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UNBOUNDED OPERATORS COMMUTING WITH THE
COMMUTANT OF A RESTRICTED BACKWARD SHIFT

DONALD SARASON

(Communicated by H. Berkovici)

Abstract. Tt is shown that, in a proper coinvariant subspace of the shift operator on the Hardy
space H?, a densely defined operator that commutes with the commutant of the restricted back-
ward shift is closable. A connection between this result and a case of the transitive algebra
problem is discussed.

1. Introduction

The paper [4] characterizes the closed densely defined operators that commute
with restricted backward shifts (of multiplicity 1). Here it will be proved that a densely
defined operator that commutes with the commutant of a restricted backward shift is
closable. The precise statement of the result and its proof are in Section 3, following a
few preliminaries in Section 2.

The closability result was suggested by William Arveson, who was motivated by
a link with the transitive algebra problem. These matters occupy Sections 4 and 5.

In the paper [2], H. Bercovici and coauthors study from a general viewpoint what
they term the closability property for operator algebras. An algebra of operators on
a Hilbert space is said to have this property if every densely defined operator in its
commutant is closable. The closability results in [2] subsume the one proved here. In
particular, it is proved in [2] that the commutant of any Cy contraction has the clos-
ability property. The proof of the closability result given here is specific to the present
context. It uses, in particular, the characterization from [4].

Notations

1. H? and H* are the usual Hardy spaces for the unit disk I). The functions in
them will be identified with their boundary functions on JdD.

2. For A in D, k; denot_es the kernel function in H? for the evaluation functional

at A :k;(z) =1/(1—Az).
3. S denotes the unilateral shift operator on H?.
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4. Throughout, # will denote an inner function, assumed not to be a finite Blaschke
product. (Any inner function that arises will be assumed to be normalized, i.e.,
having a positive initial nonvanishing Taylor coefficient at the origin.)

5. K? denotes the space H> ©uH? (the general proper infinite-dimensional invari-
ant subspace of ).

6. S, denotes the compression of S to K>. The adjoint S} is the restriction of S*
to K2.

7. For u; and u, inner functions, their greatest common (normalized) inner divisor
is denoted by g.c.i.d.(u,uz).

8. N denotes the Nevanlinna class, the family of functions ¢ in D writable as
@ = y/x with y and y in H” and ) # 0. When such an expression for ¢ is
written, it is to be understood that y and ) have no common nonconstant inner
divisors. The Smirnov class N consists of such ratios with y an outer function.

9. For H a Hilbert space, £ (H) denotes the algebra of bounded operators on H .
The domain and graph of a possibly unbounded operator on H are denoted by
2(H) and ¥(H), respectively. The operator W in .Z(H @ H) is defined by
W(x®y) =y@® —x. Note that if the operator A on H is densely defined, then
G(A*) =WY(A)*L.

2. Background on K>

This section reviews the properties of the spaces K2, and of the unbounded oper-
ators acting in them, needed for present purposes. Full details are in the papers [3] and
[4].

The space K2 carries a natural conjugation C, an antiunitary involution, defined

by (Cf)(z) =zu(z)f(z) (z € dD). When convenient, Cf will be denoted alternatively

by f.

The kernel function in K> for the evaluation functional at the point A of I will
be denoted by &Y ; it is given by k4 (z) = (1 — mu(z)) /(11— Xz). Its C-transform 75;{
is given by 7%{ (z) = (u(z) —u(A))/(z—A). The function 756 is a cyclic vector of S%.

For y a function in H*, the compression to K> of the Toeplitz operator Ty will
be denoted by A,,. The adjoint of A, is the restriction of Ty to K2 and will be denoted
by Ay; besides being the adjoint of Ay, it is the C-transform of Ay, : Ay = CA,C.

The local Smirnov class N, consists of all Nevanlinna functions @ = y/y such
that # and ) have no nonconstant common inner divisors. For each such ¢, a closed,
densely defined operator Ag on K? is defined in [4]. This operator depends only on
@, not on its quotient representation, and if ¢ is in H* it coincides with Ag as defined
earlier. The adjoint of Ag is denoted by Ay . The following properties hold.

LEMMA 1. Ay is the C-transform of Ag: Z(Ay) = CZ(Ag) and AoCf = CAgf
for fin 2(Ag).
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LEMMA 2. If =/ isin N\, then AzK? is containedin 9(Ag), and AgAzh =
Ayh for h in K2. Moreover Ag is the closure of its restriction to A7K,f.

LEMMA 3. If ¢; and @, are in N,/, then Ag, = Ay, if and only if u divides
@1 —¢2.

LEMMA 4. If wisin H” and @ isin N7, then AzAgf = AgAwf = Agwf for all

The main result from [4] is the following theorem.

THEOREM 1. The closed densely defined operators on K> that commute with S
are the operators Ag with @ in N, .

Note that a closed densely defined operator on K> commuting with S* commutes
also with the closed unital operator algebra generated by S;;, in other words, with A
for all y in H”, the operators comprising the commutant of S;;.

The proof of Theorem 1 in [4] is based on earlier work of Daniel Sudrez [5].

3. Closability

THEOREM 2. A densely defined operator on K? that commutes with Ay for all
W in H” is closable.

Proof. Let A be the operator in question. By the commutativity assumption, its
domain, Z(A), is invariant under Ay for all y in H”. For f in Z(A), we let Iy =
{Ayf:weH"}.

Step 1. We consider first the case where there is a function f in Z(A) such that 9y is
dense in K2. It will be shown that A is then closable.

We let A" = A | 2y, a densely defined operator that commutes with Ay for all y
in H=. Let A’ be the C-transform of A’ : Z(A’) = C%y, A’ = CA'C. The operators A’
and A’ are both densely defined, so their adjoints are well defined. Let g =Af. For y
and y in H™,

(Agf ©Ayg, A8 ® —Ayf) = (Ayf,Ay8) — (Ayg, Ay f)

= <AW7fa§> - <gaAllle>

This shows that ¥ (A’) and W% (A') are orthogonal, and so their closures are orthog-
onal. In particular, A’ is closable; let A’ denote its closure. By Theorem 1, there is a
function @ in N such that A’ = Ag.

We show that A is the closure of A. If that is not true, then there is a function f
in Z(A) that is notin Z(A). Let &' be the linear span of (") and f' ®Af’. Then
@' is closed and is the graph of an operator A” commuting with 7, its domain being
the linear span of Z(A') and f'. By Theorem 1, there is a function ¢’ in N such
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that A” = Ay . But since A” | 2 (A') =A" = Ay, it follows by Lemma 3 that u divides
¢ — ¢, and hence that Az = Ay, contrary to the supposition that f’ is not in & (K/).

Thus A’ = A, is in fact the closure of A.

The result just established implies an extension of itself. Let f be any nonzero
function in 2(A). The S} -invariant subspace generated by f then equals Kfl with
uy an inner divisor of u. The operator A | Z(A) N KZ commutes with Ay | K2, for
all y in H”, and its domain contains {Ayf : y € H”}, which dense in K,fl . We can
conclude that A | Z(A) ﬂKfl is closable.

Step 2. We consider next the case where there is a pair of functions f, f> in Z(A) such
that 2y, + Zy, is dense in K2 and Z5, N P, = {0}. It will be shown that A is then
closable.

The closures @h 7§f2 are S invariant subspaces of K2, so there are inner di-
visors uy,uy of u such that 5, = ul’ Dy, = K . In view of Step 1 we may as
well assume u; and uy are proper divisors of u. The condition 7, N7y, = {0}, i.e.,
K,fl ﬁK,f2 = {0}, implies u; and u, are relatively prime as inner functions. The density
of Iy, + Py, in K? implies u divides uju,. Hence u = ujus.

Let f = f1+ f>. It will be shown that Zy is dense in K2 . The desired conclusion
will then follow by Step 1.

To prove Zy is dense in K2, it will suffice to prove that if u3 is a proper inner
divisor of u then Ag, f # 0. Given such a u3, it can be factored as u3 = u|us, where
u),uby are inner divisors of uy,u,, respectively, at least one a proper divisor. Suppose
u} is a proper divisor of u;. Then u3 divides u}u,. Since Ag, f> = 0, we have

u uzf A Auzfl +A—’ Au2f2 AﬁzAﬁ/lfl.

Since u) properly divides u; and Zy, is dense in Kul, we have Ay fl #0. Since uy
and u, are relatively prime, the operator Az, acts injectively on K;; 2 . We can conclude

that Angﬂ/1 fi= M 2,/ # 0. As uj divides uuy it follows that also Ag,f #0, as

desired. If i} properly divides u,, the same reasoning yields the same final result. We
can conclude that 7y is dense in Kf, as desired.

Step 3. We strengthen the result in Step 2 by proving that A is closable if there are
functions fi, /> in Z(A) such that 7y, + -@fz is dense in K2. As in Step 2, there are
inner divisors uj,u; of u such that @h = ul’ :@f2 = Kfz, and by Step 1 we can
assume both are proper divisors of u. By Step 2 we can assume u; and up are not
relatively prime. Let u3 = g.c.i.d.(u;,u2). We then have factorizations u; = uus,
up = ubuz, u = uyuzub, where the nonconstant inner functions u},us,u) are relatively
prime in pairs.

Let f3 = Ag, f>, a function in Z(A). We note that Py, = Az, Zy,. From the
factorization u, = uzu’, we have the direct sum decomposition K,fz = K33 @ u3K5,2 ,

which together with the equality %, = Az, 7y, tells us that 7, = K7, . Because u =
’ ’ ’ 2

uuty, the space K2 is spanned by Py, and Py, . And because u; and u) are relatively
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prime, the intersection P, N Py, is trivial. The desired conclusion thus follows by
Step 2. Also, the analysis in Step 2 shows that Zy, ; ¢, is dense in K>.

As in Step 1, the result just established implies an extension of itself: Let f; and
/2 be functions in Z(A), and let Kf, be the S} -invariant subspace they generate. Then
the operator A | Z(A) NK? is closable. Moreover, there is a function f’ in 2(A)NK>
such that 7 is dense in K2 .

Step 4. We suppose we are given a sequence f, f>,... of functions in Z(A) such that
Py, =K, where each inner function u, is a proper divisor of 1, and UTK} is
dense in K?2. Under these conditions, u, — u pointwise in . We prove A is closable.
Let v, = u/uy.

For each n, let C, denote the conjugation in Kfn. For f in Kfn and m>n, a
simple argument shows that C,,f = v,,Cf, which we rewrite as C,,f = A;,Cf. As
m — o we have v,, — 1 boundedly pointwise in D, implying that the operators A,,
converge strongly to the identity. We can conclude that C,,f — Cf weakly as m — oo.
Here we assumed f is in K,fn , but n was kept fixed, so the conclusion holds for all f
in Uy K2 .

For each n let A, =A | Z(A)NKZ,, and let

Aw=A U1 2(A)NK, .

Let f and f’ be functions in Z(A.), andlet g=Af, g =Af’. Then fd g and f dg’
are in ¢ (A,,) for m sufficiently large. We know from Step 1 that A, is closable. By
Theorem 1 and Lemma 1, the adjoint A}, is the Cy, -transform of A,,. Therefore, for m
large, f & g is orthogonal to C,,g’ ® —C,.f’. Letting m — oo, we conclude that f @ g
and Cg' & —Cf’ are orthogonal. So, letting A/, denote the C-transform of A, we
have shown that ¢ (A..) and W% (AL,) are orthogonal. Reasoning as in Step 1, we can
conclude that A.. is closable, and then that A is closable (with A, = A).

Step 5. The proof of the theorem will now be completed. We note that, if ¢ = y/x is
a function in N,/ , then there is a function f in Z(Ag) such that %y is dense in K2.In
fact, by Lemma 2 and the S -cyclicity of k“, the function f= Ayiég has this property.

We define inductively a transfinite sequence (fy) of nonzero functions in Z(A)
indexed by a section of the countable ordinal numbers. For each o we let u, denote the
normalized inner function such that %, = K2 . Our inductive procedure guarantees
that ug is a proper divisor of ugy for B < a.

Initial Step. For f| we take any nonzero functionin Z2(A).
Inductive Step. Suppose fg has been defined for all f < a.

(i) If o is not a limit ordinal and %y, , is dense in K,f, we terminate the sequence
at the term fi;—1.
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(i) If a is not a limit ordinal and %y, , is not dense in K7, then because Z(A) is
dense in K7, there is a function g in Z(A) \K,fai , - Let ug be the inner function
such that K2 is the closure of the linear span of Z;,_, and Z,. By Step 3,

Ug—1

the operator A | Z(A)NKZ  is closable, and there is a function in 2(A)NKZ |
which we define to be f,, such %y, is dense in K} .

(iii) If o is a limit ordinal and Uﬁ<a@fﬁ is dense in K2, we terminate the sequence,
i.e., we leave fy undefined for y > o.

(iv) If o is a limit ordinal and Uﬁ<a@fﬁ is not dense in K2, we take an increasing
sequence (o) of nonlimit ordinals converging to ¢, and we let 1, be the inner
function such that K,fa is the closure of U‘f’Kfﬂn . Step 4, applied to uy in place
of u, tells us that A | Z(A) K2, is closable. By the remark at the beginning of
Step 5, there is a function in the domain of the closure, which we define to be
fo» such that 2y, is dense in K7, . The inductive step is now complete.

It is asserted that the sequence (fy) terminates at a countable stage. In fact, the
inner functions u, are all divisors of u, and ug is a proper divisor of uy for B < o.
Pick a point zg in D such that u(zo) # 0. Then the numbers |uq(z0)| — |ta+1(z0)| are
positive for all o such that uy is defined, so their sum is bounded by 1, implying
ug+1 is defined for only countably many «, as asserted.

Let @ be the least ordinal such that f;, is not defined. If & is not a limit ordinal,
then &y | is dense in Kfl and the closability of A follows by Step 1. If « is a limit
ordinal, we take an increasing sequence (o,)7 of nonlimit ordinals converging to o.
Then UK,fan must be dense in K,f, otherwise ug would be defined (see part (iv) of the
induction). By Step 4, A is closable. [

4. Transitive Algebra Problem

An algebra Z of operators on a Hilbert space H is called transitive if it has no
invariant subspaces other than {0} and H . The transitive algebra problem asks whether
every transitive operator algebra on H is strongly dense in . (H), the algebra of all
bounded operators on H. Although the problem has been around for 40+ years, and
although experts by and large anticipate a negative answer, progress up to now has been
rather scanty. The invariant subspace problem for Hilbert space operators is of course
a special case.

In his paper [1] Arveson developed a general scheme for handling transitive oper-
ator algebras. Unbounded operators commuting with the algebra in question play the
key role in the scheme. Arveson used his scheme to establish two results on transi-
tive algebras: (i) A transitive operator algebra on H that contains a maximal abelian
von Neumann algebra is strongly dense in Z(H); (ii) A transitive operator algebra
on the Hardy space H? that contains all analytic Toeplitz operators is strongly dense
in Z(H?). Note that the analytic Toeplitz operators on H> form a maximal abelian
subalgebra of .Z(H?).
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The commutant lifting theorem, applied to the compressed shift S, on the space
K2, says that every (bounded) operator commuting with S, is the compression of an
analytic Toeplitz operator. Those compressions, then, form a maximal abelian subalge-
bra of .Z(K?2). When Arveson learned of Theorem 1 above (which, after conjugation,
describes the closed densely defined operators commuting with S, ), he asked whether
his scheme could be used to establish for the spaces K> the analogue of his result (ii)
for H? . Implementation of the scheme would involve two steps: (I) One needs to prove
that a densely defined operator on K? that commutes with Ay forall y in H” is clos-
able; (II) Given a transitive operator algebra % on Kf that contains A, for all y in
H™, one needs to prove that the only closed densely defined operators that commute
with Z are the scalar multiples of the identity.

Step (I) is accomplished in [2] and in Section 3 above. Step (II) has yet to be
accomplished. Some minor initial progress is reported in the next section.

5. Arveson’s Question — Simple Reductions

As above, we assume the inner function u is not a finite Blaschke product. Let
¢ be a nonconstant function in N,j , and let %, denote the algebra of all bounded
operators on K2 that commute with Ay . After what has already been proven in [2] and
above, Arveson’s question boils down to the question whether %, is intransitive. A

couple of reductions come easily.

PROPOSITION 1. If ¢ and u have a nonconstant common inner divisor, then %
is intransitive.

Proof. Let ug be a common inner divisor of ¢ and u, assumed nonconstant, and
let u; = u/ug. Then u divides @u,, so Ap,, =0 by Lemma 3. Since Ay and A,, com-
mute, we have the inclusion A,, Z(Ay) C Z(Ay), and by (the conjugated version of)
Lemma4 ApA,, | 2(Ap) =Agu, | Z(Ap) =0. Since Z(Ay) is densein K> and u; isa
proper divisor of u, the image A,, Z(A,) is nontrivial. We can conclude that A, has a
nontrivial kernel. That kernel is shared by every bounded operator that commutes with
Ay, in other words, by every operator in %, , implying that %, is intransitive. [

PROPOSITION 2. If u has a zero in 9 then B, is intransitive.

Proof. Let u=y/y, and assume u vanishes at the point A of . Then the ker-
nel function k;{ in Kf for the evaluation functional at A equals k , the kernel function

in H? for the evaluation functional at 4. By Lemma 2 the function Azky = x(A)ky,
belongs to Z(Ag), and hence k; is in Z(Ag). Lemma 2 also tells us that Agk, =
mk;L . Applying the conjugation C, we conclude that the function 75;1 isin 2(Ayp),
with qu%{ =4 )7%{ The operator Ay — @(A)I thus has a nontrivial kernel. That
kernel is invariant under all bounded operators commuting with Ay, implying the in-
transitivity of Z,. O

The preceding two propositions reduce Arveson’s question to the case in which u
is a singular inner function, and, for the function ¢ in N; , o nonconstant inner divisor
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of @ — A, for any complex A, is a proper divisor of u. To prove the corresponding
algebra %, is intransitive one must show that it leaves invariant a nontrivial proper
invariant subspace of the compressed shift S,,. The invariant subspaces of S, are the
subspaces K2 NugH? with ug an inner divisor of u; the subspace is proper if uq is not

constant and nontrivial if ug is a proper divisor of u. Note that Kf NugH? = uoK,f Ty

as one sees from the direct sum decomposition K2 = Kfo @ uOKf iy

While the operator A, can be unbounded, even the case where it is bounded is
nontrivial, or so it seems. Arveson’s question awaits further study.

REFERENCES

[1] W. B. ARVESON, A density theorem for operator algebras, Duke Math J., 34 (1967), 635-647.

[2] H.BERcovVICI, R. G. DOUGLAS, C. FO1AS, AND C. PEARCY, Confluent operator algebras and the
closability property, preprint.

[3] D. SARASON, Unbounded Toeplitz operators, Integral Equations Oper. Theory, 61 (2008), 281-298.

[4] D. SARASON, Unbounded operators commuting with restricted backward shifts, Operators and Ma-
trices, 4 (2009), 583-601.

[5] D. SUAREZ, Closed commutants of the backward shift operator, Pacific J. Math., 179 (1997), 371—
396.

(Received October 21, 2009) Donald Sarason
Department of Mathematics

University of California

Berkeley, CA

94720-3840, USA

e-mail: sarason@math.berkeley.edu

Operators and Matrices
www.ele-math.com
oam@ele-math.com



