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Abstract. It is shown that, in a proper coinvariant subspace of the shift operator on the Hardy
space H2 , a densely defined operator that commutes with the commutant of the restricted back-
ward shift is closable. A connection between this result and a case of the transitive algebra
problem is discussed.

1. Introduction

The paper [4] characterizes the closed densely defined operators that commute
with restricted backward shifts (of multiplicity 1). Here it will be proved that a densely
defined operator that commutes with the commutant of a restricted backward shift is
closable. The precise statement of the result and its proof are in Section 3, following a
few preliminaries in Section 2.

The closability result was suggested by William Arveson, who was motivated by
a link with the transitive algebra problem. These matters occupy Sections 4 and 5.

In the paper [2], H. Bercovici and coauthors study from a general viewpoint what
they term the closability property for operator algebras. An algebra of operators on
a Hilbert space is said to have this property if every densely defined operator in its
commutant is closable. The closability results in [2] subsume the one proved here. In
particular, it is proved in [2] that the commutant of any C0 contraction has the clos-
ability property. The proof of the closability result given here is specific to the present
context. It uses, in particular, the characterization from [4].

Notations

1. H2 and H∞ are the usual Hardy spaces for the unit disk D . The functions in
them will be identified with their boundary functions on ∂D .

2. For λ in D , kλ denotes the kernel function in H2 for the evaluation functional
at λ : kλ (z) = 1/(1−λz) .

3. S denotes the unilateral shift operator on H2 .
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4. Throughout, u will denote an inner function, assumed not to be a finite Blaschke
product. (Any inner function that arises will be assumed to be normalized, i.e.,
having a positive initial nonvanishing Taylor coefficient at the origin.)

5. K2
u denotes the space H2 �uH2 (the general proper infinite-dimensional invari-

ant subspace of S∗ ).

6. Su denotes the compression of S to K2
u . The adjoint S∗u is the restriction of S∗

to K2
u .

7. For u1 and u2 inner functions, their greatest common (normalized) inner divisor
is denoted by g.c.i.d.(u1,u2) .

8. N denotes the Nevanlinna class, the family of functions ϕ in D writable as
ϕ = ψ/χ with ψ and χ in H∞ and χ �= 0. When such an expression for ϕ is
written, it is to be understood that ψ and χ have no common nonconstant inner
divisors. The Smirnov class N+ consists of such ratios with χ an outer function.

9. For H a Hilbert space, L (H) denotes the algebra of bounded operators on H .
The domain and graph of a possibly unbounded operator on H are denoted by
D(H) and G (H) , respectively. The operator W in L (H ⊕H) is defined by
W (x⊕ y) = y⊕−x . Note that if the operator A on H is densely defined, then
G (A∗) = WG (A)⊥ .

2. Background on K2
u

This section reviews the properties of the spaces K2
u , and of the unbounded oper-

ators acting in them, needed for present purposes. Full details are in the papers [3] and
[4].

The space K2
u carries a natural conjugation C , an antiunitary involution, defined

by (C f )(z) = zu(z) f (z) (z ∈ ∂D) . When convenient, C f will be denoted alternatively
by ˜f .

The kernel function in K2
u for the evaluation functional at the point λ of D will

be denoted by ku
λ ; it is given by ku

λ (z) = (1−u(λ )u(z))/(1−λz) . Its C -transform ˜ku
λ

is given by ˜ku
λ (z) = (u(z)−u(λ ))/(z−λ ) . The function ˜ku

0 is a cyclic vector of S∗u .
For ψ a function in H∞ , the compression to K2

u of the Toeplitz operator Tψ will
be denoted by Aψ . The adjoint of Aψ is the restriction of Tψ to K2

u and will be denoted
by Aψ ; besides being the adjoint of Aψ it is the C -transform of Aψ : Aψ = CAψC .

The local Smirnov class N+
u consists of all Nevanlinna functions ϕ = ψ/χ such

that u and χ have no nonconstant common inner divisors. For each such ϕ , a closed,
densely defined operator Aϕ on K2

u is defined in [4]. This operator depends only on
ϕ , not on its quotient representation, and if ϕ is in H∞ it coincides with Aϕ as defined
earlier. The adjoint of Aϕ is denoted by Aϕ . The following properties hold.

LEMMA 1. Aϕ is the C-transform of Aϕ : D(Aϕ) =CD(Aϕ) and AϕC f =CAϕ f
for f in D(Aϕ) .
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LEMMA 2. If ϕ =ψ/χ is in N+
u , then AχK2

u is contained in D(Aϕ) , and AϕAχh =
Aψh for h in K2

u . Moreover Aϕ is the closure of its restriction to AχK2
u .

LEMMA 3. If ϕ1 and ϕ2 are in N+
u , then Aϕ1

= Aϕ2
if and only if u divides

ϕ1−ϕ2 .

LEMMA 4. If w is in H∞ and ϕ is in N+
u , then AwAϕ f = AϕAw f = Aϕw f for all

f in D(Aϕ) .

The main result from [4] is the following theorem.

THEOREM 1. The closed densely defined operators on K2
u that commute with S∗u

are the operators Aϕ with ϕ in N+
u .

Note that a closed densely defined operator on K2
u commuting with S∗u commutes

also with the closed unital operator algebra generated by S∗u , in other words, with Aψ
for all ψ in H∞ , the operators comprising the commutant of S∗u .

The proof of Theorem 1 in [4] is based on earlier work of Daniel Suárez [5].

3. Closability

THEOREM 2. A densely defined operator on K2
u that commutes with Aψ for all

ψ in H∞ is closable.

Proof. Let A be the operator in question. By the commutativity assumption, its
domain, D(A) , is invariant under Aψ for all ψ in H∞ . For f in D(A) , we let D f =
{Aψ f : ψ ∈ H∞} .

Step 1. We consider first the case where there is a function f in D(A) such that D f is
dense in K2

u . It will be shown that A is then closable.
We let A′ = A | D f , a densely defined operator that commutes with Aψ for all ψ

in H∞ . Let ˜A′ be the C -transform of A′ : D(˜A′) = CD f , ˜A′ = CA′C . The operators A′

and ˜A′ are both densely defined, so their adjoints are well defined. Let g = A f . For ψ
and χ in H∞ ,

〈Aψ f ⊕Aψg,Aχ g̃⊕−Aχ ˜f 〉 = 〈Aψ f ,Aχ g̃〉− 〈Aψg,Aχ ˜f 〉
= 〈Aψ χ f , g̃〉− 〈g,Aψχ ˜f 〉
= 〈Aψ χ f , g̃〉− 〈Aψ χ f , g̃〉 = 0.

This shows that G (A′) and WG (˜A′) are orthogonal, and so their closures are orthog-
onal. In particular, A′ is closable; let A

′
denote its closure. By Theorem 1, there is a

function ϕ in N+
u such that A

′ = Aϕ .

We show that A
′
is the closure of A . If that is not true, then there is a function f ′

in D(A) that is not in D(A′) . Let G ′ be the linear span of G (A′) and f ′ ⊕A f ′ . Then
G ′ is closed and is the graph of an operator A′′ commuting with S∗u , its domain being
the linear span of D(A′) and f ′ . By Theorem 1, there is a function ϕ ′ in N+

u such
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that A′′ = Aϕ ′ . But since A′′ | D(A′) = A
′ = Aϕ , it follows by Lemma 3 that u divides

ϕ−ϕ ′ , and hence that Aϕ ′ = Aϕ , contrary to the supposition that f ′ is not in D(A′) .
Thus A

′ = Aϕ is in fact the closure of A .
The result just established implies an extension of itself. Let f be any nonzero

function in D(A) . The S∗u -invariant subspace generated by f then equals K2
u1

with
u1 an inner divisor of u . The operator A | D(A)∩K2

u1
commutes with Aψ | K2

u1
for

all ψ in H∞ , and its domain contains {Aψ f : ψ ∈ H∞} , which dense in K2
u1

. We can
conclude that A | D(A)∩K2

u1
is closable.

Step 2. We consider next the case where there is a pair of functions f1, f2 in D(A) such
that D f1 +D f2 is dense in K2

u and D f1 ∩D f2 = {0} . It will be shown that A is then
closable.

The closures D f1 ,D f2 are S∗u invariant subspaces of K2
u , so there are inner di-

visors u1,u2 of u such that D f1 = K2
u1

, D f2 = K2
u2

. In view of Step 1 we may as
well assume u1 and u2 are proper divisors of u . The condition D f1 ∩D f1 = {0} , i.e.,
K2

u1
∩K2

u2
= {0} , implies u1 and u2 are relatively prime as inner functions. The density

of D f1 +D f2 in K2
u implies u divides u1u2 . Hence u = u1u2 .

Let f = f1 + f2 . It will be shown that D f is dense in K2
u . The desired conclusion

will then follow by Step 1.
To prove D f is dense in K2

u , it will suffice to prove that if u3 is a proper inner
divisor of u then Au3 f �= 0. Given such a u3 , it can be factored as u3 = u′1u

′
2 , where

u′1,u
′
2 are inner divisors of u1,u2 , respectively, at least one a proper divisor. Suppose

u′1 is a proper divisor of u1 . Then u3 divides u′1u2 . Since Au2 f2 = 0, we have

Au′1 u2
f = Au′1Au2 f1 +Au′1Au2 f2 = Au2Au′1 f1.

Since u′1 properly divides u1 and D f1 is dense in K2
u1

, we have Au′1 f1 �= 0. Since u1

and u2 are relatively prime, the operator Au2 acts injectively on K2
u1

. We can conclude
that Au2Au′1 f1 = Au′1 u2

f �= 0. As u3 divides u′1u2 it follows that also Au3 f �= 0, as
desired. If u′2 properly divides u2 , the same reasoning yields the same final result. We
can conclude that D f is dense in K2

u , as desired.

Step 3. We strengthen the result in Step 2 by proving that A is closable if there are
functions f1, f2 in D(A) such that D f1 +D f2 is dense in K2

u . As in Step 2, there are
inner divisors u1,u2 of u such that D f1 = K2

u1
, D f2 = K2

u2
, and by Step 1 we can

assume both are proper divisors of u . By Step 2 we can assume u1 and u2 are not
relatively prime. Let u3 = g.c.i.d.(u1,u2) . We then have factorizations u1 = u′1u3 ,
u2 = u′2u3 , u = u′1u3u′2 , where the nonconstant inner functions u′1,u3,u′2 are relatively
prime in pairs.

Let f3 = Au3 f2 , a function in D(A) . We note that D f3 = Au3D f2 . From the
factorization u2 = u3u′2 we have the direct sum decomposition K2

u2
= K2

u3
⊕ u3K2

u′2
,

which together with the equality D f3 = Au3D f2 tells us that D f2 = K2
u′2

. Because u =

u1u′2 , the space K2
u is spanned by D f1 and D f3 . And because u1 and u′2 are relatively
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prime, the intersection D f1 ∩D f3 is trivial. The desired conclusion thus follows by
Step 2. Also, the analysis in Step 2 shows that D f1+ f3 is dense in K2

u .
As in Step 1, the result just established implies an extension of itself: Let f1 and

f2 be functions in D(A) , and let K2
u′ be the S∗u -invariant subspace they generate. Then

the operator A | D(A)∩K2
u′ is closable. Moreover, there is a function f ′ in D(A)∩K2

u′
such that D f ′ is dense in K2

u′ .

Step 4. We suppose we are given a sequence f1, f2, . . . of functions in D(A) such that
D fn = K2

un
, where each inner function un is a proper divisor of un+1 , and ∪∞

1 K2
un

is
dense in K2

u . Under these conditions, un → u pointwise in D . We prove A is closable.
Let vn = u/un .

For each n , let Cn denote the conjugation in K2
un

. For f in K2
un

and m � n , a
simple argument shows that Cm f = vmC f , which we rewrite as Cm f = AvmC f . As
m → ∞ we have vm → 1 boundedly pointwise in D , implying that the operators Avn

converge strongly to the identity. We can conclude that Cm f →C f weakly as m → ∞ .
Here we assumed f is in K2

un
, but n was kept fixed, so the conclusion holds for all f

in ∪∞
n=1K

2
un

.
For each n let An = A | D(A)∩K2

un
, and let

A∞ = A | ∪∞
n=1D(A)∩K2

un
.

Let f and f ′ be functions in D(A∞) , and let g = A f , g′ = A f ′ . Then f ⊕g and f ′ ⊕g′
are in G (Am) for m sufficiently large. We know from Step 1 that Am is closable. By
Theorem 1 and Lemma 1, the adjoint A∗

m is the Cm -transform of Am . Therefore, for m
large, f ⊕ g is orthogonal to Cmg′ ⊕−Cm f ′ . Letting m → ∞ , we conclude that f ⊕ g
and Cg′ ⊕−C f ′ are orthogonal. So, letting A′

∞ denote the C -transform of A∞ , we
have shown that G (A∞) and WG (A′

∞) are orthogonal. Reasoning as in Step 1, we can
conclude that A∞ is closable, and then that A is closable (with A∞ = A).

Step 5. The proof of the theorem will now be completed. We note that, if ϕ = ψ/χ is
a function in N+

u , then there is a function f in D(Aϕ) such that D f is dense in K2
u . In

fact, by Lemma 2 and the S∗u -cyclicity of ˜ku
0 , the function f = Aχ˜ku

0 has this property.
We define inductively a transfinite sequence ( fα) of nonzero functions in D(A)

indexed by a section of the countable ordinal numbers. For each α we let uα denote the
normalized inner function such that D fα = K2

uα . Our inductive procedure guarantees
that uβ is a proper divisor of uα for β < α .

Initial Step. For f1 we take any nonzero function in D(A) .

Inductive Step. Suppose fβ has been defined for all β < α .

(i) If α is not a limit ordinal and D fα−1 is dense in K2
u , we terminate the sequence

at the term fα−1 .
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(ii) If α is not a limit ordinal and D fα−1 is not dense in K2
u , then because D(A) is

dense in K2
u , there is a function g in D(A)\K2

uα−1
. Let uα be the inner function

such that K2
uα−1

is the closure of the linear span of D fα−1 and Dg . By Step 3,

the operator A | D(A)∩K2
uα is closable, and there is a function in D(A)∩K2

uα ,
which we define to be fα , such D fα is dense in K2

uα .

(iii) If α is a limit ordinal and ∪β<αD fβ is dense in K2
u , we terminate the sequence,

i.e., we leave fγ undefined for γ � α .

(iv) If α is a limit ordinal and ∪β<αD fβ is not dense in K2
u , we take an increasing

sequence (αn)∞1 of nonlimit ordinals converging to α , and we let uα be the inner
function such that K2

uα is the closure of ∪∞
1 K2

uαn
. Step 4, applied to uα in place

of u , tells us that A | D(A)∩K2
uα is closable. By the remark at the beginning of

Step 5, there is a function in the domain of the closure, which we define to be
fα , such that D fα is dense in K2

uα . The inductive step is now complete.

It is asserted that the sequence ( fα ) terminates at a countable stage. In fact, the
inner functions uα are all divisors of u , and uβ is a proper divisor of uα for β < α .
Pick a point z0 in D such that u(z0) �= 0. Then the numbers |uα(z0)|− |uα+1(z0)| are
positive for all α such that uα+1 is defined, so their sum is bounded by 1, implying
uα+1 is defined for only countably many α , as asserted.

Let α be the least ordinal such that fα is not defined. If α is not a limit ordinal,
then D fα−1 is dense in K2

u1
and the closability of A follows by Step 1. If α is a limit

ordinal, we take an increasing sequence (αn)∞1 of nonlimit ordinals converging to α .
Then ∪K2

uαn
must be dense in K2

u , otherwise uα would be defined (see part (iv) of the
induction). By Step 4, A is closable. �

4. Transitive Algebra Problem

An algebra B of operators on a Hilbert space H is called transitive if it has no
invariant subspaces other than {0} and H . The transitive algebra problem asks whether
every transitive operator algebra on H is strongly dense in L (H) , the algebra of all
bounded operators on H . Although the problem has been around for 40+ years, and
although experts by and large anticipate a negative answer, progress up to now has been
rather scanty. The invariant subspace problem for Hilbert space operators is of course
a special case.

In his paper [1] Arveson developed a general scheme for handling transitive oper-
ator algebras. Unbounded operators commuting with the algebra in question play the
key role in the scheme. Arveson used his scheme to establish two results on transi-
tive algebras: (i) A transitive operator algebra on H that contains a maximal abelian
von Neumann algebra is strongly dense in L (H) ; (ii) A transitive operator algebra
on the Hardy space H2 that contains all analytic Toeplitz operators is strongly dense
in L (H2) . Note that the analytic Toeplitz operators on H2 form a maximal abelian
subalgebra of L (H2) .
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The commutant lifting theorem, applied to the compressed shift Su on the space
K2

u , says that every (bounded) operator commuting with Su is the compression of an
analytic Toeplitz operator. Those compressions, then, form a maximal abelian subalge-
bra of L (K2

u ) . When Arveson learned of Theorem 1 above (which, after conjugation,
describes the closed densely defined operators commuting with Su ), he asked whether
his scheme could be used to establish for the spaces K2

u the analogue of his result (ii)
for H2 . Implementation of the scheme would involve two steps: (I) One needs to prove
that a densely defined operator on K2

u that commutes with Aψ for all ψ in H∞ is clos-
able; (II) Given a transitive operator algebra B on K2

u that contains Aψ for all ψ in
H∞ , one needs to prove that the only closed densely defined operators that commute
with B are the scalar multiples of the identity.

Step (I) is accomplished in [2] and in Section 3 above. Step (II) has yet to be
accomplished. Some minor initial progress is reported in the next section.

5. Arveson’s Question – Simple Reductions

As above, we assume the inner function u is not a finite Blaschke product. Let
ϕ be a nonconstant function in N+

u , and let Bϕ denote the algebra of all bounded
operators on K2

u that commute with Aϕ . After what has already been proven in [2] and
above, Arveson’s question boils down to the question whether Bϕ is intransitive. A
couple of reductions come easily.

PROPOSITION 1. If ϕ and u have a nonconstant common inner divisor, then Bϕ
is intransitive.

Proof. Let u0 be a common inner divisor of ϕ and u , assumed nonconstant, and
let u1 = u/u0 . Then u divides ϕu1 , so Aϕu1 = 0 by Lemma 3. Since Aϕ and Au1 com-
mute, we have the inclusion Au1D(Aϕ) ⊂ D(Aϕ) , and by (the conjugated version of)
Lemma 4 AϕAu1 |D(Aϕ ) = Aϕu1 |D(Aϕ) = 0. Since D(Aϕ) is dense in K2

u and u1 is a
proper divisor of u , the image Au1D(Aϕ) is nontrivial. We can conclude that Aϕ has a
nontrivial kernel. That kernel is shared by every bounded operator that commutes with
Aϕ , in other words, by every operator in Bϕ , implying that Bϕ is intransitive. �

PROPOSITION 2. If u has a zero in D then Bϕ is intransitive.

Proof. Let u = ψ/χ , and assume u vanishes at the point λ of D . Then the ker-
nel function ku

λ in K2
u for the evaluation functional at λ equals kλ , the kernel function

in H2 for the evaluation functional at λ . By Lemma 2 the function Aχkλ = χ(λ )kλ
belongs to D(Aϕ) , and hence kλ is in D(Aϕ) . Lemma 2 also tells us that Aϕkλ =
ϕ(λ )kλ . Applying the conjugation C , we conclude that the function ˜ku

λ is in D(Aϕ) ,
with Aϕ˜ku

λ = ϕ(λ )˜ku
λ . The operator Aϕ − ϕ(λ )I thus has a nontrivial kernel. That

kernel is invariant under all bounded operators commuting with Aϕ , implying the in-
transitivity of Bϕ . �

The preceding two propositions reduce Arveson’s question to the case in which u
is a singular inner function, and, for the function ϕ in N+

u , no nonconstant inner divisor
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of ϕ − λ , for any complex λ , is a proper divisor of u . To prove the corresponding
algebra Bϕ is intransitive one must show that it leaves invariant a nontrivial proper
invariant subspace of the compressed shift Su . The invariant subspaces of Su are the
subspaces K2

u ∩u0H2 with u0 an inner divisor of u ; the subspace is proper if u0 is not
constant and nontrivial if u0 is a proper divisor of u . Note that K2

u ∩u0H2 = u0K2
u/u0

,

as one sees from the direct sum decomposition K2
u = K2

u0
⊕u0K2

u/u0
.

While the operator Aϕ can be unbounded, even the case where it is bounded is
nontrivial, or so it seems. Arveson’s question awaits further study.
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