9) we obtain (4.22). This completes the proof.
The following corollary contains some of the facts proved in the last theorem in the

case when the components of vector F2 = (Â∗−1Φ,Φ) are not linearly independent.

COROLLARY 4.9. Let the operator BSG : X → X be defined by

BSG x = Â2x−S(Φt, Âx)Xm −G(Φt , Â2x)Xm = f , D(BSG) = D(Â2), (4.23)

where Â is a correct, densely defined operator on X , S = (s1, . . . ,sm) ∈ Xm , G =
(g1, . . . ,gm) ∈D(Â)m , S = ÂG−G(Φt , ÂG)Xm and the components of the vector Φ are
linearly independent elements of X∗ . Then:

(i) BSG is a correct operator if and only if (4.20) holds true.
(ii) If BSG is correct, then the unique solution of (4.23) is given by (4.22) .

5. Examples

By V 0[a,b][ [16, page 372] we denote the subspace of all functions of bounded
variation on [a,b] which satisfy the conditions that they are zero at x = a and continuous
from the right everywhere on (a,b].

It is easy to see that the operator Â : C[0,1]→C[0,1], defined by

Âu = u′ = f , D(Â) = {u(t) ∈C1[0,1] : u(0) = ku(1),where constantk �= 1} (5.1)

is correct and densely defined and the unique solution of the problem (5.1) is given by
the formula

u(t,k) = Â−1 f =
∫ t

0
f (x)dx+ k1

∫ 1

0
f (x)dx for all f ∈C[0,1], (5.2)

where k1 = k/(1− k). Then by the Remark 4.2 the operator Â2 defined by

Â2u = u′′ = f , D(Â2) = {u ∈C2[0,1] : u(0) = ku(1), u′(0) = ku′(1)} (5.3)

is correct too and the reader can verify that for every f ∈C[0,1] the unique solution of
the problem (5.3) is given by the formula

u(t,k) = Â−2 f =
∫ t

0
(t− x) f (x)dx+ k1

∫ 1

0
(t− x+ k1 +1) f (x)dx. (5.4)
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EXAMPLE 5.1. The operator B1 : C[0,1] → C[0,1] with D(B1) = D(Â2) from
(5.3), which corresponds to the problem:

B1u = u′′ −
(
π cosπt +

2sinπt
π

)∫ 1

0
xu′(x)dx− sinπt

∫ 1

0
xu′′(x)dx = f (t) (5.5)

is correct, dimR(B1 − Â2) = 2 and the unique solution of (5.5) for every f ∈C[0,1]
is given by the formula

u(t,k) =
∫ t

0
(t− x) f (x)dx+ k1

∫ 1

0
(t− x+ k1 +1) f (x)dx

+
[πt− sinπt +πk1(2t +2k1 +1)

π(π−1)
+

(2k1 +1− cosπt)(2π2k1 +π2 +4)
2π2(π−1)2

]
·

·
∫ 1

0
x f (x)dx+

2k1 +1− cosπt
2(π−1)

∫ 1

0
(1+ k1− x2) f (x)dx. (5.6)

Proof. We refer to Theorem 4.8 (ii). If we compare equation (5.5) with equa-
tion (4.21), it is natural to take the operator Â2 as in (5.3), m = 1, G = sinπt. Then
Â can be defined by (5.1), (Φt , Âu)C =

∫ 1
0 xu′(x)dx , (Φt , Â2u)C =

∫ 1
0 xu′′(x)dx and

the functional Φ , for every u(x) ∈ C[0,1] , to be defined by (Φ,u)C =
∫ 1
0 xu(x)dx =∫ 1

0 u(x)d
(

x2

2

)
=
∫ 1
0 u(x)dw1(x). From the last relation we take (Φ, Âu)C =

∫ 1
0 xu′(x)dx =

u(1)+
∫ 1
0 u(x)d(−x) =

∫ 1
0 u(x)dw2(x) = (F,u)C, where w2(x) =

{
−x, i f x ∈ [0,1)
0, i f x = 1

.

It is clear that G ∈ D(Â) and w1 , w2 ∈ V 0[0,1] . Then, by Theorem [16, page 373]
Φ , F ∈ (C[0,1])∗ and F = Â∗Φ . Since w1 , w2 are linearly independent elements
of V 0[0,1] , the components of the vector Â∗F2 = (Φ, Â∗Φ) are linearly indepen-
dent in (C[0,1])∗ . With simple calculations we find ÂG−G(Φt , ÂG)Cm = π cosπt +
1
π (2sinπt) . This show that the operator B1 = B2 where B2 is defined by (4.21).
Also we find (Φt ,G)C = 1

π , detW = det[Im − (Φt ,G)Cm ] = π−1
π �= 0, W−1 = π

π−1 .

Then, by Theorem 4.8 (ii), the operator B1 is correct and dimR(B1 − Â2) = 2, be-
cause ÂG−G(Φt , ÂG)Xm ,G linearly independent. Now we find Â−1G = 1

π (2k1 +1−
cosπt) , Â−2G = 1

π2 [πt−sinπt +πk1(2t +2k1 +1)] , (Φt , Â−1G)C = 1
2π3 (2π2k1 +π2 +

4) , (Φt , f )C =
∫ 1
0 x f (x)dx , (Φt , Â−1 f )C = 1

2

∫ 1
0 (1 + k1 − x2) f (x)dx. From the above

and (4.22) follows the solution (5.6).

Let Π = {(x,y) ∈ R
2 : 0 � x,y � 1}. It is easy to verify that the operator Â :

C(Π) →C(Π), defined by

Âu = uxy = f , D(Â) = {u ∈C(Π) : ux ∈C(Π),

uxy ∈C(Π), ux(x,0) = 0, u(0,y) = v(y)u(1,1)} (5.7)

is correct for each v(y) ∈C[0,1], v(1) = 0 and the unique solution of the problem (5.7)
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is given by the formula

u = Â−1 f =
∫ x

0

∫ y

0
f (t,s)dsdt + v(y)

∫ 1

0

∫ 1

0
f (t,s)dsdt for all f ∈C(Π). (5.8)

Also by Remark 4.2 the operator Â2 defined by

Â2u = uxyxy = f (x,y), D(Â2) = {u ∈ D(Â) : uxyx ∈C(Π),

uxyxy ∈C(Π), uxyx(x,0) = 0, uxy(0,y) = v(y)uxy(1,1)} (5.9)

is correct too and the reader can verify that for every f ∈C(Π) the unique solution of
the problem (5.9), for each v(y) ∈C[0,1], v(1) = 0, is given by the formula u = Â−2 f ,
i.e.

u =
∫ x

0
(x− t)dt

∫ y

0
(y− s) f (t,s)ds+ v(y)

∫ 1

0
(1− t)dt

∫ 1

0
(1− s) f (t,s)ds

+
[
x
∫ y

0
v(s)ds+ v(y)

∫ 1

0
v(s)ds

]∫ 1

0

∫ 1

0
f (t,s)dsdt. (5.10)

EXAMPLE 5.2. The operator B1 :C(Π)→C(Π) with D(B1) = D(Â2) from (5.9)
which corresponds to the problem

B1u = uxyxy −
(
π cosπx+

2
π

ysinπx
)∫ 1

0

∫ 1

0
tuts(t,s)dsdt

− ysinπx
∫ 1

0
tutst(t,1)dt = f (x,y), (5.11)

is correct for each v(y) ∈C[0,1], v(1) = 0 and the unique solution of (5.11), for every
f ∈C(Π) , is given by the formula

u(x,y) = Â−2 f +
2

2π−1

{ 1
6π

[y3(πx− sinπx)+πv(y)]+ x
∫ y

0
v(s)ds

+ v(y)
∫ 1

0
v(s)ds+

1
2(2π−1)

[y2(1− cosπx)+2v(y)]
[4+π2

6π2 +
∫ 1

0
v(s)ds

]}
·

·
∫ 1

0

∫ 1

0
t f (t,s)dsdt +

1
2(2π−1)

[y2(1− cosπx) (5.12)

+2v(y)]
[∫ 1

0
(1− t2)dt

∫ 1

0
(1− s) f (t,s))ds+

∫ 1

0
v(s)ds

∫ 1

0

∫ 1

0
f (t,s)dsdt

]
.

Proof. We refer to corollary 4.9. If we compare equation (5.11) with equation
(4.23), we are led to take the operator Â2 as in (5.9), m = 1, Φt = Φ , (Φ, Âu)C =∫ 1
0

∫ 1
0 tuts(t,s)dsdt . So Â can be defined by (5.7) and the functional Φ for every u(x) ∈

C(Π) by (Φ,u)C =
∫ 1
0

∫ 1
0 tu(t,s)dsdt . Then with integration by parts and (5.9) we ob-

tain (Φ, Â2u)C =
∫ 1
0

∫ 1
0 tutsts(t,s)dsdt =

∫ 1
0 tutst(t,1)dt and so we take S = π cosπx+
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2
π ysinπx , G = ysinπx . It is clear that G∈D(Â) . By simple calculations we find ÂG−
G(Φ, ÂG)Cm = π cosπx+ 2

π ysinπx = S , (Φ,G)C = 1
2π , detW = det[Im − (Φ,G)Cm ] =

2π−1
2π �= 0, W−1 = 2π

2π−1 . Then, by corollary 4.9, the operator B1 is correct. Now using

(5.8) and (5.10) we find respectively Â−1G = 1
2π [y2(1− cosπx)+2v(y)] and Â−2G =

1
6π2 [y3(πx− sinπx) + πv(y)] + 1

π

[
x
∫ y
0 v(s)ds + v(y)

∫ 1
0 v(s)ds

]
. Then (Φ, Â−1G)C =

1
12π3 (4 + π2) + 1

2π
∫ 1
0 v(s)ds , (Φ, f )C =

∫ 1
0

∫ 1
0 t f (t,s)dsdt , (Φ, Â−1 f )C = 1

2

[∫ 1
0 (1 −

t2)dt
∫ 1
0 (1−s) f (t,s))ds+

∫ 1
0 v(s)ds

∫ 1
0

∫ 1
0 f (t,s)dsdt

]
. In the last relation we have used

the simple formula∫ 1

0

∫ 1

0
x
∫ x

0

∫ y

0
f (t,s)dsdtdydx =

1
2

∫ 1

0
(1− t2)dt

∫ 1

0
(1− y) f (t,y)dy

From the above and (4.22) follows that

u(x,y) = Â−2 f +
{ 1

6π2 [y3(πx− sinπx)+πv(y)]+
1
π

[
x
∫ y

0
v(s)ds+ v(y)

∫ 1

0
v(s)ds

]
+

1
2π

[y2(1− cosπx)+2v(y)]
2π

2π−1

[ 1
12π3 (4+π2)+

1
2π

∫ 1

0
v(s)ds

]}
· 2π
2π−1

∫ 1

0

∫ 1

0
t f (t,s)dsdt +

1
2π

[y2(1− cosπx)+2v(y)]
2π

2π−1

· 1
2

[∫ 1

0
(1− t2)dt

∫ 1

0
(1− s) f (t,s)ds+

∫ 1

0
v(s)ds

∫ 1

0

∫ 1

0
f (t,s)dsdt

]
which gives the solution (5.12).

A comment from the first author: The second author passed away from a heart
attack in the Fall of 2009, at the age of 64. I would like to express my deepest sorry for
his sudden death.
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