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(Communicated by I. M. Spitkovsky)

Abstract. We investigate intertwining relations arising from commutators such as AB−BA = D
when AD = DA , and AB−BAT = D when AD = DAT , where A,B and D are n -by-n matrices.
Depending on the properties of A , such equations often force D to be zero or at least nilpotent,
and it is the properties of D that we investigate. We briefly discuss the situation when AB+BA =
D , AD = DAT for A normal.

1. Introduction

Let A,B and D be n -by-n matrices. Equations such as AB−BA = D and AB−
BAT = D are important in matrix theory (the bracket notation [A,B] = AB−BA is often
used, see Zhang [10] for elementary properties of [A,B]). We survey a number of well
known properties of the commutator AB−BA and give some new properties. We also
look at the commutator-type expressions AB−BAT and AB+BA .

The space of all n -by-m complex matrices will be denoted by Mn,m(C) (or just Mn

when m = n ), and the corresponding space of real matrices will be denoted Mn,m(R) .
Our vectors are in Cn = Mn,1(C) , the space of n -by-1 complex matrices. Our notation
will follow [3]. The transpose of the matrix A will be denoted by AT and A∗ will

denote the conjugate transpose A
T
.

Recall that a matrix A ∈ Mn is nonderogatory if every eigenvalue is of geometric
multiplicity equal to one. In this case, each eigenvalue has exactly one Jordan block in
which it appears.

The commutant of A ∈ Mn is the set

C(A) = {B ∈ Mn : AB = BA}.

It is known that C(A) is Abelian if and only if A is a nonderogatory matrix (see [5],
Theorem 4.4.19/Corollary 4.4.18). Notice that C(A) ⊆C(A2) , so if A2 is nonderoga-
tory then A is also nonderogatory.

We will make repeated use of Sylvester’s Theorem: if A∈Mn and B∈Mm have no
eigenvalues in common, then the matrix equation AX −XB = C , has a unique solution
X ∈ Mn,m(C) . When C = 0, this solution is X = 0. (see problem 9 in (2.4) of [3] for a
proof).

Mathematics subject classification (2010): 15A18, 15A27.
Keywords and phrases: Matrix commutator, nonderogatory matrix, normal matrix.

c© � � , Zagreb
Paper OaM-04-15

283



284 GEOFFREY R. GOODSON

2. Basic Results About Commutators

A result of Jacobson [6] says that if AB−BA = D and AD = DA , then D is a
nilpotent matrix [3], page 98. Putnam [7] showed that for bounded normal operators
A , B and D on a Hilbert space, with AB−BA = D and AD = DA , necessarily D =
0. This result was improved by H. Shapiro [8], in the matrix setting, to show that if
A is diagonalizable, then D = 0. It is well known (see the American Mathematical
Monthly, March 2002, Problem 10930) that for A,B ∈ M2 , with AB−BA = D and
AD = DA , under the additional condition that BD = DB , necessarily D = 0. We prove
these results and give various generalizations. Our first theorem starts with proofs of
Jacobson’s Lemma and results of Shapiro, and continues with some new properties of
commutators. The proof of Jacobson’s lemma is close to that in [3], page 98, but [4],
2.4 Problem 12 gives a new proof which is possibly more elegant. Theorem 1(b) and
(c) are due to Shapiro [8], but the proof of (c) is new and the results in (d), (e) and (f)
are new.

THEOREM 1. Let A,B,D ∈ Mn with AB−BA = D:

(a) If AD = DA then D is a nilpotent matrix (Jacobson’s Lemma).

(b) If AD = DA where A is diagonalizable, then D = 0 (Shapiro [8]).

(c) If AD = DA where A is nonderogatory, then A and B are simultaneously trian-
gularizable (Shapiro [8]).

(d) If AD = DA, BD = DB, and A is nonderogatory then D2 = 0 . The number of
distinct eigenvalues of B is less than or equal to the number of distinct eigenval-
ues of A and rank(D) < n/2 .

(e) If AD = DA, BD = DB and the algebraic multiplicity of every eigenvalue of A
is less than or equal to 2, then D = 0 .

(f) If AD = −DA and A2 is a nonderogatory matrix, then D = 0 .

Proof. (a) Set D = PJP−1where J is the Jordan canonical form of D and P is a
nonsingular matrix. We can assume that J is the direct sum of the form:

J = J1⊕ J2⊕·· ·⊕ Jk,

where each Ji is the direct sum of Jordan blocks corresponding to the same eigenvalue
λi , so the spectrum of Ji , σ(Ji) = {λi} is a singleton set, and each of the λi ’s is distinct,
i = 1,2, . . . ,k .

Now AD = DA gives (P−1AP)J = J(P−1AP) or ÃJ = JÃ , where Ã = P−1AP .
Partition Ã conformally with J , then since the eigenvalues of each Ji are distinct, using
Sylvester’s Theorem we can write

Ã = A1 ⊕A2⊕·· ·⊕Ak, where AiJi = JiAi, i = 1, . . . ,k.

The equation AB−BA = D = PJP−1 can then be written as

(P−1AP)(P−1BP)− (P−1BP)(P−1AP) = J,
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or

ÃB̃− B̃Ã = J where B̃ = P−1BP.

Writing B̃ = [Bi j] conformal to Ã and J gives AiBi j −Bi jA j = Ji when i = j and
zero otherwise. Thus the trace of Ji is tr(Ji) = tr(AiBii −BiiAi) = 0. This implies that
λi = 0, i = 1, . . . ,k (in particular, k = 1), so σ(D) = {0} , and D is nilpotent.

(b) Since A is diagonalizable, there is a nonsingular matrix S ∈ Mn for which
A = SCS−1 , where C ∈ Mn is a diagonal matrix of the form C = a1I1 ⊕ ·· · ⊕ akIk ,
where the a j are distinct and I j are identity matrices.

Now AD = DA implies that S−1DS is block diagonal, conformal to C . Set F =
S−1BS , then AB−BA = D implies that CF −FC = S−1DS . But the diagonal blocks of
CF −FC are all 0 , so that D = 0.

(c) Suppose AB−BA = D where AD = DA and A is nonderogatory. Write A =
PJP−1 where P is nonsingular and

J = J1⊕ J2⊕·· ·⊕ Jk,

gives the Jordan blocks of A having distinct eigenvalues. Then AD = DA gives J(P−1DP)
= (P−1DP)J or JD̃ = D̃J where D̃ = P−1DP .

Write D̃ = [Di j] conformally with J =⊕iJi , then by Sylvester’s Theorem, Di j = 0
if i �= j and D̃ = D1⊕D2⊕·· ·⊕Dk , where DiJi = JiDi (replacing Dii by Di ), 1 � i �
k .

Now AB−BA = D gives JB̃− B̃J = D̃ , where B̃ = P−1BP . Decompose B̃ confor-
mally with J and D̃ as B̃ = [Bi j] . Then JiBi j−Bi jJj = 0 if i �= j and JiBii−BiiJi = Di ,
so again, by Sylvester’s Theorem, Bi j = 0 if i �= j . We therefore have

JiBii −BiiJi = Di where JiDi = DiJi, 1 � i � k.

We now prove a lemma:

LEMMA 1. Let A,B and D belong to Mn where AB−BA = D. Let A be the

Jordan block A =

⎡
⎢⎢⎢⎢⎢⎣

λ 1 0 0 · · · 0
0 λ 1 0 · · · 0
0 0 λ 1 · · · 0
...

...
...

... · · · ...
0 0 · · · · · · 0 λ

⎤
⎥⎥⎥⎥⎥⎦

.

(i) If AD = DA, then B is an upper triangular matrix whose eigenvalues are in
arithmetic progression.

(ii) If AD = DA and BD = DB, then D =
[

0 E
0 0

]
, where E is upper triangular and

rank(E) < n/2 .
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Proof. (i) From [3] (Theorem 3.2.4.2), if AD = DA , then D is of the form

D =

⎡
⎢⎢⎢⎢⎢⎣

d1 d2 d3 · · · dn

0 d1 d2 · · · dn−1

0 0 d1 · · · dn−2
...

...
... · · · ...

0 0 · · · 0 d1

⎤
⎥⎥⎥⎥⎥⎦

.

But also from part (a) of this theorem, D is nilpotent, so d1 = 0.
A calculation shows that if B = [bi j] , then

AB−BA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b21 b22−b11 b23−b12 b24−b13 · · · b2,n−b1,n−1

b31 b32−b21 b33−b22 b34−b23 · · · b3,n−b2,n−1

b41 b42−b31 b43−b32 b44−b33 · · · b4,n−b3,n−1
...

...
...

... · · · ...
bn,1 bn,2−bn−1,1 bn,3−bn−1,2 · · · · · · bn,n−bn−1,n−1

0 −bn,1 −bn,2 · · · · · · −bn,n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Equating this to D , it immediately follows that bi j = 0 for i > j , so that B is an upper
triangular matrix. This proves part (i) of the lemma, but we can see that B has a special
form in the following way:

Set b1, j = α j for j = 1, . . . ,n . Then the equations

bi+1,i+1−bi,i = d2, i = 1,2 . . . ,n−1,

imply that

b11 = α1, b22 = α1 +d2, b33 = α1 +2d2, . . . ,bn,n = α1 +(n−1)d2,

and similarly

b12 = α2, b23 = α2 +d3, b34 = α1 +2d3, . . . ,bn−1,n = α2 +(n−2)d3.

Continuing in this way we see that

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α1 α2 α3 α4 · · · · · · αn

0 α1 +d2 α2 +d3 α3 +d4 · · · · · · αn−1 +dn

0 0 α1 +2d2 α2 +2d3 · · · · · · αn−2 +2dn−1

0 0 0 α1 +3d2 · · · · · · αn−3 +3dn−2
...

...
...

... · · · ...
...

0 0 0 · · · · · · 0 α1 +(n−1)d2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

We see that the eigenvalues of B are in arithmetic progression.

(ii) Now we use the fact that BD = DB and a calculation to get more detail on the
structure of B and D . Let 1 < j � n , then the (1, j) entry of DB is

(α j−1 +d j)d2 +(α j−2 +2d j−1)d3 +(α j−3 +3d j−2)d4

+ · · ·+(α2 +( j−2)d3)d j−1 +(α1 +( j−1)d2)d j,
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and the (1, j) entry of BD is

α1d j +α2d j−1 +α3d j−2 + · · ·+α j−1d2.

For the (1,2) entry this gives (α1 + d2)d2 = α1d2 , or d2 = 0. The (1,4) entry
gives

(α3 +d4)d2 +(α2 +2d3)d3 +(α1 +3d2)d4 = α1d4 +α2d3 +α3d2,

or d3 = 0. Inductively, suppose that we have shown d2 = 0,d3 = 0, . . . ,d j−1 = 0.
Consider the (1,2 j−2) entry of BD and DB (when 2 j−2 � n ). Then we have

(α2 j−3 +d2 j−2)d2 + · · ·+(α j +( j−2)d j+1)d j−1 +(α j−1 +( j−1)d j)d j

+ · · ·+(α1 +(2 j−3)d2)d2 j−2

= α1d2 j−2 +α2d2 j−3 + · · ·+α j−1d j + · · ·+α2 j−3d2.

Since d2 = d3 = . . . = d j−1 = 0, we have

α j−1d j +( j−1)d2
j +α j−2d j+1 +α j−3d j+2 + · · ·+α1d2 j−2

= α1d2 j−2 +α2d2 j−3 + · · ·+α j−1d j,

and this gives d j = 0 for all j with 2 j � n+2. �
Now apply Lemma 1(i) to Ji , Bii and Di to see that Bii is upper triangular, i =

1, . . . ,k , so that both A and B can both be put into upper triangular form by the same
matrix P , and (c) follows.

(d) If in addition BD = DB , then B̃D̃ = D̃B̃ and BiiDi = DiBii for i = 1, . . . ,k .
Applying Lemma 1(ii) we see that Bii is of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α1 α2 α3 α4 · · · αn−1 αn

0 α1 α2 α3 · · · αn−2 +dn−1 αn−1 +dn

0 0 α1 α2 · · · αn−3 +2dn−2 αn−2 +2dn−1

0 0 0 α1 · · · · · · αn−3 +3dn−2
...

...
...

... · · · ...
...

0 0 0 · · · · · · 0 α1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(d j = 0 for j � n/2+1) and Di is of the form

[
0 E
0 0

]
where E is upper triangular. It

follows that B has at most k distinct eigenvalues, D2 = 0, and rank(D) < n/2.

(e) If all the eigenvalues of A have algebraic multiplicity no larger than 2, then the
Jordan blocks of A are at most 2-by-2. Thus we can write A = PJP−1 where

J = J0⊕ J1⊕·· ·⊕ Jk,

where J0 is a diagonal matrix all of whose eigenvalues occur with multiplicity at most

2, and Ji =
[
λi 1
0 λi

]
, 1 � i � k , where all the λi ’s are distinct, and they are distinct
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from the diagonal entries of J0 , 1 � i � k . Follow the steps of (c) to obtain matrices
Bi and Di as before, 0 � i � k . Since J0 is diagonal, (a) above implies that D0 = 0,
and Lemma 1(ii) implies that Di = 0 for 1 � i � k (since Di ∈ M2 ), so we must have
D = 0.

(f) Since AD = −DA ,

A2B−BA2 = A(AB−BA)+ (AB−BA)A= AD+DA = 0,

so A2B = BA2 . Since A2 is nonderogatory, B is a polynomial in A2 . It follows that
AB = BA , so D = 0. �

The results of the following theorem (some of which now appear as exercises in 3.2
of [4]) are new, except for (d), which is a consequence of the Taussky and Zassenhaus
result which says: if A is nonderogatory and AX = XAT , then A is symmetric (see [9]).
Theorem 2(d) does not require that D be a commutator.

THEOREM 2. Let A,B,D ∈ Mn with AB−BAT = D.

(a) If AD = DAT , then D is singular.

(b) If AD = DAT and A is diagonalizable, then D = 0 .

(c) If AD = DAT and DA = AT D, then D is nilpotent.

(d) If AD = DAT and A is nonderogatory, then D is symmetric (Taussky and Zassen-
haus).

(e) If AD = DAT and A is nonderogatory, the geometric multiplicity of the eigen-
value 0 of D is greater than or equal to the number of distinct eigenvalues of
A.

Proof. (a) Choose R nonsingular with AT = RAR−1 . Then

AB−B(RAR−1) = D, so A(BR)− (BR)A = DR.

In addition, AD = DAT implies that A(DR) = (DR)A , so DR is the commutator of
BR and A , and also A and DR commute, so Jacobson’s lemma implies that DR is
nilpotent, so D must be singular.

(b) As before we can write A = SCS−1 for some invertible S and diagonal C =
a1I1⊕·· ·⊕akIk , where the a j are distinct. Now AD = DAT implies that CS−1D(ST )−1

= S−1D(ST )−1C , so that again S−1D(ST )−1 is block diagonal conformal to C . But

AB−BAT = D implies CS−1B(ST )−1 −S−1B(ST )−1C = S−1D(ST )−1,

so again we must have D = 0.

(c) AB−BAT = D , so ABD−BATD = D2 or A(BD)−(BD)A = D2 (since ATD =
DA). Write this as AB̃− B̃A = D̃ where B̃ = BD , D̃ = D2 .

Now AD̃ = AD2 = DAT D = D2A = D̃A , so that Theorem 1(a) applies to give
D̃ = D2 nilpotent, and hence D is nilpotent.
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(d) Let S ∈ Mn be nonsingular and symmetric, and such that AT = SAS−1 . Then
AD = DAT = DSAS−1 , so A(DS) = (DS)A .

Since A is nonderogatory, it follows that there is a polynomial p such that DS =
p(A) . Then SDT = (DS)T = p(A)T = p(AT )= p(SAS−1)= Sp(A)S−1 = SD , so S(DT −
D) = 0, or D is symmetric.

(e) Let A = SJS−1 be the Jordan canonical form of A with S nonsingular and

J = Jni(λ1)⊕·· ·⊕ Jnd (λd),

a direct sum of Jordan blocks with distinct eigenvalues. Let D = S−1DS and B =
S−1BS−T ; define Ji = Jni(λi) ; and partition D = [Di j]di, j=1 and B = [Bi j]di, j=1 confor-
mally to J . Then

AD = DAT ⇒ JD = DJT ⇒ JiDi j = Di jJ
T
j ,

so distinctness of eigenvalues and Sylvester’s Theorem ensure that Di j = 0 if i �= j .
Let Ri ∈ Mni be nonsingular and such that JT

i = RiJiR
−1
i . Then

JiDii = DiiJ
T
i ⇒ JiDii = DiiRiJiR

−1
i ⇒ Ji(DiiRi) = (DiiRi)Ji.

Moreover, D = AB−BAT implies

Dii = JiBii −BiiJ
T
i = JiBii −BiiRiJiR

−1
i ,

or
DiiRi = Ji(BiiRi)− (BiiRi)Ji.

Thus for each i = 1, . . . ,d , DiiRi is the commutator of BiiRi and Ji , and it commutes
with Ji . Jacobson’s Lemma ensures that each DiiRi is nilpotent, so each Dii is singular.
It follows that the null space of

D = D11 ⊕·· ·⊕Ddd

(and hence of D) has dimension at least d , that is, the geometric multiplicity of 0 as an
eigenvalue of D is at least d . �

3. Commutators and Quasi-Real Normal Matrices

We briefly survey a method for generalizing some results on quasi-real normal
(QRN) matrices (see [1], [2]). Consider the commutator-type expression AB+BA = D ,
where AD = DAT . Here is a non-trivial example, where A is a normal matrix (i.e., A
is unitarily diagonalizable):

Let Iλ ,μ =
[
λ μ
−μ λ

]
, for λ ,μ ∈ C . Set A = Iλ ,μ . The general form of D with

AD = DAT is D =
[

e f
f −e

]
. If we set B =

[
a b
b −a

]
, where e = 2λa and f = 2λb ,
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we can check that the equation AB+BA = D is satisfied. In this example, A is normal
and both D2 and B2 are multiples of the 2-by-2 identity matrix, so their eigenvalues
occur with multiplicity two and in fact the eigenvalues of B and D occur in ± pairs.
We shall show that this is a fairly general situation.

The matrix A is actually an example of a quasi-real normal (QRN) matrix:
A ∈ Mn is QRN if (i) A is normal, (ii) Ax = 0 implies Ax = 0 and (iii) x is an eigen-
vector of A if and only if x is an eigenvector of A . The following was shown in [1]:

THEOREM 3. A matrix A ∈ Mn is QRN if and only if there is a unitary matrix of
the form U = [Y Y Z] , Y ∈ Mn,k(C) , Z ∈ Mn,n−2k(R) , and a diagonal matrix Λ= L1⊕
L2⊕L3 such that A = UΛU∗ , L1,L2 ∈ Mk are nonsingular, and there are nonnegative
integers d and r , positive integers n1, . . . ,nd ,m1, . . . ,mr, and 2d + r distinct scalars
λ1, . . . ,λd ,μ1, . . . ,μd ,ν1, . . . ,νr , such that n1 + · · ·+ nd = k , m1 + · · ·+mr = n− 2k,
L1 = λ1In1 ⊕·· ·⊕λdInd , L2 = μ1In1 ⊕·· ·⊕μdInd , and L3 = ν1Im1 ⊕·· ·⊕νrImr .

Suppose that A,B and D are in Mn with

AB+BA = D and AD = DAT ,

where A = UΛU∗ (Λ = L1 ⊕ L2 ⊕ L3 , U = [Y Y Z]) is a QRN matrix. Then we can
check that AT = U(L2⊕L1⊕L3)U∗ (see [1]), so that

AD = DAT ⇒ (L1⊕L2⊕L3)(U∗DU) = (U∗DU)(L2⊕L1⊕L3).

Write U∗DU = [Di j] partitioned conformally with Λ . Then by Sylvester’s Theorem
(using σ(Li)∩σ(Lj) = /0 for i �= j ) we have

U∗DU =

⎡
⎣ 0 D12 0

D21 0 0
0 0 D33

⎤
⎦ =

⎡
⎣ 0 Y ∗DY 0

YT DY 0 0
0 0 ZT DZ

⎤
⎦ ,

since U∗DU =

⎡
⎣Y ∗

YT

ZT

⎤
⎦D[Y Y Z] .

The equation AB + BA = D becomes Λ(U∗BU)+ (U∗BU)Λ = U∗DU or ΛB̃ +
B̃Λ = D̃ where B̃ = U∗BU , D̃ = U∗DU . Decompose B̃ conformally with Λ and
assume that σ(Li)∩σ(−Li) = /0 and σ(Li)∩σ(−L3) = /0 , i = 1,2.

Equating the resulting matrices and again using Sylvester’s Theorem gives B̃ (a
form similar to that for D̃):

B̃ = U∗BU =

⎡
⎣ 0 B12 0

B21 0 0
0 0 B33

⎤
⎦ =

⎡
⎣ 0 Y ∗BY 0

YT BY 0 0
0 0 ZT BZ

⎤
⎦ .

We see, for example, that B̃2 = B12B21⊕B21B12⊕B2
33 (and similarly for D̃2 ). Since the

nonsingular Jordan structures of B12B21 and B21B12 are identical, and 0 is an eigen-
value of the same multiplicity for both matrices, the eigenvalues of B12B21 ⊕B21B12
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occur with even multiplicity (and similarly for D̃2 ). There are various conditions on
the spectrum of A which give rise to the above results. For example, if A is real and
normal, A = UΛU∗ where U is as above, Λ = L⊕L⊕R , L can be chosen to consist
of diagonal entries which lie in the open upper half plane, and the diagonal entries of
R are real. In this case L1 = L,L2 = L and L3 = R where σ(Li)∩σ(−Li) = /0 and
σ(Li)∩σ(−L3) = /0 , i = 1,2 so the results above can be applied, leading to:

THEOREM 4. Let A ∈ Mn(R) be normal. If B,D ∈ Mn satisfy the equations

AB+BA = D and AD = DAT ,

then the subspace H = {x ∈ Cn : Ax = AT x} and its orthogonal complement H⊥ are
both B and D invariant. In addition, for B and D considered as linear maps on the
subspace H⊥ , the following holds:

(a) The eigenvalues of B2 and D2 occur with even multiplicity.

(b) If B is real then D is real and the eigenvalues of both B and D occur in ±
conjugate quadruplets with the same multiplicities.

(c) If B = B∗ , then the eigenvalues of B are real and occur in ± pairs with the same
multiplicities.

Proof. (a) A real normal matrix is QRN, so the discussion prior to the theorem
is applicable. Since the nonsingular Jordan structures of B12B21 and B21B12 are iden-
tical, and zero is an eigenvalue for both with the same multiplicity, the eigenvalues
of B12B21 ⊕ B21B12 occur with even multiplicity. It therefore suffices to check that
the subspace on which this matrix acts corresponds to the orthogonal complement of
H = {x ∈ Cn : Ax = AT x} .

(b) If B is real, then Y ∗BY =YT BY , so that B̃ =
[

0 B12

B12 0

]
⊕B33. Now following

the argument in [1], we see that the eigenvalues of C =
[

0 B12

B12 0

]
occur in ± con-

jugate quadruplets. In fact it is shown in [1] that C is similar to a matrix of the form
−R⊕R , where R is real.

(c) In this case C =
[

0 B12

B∗
12 0

]
is similar to a matrix of the form −Σ⊕Σ , where Σ

is a diagonal matrix whose diagonal entries are the singular values of B12 (see [1]). �
This theorem is true more generally when A is a QRN matrix with σ(Li)∩σ(−Li)

= /0 and σ(Li)∩σ(−L3) = /0 , i = 1,2. The methods outlined here will also work for
certain other commutator-like expressions such as AB+BAT = D when AD = DA .

Acknowledgements. I thank Roger Horn for valuable suggestions resulting in im-
provements to this paper. In particular, I have included his proof of Theorem 2(e),
which was an improvement on the original proof. Some of these results and other re-
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2(b) was the result of discussions with Dennis Merino who I would also like to thank.
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