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Abstract. Quasinilpotent equivalence does not preserve subscalarity. However, if we replace
quasinilpotent equivalence by “finite intertwining by the identity operator”, then subscalarity is
preserved (in one direction). We shall prove that if A , B and N are Banach space operators

such that �n
AB(I) = �AB(�n−1

AB (I)) = ∑n
i=0 (−1)i

(
n
i

)
An−iBi = 0 for some positive integer n ,

and if N is an algebraic operator which commutes with B , then A is subscalar implies B+N
is subscalar. Applications to classes of Hilbert space operators, and the elementary operators
LA −RB and LARB −1 for certain choices of subscalar operators A and B∗ , are considered.

1. Introduction

A Banach space operator A ∈ B(X ) is generalized scalar if there exists a con-
tinuous algebra homomorphism Φ from the space C∞(C) of infinitely differentiable
complex valued functions into B(X ) , Φ : C∞(C) −→ B(X ) , such that Φ(1) = I
and Φ(z) = A ; a subscalar operator is the restriction of a generalized scalar opera-
tor to a closed invariant subspace of the operator. Recall from Eschmeier and Puti-
nar [12, Corollary 4.6] that an operator is subscalar if and only if it satisfies (the
Eschmeier–Putinar–Bishop) property (β )ε , where A ∈ B(X ) satisfies property (β )ε
if for each open subset U of the complex plane C the operator Az : f −→ (A− z) f
from the Fréchet space E (U ,X ) of X -valued C∞ functions into itself is a topo-
logical monomorphism (equivalently, Az is injective and has closed range). Operators
A ∈ B(X ) satisfying property (β )ε satisfy (Bishop’s) property (β ) . Here an oper-
ator A ∈ B(X ) satisfies property (β ) if for each open subset U of C the operator
Az : f −→ (A− z) f from the Fréchet space O(U ,X ) of X -valued analytic functions
into itself is a topological monomorphism.

If A,B are operators in B(X ) , and �AB(X)∈B(B(X )) is the generalized deriva-
tion �AB(X) = AX−XB , then B is said to be asymptotically intertwined by X ∈B(X )
to A if

lim
n−→∞

||�n
AB(X)|| 1

n = lim
n−→∞

||�AB(�n−1
AB (X))|| 1

n = 0.

Asymptotically intertwined operators intertwined by the identity operator I ∈ B(X )
share a number of properties; see [15, Lemmas 3.4.6, 3.4.7 and Proposition 3.7.11].
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In particular, if A has property (β ) and limn→∞ ||�n
AB(I)|| 1

n = 0, then B has property
(β ) .

Recall, [15, p 253], that the operators A,B ∈ B(X ) are said to be quasinilpotent

equivalent if limn−→∞ ||�n
AB(I)|| 1

n = limn−→∞ ||�n
BA(I)|| 1

n = 0. Unlike the situation
for property (β ) , B asymptotically intertwined to A (even, B quasinilpotent equiva-
lent to A) does not inherit property (β )ε from A . Consider, for example, A = 0 and
B = Q , where Q is a non nilpotent quasinilpotent operator; then B is asymptotically
intertwined to A by the identity operator, A has property (β )ε but B does not have
property (β )ε .

Let us say that the operator B is finitely intertwined to A ∈ B(X ) by the identity
operator if there exists an integer k � 1 such that �k

AB(I) = 0. (Such an intertwining
of A and B by the identity has been called a Helton class of order k , denoted B ∈
Heltonk(A) , by Kim, Ko and Lee [14].) Using essentially the (localized version of)
property (β )ε and a straightforward algebraic argument, we prove that if B ∈ B(X )
is finitely intertwined to A ∈ B(X ) by the identity operator and if A satisfies property
(β )ε , then B+N satisfies property (β )ε for every algebraic operator N ∈ B(X ) such
that BN = NB . Here, the hypothesis that A satisfies property (β )ε may be weakened
by requiring that g(A) satisfies property (β )ε for some function g bi–holomorpihic
on a neighbourhood of σ(A) . We prove also that if �k

AB(I) = 0 for some integer
k � 1, then: (i) A is nilpotent if and only if B is nilpotent; (ii) if A and B∗ have the
single valued extension property, then A and B have the same spectrum and the same
(Fredholm) essential (and Browder, and Weyl) spectrum.

As an application of our main results to classes of Hilbert space operators, it is
proved that if A is p -hyponormal (0 < p � 1), or w-hyponormal, or M -hyponormal,
or p -quasihyponormal with A−1(0) ⊆ A∗−1(0) (or, if A is an n -th root of an operator
belonging to one these classes such that σ(A) is contained in an angle L < 2π

n with
vertex in the origin), and �k

AB(I) = 0 for some integer k � 1 , then B is subscalar. This
generalizes a result of Kim et al [14] on p -hyponormal operators.

Subscalar operators satisfy Weyl’s theorem [1]: as a further application of our
results, it is proved that if A ∈ B(X ) has property (β )ε and B ∈ B(X ) is finitely
intertwined to A by the identity operator, then B + N satisfies Weyl’s theorem and
B∗ +N∗ satisfies a -Weyl’s theorem for every algebraic operator N ∈ B(X ) such that
N commutes with B . Furthermore, it is proved that if A,B∗ are subscalar Hilbert
space operators such that their eigenspaces corresponding to distinct eigenvalues are
orthogonal, then the elementary operator dAB = LA −RB or LARB −1 satisfies Weyl’s
theorem and d∗

AB satisfies a -Weyl’s theorem. Here LA and RA denote the operators of
left multiplication and right multiplication by A , respectively.

In the following, we define our notation and terminology progressively, on an as
and when required basis.

Some of the results of this paper were first announced at ICOTRA–2008, January
9–12, 2008, University of Delhi (India). It is my pleasure to thank the referee for
his thorough reading of the original version of this paper, his helpful comments and
suggestions.
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2. Results

For a Banach space X and open subset U of C , let E (U ,X ) (resp., O(U ,X ) )
denote the Fréchet space of all infinitely differentiable X -valued functions on U en-
dowed with the topology of uniform convergence of all derivatives on compact subsets
of U (resp., of all analytic X -valued functions on U endowed with the topology of
uniform convergence on compact subsets of U ). Localising properties (β )ε and (β ) ,
we say that T ∈ B(X ) satisfies:

• property (β )ε at λ ∈ C if there exists a neighbourhood N of λ such that,
for each open subset U of N and sequence { fn} of X -valued functions in
E (U ,X ) ,

(T − z) fn(z) −→ 0 in E (U ,X ) =⇒ fn(z) −→ 0 in E (U ,X );

• property (β ) at λ ∈ C if there exists an r > 0 such that, for every open subset
U of the open disc D(λ ;r) of radius r centered at λ and sequence { fn} of
X -valued functions in O(U ,X ) ,

(T − z) fn(z) −→ 0 in O(U ,X ) =⇒ fn(z) −→ 0 in O(U ,X ).

Recall that an operator A ∈ B(X ) has the single-valued extension property at a
point λ0 ∈ C , SVEP at λ0 , if for every open disc D centered at λ0 the only analytic
function f : D −→X satisfying (A−λ ) f (λ ) = 0 is the function f ≡ 0; A has SVEP
if it has SVEP at every λ ∈ C . Evidently, property (β )ε implies property (β ) . It
is well known that property (β ) implies SVEP, and that if A satisfies property (β )
then A∗ satisfies property (δ ) . (We shall have no more than a passing interest in the
(decomposition) property (δ ) , also Dunford’s condition (C) : the interested reader is
invited to consult [15], in particular Definitions 1.2.18 and 1.2.28.)

Property (β )ε is not preserved by quasi–affinities (see Remark 2.7 below). How-
ever, if A∈ B(X ) has property (β )ε and AX = XB for some B ∈ B(X ) and bounded
below operator X ∈ B(X ) , then B has property (β )ε : this follows from the follow-
ing argument. Let { fn(z)} be a sequence in E (U ,X ) such that (B− z) fn(z) −→
0 in E (U ,X ) . Then (A− λ )X fn(z) −→ 0 in E (U ,X ) . Since A has property
(β )ε , this implies that X fn(z) −→ 0 in E (U ,X ) . But then, since X is injective
and has closed range, fn(z) −→ 0 in E (U ,X ) . Using a similar argument we prove
next that for finitely intertwined pair of operators (A,B) ∈ B(X ) intertwined by the
identity, B inherits property (β )ε from A . The following terminology and technical
lemmas will be required.

The quasi–nilpotent part H0(T ) of an operator T ∈ B(X ) is the set

H0(T ) = {x ∈ X : lim
n→∞

||Tnx|| 1
n = 0}.

H0(T ) is, in general, a non–closed hyper–invariant subspace of T such that T−m(0) ⊆
H0(T ) for all m = 0,1,2, ... . (Observe that H0(T ) is closed if 0 ∈ isoσ(T ) .) Recall
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that an operator N ∈ B(X ) is said to be an algebraic operator if there exists a non–
constant polynomial q(.) such that q(N) = 0. Nilpotent operators, more generally
operators F ∈ B(X ) such that Fn is finite dimensional for some natural number n , are
algebraic operators. If N ∈ B(X ) is an algebraic operator (q(N) = 0), then σ(N) =
{μ1,μ2, ...,μn} for some integer n � 1, and H0(N − μi) = (N − μi)−mi(0) for some
integer mi � 1 (and all 1 � i � n ). Let Ni = N|H0(N−μi) . Then X = ⊕n

i=1H0(N− μi)
and N = ⊕n

i=1Ni . Apparently, σ(Ni) = {μi} , q(μi) = q(σ(Ni)) = σ(q(Ni)) = {0} and
0 = q(Ni) = q(Ni)−q(μi) = (Ni − μi)mi p(Ni) for some positive integer mi and invert-
ible operator p(Ni) . Consequently, Ni − μi = N|H0(N−μi) − μiI|H0(N−μi) is nilpotent.

LEMMA 2.1. Let N ∈B(X ) be an algebraic operator, with σ(N)={μ1,μ2, ...,μn} ,
which commutes with an operator B∈B(X ) . Then B =⊕n

i=1Bi and B+N =⊕n
i=1Bi+Ni ,

where Bi = B|H0(N−μi) , Ni = N|H0(N−μi) and Ni commutes with Bi for all 1 � i � n.

Proof. The (closed) subspace H0(N − μi) , 1 � i � n , coincides with the range of
the spectral projection of N associated with μi [1, Theorem 3.74]. Hence the hypothe-
sis N commutes with B implies that Ni commutes with Bi for all 1 � i � n . �

The following lemma is easily proved: we leave the proof to the reader.

LEMMA 2.2. If Ti ∈ B(Xi) , 1 � i � n, and T = ⊕n
i=1Ti ∈ B(⊕n

i=1Xi) , then T
satisfies property (β )ε if and only if Ti satisfies property (β )ε for all 1 � i � n.

LEMMA 2.3. If T ∈ B(X ) satisfies property (β )ε , then T +μ satisfies property
(β )ε for every complex scalar μ .

Proof. Let { fn(z)} be a sequence in E (U ,X ) such that ((T +μ)− z) fn(z) −→
0 in E (U ,X ) . Define the sequence {gn} by gn(z)= fn(z+μ) . Then gn ∈E (U ,X )
for all n = 1,2, ... , and (T − (z−μ))gn(z−μ)−→ 0 in E (U ,X ) . Since T satisfies
property (β )ε , fn(z) = gn(z− μ) −→ 0 in E (U ,X ) . Thus T + μ satisfies property
(β )ε . �

THEOREM 2.4. (i) If B ∈ B(X ) is finitely intertwined to a subscalar operator
A ∈ B(X ) by the identity operator, then B is subscalar.
(ii) If N ∈ B(X ) is an algebraic operator, in particular a nilpotent operator, which
commutes with a subscalar operator B ∈ B(X ) , then B+N is subscalar.

Proof. Since a Banach space operator T is subscalar if and only if it satisfies
property (β )ε [12], we prove that B and B+N satisfy property (β )ε .

(i). Assume that �k
AB(I) =∑k

i=0 (−1)i

(
k
i

)
Ak−iBi = 0, and let { fn(z)} be a sequence

in E (U ,X ) such that

(B− z) fn(z) −→ 0 in E (U ,X ).
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Then

(−1) j
(

k
j

)
{Ak− jB j − zAk− jB j−1} fn(z) −→ 0 in E (U ,X )

for all j = 1,2, ...,k . Since

k

∑
i=1

(−1)i
(

k
i

)
{Ak−iBi− zAk−iBi−1}

= (
k

∑
i=0

(−1)i
(

k
i

)
Ak−iBi)− (Ak + z

k

∑
i=1

(−1)i
(

k
i

)
Ak−iBi−1),

{Ak + z
k

∑
i=1

(−1)i
(

k
i

)
Ak−iBi−1} fn(z) −→ 0 in E (U ,X ). (1)

Again, since

(−1) j
(

k
j

)
{Ak− jB j−1− zAk− jB j−2} fn(z) −→ 0 in E (U ,X )

for all j = 2, ...,k , the following implications hold:

k

∑
i=2

(−1)i
(

k
i

)
{Ak−iBi−1− zAk−iBi−2} fn(z) −→ 0 in E (U ,X )

=⇒ {−
(

k
1

)
Ak−1 fn(z)+ z

k

∑
i=2

(−1)i
(

k
i

)
Ak−iBi−2 fn(z)

}

−{ k

∑
i=1

(−1)i
(

k
i

)
Ak−iBi−1 fn(z)

} −→ 0 in E (U ,X )

=⇒ {{Ak +(−1)
(

k
1

)
zAk−1 + z2

k

∑
i=2

(−1)i
(

k
i

)
Ak−iBi−2} fn(z)

}

−{
Ak + z

k

∑
i=1

(−1)i
(

k
i

)
Ak−iBi−1} fn(z) −→ 0 in E (U ,X ).

This, by (1) above, implies that

{Ak +(−1)
(

k
1

)
zAk−1 + z2

k

∑
i=2

(−1)i
(

k
i

)
Ak−iBi−2} fn(z) −→ 0 in E (U ,X ).

Repeating the above argument a finite number of times, it follows that

k

∑
i=0

(−1)i
(

k
i

)
ziAk−i fn(z) = (A− z)k fn(z) −→ 0 in E (U ,X ).
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But then, since A satisfies property (β )ε ,

fn(z) −→ 0 in E (U ,X ),

i.e., B satisfies property (β )ε .

(ii). We start by assuming that N is a nilpotent operator which commutes with B , and
prove that B+N is then a subscalar operator. This will then be extended to the case of
a polynomial operator.

Let { fn(z)} be a sequence in E (U ,X ) such that

(B+N− z) fn(z) −→ 0 in E (U ,X ).

Then, since Nm = 0,

Nm−1(B+N− z) fn(z) = (B− z)Nm−1 fn(z) −→ 0 in E (U ,X )

implies that
Nm−1 fn(z) −→ 0 in E (U ,X ).

This, since

Nm−2(B+N− z) fn(z) = (B− z)Nm−2 fn(z)+Nm−1 fn(z),

implies that
(B− z)Nm−2 fn(z) −→ 0 in E (U ,X ),

and hence that
Nm−2 fn(z) −→ 0 in E (U ,X ).

Repeating this argument we eventually have that N fn(z) −→ 0 in E (U ,X ) . Hence

(B− z) fn(z) −→ 0 in E (U ,X ).

Thus
fn(z) −→ 0 in E (U ,X ),

which implies that B+N satisfies property (β )ε .
Now let N ∈ B(X ) be such that q(N) = 0 for some non–constant polynomial

q(.) . Let σ(N) = {μ1,μ2, ...,μn} for some natural number n . Then X = ⊕n
i=1Xi ,

where Xi = H0(N − μi) for all 1 � i � n . Define the operators Ni and Bi ∈ B(Xi) ,
1 � i � n , as in Lemma 2.1. The operators Ni − μi are nilpotent and commute with Bi

for all 1 � i � n . Since Bi satisfies property (β )ε for all 1 � i � n , see Lemma 2.2,
Bi +Ni−μi satisfies property (β )ε for all 1 � i � n . This, by Lemma 2.3, implies that
Bi +Ni satisfies property (β )ε for all 1 � i � n . Applying Lemma 2.2 it follows that
B+N = ⊕n

i=1(Bi +Ni) satisfies property (β )ε . �

An obvious modification of the argument of the first part of the proof of Theorem
2.4 proves that if �k

AB(I) = 0 and A has SVEP, or satisfies property (β ) , then B has
SVEP, or satisfies property (β ) . If an operator A satisfies property (β ) and σ(A) is
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thick, then A has a non-trivial closed invariant subspace [15, Theorem 2.6.12]; hence,
if A satisfies property (β ) , �k

AB(I) = 0, and σ(B) is thick, then B has a non-trivial
closed invariant subspace. The following corollaries list a few further consequences of
Theorem 2.4. We start by considering the case in which �k

AB(I) = 0 for some integer
k � 1, and either A or B is nilpotent.

COROLLARY 2.5. If �k
AB(I) = 0 for some operators A,B ∈ B(X ) and integer

k � 1 , then B is nilpotent if and only if A is nilpotent.

Proof. Let LA,RB ∈ B(B(X )) denote respectively the operators of left multipli-
cation by A and right multiplication by B . Then

�k
AB(I) = 0 =⇒ (LA −RB)k(I) = 0.

Since LA and RB commute, LA and RB are quasinilpotent equivalent, which [15,
Proposition 3.4.11] implies that σ(A) = σ(LA) = σ(RB) = σ(B) . Thus, if either of
A or B is nilpotent, then σ(A) = σ(B) = {0} . (In particular, if A (resp., B) is nilpo-
tent, then B (resp., A) is quasinilpotent.) Observe that if A is nilpotent, then B satisfies
property (β )ε (see Theorem 2.4); again, since �k

AB(I) = 0 =⇒�k
B∗A∗(I∗) = 0, if B is

nilpotent (so that B∗ is nilpotent and satisfies property (β )ε ), then A∗ satisfies prop-
erty (β )ε . Since a quasinilpotent operator satisfies property (β )ε if and only if it is
nilpotent, it follows that A (resp., B) nilpotent implies B (resp., A) nilpotent. �

REMARK 2.6. The following simple (algebraic) argument provides an alternative
proof of Corollary 2.5. If �k

AB(I) = 0 and A is n -nilpotent for some positive integer n ,
then let m = max{k,n} . Evidently, �m

AB(I) = 0 and A is m-nilpotent. Since Am = 0,
Am− jBm+ j−1 = 0 for j = 0. Assume that Am− jBm+ j−1 = 0 for j = 0,1,2, ...,r(< m) .
Then

0 = Am−r−1{�m
AB(I)}Br =

m

∑
i=0

(−1)i
(

m
i

)
A2m−i−r−1Bi+r = (−1)mAm−r−1Bm+r.

Hence, Am− jBm+ j−1 = 0 for all j = 0,1, ...,m . Choosing j = m , B2m−1 = 0. Observe
that �k

AB(I) = 0 =⇒�k
B∗A∗(I∗) = 0. Hence it follows from the argument above that if

B is nilpotent, then A is nilpotent. Thus, if �k
AB(I) = 0, then A is nilpotent if and only

if B is nilpotent.

REMARK 2.7. For commuting A,B ∈ B(X ) such that �k
AB(I) = 0 for some in-

teger k > 1, A satisfies property (β )ε if and only if B satisfies property (β )ε . It is not
clear if the the hypothesis B satisfies property (β )ε is sufficient for A to satisfy prop-
erty (β )ε for non commuting A,B ∈ B(X ) such that �k

AB(I) = 0 for some integer
k > 1. Observe however that if �AB(X) = 0 for some quasi–affinity X , then B satis-
fies property (β )ε does not imply A satisfies property (β )ε . Thus, let B∈ �2(N) be the
forward unilateral shift, A∈ �2(N) the weighted forward unilateral shift with the weight
sequence { 1

n+1} , and X ∈ �2(N) the multiplication operator defined by Xx = { xn
n!}n∈N

for all x = {xn}n∈N ∈ �2(N) . Then B satisfies property (β )ε , A is quasinilpotent and
X is a quasi–affinity such that AX = XB . Evidently, A does not have property (β )ε .
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COROLLARY 2.8. Let {Bn} be a sequence of operators in B(X ) such that Bn

converges to B in the operator norm topology. If A is subscalar and �k
ABn

(I) = 0 , then
B is subscalar.

Proof. Since

||�k
AB(I)|| � lim

n−→∞
||�k

ABn
(I)−�k

AB(I)||

� lim
n−→∞

k

∑
i=1

(
k
i

)
||A||k−i||Bi

n−Bi|| = 0,

�k
AB(I) = 0. Hence B satisfies property (β )ε . �

The following theorem is proved in [4, Theorem 2.2] for Hilbert space operators.

THEOREM 2.9. If a function g is bi–holomorphic on a neighbourhood of σ(A)
for some A ∈ B(X ) , then A has property (β )ε if and only if g(A) has property (β )ε .

Proof. The proof of the theorem is similar to that of [4, Theorem 2.2]: we include
it here for completeness.

By symmetry, it suffices to verify that if g(A) satisfies property (β )ε for some bi–
holomorphic g on a neighbourhood V of σ(A) , then so does A . (Indeed, consider g−1

for the other direction.) Thus, assume that g is bi–holomorphic on a neighbourhood V
of σ(A) . Then, for z and λ in V ,

g(z)−g(λ ) = (z−λ )pλ (z),

where pλ is a uniformly bounded (on λ ) holomorphic function. Assume that g(A)
satisfies property (β )ε . Let { fn(z)} be a sequence in E (U ,X ) such that (A −
z) fn(z) −→ 0 in E (U ,X ) . Then

(g(A)−g(z)) fn(z) = pz(A)(A− z) fn(z)) −→ 0 in E (U ,X ).

Let g(z) = w . Then

(g(A)−w) fn(g−1w)) −→ 0 in E (g(U ),X ),

or
(g(A)−w)( fn ◦ g−1)(w) −→ 0 in E (g(U ),X ).

Since { fn ◦ g−1} is a sequence in E (g(U ),X ) and since g(A) has property (β )ε , it
follows that

fn ◦ g−1(w) −→ 0 in E (g(U ),X ).

Equivalently,
fn(z) −→ 0 in E (U ,X ).

Hence A satisfies property (β )ε . �
Combining Theorems 2.4 and 2.9, we have: “If the function g is bi–holomorphic

on a neighbourhood of σ(A) for some A ∈ B(X ) , g(A) is subscalar and B ∈ B(X )
is finitely intertwined to A by the identity operator, then B+N is subscalar for every
algebraic operator N ∈ B(X ) such that B and N commute”.
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Hilbert space operators

A Hilbert space operator T ∈ B(H ) is: p -hyponormal if |T ∗|2p � |T |2p for some
0 < p � 1 (a 1-hyponormal operator is hyponormal); M -hyponormal if there exists a
scalar M > 0 such that ||(T − λ )∗x||2 � M||(T − λ )x||2 for all λ ∈ C and x ∈ H ;

w-hyponormal if |T̃ ∗| � |T | � |T̃ | , where T̃ is the Aluthge transform T̃ = |T | 1
2U |T | 1

2

of T and U is as in the polar decomposition T = U |T | of T [3]; p -quasihyponormal
for some 0 < p � 1 if T ∗(|T |2p − |T ∗|2p)T � 0. It is known that hyponormal, p -
hyponormal, M -hyponormal and w-hyponormal operators are subscalar [12, 5]. How-
ever, p -quasihyponormal operators T do not satisfy property (satisfied by all subscalar
operators [1, Page 175] that) H0(T −λ ) = (T −λ )−m(0) for some non–negative integer
m = m(λ ) and all λ ∈ σ(T ) [2], hence are not subscalar. For brevity, let p−Q∗ de-
note the class of p -quasihyponormal operators T such that T−1(0) ⊆ T ∗−1(0) . Then
0, whenever it is in the point spectrum of T , is a normal eigenvalue of T (i.e., T−1(0)
is reducing), and T = T1 ⊕T2 with respect to some decomposition H = H1 ⊕H2 of
H such that T1 = T |H1 is normal and T2 = T |H2 is an injective, completely non–
normal p -quasihyponormal operator. Let Ti , i = 1,2, have the polar decomposition
Ti = Ui|Ti| . Then the partial isometry U2 is an isometry, and we may choose the partial
isometry U1 to be a unitary such that U1 commutes with |T1| . Define S ∈ B(H ) by
S = S1⊕S2 = (|T1|⊕ |T2|)(U1 ⊕U2) . Then σ(S) = σ(T ) [5]. Furthermore, since |T2|
is a quasi–affinity, it follows from the equivalence

T ∗
2 (|T2|2p−|T ∗

2 |2p)T2 � 0 ⇐⇒U∗
2 (|T2|2p−|T ∗

2 |2p)U2 � 0

that
|S∗2|2p � |T2|2p = U∗

2 |T ∗
2 |2pU2 � U∗

2 |T2|2pU2 � |S2|2p,

where the last inequality is a consequence of the fact that U∗
2 |T2|2pU2 � (U∗

2 |T2|2U2)p

for all 0 < p � 1. Evidently, S is p -hyponormal, hence subscalar. Recall from [5] that,
for operators L,M ∈ B(H ) , LM satisfies property (β )ε if and only if ML satisfies
property (β )ε . Hence, p−Q∗ operators are subscalar.

Let Ξ denote the class of Hilbert space operators which are either hyponormal
or M -hyponormal or p -hyponormal or w-hyponormal or p−Q∗ , and n

√
Ξ denote the

class of operators A such that An ∈ Ξ for some positive integer n � 2. It is then evident
from Theorem 2.9, and the above, that if an A ∈ n

√
Ξ is such that σ(A) is contained in

an angle L < 2π
n with vertex in the origin, then A is subscalar.

A version of the following corollary has been proved by Kim et al [14] for p -
hyponormal operators.

COROLLARY 2.10. Suppose that A ∈ Ξ , or A ∈ n
√
Ξ with σ(A) contained in an

angle L < 2π
n with vertex in the origin. If �k

AB(I) = 0 for some B ∈ B(H ) and integer
k � 1 , and if N ∈ B(H ) is an algebraic operator which commutes with B, then B+N
is subscalar.

Proof. Evident. �
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3. Applications I: Browder, Weyl spectra

In this section we consider the relationship between certain distinguished parts of
the spectrum of operators A and B satisfying �k

AB(I) = 0 for some integer k .
An operator A ∈ B(X ) is upper semi–Fredholm (resp., lower semi-Fredholm)

if AX is closed and α(A) = dimA−1(0) < ∞ (resp., AX is closed and β (A) =
dim(X /AX ) < ∞). A is Fredholm if it is both upper and lower semi–Fredholm,
and then the Fredholm index of A is the integer ind(A) = α(A)−β (A) . The Browder
spectrum (resp., the Weyl spectrum) of an A ∈ B(X ) is the set σb(A) = {λ ∈ C : A−λ
is not Fredholm or one of asc(A−λ ) and dsc(A−λ ) is not finite} (resp., σw(A) =
{λ ∈ C : A−λ is not Fredholm or ind(A−λ ) = 0} ).

Subscalar operators A have the property that their quasinilpotent part satisfies

H0(A−λ ) = (A−λ )−m(0)

for some integer m = m(λ ) � 0 and all λ ∈ C . Let K(A−λ ) denote the analytic core

K(A−λ ) = {x ∈ X : there exists a sequence {xn} ⊂ X and δ > 0 for which

x = x0,(A−λ )(xn+1) = xn and ‖xn‖ � δ n‖x‖ for all n = 1,2, ...}
of A− λ . K(A−λ ) is (generally) a non-closed hyperinvariant subspace of (A− λ )
such that (A− λ )K(A− λ ) = K(A− λ ) [16]. If A is subscalar and λ is an isolated
point of σ(A) , λ ∈ isoσ(A) , then

X = H0(A−λ )⊕K(A−λ )= (A−λ )−m(0)⊕K(A−λ )
=⇒ X = (A−λ )−m(0)⊕ (A−λ )mX ,

so that isolated points of σ(A) are poles of the resolvent of A (in the terminology of
[7], subscalar operators are polaroid).

Recall from [15, Corollary 3.4.5] that if limn−→∞ ||�n
AB(I)|| 1

n = 0, then σA(x) ⊆
σB(x) for all x ∈ X . Here σT (x) denotes the local spectrum of T at x (see [15, p 16]
for definition). Since

⋃{σT (x) : x ∈ X } equals the surjectivity spectrum σs(T ) of T ,
and since σ(T ) = σ(T ∗) = σs(T ) whenever T has SVEP [15, Proposition 1.3.2], it

follows that if limn−→∞ ||�n
AB(I)|| 1

n = 0 and A has SVEP then σ(A) ⊆ σs(B) ⊆ σ(B) .
Furthermore, since limn−→∞ ||�n

AB(I)|| 1
n = 0 =⇒ limn−→∞ ||�n

B∗A∗(I∗)|| 1
n = 0 =⇒

σB∗(y)⊆ σA∗(y) for all y∈X ∗ , if also B∗ has SVEP, then σ(B) = σs(B∗)⊆ σs(A∗)⊆
σ(A∗) (=⇒ σ(B) ⊆ σ(A)). Hence, if limn−→∞ ||�n

AB(I)|| 1
n = 0 and both A,B∗ have

SVEP, then σ(A) = σ(B) . The following theorem proves more. Let σe(A) = {λ ∈ C :
A−λ is not Fredholm} denote the (Fredholm) essential spectrum of A .

THEOREM 3.1. Let A,B ∈ B(X ) be such that �k
AB(I) = 0 for some integer k �

1 . If A and B∗ have SVEP, then σ(A) = σ(B) and σe(A) = σb(A) = σw(A) = σe(B) =
σb(B) = σw(B) .

Proof. It is easily seen that the hypothesis A and B∗ have SVEP, coupled with
the hypothesis �k

AB(I) = 0, implies that A , A∗ , B and B∗ all have SVEP. Hence,
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[1, Theorem 3.52], σe(A) = σb(A) = σw(A) and σe(B) = σb(B) = σw(B) . Evidently,
λ ∈ σ(A) \ σe(A) ⇐⇒ λ ∈ σ(A) \ σb(A) ⇐⇒ λ ∈ σ(A) is a finite rank pole of the
resolvent of A . (In particular, since σ(A) = σ(B) , see above, λ ∈ isoσ(B) .) Re-
call now from [15, Corollary 3.4.5] that if �k

AB(I) = 0, then H0(B− λ ) ⊆ H0(A−
λ ) . Hence, H0(B−λ ) is finite dimensional. Consequently, λ /∈ σe(B) [15, Proposi-
tion 3.7.5] (⇐⇒ λ ∈ σ(B) \σe(B)). Conversely, λ ∈ σ(B) \σe(B) ⇐⇒ λ ∈ σ(B∗) \
σe(B∗) =⇒ dimH0(B∗ −λ I∗) < ∞ and λ ∈ isoσ(A∗) . Since �k

B∗A∗(I∗) = 0 implies
H0(A∗−λ I∗)⊆ H0(B∗−λ I∗) , λ /∈ σe(A∗)⇐⇒ λ ∈ σ(A)\σe(A) . This completes the
proof. �

REMARK 3.2. The hypothesis �k
AB(I) = 0 for some integer k � 1 can not be

replaced by the hypothesis that B is intertwined to A by a quasi–affinity (or, even quasi–
similarity), as the following example from Stampfli [17, Example, page 11] shows. Let
{en}∞−∞ be an orthonormal basis for the Hilbert space H . Let, for each m = 1,2, ... ,

Amen = w(m)
n en+1 , where w(m)

n = 1 for n � 0, w(m)
n = 1+ n

m for 1 � n � m , w(m)
n = 2 for

m+1 � n � 2m , w(m)
n = 1+ 3m−n

m for 2m � n � 3m and w(m)
n = 1 for 3m+1� n . Then

the operator A =
⊕∞

1 Am (is essentially normal and) has SVEP. Let B =
⊕∞

1 U , where
U ∈ B(H ) is the bilateral shift. Evidently, B and B∗ have SVEP, AX = XB for some
quasi–affinity X (indeed, since each Am is similar to U , A and B are quasisimilar),
σ(A) = {λ : 1 � |λ | � 2} and σ(B) is the unit circle.

Recall that an operator A satisfies Weyl’s theorem if σ(A)\σw(A)=π00(A) , where
π00(A) = {λ ∈ isoσ(A) : λ is a finite multiplicity eigenvalue of A} . Observe that if A
satisfies Weyl’s theorem, then π00(A) = p00(A) , where p00(A) = {λ ∈ isoσ(A) : λ
is a finite rank pole of the resolvent of A} . Let σa(A) denote the approximate point
spectrum of A , and let σaw(A) = {λ ∈ σa(A) : A−λ is not upper semi-Fredholm or the
index of A−λ is not less than or equal to 0} denote the essential approximate Weyl
spectrum of A . A satisfies a-Weyl’s theorem if the complement of σaw(A) in σa(A) is
the set πa

00(A) = {λ ∈ σa(A) : 0 < dim(A−λ )−1(0) <∞} . (See [1, Chapter 3, Section
8] or [9, 7] for further information on Weyl and a -Weyl theorems.) Subscalar operators
satisfy Weyl’s theorem [1, Theorem 3.99].

THEOREM 3.3. Let B ∈ B(X ) be such that �k
AB(I) = 0 for some subscalar op-

erator A ∈ B(X ) and some integer k � 1 . If N ∈ B(X ) is an algebraic operator
which commutes with B, then B + N satisfies Weyl’s theorem and B∗ + N∗ satisfies
a-Weyl’s theorem.

Proof. The operator B+N is subscalar (by Theorem 2.4), and so satisfies Weyl’s
theorem. Apparently, see above, B + N has SVEP and is polaroid. SVEP implies
that σ(B+N) = σa(B∗ +N∗) [15, Proposition 1.3.2]; consequently, π00(B∗ +N∗) =
πa

00(B
∗+N∗) . Again, since λ /∈ σaw(B∗+N∗) if and only if B∗+N∗−λ is upper semi-

Fredholm and ind(B∗ +N∗ −λ ) � 0, and since B+N has SVEP and B∗ +N∗ −λ is
upper semi-Fredholm implies that ind(B∗ +N∗ −λ ) � 0 [1, Corollary 3.19],

λ /∈ σaw(B∗ +N∗) =⇒ λ /∈ σw(B∗ +N∗).
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This, since σaw(T )⊆σw(T ) for every T ∈B(X ) , implies that σaw(B∗+N∗)=σw(B∗+
N∗) = σw(B +N) . As stated above, B +N is polaroid. Hence B∗ + N∗ is polaroid,
with p00(B + N) = p00(B∗ + N∗) . This, since B + N satisfies Weyl’s theorem, im-
plies that π00(B + N) = p00(B + N) = p00(B∗ + N∗) ⊆ π00(B∗ + N∗) = πa

00(B
∗ + N∗)

(= {λ ∈ isoσa(B∗ +N∗) : B∗ +N∗ −λ is upper semi–Fredholm} ). Again, since λ ∈
πa

00(B
∗+N∗) implies λ ∈ isoσ(B+N)=⇒ λ ∈ p00(B+N) , we have that π00(B+N)=

πa
00(B

∗ +N∗) . Putting it all together, it follows that

σ(B+N)\σw(B+N) = π00(B+N) ⇒ σa(B∗ +N∗)\σaw(B∗ +N∗) = πa
00(B

∗ +N∗),

i.e., B∗ +N∗ satisfies a -Weyl’s theorem. �

4. Applications II: Elementary operator dAB

In this section we restrict ourselves to Hilbert space operators A,B∗ ∈ B(H ) , and
consider an application of the results of Section 2 to the elementary operator dAB ∈
B(B(H )) , dAB = LA −RB or LARB −1. (Recall that LA and RB denote, respectively,
the operators of left multiplication by A and right multiplication by B .) If the operators
A and B∗ are subscalar, then (both) LA and RB satisfy Dunford’s condition (C) [15,
Corollary 3.6.11]. This, since LA and RB commute, by [15, Theorem 3.6.3 and Note
3.6.19, Page 283] implies that LA −RB and LARB have SVEP (everywhere). Hence:

PROPOSITION 4.1. If A,B∗ ∈ B(H ) are subscalar, then dAB has SVEP.

We remark here that the conclusion dAB has SVEP does not require the full force
of the hypothesis on the subscalarity of A and B∗ : the hypothesis that A and B∗ satisfy
property (β ) would do just as well.

As seen above, isolated points of the spectrum of a subscalar operator are poles of
the resolvent of the operator. We prove in the following that the operator dAB satisfies a
similar property in the case in which eigenvectors corresponding to distinct eigenvalues
of the subscalar operators A and B∗ are (mutually) orthogonal.

THEOREM 4.2. If A,B∗ ∈ B(H ) are polaroid operators (i.e., isolated points of
the spectrum of A, similarly B∗ , are poles of the resolvent of A, respectively B∗ ),
and if eigen–spaces corresponding to distinct eigen–values of A (similarly, B∗ ) are
orthogonal, then dAB is polaroid.

Proof. It is known, [11, Theorem3.2], that σ(LA−RB)=
⋃{α−β :α ∈σ(A),β ∈

σ(B)} and σ(LARB −1)) = {αβ −1,α ∈ σ(A),β ∈ σ(B)} . If λ ∈ isoσ(dAB) , then
there exist finite sets {α1, ...,αn} ⊂ isoσ(A) and {β1, ...,βn} ⊂ isoσ(B) such that
αi −βi = λ if dAB = LA −RB , and αiβi−1 = λ if dAB = LARB −1, for all 1 � i � n .
Assuming H0(A−λ ) = (A−λ )−p(0) and H0(B∗−λ ) = (B∗−λ)−q(0) for some non–
negative integers p,q and all complex numbers λ , let

H ′
1 =

n∨
i=1

(A−αi)−p(0),H1 =
n∨

i=1

(B∗ −βi)−q(0),H ′
2 = H �H ′

1 and H2 = H �H1.
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The subspaces H ′
1 and H1 being invariant for A and B∗ , respectively, A and B have

the triangular representations:

A =
(

A11 A12

0 A22

)(
H ′

1

H ′
2

)
and B =

(
B11 0
B21 B22

)(
H1

H2

)
.

Then 0 /∈ σ(dAiiB j j −λ ) for all i, j = 1,2 except for i = j = 1. Letting X ∈ H0(dAB −
λ ) , X : H ′

1⊕H ′
2 → H1⊕H2 , have the matrix representation X = [Xi j]2i, j=1 , it follows

that

(dAB −λ )m =
(∗ ∗
∗ (dA22B22 −λ )mX22

)

for every natural number m (and for some as yet to be determined entries “∗′′ ). The
hypothesis X ∈ H0(dAB −λ ) implies that

lim
m→∞

||(dA22B22 −λ )mX22|| 1
m = 0.

Since dA22B22 −λ is invertible, it follows that X22 = 0, and hence that

(dAB −λ )m =
( ∗ (dA11B22 −λ )mX12

(dA22B11 −λ )mX21 0

)

for every natural number m (and for some as yet to be determined entry “∗′′ ). Again,
the hypothesis X ∈ H0(dAB −λ ) implies that

lim
m→∞

||(dA11B22 −λ )mX12|| 1
m = lim

m→∞
||(dA22B11 −λ )mX21|| 1

m = 0;

hence, since dA11B22 −λ and dA22B11 −λ are invertible, X12 = X21 = 0. Consequently,

(dAB −λ )m =
(

(dA11B11 −λ )m 0
0 0

)
,

and
lim
m→∞

||(dA11B11 −λ )mX11|| 1
m = 0.

Suppose now that the eigenvectors corresponding to distinct eigenvalues of A ,
similarly B∗ , are orthogonal. Then A11 and B∗

11 are normal, hence generalized scalar,
operators. Consequently, dA11B11 − λ is a generalized scalar operator [6, 4.3.3 Theo-
rem]; hence

H0(dA11B11 −λ ) = (dA11B11 −λ )−t(0)

for some positive integer t [6, Theorem 4.4.5]. Evidently, H0(dAB−λ ) = H0(dA11B11 −
λ ) ; This, as earlier seen , implies that dAB is polaroid at λ . �

Paranormal operators (i.e., operators T such that ||Tx||2 � ||T 2x|| for every unit
vector x ∈ H ) satisfy the hypotheses of Theorem 4.2. A condition guaranteeing or-
thogonality of the eigen–spaces corresponding to distinct eigen–values of the operator
A11 (similarly, B∗

11 ) of the proof of Theorem 4.2 above is that every part of the operator
A is both polaroid and normaloid. (A part of an operator is its restriction to an invariant
subspace, and an operator T is normaloid if its norm equals its spectral radius r(T ) .)
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LEMMA 4.3. If A ∈ B(H ) is such that every part of A is both polaroid and
normaloid, then the eigen–spaces corresponding to distinct eigen–values of A are or-
thogonal.

Proof. Let λ1 and λ2 be two distinct eigenvalues of A , and let M denote the
subspace generated by the eigenvectors corresponding to these eigenvalues. Let A1 =
A|M . Then σ(A1) = {λ1,λ2} , and A1 is a normaloid operator such that all its spectral
points are poles of the resolvent. Letting |λ1|� |λ2| , an application of [13, Proposition
54.4] implies that ||x|| � ||x + μy|| for all μ ∈ C , every x ∈ null(T1 − λ2) and y ∈
null(T1 −λ1) . This, in turn, implies that (x,y) = 0. �

The following theorem applies (in particular) to operators A,B∗ ∈ Ξ∩ B(H ) .
Recall that T satisfies Weyl’s theorem (resp., a -Weyl’s theorem) if σ(T ) \σw(T ) =
π00(T ) (resp., σa(T )\σwa(T ) = πa

00(T )).

THEOREM 4.4. If A and B∗ ∈B(H ) are subscalar operators such that the eigen-
vectors corresponding to distinct eigen–values of A, similarly B∗ , are orthogonal, then
dAB satisfies Weyl’s theorem and (the dual operator) d∗

AB satisfies a-Weyl’s theorem.

Proof. Since dAB has SVEP by Proposition 4.1 and dAB is polaroid by Theorem
4.2, dAB satisfies Weyl’s theorem [1, Theorem 3.85]. Now argue as in the proof of
Theorem 3.3 to prove that d∗

AB satisfies a -Weyl’s theorem. �
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