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OPERATOR RADII AND UNITARY OPERATORS
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(Communicated by J. Pečarić)

Abstract. Let ρ � 1 and wρ(A) be the operator radius of a linear operator A . Suppose m is
a positive integer. It is shown that for a given invertible linear operator A acting on a Hilbert
space, one has wρ (A−m) � wρ (A)−m . The equality holds if and only if A is a multiple of a
unitary operator.

1. Introduction

Let H be a complex Hilbert space equipped with the inner product 〈·, ·〉 which
induces the norm ‖·‖ . Denote by B(H ) the algebra of bounded linear operators acting
on H with the operator norm defined by

‖A‖ = sup{‖Ax‖ : x ∈ H ,‖x‖ = 1} for A ∈ B(H ).

It is easy to see that A ∈ B(H ) is unitary if and only if it is invertible and

‖A‖ � 1 and ‖A−1‖ � 1. (1.1)

If the requirement (1.1) is weakened as

‖An‖ � ρ and ‖A−n‖ � ρ (n = 1,2, . . .) for some ρ � 1, (1.2)

then, by a theorem of Sz.-Nagy [8], the operator A is similar to a unitary operator, that
is,

A = S−1US for some invertible S and unitary U,

and consequently its spectrum σ(A) is included in the unit circle of the complex plane.

Recall that the numerical radius of A ∈ B(H ) is defined by

w(A) = sup{|〈x,Ax〉| : x ∈ H ,‖x‖ � 1}.
In [7, Corollary 1] (see also [6]), it was shown that in (1.1) the operator norm ‖ · ‖
can be replaced by the numerical radius w(·) , namely, that an invertible operator A is
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unitary if w(A) � 1 and w(A−1) � 1. Notice that the map A �−→ w(A) is convex and
(1.2) is guaranteed by the known property of the numerical radius (see [9]), namely, for
any A ∈ B(H )

w(A) � ‖A‖ � 2 ·w(A) and w(An) � w(A)n for n = 1,2, . . . .

Very recently, Choi and Li [2, Theorem 3.9] showed that for a positive integer m
and an invertible operator A ∈ B(H ) , we have

w(A−m) � w(A)−m; (1.3)

the equality holds if and only if A is a multiple of a unitary operator. Clearly, the same
result holds if one replaces the numerical radius by the operator norm. (A short proof
of this case is included in Section 3).

In [9], Sz.-Nagy and Foiaş considered the class Cρ of operators T ∈ B(H ) which
admits a unitary ρ -dilation, that is, there is a unitary operator U on a superspace
K ⊃ H such that

Tn = ρPUn|H for n = 1,2, . . . ,

where P is the orthoprojection from K to H . In connection with this, one can define
the ρ -radius of A ∈ B(H ) by

wρ(A) = inf{λ > 0 : λ−1A ∈ Cρ}.

When ρ = 1 and ρ = 2, this definition reduces to the operator norm and the numerical
radius, respectively. The operator radii have the following properties (see [9], [4] and
[5]):

(i) For each ρ , the functional A �−→ wρ(A) is strictly positive, and (non-linear)
positive-homogeneous and wρ (A) = wρ (A∗) .

(ii) Let r(A) be the spectral radius of A ∈ B(H ) . Then limρ→∞wρ (A) = r(A) , and
the function ρ �−→ wρ (A) is non-increasing. Consequently, we have

r(A) � wρ (A) � ‖A‖.

(iii) For each A ∈ B(H ) , we have

wρ(A) � ‖A‖ � ρ ·wρ(A) and wρ(An) � wρ(A)n for n = 1,2, . . . .

(iv) For A ∈ B(H ) , the function A �−→ wρ(A) is convex (only) when 1 � ρ � 2.

In this paper, we show that the inequality (1.3) and the condition for equality are
valid if we replace the numerical radius by the ρ -radius for any ρ � 1. Specifically,
we have the following.
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THEOREM 1.1. Let ρ � 1 , and m be a positive integer. If A∈B(H ) is invertible,
then

wρ(A−m) � wρ(A)−m.

The equality holds if and only if A is a multiple of a unitary operator.

We will characterize those invertible A∈B(H ) satisfying wρ(A)� 1 and wρ(A−1)
� 1 in Section 2, and prove Theorem 1.1 in Section 3. Our proof depends on the fol-
lowing characterization of A ∈ B(H ) satisfying wρ (A) � 1 obtained by Ando [1] for
the case ρ = 2 and by Durszt [3] for the general case (see also [5]).

LEMMA 1.2. For an operator A and ρ > 1 , the condition wρ(A) � 1 is valid if
and only if there is 0 � C � I and a contraction W , that is, ‖W‖ � 1 , such that

A = ρ(I−C)1/2{I +ρ(ρ−2)C}−1/2WC1/2.

If A is invertible, 0 < C < I and W can be chosen as unitary.

Here, as usual, the order relation S � T between two selfadjoint operators S, T
means that T −S is positive semi-definite, or equivalently

〈x,Sx〉 � 〈x,Tx〉 (x ∈ H ),

and S < T means that T −S is invertible in addition.

2. Auxiliary results

In this section, we characterize those invertible A ∈ B(H ) such that wρ(A) � 1
and wρ(A−1) � 1.

We first consider the case when the Hilbert space H has a finite dimension, say N .
Therefore each A is considered as a matrix, and we can use the determinant function.

THEOREM 2.1. Suppose ρ � 1 . An invertible matrix A is unitary if and only if
wρ(A) � 1 and its spectrum σ(A) is included in the unit circle.

Proof. The implication (⇒) is clear. We consider the converse. Suppose ρ = 1.
Then A is unitarily similar to a lower triangular matrix T so that each diagonal entry
is an eigenvalue lying in the unit circle. Since w1(A) = w1(T ) = ‖T‖ = 1, we see that
all off diagonal entries of T are zero. Next, assume that ρ > 1. Since wρ(A) � 1 and
A is invertible, by Lemma 1.2 there is 0 < C < I and unitary W such that

A = ρ(I−C)1/2{I +ρ(ρ−2)C}−1/2WC1/2. (2.1)
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Then since the determinant of a matrix is the product of all its eigenvalues (counting
multiplicities) and since det(XY ) = det(X)det(Y ) for any matrices X ,Y ,

1 = |det(A)|2 = det(A∗A)

= det
(
ρ2C1/2W ∗(I−C){I +ρ(ρ−2)C}−1WC1/2

)

= det
(
ρ2C(I−C){I +ρ(ρ−2)C}−1

)

=
N

∏
j=1

ρ2λ j(1−λ j)
1+ρ(ρ−2)λ j

,

where λ j ( j = 1,2, . . . ,N) are the eigenvalues of C with multiplicities counted. It is
easy to see that

f (t) ≡ fρ (t) :=
ρ2t(1− t)

1+ρ(ρ−2)t
� 1 (0 � t � 1)

and the maximum value 1 is attained only at t = ρ−1 . We conclude λ j = ρ−1

( j = 1,2, . . . ,N) , that is, C = ρ−1I . Then by (2.1) we have

A =
ρ
√

1−ρ−1√
ρ{1+ρ(ρ−2)ρ−1}W =W.

Therefore A is unitary. �

If wρ(A) � 1 and wρ (A−1) � 1, then by the property (iii) of the ρ -radii and the
theorem of Sz.-Nagy [8], the spectrum σ(A) is included in the unit circle. Therefore
we can conclude from Theorem 2.1 that an invertible matrix is unitary if wρ (A) � 1
and wρ(A−1) � 1 for any ρ .

Now we turn to the infinite dimensional case. The following example shows that
the extension of Theorem 2.1 to the infinite dimensional case is not possible even for
ρ = 1.

EXAMPLE 2.2. There is a non-unitary contraction which is similar to a unitary
operator.

Construction. Let H = L2(−∞,∞) with respect to the Lebesgue measure on
(−∞,∞) . Let ϕ(t) is a strictly increasing continuous function on (−∞,∞) such that

lim
t→−∞ϕ(t) = α > 0 and lim

t→∞
ϕ(t) = β < ∞.

Let T be the multiplication operator by the function ϕ(t) and U the right-shift operator
by unit one, that is,

(T f )(t) = ϕ(t) f (t) and (U f )(t) = f (t +1) (−∞ < t < ∞).
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Let C be the multiplication operator by the function ϕ(t−1)
ϕ(t) . Then T > 0 and U is uni-

tary while C is a non-unitary contraction because of the strict-increasingness of ϕ(t) .
Now it is easy to see that TU = UCT , which implies that the non-unitary contraction
A = UC is similar to the unitary operator U . �

The following theorem generalizes a result of Stampfli [7, Corollary 1] (see also
[2] and [6]) to general operator radii wρ (·).

THEOREM 2.3. Suppose ρ � 1 . An invertible operator A ∈ B(H ) is unitary if
and only if wρ(A) � 1 and wρ(A−1) � 1 .

Proof. The implication (⇒) is clear. We consider the converse. Suppose ρ =
1. If ‖Ax‖ < 1 for any unit vector x ∈ H , then ‖x‖ = ‖A−1(Ax)‖ < 1, which is a
contradiction. Thus, ‖Ax‖ = 1 for all unit vector x ∈ H . Since A is invertible, A is
unitary. Next, assume ρ > 1. Consider again the function

f (t) ≡ fρ (t) :=
ρ2(1− t)

1+ρ(ρ−2)t
(0 � t � 1). (2.2)

Then simple computations will show the following relations:

1
t

= f (t)+
(1−ρt)2

t{1+ρ(ρ−2)t} and t =
1

f (t)
− (1−ρt)2

ρ2(1− t)
(0 < t < 1). (2.3)

Since by assumption wρ(A) � 1 and wρ

(
(A−1)∗

)
= wρ (A−1) � 1, by Lemma 1.2 there

are 0 < X , Y < I and unitary U, V such that

A = f (X)1/2UX1/2 and (A−1)∗ = f (Y )1/2VY 1/2. (2.4)

Then it follows from (2.4) that

I = A ·A−1 = f (X)1/2UX1/2 ·Y 1/2V ∗ f (Y )1/2,

which implies
UX1/2Y 1/2 = f (X)−1/2 f (Y )−1/2V,

and hence
Y 1/2XY 1/2 = V ∗ f (Y )−1/2 f (X)−1 f (Y )−1/2V.

This means that Y 1/2XY 1/2 and f (Y )−1/2 f (X)−1 f (Y )−1/2 are unitarily similar. There-
fore they have the same spectrum

σ
(
Y 1/2XY 1/2

)
= σ

(
f (Y )−1/2 f (X)−1 f (Y )−1/2

)
,

which implies obviously

λmax

(
Y 1/2XY 1/2

)
= λmax

(
f (Y )−1/2 f (X)−1 f (Y )−1/2

)
(2.5)



278 TSUYOSHI ANDO AND CHI-KWONG LI

and
λmin

(
Y 1/2XY 1/2

)
= λmin

(
f (Y )−1/2 f (X)−1 f (Y )−1/2

)
, (2.6)

where, for a selfadjoint operator Z , the symbol λmax(Z) (resp. λmin(Z)) denotes the
maximum (resp. minimum) of the spectrum σ(Z) .

Now write, according to (2.5),

γ := λmax(Y 1/2XY 1/2) = λmax

(
f (Y )−1/2 f (X)−1 f (Y )−1/2

)
. (2.7)

This γ is characterized as a positive number such that γY−1−X � 0 and

lim
n→∞

〈an,(γY−1−X)an〉 = 0 for some an with ‖an‖ = 1. (2.8)

On the other hand, it follows from (2.3) that

γY−1−X = γ f (Y )− f (X)−1 + γY−1{I +ρ(ρ−2)Y}−1(I−ρY)2

+ ρ−2(I−X)−1(I−ρX)2.

Then since 0 < X , Y < I , there is ε > 0 such that

γY−1−X � γ f (Y )− f (X)−1 + ε(I−ρY)2 + ε(I−ρX)2. (2.9)

Since by (2.5) γY−1 −X � 0 implies γ f (Y )− f (X)−1 � 0, it follows from (2.8) and
(2.9) that

lim
n→∞

{‖(I−ρY)an‖2 +‖(I−ρX)an‖2} = 0. (2.10)

Finally we have from (2.8) and (2.10) that

0 = lim
n→∞

〈an,(γY−1−X)an〉 = ργ−ρ−1

that is,
λmax

(
Y 1/2XY 1/2

)
= γ = ρ−2. (2.11)

Incidentally we have shown that, with γ = ρ−2 ,

ker
(
ρ−2Y−1−X

)
⊂ ker(I−ρX). (2.12)

Next write, according to (2.6),

κ := λmin

(
f (Y )−1/2 f (X)−1 f (Y )−1/2

)
= λmin

(
Y 1/2XY 1/2

)
. (2.13)

This κ is characterized as a positive number such that f (X)−1 −κ f (Y ) � 0 and

lim
n→∞

〈bn,{ f (X)−1−κ f (Y )}bn〉 = 0 for some bn with ‖bn‖ = 1. (2.14)
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Now we have by (2.3)

f (X)−1 −κ f (Y ) = X −κY−1 +ρ−2(I−X)−1(I−ρX)2

+ κY−1{I +ρ(ρ−2)Y}−1(I−ρY)2.

Since by (2.6) f (X)−1 −κ f (Y ) � 0 implies X −κY−1 � 0, as in the foregoing argu-
ments we can conclude that

f (X)−1 −κ f (Y ) � X −κY−1 � 0 (2.15)

and for some ε > 0

f (X)−1 −κ f (Y ) � ε(I−ρX)2 + ε(I−ρY)2. (2.16)

Then by (2.14) and (2.16) we have

lim
n→∞

{‖bn−ρXbn‖2 +‖bn−ρYbn‖2} = 0,

and by (2.14) and (2.15)

lim
n→∞

〈bn,(X −κY−1)bn〉 = 0.

From the above we can conclude that κ = ρ−2 , hence κ = γ by (2.11). This means
that Y 1/2XY 1/2 = ρ−2I , so that ρ−2Y−1 − X = 0, that is, ker(ρ−2Y−1 − X) = H .
Finally by (2.12) this implies ker(I −ρX) = H , or equivalently X = ρ−1I . Now we
can conclude by (2.2) and (2.4)

A = f (ρ−1)1/2ρ−1/2U = U,

that is, A is unitary. This completes the proof. �

3. Proof of the main theorem

We use the fact that for any T ∈ B(H)

r(T ) � wρ (T ) � ‖T‖,
where r(T ) is the spectral radius of T , and

wρ (Tk) � wρ(T )k, k = 1,2, . . . .

If A ∈ B(H ) is invertible, then

wρ(A−1) � r(A−1) = 1/ inf{|μ | : μ ∈ σ(A)} � r(A)−1 � wρ(A)−1.

Replacing A by Am , we have wρ(A−m) � wρ (Am)−1 . Since wρ(Am) � wρ(A)m , we
have

wρ (Am)−1 � wρ(A)−m.
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If γA is unitary for some positive number γ , then wρ(A−m) = γ−m = wρ (A)−m .
Conversely, suppose wρ(A−m) = wρ(A)−m . We may replace A by γA for a suitable
positive number γ and assume that wρ (A−m) = wρ (A)−m = 1. Thus,

1 = wρ(A−m) � wρ(Am)−1 � wρ (A)−m = 1. (3.1)

So, 1 = wρ(Am) = wρ (A−m) . By Theorem 2.3, Am is unitary. By (3.1), we also have
wρ(A) = 1. If ρ = 1, then for any unit vector x ∈ H , ‖A‖ = 1 = ‖Amx‖ implies that
x,Ax, . . . ,Amx are all unit vectors. Thus, 1 = ‖Ax‖ for all x . Since A is invertible, A is
unitary. Suppose ρ > 1. By Lemma 1.2,

A = ρ(I−C)1/2{I +ρ(ρ−2)C}−1/2WC1/2

for some 0 < C < I and a unitary W .
Let

C̃ = ρC1/2(I−C)1/2{I +ρ(ρ−2)C}−1/2.

As shown in the proof of Theorem 2.1, we have

f (t) ≡ fρ(t) :=
ρ2t(1− t)

1+ρ(ρ−2)t
� 1 (0 � t � 1).

Thus C̃2 = f (C) � I , and C̃ is a contraction. As a result,

Am = ρ(I−C)1/2{I +ρ(ρ−2)C}−1/2W̃C1/2

such that
W̃ = W (C̃W )m−1

is a contraction. Since Am is unitary, we see that

I = (Am)(Am)∗

= ρ2(I−C)1/2{I +ρ(ρ−2)C}−1/2W̃C1/2C1/2W̃ ∗{I +ρ(ρ−2)C}−1/2(I−C)1/2.

Thus,
{I +ρ(ρ−2)C}(I−C)−1 = ρ2W̃CW̃ ∗. (3.2)

When both W̃ and C are invertible, we know

σ
(
W̃CW̃ ∗

)
= σ

(
C1/2W̃ ∗W̃C1/2

)
. (3.3)

Since in general
C1/2W̃ ∗W̃C1/2 � C for ‖W̃‖ � 1,

we have
λmax(W̃CW̃ ∗) � λmax(C) and λmin(W̃CW̃ ∗) � λmin(C). (3.4)

Since the function

g(t) :=
1+ρ(ρ−2)t

1− t
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is increasing for 0 � t < 1, we have

λmax

(
g(C)

)
= g

(
λmax(C)

)
and λmin

(
g(C)

)
= g

(
λmin(C)

)
. (3.5)

Then it follows from (3.2), (3.4) and (3.5)

g(t) � ρ2t for t = λmax(C), λmin(C). (3.6)

Since

g(t)−ρ2t =
(1−ρt)2

1− t
� 0 (0 � t < 1),

(3.6) is possible only when

λmax(C) = λmin(C) =
1
ρ

,

and hence C = 1
ρ I . Consequently

A = ρ(I−C)1/2{I +ρ(ρ−2)C}−1/2WC1/2 = W

is unitary as asserted. �
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