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Abstract. We compute paving parameters for classes of small matrices and the matrices that
yield them. The convergence to 1 or not of the sequence of these parameters is equivalent to the
Kadison-Singer Extension Problem.
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1. Introduction

1.1. The Kadison-Singer extension problem

Let �2 be the Hilbert space of absolutely square-summable complex sequences and
B(�2) denote the von Neumann algebra of all bounded linear operators on �2 . Every
T ∈B(�2) has an infinite matrix representation with respect to the standard orthonormal
basis E = {en : n ∈ N} of �2 , namely

[
T
]
E

=
[〈Te j,ei〉

]
i, j∈N

. Let �∞ stand for the

set of all T ∈ B(�2) for which
[
T
]
E

is diagonal. Then �∞ is a maximal abelian von
Neumann subalgebra (or MASA) of B(�2) . A fundamental open problem in the theory
of operator algebras is the Kadison-Singer Extension Problem (hereafter KS) [8]:

Does every pure state on �∞ extend uniquely to a pure state on B(�2)?

Existence is straightforward, the issue is uniqueness. Indeed, any Hahn-Banach ex-
tension of a state on �∞ is a state on B(�2) . If the original state is pure, then the
Krein-Milman Theorem implies the existence of a pure state extension. Alternatively,
an explicit construction is available—the composition of a pure state on �∞ with the
normal conditional expectation of B(�2) onto �∞ is a pure state on B(�2) [3]. An affir-
mative answer to KS would entail a complete description of those pure states on B(�2)
which restrict to pure states on �∞ . They would be precisely the states of the form
ΦU (T ) = limU 〈Ten,en〉 , where U is an ultrafilter on N . While this would not cover
all pure states on B(�2) [1], it would be a substantial step in that direction. Kadison
and Singer doubted the truth of KS [8], and that is also the prevailing opinion among
experts today.

1.2. Anderson’s paving problem

A major advance in the study of KS was made by Anderson, who reformulated
the problem in terms of finite matrices [2]. We will state his result in terms of certain
paving parameters. To define these we need the notion of a paving, which in turn relies
on the idea of a compression.

DEFINITION 1.2.1. (compression) For A∈Mn(C) (n×n complex matrices) and
σ ⊆ {1,2, ...,n} , the σ -compression of A is Aσ := PσAPσ , where Pσ ∈ Mn(C) is the
orthogonal projection onto span{�ei : i ∈ σ} . By a p -compression of A we mean a
compression Aσ with card(σ) = p .

More generally, if μ ,ν ⊆ {1,2, ...,n} , then Aμ,ν := PμAPν . Note that

‖Aμ,ν‖ = ‖PμAPν‖ � ‖Pμ‖‖A‖‖Pν‖ � ‖A‖,
where ‖ · ‖ is the operator norm. In particular, ‖Aσ‖ � ‖A‖ .

DEFINITION 1.2.2. (paving) For A∈Mn(C) and π ∈Πn
k (the set of all k -partitions

of {1,2, ...,n} ), the π -paving of A is Aπ := ∑σ∈π Aσ . By a k -paving of A we mean a
paving Aπ with card(π) = k . By an (n1,n2, ...,nk)-paving of A we mean a paving Aπ

with π = {σ1,σ2, ...,σk} , where card(σi) = ni for all 1 � i � k .
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Note that

‖Aπ‖ =

∥∥∥∥∥∑σ∈πAσ

∥∥∥∥∥ = max{‖Aσ‖ : σ ∈ π} � ‖A‖.

DEFINITION 1.2.3. (paving parameters for a matrix) For 0 �= A ∈ Mn(C) , the k -
paving parameter of A is

αk(A) := min{‖Aπ‖ : π ∈Πn
k} ∈ [0,‖A‖].

The normalized k -paving parameter of A is

βk(A) :=
αk(A)
‖A‖ ∈ [0,1].

DEFINITION 1.2.4. (paving parameters for matrix classes) For /0 �= S ⊆Mn(C) ,
the (normalized) k -paving parameter of S is

βk(S ) := sup{βk(A) : A ∈ S } ∈ [0,1].

In this paper, S above will be one of the following classes:

i. M
0
n(C) , the set of all n×n zero-diagonal complex matrices.

ii. M
0
n(R) , the set of all n×n zero-diagonal real matrices.

iii. M
0
n(R+) , the set of all n×n zero-diagonal non-negative (entried) matrices.

iv. M
0
n(C)� , the set of all n×n strictly upper-triangular complex matrices.

v. M
0
n(C)� , the set of all n×n zero-diagonal complex circulants (cf. Sect. 5.1).

vi. M
0
n(C)sa = {A∈M

0
n(C) : A∗ = A} (here A∗ is the adjoint of A , i.e., the conjugate-

transpose).

vii. M
0
n(R)sa = {A ∈ M

0
n(R) : A∗ = A} .

viii. M
0
n(R+)sa = {A ∈ M

0
n(R+) : A∗ = A} .

ix. M
0
n(C)�,sa = {A ∈ M

0
n(C)� : A∗ = A} .

Using the fact that βk(A⊕0)= βk(A) [4], we deduce that βk(M0
n(C)) � βk(M0

n+1(C)) ,
and so

lim
n→∞

βk(M0
n(C)) = sup

n
βk(M0

n(C)) ∈ [0,1].

The same is true for all matrix classes considered above, with the exception of M
0
n(C)�

and M
0
n(C)�,sa (the direct sum of a nonzero circulant with zero is never circulant). We

can now state Anderson’s theorem on the equivalence of KS and the so-called Paving
Problem:
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THEOREM 1.2.5. ([2]) The following are equivalent:

1. Every pure state on �∞ extends uniquely to a pure state on B(�2) , i.e., KS is true.

2. There exists a k ∈ N such that limn→∞βk(M0
n(C)) < 1 .

3. For every 0 < ε < 1 , there exists a k ∈ N such that limn→∞βk(M0
n(C)) < ε .

Using the formula αk2(A+B) � αk(A)+αk(B) [4], one can show that M
0
n(C) in

Theorem 1.2.5 may be replaced by M
0
n(R) , M

0
n(C)sa , or M

0
n(R)sa . Owing to recent

work of Paulsen and Raghupathi, M
0
n(C)� also works [10]. So solving the Paving

Problem for any of these classes would settle KS.

1.3. Paving results

Because of Theorem 1.2.5, it is of substantial interest to compute limn→∞ βk(M0
n(C))

for k∈N , k � 2 (as well as the corresponding limits for other matrix classes). Nonethe-
less, heretofore this has only been accomplished for k = 2. Since

β2

⎛
⎝
⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦
⎞
⎠ = 1,

we have (trivially) that

lim
n→∞

β2(M0
n(C)) = lim

n→∞
β2(M0

n(R)) = lim
n→∞

β2(M0
n(R+)) = 1.

The self-adjoint case, which is much more delicate, was recently settled by Casazza,
Edidin, Kalra, and Paulsen:

THEOREM 1.3.1. ([5]) limn→∞β2(M0
n(C)sa) = 1 .

REMARK 1.3.2. The question of attainment in Theorem 1.3.1, i.e., whether or not
there exists an A ∈ M

0
n(C)sa with β2(A) = 1, is still open and of considerable interest.

Turning to k = 3, the only result in the literature is due to Halpern, Kaftal, and
Weiss:

THEOREM 1.3.3. ([7]) limn→∞β3(M0
n(C)) � limn→∞β3(M0

n(R)) � 2
3 .

On the other hand, the Paving Problem for non-negative matrices is known to have
a positive answer, thanks to work of Berman, Halpern, Kaftal, and Weiss:

THEOREM 1.3.4. ([4]) For k ∈ N ,

lim
n→∞

βk(M0
n(R+)sa) =

1
k

and lim
n→∞

βk(M0
n(R+)) � 2

k
.

Unfortunately, KS seems not equivalent to the Paving Problem for non-negative
matrices.
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1.4. Summary of the paper

The impetus for this paper was a question of Halpern, Kaftal, and Weiss concern-
ing Theorem 1.3.3 [7]:

Is limn→∞β3(M0
n(C)) < 1 or is limn→∞β3(M0

n(C)) = 1?

At least is limn→∞ β3(M0
n(C)) > 2

3 ?

By computing β3(M0
n(C)) for small values of n , we are able to answer the second

question affirmatively. We obtain the following 3-paving tables, which are the main
results of our investigation:

THEOREM 1.4.1. (3-Paving Table for Nonselfadjoint Matrices)

n β3(M0
n(C)) β3(M0

n(R)) β3(M0
n(R+)) β3(M0

n(C)�) β3(M0
n(C)�)

4 .6180 .6180 .5550 .5412 [.6000, .6030]

5 .6180 .6180 .5550 [.5609, .5774] [.6120, .6180]

6 .7071 .7071 [.5550, .5774] [.5725, .5774] [.5726, .6325]

7 [.8239,1] [.8029,1] [.5550, .6667] [.6503, .9258] [.8239,1]

10 [.8540,1] [.8079,1] [.5550, .6667] [.6703,1] [.8540,1]

13 [.8615,1] [.8195,1] [.5550, .6667] [.6800,1] [.8615,1]

THEOREM 1.4.2. (3-Paving Table for Selfadjoint Matrices)

n β3(M0
n(C)sa) β3(M0

n(R)sa) β3(M0
n(C)�,sa)

4 .5774 .4472 .4142

5 .5774 .4472 .4472

6 .5774 .4851 [.4069, .4495]

7 [.6872, .7559] [.6667, .7559] [.6544, .7559]

8 [.6872, .8819] [.6667, .8819] [.5797, .8819]

9 [.6872, .8889] [.6667, .8889] [.5539, .8889]

10 [.7536,1] [.7454,1] [.6686,1]

13 [.7536,1] [.7454,1] [.6983,1]

16 [.7574,1] [.7454,1] [.7019,1]

To support bootstrapping arguments for the 3-paving tables, as well as because of
intrinsic interest, we also compute the following 2-paving table:
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THEOREM 1.4.3. (2-Paving Table)

n β2(M0
n(C)�) β2(M0

n(C)�) β2(M0
n(C)sa) β2(M0

n(R)sa) β2(M0
n(C)�,sa)

3 .6180 1 .5774 .5000 .5774

4 .7071 [.6000, .6030] .5774 [.5493, .5577] .4142

5 [.7715,1] 1 .8944 .8944 .8944

6 [.8337,1] 1 .8944 .8944 [.7454, .8944]

7 [.8500,1] 1 [.9225,1] [.9073,1]

8 [.8866,1] [.9623,1] [.9225,1] [.7689,1]

9 [.8965,1] 1 [.9414,1] [.8920,1]

10 [.9149,1] 1 [.9414,1]

11 [.9207,1] 1 [.9477,1]

12 1 [.9477,1]

13 1 [.9547,1]

14 1 [.9547,1]

15 1 [.9625,1]

16 [.9846,1] [.9625,1]

17 1 [.9692,1]

18 1 [.9692,1]

19 1 [.9742,1]

20 1 [.9742,1]

The remainder of the paper, which is divided into seven sections, consists of a
myriad of propositions, each of which establishes particular entries in our tables. Each
section corresponds to a certain class of matrices. Although the arguments are struc-
turally similar, the details vary from class to class. Each section begins with a subsec-
tion (or two) which gathers together the needed tools. We assume that the reader is
familiar with basic operator theory and basic graph theory.

REMARK 1.4.4. (exact vs. approximate) The numbers in our paving tables are
decimal approximations. The corresponding exact expressions (when available) appear
in the proposition statements.

REMARK 1.4.5. (computer-generated examples) For those table entries which con-
sist of an interval (e.g. the n = 7 entry of the first column of Table 1.4.1), the lower
bound is (almost always) the result of a computer-generated example. To our knowl-
edge, these examples do not have closed-form expressions, and (with one exception)
we do not include them in the paper. In the Appendix, we do show the worst-known
3-paver, a 13×13 complex circulant A such that β3(A) ≈ .8615.
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REMARK 1.4.6. (open questions) This paper invites many questions. In particu-
lar, can any of the non-sharp table entries be improved? Here are some other interesting
questions:

1. Is limn→∞β3(M0
n(C)) < 1 or is limn→∞β3(M0

n(C)) = 1? At least is
limn→∞β3(M0

n(C)) > .8615? This is the aforementioned question of Halpern,
Kaftal, and Weiss, amended to reflect the information in Table 1.4.1.

2. Does there exist n ∈ N and A ∈ M
0
n(C)sa such that β2(A) = 1. Table 1.4.3

suggests an affirmative answer with n ≈ 30. Remember that it is known that
limn→∞β2(M0

n(C)sa) = 1.

3. Is limn→∞ β2(M0
n(C)�) = 1? Table 1.4.3 suggests an affirmative answer. In that

case, is there an n ∈ N and A ∈ M
0
n(C)� such that β2(A) = 1?

4. Is limn→∞β3(M0
n(R+)) < 2

3 or is limn→∞β3(M0
n(R+)) = 2

3 ? Table 1.4.1 (as well
as substantial computer experimentation) suggests that

lim
n→∞

β3(M0
n(R+)) ≈ .5550.

5. Is KS equivalent to the Paving Problem for circulants?

2. Paving general matrices

This section establishes the first and second columns of Table 1.4.1.

2.1. Tools

LEMMA 2.1.1. (Frobenius domination principle) For A,B∈Mn(R+) , if ai j � bi j

for all 1 � i, j � n, then ‖A‖ � ‖B‖ .

Proof. Let �x,�y ∈ C
n be such that ‖�x‖ = 1, ‖�y‖ = 1, and ‖A‖ = |〈A�x,�y〉| . Then

‖A‖ = |〈A�x,�y〉| =
∣∣∣∣∣

n

∑
i, j=1

ai jx jyi

∣∣∣∣∣ �
n

∑
i, j=1

ai j|x j||yi|

�
n

∑
i, j=1

bi j|x j||yi| = 〈B|�x|, |�y|〉 � ‖B‖‖|�x|‖‖|�y|‖ = ‖B‖. �

LEMMA 2.1.2. Let a,b,d ∈ C . If |a|, |b|, |d| � 1 , then∥∥∥∥
[
a b
0 d

]∥∥∥∥ � 1+
√

5
2

.

This inequality is sharp.
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Proof. Let α,β ,δ ∈ R be such that a = |a|eiα , b = |b|eiβ , and d = |d|eiδ . By
Lemma 2.1.1, ∥∥∥∥

[
a b
0 d

]∥∥∥∥ =
∥∥∥∥
[
eiβ 0
0 eiδ

][|a| |b|
0 |d|

][
ei(α−β ) 0

0 1

]∥∥∥∥
=

∥∥∥∥
[|a| |b|

0 |d|
]∥∥∥∥ �

∥∥∥∥
[
1 1
0 1

]∥∥∥∥ =
1+

√
5

2
. �

LEMMA 2.1.3. If

A =

⎡
⎢⎢⎢⎢⎣

0 ∗ ∗ a14 a15

∗ 0 ∗ a24 a25

∗ ∗ 0 a34 a35

a41 a42 a43 0 a45

a51 a52 a53 a54 0

⎤
⎥⎥⎥⎥⎦ ,

where “∗” indicates an arbitrary entry and for every i �= j either |ai j|� 1 or |a ji|� 1 ,

then ‖A‖ � 1+
√

5
2 . This inequality is sharp.

Proof. Permuting the indices 4 and 5 if necessary, we may assume |a45| � 1. If

|a51|, |a52|, |a53| � 1, then ‖A‖ �
√

3 > 1+
√

5
2 , and we are done. Thus, we may assume

that at least one of a51,a52,a53 has modulus less than 1, in which case at least one of
a15,a25,a35 has modulus greater than or equal to 1. Permuting the indices 1, 2 , and
3, if necessary, we may assume that |a35| � 1. If |a34| � 1, then (by Lemma 2.1.2)

‖A‖ � ‖A{3,4},{4,5}‖ =
∥∥∥∥
[
a34 a35

0 a45

]∥∥∥∥ � 1+
√

5
2

.

If, on the other hand, |a43| � 1, then (by Lemma 2.1.2 again)

‖A‖ � ‖A{3,4},{3,5}‖ =
∥∥∥∥
[

0 a35

a43 a45

]∥∥∥∥ � 1+
√

5
2

.

Since ∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎣

0 0 0 1 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 1
1 0 1 0 0

⎤
⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥
=

1+
√

5
2

,

the inequality is sharp. �

2.2. Computation of 3 -paving parameters

The following proposition establishes the first entries of the first and second columns
of Table 1.4.1:

PROPOSITION 2.2.1. β3(M0
4(C)) = β3(M0

4(R)) = 2
1+

√
5
≈ .6180 .
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Proof. Let A ∈ M
0
4(C) with α3(A) = 1. We aim to show that ‖A‖ � 1+

√
5

2 ≈
1.6180. Associate a digraph D = (V,E) with A as follows: V = {1,2,3,4} and (i, j) ∈
E if and only if |ai j| � 1. We may assume that D has the following properties:

I. For every i �= j , either (i, j) ∈ E or ( j, i) ∈ E . Otherwise, if (i, j),( j, i) /∈ E ,
then

‖A{i, j}‖ =
∥∥∥∥
[

0 ai j

a ji 0

]∥∥∥∥ = max{|ai j|, |a ji|} < 1,

which implies that A has a (1,1,2)-paving of norm less than 1, contradicting
α3(A) = 1.

II. For every vertex i , the out-degree of i is less than or equal to two. Otherwise, if i
has out-degree equal to three, then the i th row of A has three entries of modulus
greater than or equal to 1, which implies that ‖A‖ �

√
3 > 1+

√
5

2 (and we are
done). Likewise, the in-degree of i is less than or equal to two.

III. The digraph

i

����
��

��
��

���
��

��
��

�

j �� k

is not a subgraph of D . Otherwise,

A{i, j,k} =

⎡
⎣0 � �
∗ 0 �
∗ ∗ 0

⎤
⎦ ,

where “�” indicates an entry of modulus greater than or equal to 1 and “∗”

indicates an arbitrary entry. By Lemma 2.1.2, ‖A‖ � ‖A{i, j,k}‖ � 1+
√

5
2 (and we

are done).

Checking [11, pp. 293–297], there are no such digraphs D . Thus, ‖A‖ � 1+
√

5
2 and

β3(A) = α3(A)
‖A‖ � 2

1+
√

5
. Since the choice of A was arbitrary, β3(M0

4(C)) � 2
1+

√
5
. Since

β3

⎛
⎜⎜⎝
⎡
⎢⎢⎣

0 1 1 − 2
1+

√
5

0 0 1 1
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠ =

2

1+
√

5
,

we have 2
1+

√
5

� β3(M0
4(R)) � β3(M0

4(C)) � 2
1+

√
5
. �

The following proposition establishes the second entries of the first and second
columns of Table 1.4.1:
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PROPOSITION 2.2.2. β3(M0
5(C)) = β3(M0

5(R)) = 2
1+

√
5
≈ .6180 .

Proof. By Proposition 2.2.1,

2

1+
√

5
= β3(M0

4(R)) � β3(M0
5(R)) � β3(M0

5(C)).

Now let A ∈ M
0
5(C) with α3(A) = 1. We aim to show that ‖A‖ � 1+

√
5

2 . Associate
a graph G = (V,E) with A as follows: V = {1,2, ...,5} and (i, j) ∈ E if and only if
‖A{i, j}‖ < 1 (i.e. |ai j| < 1 and |a ji| < 1). We may assume that G has the following
properties:

I. The graph
• • •

• •
is not a subgraph of G . Otherwise, A has a (1,2,2)-paving of norm less than 1,
contradicting α3(A) = 1.

II. By removing one vertex (and all associated edges) from G one cannot arrive
at the “edgeless” graph ({i, j,k, l}, /0) . Otherwise α3(A{i, j,k,l}) � 1 (since ev-
ery (1,1,2)-paving has norm greater than or equal to 1), which implies that

‖A{i, j,k,l}‖ � 1+
√

5
2 (by Proposition 2.2.1). Then ‖A‖ � ‖A{i, j,k,l}‖ � 1+

√
5

2 (and
we are done).

Checking [11, p. 8], we see that G must be

•

��
��

��
� • •

• •

By Lemma 2.1.3, ‖A‖ � 1+
√

5
2 . Since the choice of A was arbitrary, β3(M0

5(C)) �
2

1+
√

5
. Thus, β3(M0

5(C)) = β3(M0
5(R)) = 2

1+
√

5
. �

The following proposition establishes the third entries of the first and second
columns of Table 1.4.1:

PROPOSITION 2.2.3. β3(M0
6(C)) = β3(M0

6(R)) = 1√
2
≈ .7071 .

Proof. Let A∈M
0
6(C) with α3(A) = 1. We aim to show that ‖A‖�

√
2≈ 1.4142.

Associate a graph G = (V,E) with A as follows: V = {1,2, ...,6} and (i, j) ∈ E if and
only if ‖A{i, j}‖ < 1. We may assume that G has the following properties:
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I. The graph
• • •

• • •
is not a subgraph of G . Otherwise A has a (2,2,2)-paving of norm less than 1,
contradicting α3(A) = 1.

II. For every vertex i , the degree of i is at least three. Otherwise, if the degree of i
is less than or equal to two, then there exist j,k, l distinct (and different from i)
such that (i, j),(i,k),(i, l) /∈ E . Then ‖A{i, j}‖,‖A{i,k}‖,‖A{i,l}‖ � 1. It follows
that either the i th row of A or the i th column of A has two entries of modulus
greater than or equal to 1, which implies that ‖A‖ �

√
2 (and we are done).

Checking [11, pp. 9–11], there are no such graphs G . Thus ‖A‖ �
√

2. Since the
choice of A was arbitrary, β3(M0

6(C)) � 1√
2
. Now let

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 1
1√
2

0 − 1√
2

0 1 0

0 0 0 −1 0 1
− 1

2 1 1
2 0 1√

2
0

1 0 1 0 0 0
1
2 1 − 1

2 0 − 1√
2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ M

0
6(R).

Then A is
√

2 times a unitary and α3(A) = 1. Thus β3(A) = 1√
2
. Hence 1√

2
�

β3(M0
6(R)) � β3(M0

6(C)) � 1√
2
. �

3. Paving non-negative matrices

In this section we establish the third column of Table 1.4.1.

3.1. The concentration principle

In order to obtain a good lower bound on the operator norm of a matrix A , it
is useful to know the configuration of the large-modulus entries of A . Indeed, this
principle was the basis of our analysis in the previous section. Unfortunately, it is
often the case that A has many large-norm submatrices but few large-modulus entries,
which makes the analysis of ‖A‖ much harder. In this section we prove a result which
allows us to “concentrate” large-norm submatrices of a non-negative matrix A into
large-modulus entries, such that the resulting matrix A′ satisfies ‖A′‖ � ‖A‖ . Since A′
has more large-modulus entries than A , it should be easier to analyze ‖A′‖ than ‖A‖ .
Of course, a lower bound for ‖A′‖ is, a fortiori, a lower bound for ‖A‖ . Our result is
based on the following minimization formula for the operator norm of a non-negative
rectangular matrix, which is due to Mathias:
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THEOREM 3.1.1. ([9]) For A ∈ Mm×n(R+) ,

‖A‖ = min{rmax(B)cmax(C) : B,C ∈ Mm×n(R+) and A = B•C},

where rmax(B) is the maximum row norm of B, cmax(C) is the maximum column norm
of C, and B•C is the entrywise (i.e., Hadamard) product of B and C.

In order to introduce our result, we need some terminology. We say that a matrix
A ∈ Mm×n(R+) is concentrated at (i, j) ∈ {1,2, ...,m}×{1,2, ...,n} if ‖A‖ = ai j . If
A �= 0 is concentrated at (i, j) , then the only nonzero entry in the i th row of A and the
j th column of A is ai j . For A ∈ Mm×n(R+) and (i, j) ∈ {1,2, ...,m}×{1,2, ...,n} we
define the concentration of A at (i, j) to be the matrix

A(i, j) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 ... a1, j−1 0 a1, j+1 ... a1,n
...

. . .
...

...
...

. . .
...

ai−1,1 ... ai−1, j−1 0 ai−1, j+1 ... ai−1,n

0 ... 0 ‖A‖ 0 ... 0
ai+1,1 ... ai+1, j−1 0 ai+1, j+1 ... ai+1,n

...
. . .

...
...

...
. . .

...
am,1 ... am, j−1 0 am, j+1 ... am,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Mm×n(R+).

Since ‖A(i, j)‖ = ‖A‖ , we see that A(i, j) is concentrated at (i, j) . Now suppose we
concentrate a submatrix Aμ,ν of a nonnegative matrix A , producing a new matrix A′ .
It can easily happen that ‖A′‖ > ‖A‖ . The following result asserts that by exercising
care in how we concentrate Aμ,ν , we can achieve ‖A′‖ � ‖A‖ .

THEOREM 3.1.2. (concentration principle) For A∈Mn(R+) and μ ,ν ⊆{1,2, ...,n} ,

min

{∥∥∥∥
[
A(i, j)
μ,ν Aμ,νc

Aμc,ν Aμc,νc

]∥∥∥∥ : (i, j) ∈ μ×ν
}

� ‖A‖.

Proof. Without loss of generality, μ = {1,2, ...,s} and ν = {1,2, ...,t} for some
1 � s, t � n . By Theorem 3.1.1, there exist B,C ∈ Mn(R+) such that A = B •C
and ‖A‖ = rmax(B)cmax(C) . Clearly Aμ,ν = Bμ,ν •Cμ,ν , and so ‖Aμ,ν‖ � rmax(Bμ,ν)
cmax(Cμ,ν) by Theorem 3.1.1 again. Let i ∈ μ be such that the i th row of Bμ,ν has
norm rmax(Bμ,ν) and j ∈ ν be such that the j th column of Cμ,ν has norm cmax(Cμ,ν ) .
Let B′

μ,ν equal Bμ,ν with the i th row replaced by

[
01 ... 0 j−1 rmax(Bμ,ν) 0 j+1 ... 0t

]
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and C′
μ,ν equal Cμ,ν with the j th column replaced by⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01
...

0i−1

cmax(Cμ,ν )
0i+1

...
0s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that every row norm of B′
μ,ν agrees with the corresponding row norm of Bμ,ν ,

and that every column norm of C′
μ,ν agrees with the corresponding column norm of

Cμ,ν . Define A′
μ,ν = B′

μ,ν •C′
μ,ν . Then every entry of A′

μ,ν is greater than or equal to

the matching entry of A(i, j)
μ,ν . Indeed, all but the (i, j) entry agree, and the (i, j) entry

of A′
μ,ν equals rmax(Bμ,ν )cmax(Cμ,ν) while the (i, j) entry of A(i, j)

μ,ν equals ‖Aμ,ν‖ .
Therefore,

‖A‖ = rmax

([
Bμ,ν Bμ,νc

Bμc,ν Bμc,νc

])
cmax

([
Cμ,ν Cμ,νc

Cμc,ν Cμc,νc

])

= rmax

([
B′
μ,ν Bμ,νc

Bμc,ν Bμc,νc

])
cmax

([
C′
μ,ν Cμ,νc

Cμc,ν Cμc,νc

])
Theorem 3.1.1

�
∥∥∥∥
[

B′
μ,ν Bμ,νc

Bμc,ν Bμc,νc

]
•
[
C′
μ,ν Cμ,νc

Cμc,ν Cμc,νc

]∥∥∥∥
=

∥∥∥∥
[

A′
μ,ν Aμ,νc

Aμc,ν Aμc,νc

]∥∥∥∥ Lemma 2.1.1
�

∥∥∥∥
[
A(i, j)
μ,ν Aμ,νc

Aμc,ν Aμc,νc

]∥∥∥∥ . �

3.2. Other tools

LEMMA 3.2.1. Let A ∈ M
0
4(R+) . Assume that

(i) For all i < j , either ai j � 1 or a ji � 1 .

(ii) Some row or column of A has three entries greater than or equal to 1 .

Then ‖A‖ � 2 . This inequality is sharp.

Proof. Replacing A by A∗ , if necessary, we may assume that some row of A has
three entries greater than or equal to 1. Permuting the indices, if necessary, we may
assume that the first row of A has three entries greater than or equal to 1. Now by
assumption, for all 2 � i < j � 4, either ai j � 1 or a ji � 1. Thus, by Lemma 2.1.1,

‖A‖ � min

⎧⎪⎪⎨
⎪⎪⎩
∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

0 1 1 1
0 0 δ23 δ24

0 1− δ23 0 δ34

0 1− δ24 1− δ34 0

⎤
⎥⎥⎦
∥∥∥∥∥∥∥∥ : δ23,δ24,δ34 ∈ {0,1}

⎫⎪⎪⎬
⎪⎪⎭ = 2,



314 GARY WEISS AND VREJ ZARIKIAN

where the last equality follows by checking 23 = 8 cases on a computer. Since

A =

⎡
⎢⎢⎣

0 1 1 1
0 0 1 0
0 0 0 1
0 1 0 0

⎤
⎥⎥⎦ ∈ M

0
4(R+)

satisfies (i), (ii), and ‖A‖ = 2, the inequality is sharp. �

3.3. Computation of 3-paving parameters

For future reference, define

κ :=

∥∥∥∥∥∥
⎡
⎣1 1 0

0 1 1
0 0 1

⎤
⎦
∥∥∥∥∥∥ =

√
5+2

√
7cos(tan−1(3

√
3)/3)

3
≈ 1.8019.

The following proposition establishes the first entry of the third column of Table 1.4.1:

PROPOSITION 3.3.1. β3(M0
4(R+)) = 1

κ ≈ .5550 .

Proof. Let A∈M
0
4(R+) with α3(A) = 1. We aim to show that ‖A‖� κ ≈ 1.8019.

Associate a digraph D = (V,E) with A as follows: V = {1,2,3,4} and (i, j) ∈ E if
and only if ai j � 1. We may assume that D has the following properties:

I. For every i �= j , either (i, j) ∈ E or ( j, i) ∈ E . Otherwise ‖A{i, j}‖ < 1, which
implies that A has a (1,1,2)-paving of norm less than 1, contradicting α3(A) =
1.

II. For every vertex i , the out-degree of i is less than three. Otherwise, the i th row
of A has three entries greater than or equal to 1, which (by Lemma 3.2.1) implies
that ‖A‖ � 2 > κ (and we are done). Likewise, the in-degree of i is less than
three.

III. The digraph
i ��

��

k

��
j ��

����������
l

is not a subgraph of D . Otherwise, by Lemma 2.1.1,

‖A‖ = ‖A{i, j,k,l}‖ �

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

0 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦
∥∥∥∥∥∥∥∥ = κ

(and we are done).
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Checking [11, pp. 293–297], there are no such digraphs D . Thus, ‖A‖ � κ . Since the
choice of A was arbitrary, β3(M0

4(R+)) � 1
κ . Since

β3

⎛
⎜⎜⎝
⎡
⎢⎢⎣

0 1 1 0
0 0 1 1
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠ =

1
κ

,

we have β3(M0
4(R+)) = 1

κ . �
The following proposition establishes the second entry of the third column of Table

1.4.1:

PROPOSITION 3.3.2. β3(M0
5(R+)) = 1

κ ≈ 0.5550 .

Proof. By Proposition 3.3.1, β3(M0
5(R+)) � β3(M0

4(R+)) = 1
κ . Now let A ∈

M
0
5(R+) with α3(A) = 1. We aim to show that ‖A‖ � κ ≈ 1.8019. Associate a graph

G = (V,E) with A as follows: V = {1,2,3,4,5} and (i, j) ∈ E if and only if ‖A{i, j}‖<
1. We may assume that G satisfies the following properties:

I. The graph

• • •

• •
is not subgraph of G . Otherwise A has a (1,2,2)-paving of norm less than 1,
contradicting α3(A) = 1.

II. By removing one vertex (and all associated edges) from G , one cannot arrive
at the “edgeless” graph ({i, j,k, l}, /0) . Otherwise α3(A{i, j,k,l}) � 1 (since ev-
ery (1,1,2)-paving has norm greater than or equal to 1), which implies that
‖A{i, j,k,l}‖ � κ (by Proposition 3.3.1). Then ‖A‖ � ‖A{i, j,k,l}‖ � κ (and we are
done).

Checking [11, p. 9], we have that (after permuting vertices) G must be

1

��
��

��
� 3 5

2 4

Thus, ‖A{4,5}‖ � 1 and ‖A{k,l}‖ � 1 for all (k, l) ∈ {1,2,3}×{4,5} . Since α3(A) =
1, the {{1,2,3},{4},{5}} -paving of A has norm greater than or equal to 1, i.e.,
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‖A{1,2,3}‖ � 1. Therefore,

‖A‖ Theorem 3.1.2
� min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎣

a14 a15

A(i, j)
{1,2,3} a24 a25

a34 a35

a41 a42 a43 0 a45

a51 a52 a53 a54 0

⎤
⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥
: i, j ∈ {1,2,3}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Lemma 2.1.1
� min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎣

δ14 δ15

Ei j δ24 δ25

δ34 δ35

1− δ14 1− δ24 1− δ34 0 δ45

1− δ15 1− δ25 1− δ35 1− δ45 0

⎤
⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥
: i, j∈{1,2,3}
δkl∈{0,1}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= κ .

Here Ei j ∈ M3(R+) is the matrix with 1 in the (i, j) entry and 0 elsewhere. The last
equality follows by checking 32×27 = 1152 cases on a computer. �

The following proposition establishes the third entry of the third column of Table
1.4.1:

PROPOSITION 3.3.3. β3(M0
6(R+)) ∈

[
1
κ , 1√

3

]
≈ [.5550, .5774] .

Proof. By Proposition 3.3.2, β3(M0
6(R+)) � β3(M0

5(R+)) = 1
κ . Now let A ∈

M
0
6(R+) with α3(A) = 1. We aim to show that ‖A‖ �

√
3 ≈ 1.7321. Associate a

graph G = (V,E) with A as follows: V = {1,2,3,4,5,6} and (i, j) ∈ E if and only if
‖A{i, j}‖ < 1. We may assume that G has the following properties:

I. The graph
• • •

• • •
is not a subgraph of G . Otherwise, A has a (2,2,2)-paving of norm less than 1,
contradicting α3(A) = 1.

II. G has no isolated vertices. Otherwise, if vertex i is isolated, then either the i th
row of A or the i th column of A has at least three entries greater than or equal to
1, which implies ‖A‖ �

√
3 (and we are done).

III. By removing two vertices (and all associated edges) from G one cannot arrive
at the “edgeless” graph ({i, j,k, l}, /0) . Otherwise α3(A{i, j,k,l}) � 1 (since ev-
ery (1,1,2) paving has norm greater than or equal to 1), which implies that
‖A{i, j,k,l}‖ � κ (by Proposition 3.3.1). Then ‖A‖ � ‖A{i, j,k,l}‖ � κ >

√
3 (and

we are done).
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IV. G is not the graph
i k m

j

��������
l n

where a dotted line indicates an edge which may or may not be there. Other-
wise, α3(A{i, j,l,m,n}) � 1. Indeed, since ‖Aσ‖ � 1 whenever σ ⊆ {i, j, l,m,n} ,
card(σ) � 2, and σ ∩{i, j} �= /0 , every (1,2,2)-paving of A{i, j,l,m,n} has norm
greater than or equal to 1 and every (1,1,3)-paving of A{i, j,l,m,n} except possi-
bly the {{i},{ j},{l,m,n}} -paving has norm greater than or equal to 1. Since
α3(A)= 1, the {{i},{ j,k},{l,m,n}} -paving of A has norm greater than or equal
to 1. Since ‖A{ j,k}‖ < 1, ‖A{l,m,n}‖ � 1. Thus the {{i},{ j},{l,m,n}} -paving
of A{i, j,l,m,n} has norm greater than or equal to 1 also. By Proposition 3.3.2,

‖A{i, j,l,m,n}‖ � κ . Then ‖A‖ � ‖A{i, j,l,m,n}‖ � κ >
√

3 (and we are done).

Checking [11, pp. 9–11] we see that (up to a permutation of the vertices) G must be

1 3 5

2

�������
4

�������
6

Thus ‖A{k,l}‖ � 1 for all (k, l) ∈ {1,2,3}×{4,5,6} . Since α3(A) = 1, the {{1,2,3},
{4,5},{6}} -paving of A has norm greater than or equal to 1. Since ‖A{4,5}‖ < 1,
‖A{1,2,3}‖ � 1. Likewise, ‖A{4,5,6}‖ � 1. Therefore,

‖A‖ Theorem 3.1.2
� min

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a14 a15 a16

A(i, j)
{1,2,3} a24 a25 a26

a34 a35 a36

a41 a42 a43

a51 a52 a53 A(s,t)
{4,5,6}

a61 a62 a63

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∥
: i, j∈{1,2,3}

s,t∈{4,5,6}

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Lemma 2.1.1
� min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎣

δ14 δ15 δ16

Ei j δ24 δ25 δ26

δ34 δ35 δ36

1− δ14 1− δ24 1− δ34

1− δ15 1− δ25 1− δ35 Est

1− δ16 1− δ26 1− δ36

⎤
⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥
: i, j,s,t∈{1,2,3}

δkl∈{0,1}

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

≈ 1.9419 >
√

3.

Here Ei j ∈M3(R+) (resp. Est ∈ M3(R+)) is the matrix with 1 in the (i, j) entry (resp.
the (s, t) entry) and 0 elsewhere. The last (approximate) equality follows by checking
34×29 = 41472 cases on a computer. �
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REMARK 3.3.4. By further analyzing the case when G has an isolated vertex, one
can show that β3(M0

6(R+)) � 0.5577. We suspect that β3(M0
6(R+)) = κ ≈ 0.5550.

Could it be that β3(M0
n(R+)) = κ for all n � 4?

4. Paving upper-triangular matrices

This section establishes the fourth column of Table 1.4.1 and the first column of
Table 1.4.3.

4.1. Tools

LEMMA 4.1.1. For |a|, |b|, |c|, |d|� 1 ,∥∥∥∥∥∥
⎡
⎣a b

0 c
0 d

⎤
⎦
∥∥∥∥∥∥ �

√
2+

√
2 ≈ 1.8478.

This inequality is sharp.

Proof. Let α,β ,γ,δ ∈ R be such that a = |a|eiα , b = |b|eiβ , c = |c|eiγ , and
d = |d|eiδ . Then ⎡

⎣a b
0 c
0 d

⎤
⎦ =

⎡
⎣1 0 0

0 ei(γ−β ) 0
0 0 ei(δ−β )

⎤
⎦
⎡
⎣|a| |b|0 |c|

0 |d|

⎤
⎦[

eiα 0
0 eiβ

]
.

Thus, ∥∥∥∥∥∥
⎡
⎣a b

0 c
0 d

⎤
⎦
∥∥∥∥∥∥ =

∥∥∥∥∥∥
⎡
⎣|a| |b|0 |c|

0 |d|

⎤
⎦
∥∥∥∥∥∥

Lemma 2.1.1
�

∥∥∥∥∥∥
⎡
⎣1 1

0 1
0 1

⎤
⎦
∥∥∥∥∥∥ =

√
2+

√
2.

Letting a = b = c = d = 1 shows that the inequality is sharp. �

4.2. Computation of 2-paving parameters

The following proposition establishes the first entry of the first column of Table
1.4.3:

PROPOSITION 4.2.1. β2(M0
3(C)�) = β2(M0

3(R)�) = β2(M0
3(R+)�) = 2

1+
√

5
≈

.6180 .

Proof. Let

A =

⎡
⎣0 a b

0 0 c
0 0 0

⎤
⎦ ∈ M

0
3(C)�,
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with α2(A) = 1. We aim to show that ‖A‖ � 2
1+

√
5
. Since α2(A) = 1, every (1,2)-

paving of A has norm greater than or equal to 1, i.e., every 2-compression of A has

norm greater than or equal to 1, i.e., |a|, |b|, |c| � 1. By Lemma 2.1.2, ‖A‖ � 1+
√

5
2 .

Since the choice of A was arbitrary, β2(M0
3(C)�) � 2

1+
√

5
. Since

β2

⎛
⎝
⎡
⎣0 1 1

0 0 1
0 0 0

⎤
⎦
⎞
⎠ =

2

1+
√

5
,

we have 2
1+

√
5

� β2(M0
3(R+)�) � β2(M0

3(R)�) � β2(M0
3(C)�) � 2

1+
√

5
. �

The following proposition establishes the second entry in the first column of Table
1.4.3:

PROPOSITION 4.2.2. β2(M0
4(C)�) = β2(M0

4(R)�) = 1√
2
≈ 0.7071 .

Proof. Let A ∈ M
0
4(C)� with α2(A) = 1. We aim to show that ‖A‖�

√
2. Asso-

ciate a graph G = (V,E) with A as follows: V = {1,2,3,4} and (i, j) ∈ E if and only
if ‖A{i, j}‖ < 1. We may assume that G has the following properties:

I. The graph
• •

• •
is not a subgraph of G . Otherwise, A has a (2,2)-paving of norm less than 1,
contradicting α2(A) = 1.

II. By removing one vertex (and all associated edges) from G one cannot arrive
at the “edgeless” graph ({i, j,k}, /0) . Otherwise, α2(A{i, j,k}) � 1 (since every
(1,2)-paving has norm greater than or equal to 1), which implies that ‖A{i, j,k}‖�
1+

√
5

2 (by Proposition 4.2.1). Then ‖A‖ � ‖A{i, j,k}‖ � 1+
√

5
2 >

√
2 (and we are

done).

Checking [11, p. 8] we see that G must be

i k

j

��������
l

If i = 1 (resp. i = 4), then the first row (resp. fourth column) of A has three entries
of modulus greater than or equal to 1, which implies ‖A‖ �

√
3 >

√
2. Likewise, if

i = 2 (resp. i = 3), then the second row (resp. third column) of A has two entries of
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modulus greater than or equal to 1, which implies ‖A‖ �
√

2. Since the choice of A
was arbitrary, β2(M0

4(C)�) � 1√
2
. Since

β2

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

0 0 1 − 1√
2

0 0 1 1√
2

0 0 0 1
0 0 0 0

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ =

1√
2
,

we have 1√
2

� β2(M0
4(R)�) � β2(M0

4(C)�) � 1√
2
. �

4.3. Computation of 3-paving parameters

The following proposition establishes the first entry of the fourth column of Table
1.4.1:

PROPOSITION 4.3.1. β3(M0
4(C)�) = β3(M0

4(R)�) = 1√
2+

√
2
≈ .5412 .

Proof. Let A ∈ M
0
4(C)� with α3(A) = 1. We aim to show that ‖A‖�

√
2+

√
2.

Since α3(A) = 1, every (1,1,2)-paving of A has norm greater than or equal to 1, i.e.,
every 2-compression of A has norm greater than or equal to 1. Hence,

A =

⎡
⎢⎢⎣

0 � � �
0 0 � �
0 0 0 �
0 0 0 0

⎤
⎥⎥⎦ ,

where “�” indicates an entry of modulus greater than or equal to 1. By Lemma 4.1.1,

‖A‖� ‖A{1,2,3},{2,4}‖�
√

2+
√

2. Since the choice of A was arbitrary, β3(M0
4(C)�)�

1√
2+

√
2
. Since

β3

⎛
⎜⎜⎝
⎡
⎢⎢⎣

0 1 1 1
0 0 −√

2 1
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠ =

1√
2+

√
2
,

we have 1√
2+

√
2

� β3(M0
4(R)�) � β3(M0

4(C)�) � 1√
2+

√
2
. �

The following proposition establishes the second entry in the fourth column of
Table 1.4.1:

PROPOSITION 4.3.2. β3(M0
5(C)�) � 1√

3
≈ .5774 .

Proof. Let A ∈ M
0
5(C)� with α3(A) = 1. We aim to show that ‖A‖�

√
3. Asso-

ciate a graph G = (V,E) with A as follows: V = {1,2, ...,5} and (i, j) ∈ E if and only
if ‖A{i, j}‖ < 1. We may assume that G has the following properties:



PAVING SMALL MATRICES 321

I. The graph
• • •

• •
is not a subgraph of G . Otherwise A has a (1,2,2)-paving of norm less than 1,
contradicting α3(A) = 1.

II. By removing one vertex (and all associated edges) from G one cannot arrive
at the “edgeless” graph ({i, j,k, l}, /0) . Otherwise α3(A{i, j,k,l}) � 1 (since every
(1,1,2)-paving has norm greater than or equal to 1), which implies ‖A{i, j,k,l}‖�√

2+
√

2 (by Proposition 4.3.1). Then ‖A‖ � ‖A{i, j,k,l}‖ �
√

2+
√

2 >
√

3.

Checking [11, p. 8] we see that G must be

i

��
��

��
��

j l

k m

We may assume l < m .

Case 1: If l = 1 (resp. m = 5), then the first row (resp. fifth column) of A has four
entries of modulus greater than or equal to 1, which implies ‖A‖� 2 >

√
3.

Case 2: If l = 2 and m = 4, then

A =

⎡
⎢⎢⎢⎢⎣

0 � • � •
0 0 � � �
0 0 0 � •
0 0 0 0 �
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

where “�” indicates an entry of modulus greater than or equal to 1 and
“•” indicates an entry of modulus less than 1. By Lemma 4.1.1, ‖A‖ �
‖A{1,2,3},{2,4}‖ �

√
2+

√
2 >

√
3.

Case 3: If l = 2 and m = 3, then

A =

⎡
⎢⎢⎢⎢⎣

0 � � • •
0 0 � � �
0 0 0 � �
0 0 0 0 •
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

Since the second row of A contains three entries of modulus greater than or
equal to 1, ‖A‖ �

√
3.
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Case 4: Finally, if l = 3 and m = 4, then (arguing as in Case 3), the fourth column
of A contains three entries of modulus greater than or equal to 1, which
implies ‖A‖ �

√
3.

Since the choice of A was arbitrary, β3(M0
5(C)�) � 1√

3
. �

REMARK 4.3.3. A more careful analysis of Cases 3 and 4 above should yield a
better bound than ‖A‖ �

√
3, which would improve the overall result.

The following proposition establishes the third entry in the fourth column of Table
1.4.1:

PROPOSITION 4.3.4. β3(M0
6(C)�) � 1√

3
≈ .5774 .

Proof. Let A ∈ M
0
6(C)� with α3(A) = 1. We aim to show that ‖A‖�

√
3. Asso-

ciate a graph G = (V,E) with A as follows: V = {1,2, ...,6} and (i, j) ∈ E if and only
if ‖A{i, j}‖ < 1. We may assume that G has the following properties:

I. The graph
• • •

• • •
is not a subgraph of G . Otherwise A has a (2,2,2)-paving of norm less than 1,
contradicting α3(A) = 1.

II. G has no isolated vertices. Otherwise, if vertex i is isolated, then either the i th
row of A or the i th column of A has three entries of modulus greater than or
equal to 1, which implies ‖A‖ �

√
3 (and we are done).

III. By removing two vertices (and all associated edges) from G one cannot arrive
at the “edgeless” graph ({i, j,k, l}, /0) . Otherwise, α3(A{i, j,k,l}) � 1 (since every
(1,1,2)-paving has norm greater than or equal to 1), which implies ‖A{i, j,k,l}‖�√

2+
√

2 (by Proposition 4.3.1). Then ‖A‖� ‖A{i, j,k,l}‖�
√

2+
√

2 >
√

3 (and
we are done).

IV. G does not equal the graph

i k m

j

��������
l n

where a dotted line indicates an edge which may or may not be present. Oth-
erwise, α3(A{i, j,l,m,n}) � 1 (see the proof of Proposition 3.3.3), which implies

‖A{i, j,l,m,n}‖ �
√

3 (by Proposition 4.3.2). Then ‖A‖ � ‖A{i, j,l,m,n}‖ �
√

3 (and
we are done).
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Checking [11, pp. 9-11], we see that G must be

i k m

j

��������
l

��������
n

It follows that the first row (and the sixth column) of A contains three entries of mod-
ulus greater than or equal to 1, which implies ‖A‖ �

√
3. Since the choice of A was

arbitrary, β3(M0
6(C)�) � 1√

3
. �

The following proposition establishes the fifth entry in the fourth column of Table
1.4.1:

PROPOSITION 4.3.5. β3(M0
7(C)�) �

√
6
7 ≈ .9258 .

Proof. Let A ∈ M
0
7(C)� with α3(A) = 1. We aim to show that ‖A‖ �

√
7
6 ≈

1.0801.

Case 1: Suppose every 3-compression of A has norm greater than or equal to 1.
Since there are

(7
3

)
= 35 of these,

35 � ∑
card(σ)=3

‖Aσ‖2 � ∑
card(σ)=3

‖Aσ‖2
HS,

where ‖ · ‖HS stands for the Hilbert-Schmidt (or Frobenius) norm of a ma-
trix. Now for each i �= j , there exist five σ ⊆{1,2, ...,7} such that card(σ)=
3 and {i, j} ⊆ σ . It follows that

∑
card(σ)=3

‖Aσ‖2
HS = 5‖A‖2

HS.

Also, since rank(A) � 6, ‖A‖2
HS � 6‖A‖2 . Hence

35 � ∑
card(σ)=3

‖Aσ‖2
HS = 5‖A‖2

HS � 30‖A‖2,

which implies ‖A‖ �
√

7
6 .

Case 2: Suppose ‖Aσ‖ < 1 for some σ ⊆ {1,2, ...,7} with card(σ) = 3. Since
α3(A) = 1, α2(Aσ c) � 1. By Proposition 4.2.2, ‖Aσ c‖�

√
2. Thus, ‖A‖�

‖Aσ c‖ �
√

2 >
√

7
6 .

Since the choice of A was arbitrary, β3(M0
7(C)�) �

√
6
7 . �
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5. Paving circulant matrices

In this section we establish the fifth column of Table 1.4.1 and the second column
of Table 1.4.3.

5.1. A few words about circulants

A circulant is a matrix which is constant on “wrap-around diagonals” (cf. [6]).
For example, the generic 6×6 circulant is

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

f a b c d e
e f a b c d
d e f a b c
c d e f a b
b c d e f a
a b c d e f

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

where a,b,c,d,e, f ∈ C . Clearly the adjoint of a circulant is also a circulant. Not
so apparent initially is that any two circulants (of the same size) commute, and that
their product is again a circulant. This follows from the fact that every circulant is a
polynomial in the shift matrix (of the appropriate size), and conversely. Indeed, if

S6 :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

then A above equals aS5
6 +bS4

6 + cS3
6 +dS2

6 + eS6 + f I6 , where I6 is the 6×6 identity
matrix. For the converse, note that S6

6 = I6 , so that an arbitrary polynomial in S6 may
be written as a fifth-degree polynomial in S6 , i.e., a 6×6 circulant. From the preceding
discussion we deduce that every circulant is normal. Since σ(S6) = {z ∈ C : z6 = 1} ,
the Spectral Mapping Theorem implies that

σ(A) = {az5 +bz4 + cz3 +dz2 + ez+ f : z6 = 1}.

Since the operator norm of a normal matrix equals its spectral radius, we have the
formula

‖A‖ = max{|az5 +bz4 + cz3 +dz2 + ez+ f | : z6 = 1}. (1)

If one is searching for “bad” pavers (matrices for which the normalized paving
parameter is near 1), it is natural to consider circulants. Obviously, Mn(C)� is a
much smaller search space than Mn(C) , n -dimensional instead of n2 -dimensional,
which greatly speeds up the search. But there is also a heuristic argument as to why
circulants should be bad pavers—the compressions of a circulant are rarely circulant.
Thus at the “macro” level, a circulant has a nice structure which tends to produce a small
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operator norm in comparison with the size of the entries, whereas at the “micro” level
this structure (and the corresponding operator norm benefits) disappears. On the other
hand, there a couple of drawbacks to the circulant class, at least from the point of view
of paving. First, the sequence {βk(M0

n(C)�) : n∈N} need not be monotone increasing.
Second, it is not known whether the Paving Problem for circulants is equivalent to
KS. In our experience, the positives outweigh the negatives, and computing paving
parameters for circulants has proven very fruitful.

5.2. Tools

LEMMA 5.2.1. (operator norm of n×2 matrix) For �x,�y ∈ C
n ,

∥∥[�x �y
]∥∥ =

√
‖�x‖2 +‖�y‖2 +

√
(‖�x‖2−‖�y‖2)2 +4|〈�x,�y〉|2

2
.

Proof. By the C∗ -identity,

∥∥[�x �y
]∥∥2 =

∥∥∥∥
[
�x∗
�y∗

][
�x �y

]∥∥∥∥ =
∥∥∥∥
[
�x∗�x �x∗�y
�y∗�x �y∗�y

]∥∥∥∥ =
∥∥∥∥
[‖�x‖2 〈�y,�x〉
〈�x,�y〉 ‖�y‖2

]∥∥∥∥ .

A straightforward calculation shows that

σ
([‖�x‖2 〈�y,�x〉

〈�x,�y〉 ‖�y‖2

])
=

{
‖�x‖2 +‖�y‖2±√

(‖�x‖2−‖�y‖2)2 +4|〈�x,�y〉|2
2

}
,

and the result follows. �

LEMMA 5.2.2. For

A =

⎡
⎢⎢⎣

0 a b c
c 0 a b
b c 0 a
a b c 0

⎤
⎥⎥⎦ ∈ M

0
4(C)�,

we have
α3(A) = α2(A) = min{max{|a|, |c|}, |b|}.

Proof. We have that

α3(A) = min{‖Aπ‖ : π ∈Π4
3}

= min{‖Aσ‖ : card(σ) = 2}
= min{max{|a|, |c|}, |b|}.

From general considerations, α3(A) �α2(A) . Considering the {{1,2},{3,4}} -paving,
we see that α2(A)� max{|a|, |c|} . Considering the {{1,3},{2,4}} -paving,we see that
α2(A) � |b| . Thus,

min{max{|a|, |c|}, |b|}= α3(A) � α2(A) � min{max{|a|, |c|}, |b|}. �
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LEMMA 5.2.3. (norm of permutation matrix compression) Let φ : {1,2, ...,n}→
{1,2, ...,n} be a permutation, Uφ ∈Mn(R+) be the corresponding permutation matrix,
and σ ⊆ {1,2, ...,n} . Then

‖(Uφ )σ‖ =

{
1, φ(σ)∩σ �= /0

0, φ(σ)∩σ = /0
.

Proof. Let j ∈ φ(σ)∩σ . Then j ∈ σ and there exists an i∈ σ such that φ(i) = j .
Thus

(Uφ )σ�ei = PσUφPσ�ei = PσUφ�ei = Pσ�eφ(i) = Pσ�e j =�e j,

which implies that
1 � ‖(Uφ )σ‖ � ‖Uφ‖ = 1.

Now suppose φ(σ)∩σ = /0 . If i ∈ σ , then φ(i) /∈ σ , which implies that

(Uφ )σ�ei = PσUφPσ�ei = PσUφ�ei = Pσ�eφ(i) =�0.

If, on the other hand, i /∈ σ , then

(Uφ )σ�ei = PσUφPσ�ei =�0.

Thus, (Uφ )σ = 0. �

The following result refines [7, Proposition 3.1].

THEOREM 5.2.4. Let φ : {1,2, ...,n}→ {1,2, ...,n} be a permutation and Uφ ∈
Mn(R+) be the corresponding permutation matrix. If the cycle decomposition of φ
contains an odd cycle, then β2(Uφ ) = 1 . Otherwise, if the cycle decomposition of φ
contains only even cycles, then β2(Uφ ) = 0 .

Proof. Assume that the odd cycle (i1i2...i2k+1) is in the cycle decomposition
of φ . Let π = {σ1,σ2} ∈ Πn

2 and define σ ′
1 = σ1 ∩ {i1, i2, ..., i2k+1} , σ ′

2 = σ2 ∩
{i1, i2, ..., i2k+1} . Then {σ ′

1,σ
′
2} is a 2-partition of {i1, i2, ..., i2k+1} . Without loss of

generality, card(σ ′
1) � k+1. Since φ(σ ′

1) ⊆ {i1, i2, ..., i2k+1} , it must be that φ(σ ′
1)∩

σ ′
1 �= /0 , which implies φ(σ1)∩σ1 �= /0 . By Lemma 5.2.3, ‖(Uφ )σ1‖ = 1, which im-

plies ‖(Uφ )π‖ = 1. Since the choice of π was arbitrary, α2(Uφ ) = 1. Since ‖Uφ‖= 1,
β2(Uφ ) = 1. Now assume that the cycle decomposition of φ contains only even cycles.
Let π = {σ1,σ2} ∈ Πn

2 be such that for every even cycle (i1i2...i2k) in the cycle de-
composition of φ , {i1, i3, ..., i2k−1}⊆ σ1 and {i2, i4, ..., i2k}⊆σ2 . Then φ(σ1)∩σ1 = /0
and φ(σ2)∩σ2 = /0 . By Lemma 5.2.3, ‖(Uφ )σ1‖= 0 and ‖(Uφ )σ2‖= 0, which implies
‖(Uφ )π‖ = 0. Then α2(Uφ ) = 0, which implies β2(Uφ ) = 0. �

REMARK 5.2.5. Although it is not important to our development, we take the op-
portunity to point out that β3(Uφ ) equals 1 if φ has any fixed points, and 0 otherwise.
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5.3. Computation of 2 -paving parameters

The following proposition establishes all but the second entry of the second col-
umn of Table 1.4.3:

PROPOSITION 5.3.1. Let n � 3 , with n �= 2k . Then

β2(M0
n(C)�) = β2(M0

n(R)�) = β2(M0
n(R+)�) = 1.

Proof. Let Sn ∈ M
0
n(R+)� be the n× n shift matrix. Then in the notation of

Theorem 5.2.4, Sn = Uφ , where φ = (12...n) . Since n � 3 and n �= 2k , n = rs , where
s � 3 is odd. Since 1 � r < n , Sr

n ∈ M
0
n(R+)� . It is easy to see that Sr

n = Uφ r , where
φ r denotes φ composed with itself r− 1 times. Since the cycle decomposition of φ r

consists of r cycles of length s , β2(Sr
n) = 1 by Theorem 5.2.4. It follows that

1 � β2(M0
n(R+)�) � β2(M0

n(R)�) � β2(M0
n(C)�) � 1. �

The following proposition establishes the second entry of the second column of
Table 1.4.3. It shows that Proposition 5.3.1 cannot be extended to the case n = 2k .

PROPOSITION 5.3.2. β2(M0
4(C)�) � 2√

11
≈ .6030 .

Proof. Let

A =

⎡
⎢⎢⎣

0 a b c
c 0 a b
b c 0 a
a b c 0

⎤
⎥⎥⎦ ∈ M

0
4(C)�,

with α2(A) = 1. We aim to show that ‖A‖ �
√

11
2 ≈ 1.6583. By Lemma 5.2.2,

max{|a|, |c|} � 1 and |b| � 1. Taking the adjoint of A , if necessary, we may assume

that |a| � |c| , which implies |a|� 1. To prove that ‖A‖ �
√

11
2 , it suffices to show that

‖B‖ �
√

11
2 , where

B = A{1,2,3,4},{1,2} =

⎡
⎢⎢⎣

0 a
c 0
b c
a b

⎤
⎥⎥⎦ .

Now let α,β ∈ R be such that a = |a|eiα and b = |b|eiβ . Since⎡
⎢⎢⎣

ei(β−α) 0 0 0
0 ei(2α−2β ) 0 0
0 0 ei(α−β ) 0
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0 a
c 0
b c
a b

⎤
⎥⎥⎦
[
e−iα 0
0 e−iβ

]
=

⎡
⎢⎢⎣

0 |a|
cei(α−2β ) 0

|b| cei(α−2β )

|a| |b|

⎤
⎥⎥⎦ ,
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we may assume that a,b � 0. If c = x+ iy , where x,y ∈ R , then by Lemma 5.2.1,

‖B‖2 =
2|a|2 +2|b|2 +2|c|2 +

√
02 +4|ab+bc|2

2

= a2 +b2 + x2 + y2 +b
√

(a+ x)2 + y2

� 2+ x2 + y2 +
√

(a+ x)2 + y2

� 2+ x2 + |a+ x|.
Since |c| � |a| , it must be that a+ x � 0. Thus,

‖B‖2 � 2+ x2 +a+ x � x2 + x+3 � 11
4

.

Since the choice of A was arbitrary, β2(M0
4(C)�) � 2√

11
. �

We suspect that β2(M0
4(C)�) = 3

5 . At least we have the following result.

PROPOSITION 5.3.3. β2(M0
4(R)�) = 3

5 = .6000 .

Proof. Let

A =

⎡
⎢⎢⎣

0 a b c
c 0 a b
b c 0 a
a b c 0

⎤
⎥⎥⎦ ∈ M

0
4(R)�,

with α2(A) = 1. We aim to show that ‖A‖ � 5
3 ≈ 1.6667. Arguing as in the proof of

Proposition 5.3.2, we may assume that |a|, |b| � 1 and |a| � |c| . Replacing A by −A ,
if necessary, we may assume that a � 0. Then by Equation (1),

‖A‖ = max{|az2 +bz+ c| : z = ±1,±i}
= max{|a+ c|+ |b|,

√
(a− c)2 +b2}

� max{a+ c+1,
√

(a− c)2 +1}.

Examining the graphs of f (c) := a+ c+1 and g(c) :=
√

(a− c)2 +1, we see that the

minimum value of max{ f (c),g(c)} on the interval −a� c � a equals 2a2+2a+1
2a+1 (at c =

− a
2a+1 ). Using Calculus, the minimum value of h(a) := 2a2+2a+1

2a+1 on the interval a � 1

is 5
3 (at a = 1). Thus, ‖A‖� 5

3 . Since the choice of A was arbitrary, β2(M0
4(R)�) � 3

5 .
Since

β2

⎛
⎜⎜⎝
⎡
⎢⎢⎣

0 1 1 −1/3
−1/3 0 1 1

1 −1/3 0 1
1 1 −1/3 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠ =

3
5
,

we have β2(M0
4(R)�) = 3

5 . �
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COROLLARY 5.3.4. β2(M0
4(C)�) ∈

[
3
5 , 2√

11

]
≈ [.6000, .6030] .

REMARK 5.3.5. The second column of Table 1.4.3 suggests that
limk→∞β2(M0

2k(C)�) = 1. Is that really the case? If so, does β2(M0
2k(C)�) = 1 for k

sufficiently large?

5.4. Computation of 3-paving parameters

This proposition establishes the first entry of the last column of Table 1.4.1:

PROPOSITION 5.4.1. 3
5 = β3(M0

4(R)�) � β3(M0
4(C)�) � 2√

11
.

Proof. Proposition 5.3.3, Proposition 5.3.2, and Lemma 5.2.2. �
This proposition establishes the third entry of the last column of Table 1.4.1 (the

second entry is a consequence of Proposition 2.2.2):

PROPOSITION 5.4.2. β3(M0
6(C)�) �

√
2
5 ≈ .6325 .

Proof. Let

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 a b c d e
e 0 a b c d
d e 0 a b c
c d e 0 a b
b c d e 0 a
a b c d e 0

⎤
⎥⎥⎥⎥⎥⎥⎦ ∈ M

0
6(C)�,

with α3(A) = 1. We aim to show that ‖A‖ �
√

5
2 ≈ 1.5811. Since the {{1,2},{3,4},

{5,6}} -paving of A has norm greater than or equal to 1, either |a| � 1 or |e| � 1.
Likewise, since the {{1,4},{2,5},{3,6}} -paving of A has norm greater than or equal
to 1, |c| � 1. Finally, since the {{1,3,5},{2,4},{6}} -paving of A has norm greater
than or equal to 1,

‖A{1,3,5}‖ =

∥∥∥∥∥∥
⎡
⎣0 b d

d 0 b
b d 0

⎤
⎦
∥∥∥∥∥∥ � 1.

By Equation (1) applied to A{1,3,5} , which is circulant, |b|+ |d|� 1. Thus,

|b|2 + |d|2 � (|b|+ |d|)2

2
� 1

2
.

Hence,

‖A‖ �
√
|a|2 + |b|2 + |c|2 + |d|2 + |e|2 �

√
5
2
.

Since the choice of A was arbitrary, β3(M0
6(C)�) �

√
2
5 . �
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REMARK 5.4.3. Almost certainly a more painstaking analysis would lead to im-
provements in Proposition 5.4.2.

6. Paving self-adjoint matrices

This section establishes the first column of Table 1.4.2 and the third column of
Table 1.4.3.

6.1. Tools

LEMMA 6.1.1. For A =
[
ai j

] ∈ Mn(C) and |A| =
[|ai j|

] ∈ Mn(R+) , ‖A‖ �
‖|A|‖ .

Proof. Let �x ∈ C
n . Then

‖A�x‖2 =
n

∑
i=1

|(A�x)i|2 =
n

∑
i=1

∣∣∣∣∣
n

∑
j=1

ai jx j

∣∣∣∣∣
2

�
n

∑
i=1

(
n

∑
j=1

|ai j||x j|
)2

=
n

∑
i=1

(|A||�x|)2
i = ‖|A||�x|‖2 � ‖|A|‖2‖|�x|‖2 = ‖|A|‖2‖�x‖2.

Since the choice of �x was arbitrary, ‖A‖ � ‖|A|‖ . �

THEOREM 6.1.2. Let A ∈ Mn(C)sa . Then Tr(A) = 0 if and only if there exists a
unitary U ∈ Mn(C) such that U∗AU ∈ M

0
n(C)sa .

Proof. (⇒) Suppose Tr(A) = 0. We aim to produce an orthonormal basis �u1,
�u2, ...,�un of C

n such that 〈A�ui,�ui〉 = 0 for all 1 � i � n . Then U :=
[
�u1 �u2 ... �un

] ∈
Mn(C) will be a unitary such that U∗AU ∈ M

0
n(C)sa . Assume that �u1,�u2, ...,�uk have

already been constructed. Let V = {�u1,�u2, ...,�uk}⊥ and PV ∈ Mn(C) be the orthogonal
projection onto V . Then PVA|V :V →V is self-adjoint and so there exists an orthonor-
mal basis �vk+1,�vk+2, ...,�vn of V consisting of eigenvectors of PVA|V . It follows that
for all k+1 � i, j � n ,

〈A�vi,�v j〉 = 〈PVA|V�vi,�v j〉 = 〈λi�vi,�v j〉 =

{
λi, i = j

0, i �= j
,

where λi is the eigenvalue of PVA|V corresponding to �vi . Define

�uk+1 =
1√

n− k

n

∑
i=k+1

�vi.

Then �uk+1 is a unit vector in V and

〈A�uk+1,�uk+1〉 =
1

n− k

n

∑
i, j=k+1

〈A�vi,�v j〉 =
1

n− k

n

∑
i=k+1

λi.
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Since �u1,�u2, ...,�uk,�vk+1,�vk+2, ...,�vn form an orthonormal basis of C
n ,

0 = Tr(A) =
k

∑
i=1

〈A�ui,�ui〉+
n

∑
i=k+1

〈A�vi,�vi〉 = 0+
n

∑
i=k+1

λi.

Thus, 〈A�uk+1,�uk+1〉 = 0. (⇐) Conversely, suppose there exists a unitary U ∈ Mn(C)
such that B = U∗AU ∈ M

0
n(C)sa . Then

Tr(A) = Tr(UBU∗) = Tr(B) = 0. �

LEMMA 6.1.3. For A ∈ M
0
n(C)sa ,

‖A‖2 � n−1
n

‖A‖2
HS.

This inequality is sharp.

Proof. Let −‖A‖ � λ1 � λ2 � ... � λn � ‖A‖ be the eigenvalues of A . Since
Tr(A) = 0, λ1 +λ2 + ...+λn = 0. Replacing A by −A , if necessary, we may assume
that λn = ‖A‖ . By the Cauchy-Schwarz inequality,

‖A‖ = λn = −λ1−λ2− ...−λn−1 �
√

n−1(λ 2
1 +λ 2

2 + ...+λ 2
n−1)

1/2.

Thus,
‖A‖2 � (n−1)(‖A‖2

HS−‖A‖2),

and the inequality follows. Now let

D = diag(n−1,

n−1︷ ︸︸ ︷
−1,−1, ...,−1) ∈ Mn(C)sa.

By Theorem 6.1.2, there exists a unitary U ∈Mn(C) such that A :=U∗DU ∈M
0
n(C)sa .

Since
‖A‖2 = ‖D‖2 = (n−1)2

and

‖A‖2
HS = ‖D‖2

HS = (n−1)2 +

n−1︷ ︸︸ ︷
(−1)2 +(−1)2 + ...+(−1)2 = n(n−1),

we have

‖A‖2 =
n−1

n
‖A‖2

HS,

which proves that the inequality is sharp. �

LEMMA 6.1.4. For A ∈ M
0
n(C)sa and n odd,

‖A‖2
HS � (n−1)‖A‖2.

This inequality is sharp.
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Proof. We may assume that ‖A‖ = 1. Let 0 < λ1 � λ2 � ... � λn+ � 1 be the
strictly positive eigenvalues of A and −1 � σ1 � σ2 � ... � σn− < 0 be the strictly
negative eigenvalues of A . Replacing A by −A , if necessary, we may assume that
n+ � n− . Since n is odd, n+ � n−1

2 . Thus,

‖A‖2
HS =

n−
∑
i=1

σ2
i +

n+

∑
j=1

λ 2
j �

n−
∑
i=1

−σi +
n+

∑
j=1

λ j = 2
n+

∑
j=1

λ j � 2n+ � n−1.

Now let

D = diag(

n−1
2︷ ︸︸ ︷

1,1, ...,1,0,

n−1
2︷ ︸︸ ︷

−1,−1, ...,−1) ∈ Mn(C)sa.

By Theorem 6.1.2, there exists a unitary U ∈Mn(C) such that A :=U∗DU ∈M
0
n(C)sa .

Since

‖A‖2 = ‖D‖2 = 12 = 1

and

‖A‖2
HS = ‖D‖2

HS =

n−1
2︷ ︸︸ ︷

12 +12 + ...+12+02 +

n−1
2︷ ︸︸ ︷

(−1)2 +(−1)2 + ...+(−1)2 = n−1,

we have

‖A‖2
HS = (n−1)‖A‖2.

Thus the inequality is sharp. �

COROLLARY 6.1.5. For A =
[
ai j

] ∈ M
0
n(C)sa and |A| = [|ai j|

] ∈ M
0
n(R+)sa ,

‖|A|‖ �
{√

n−1‖A‖, n even
n−1√

n ‖A‖, n odd
.

Proof. By Lemmas 6.1.3 and 6.1.4,

‖|A|‖2 � n−1
n

‖|A|‖2
HS =

n−1
n

‖A‖2
HS �

{
(n−1)‖A‖2, n even
(n−1)2

n ‖A‖2, n odd
. �

6.2. Computation of 2 -paving parameters

The following proposition establishes the first entry of the third column of Table
1.4.3:

PROPOSITION 6.2.1. β2(M0
3(C)sa) = 1√

3
≈ .5774 .
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Proof. Let A ∈ M
0
3(C)sa . Then by Lemma 6.1.1, Theorem 1.3.4, and Corollary

6.1.5,

α2(A) � α2(|A|) � 1
2
‖|A|‖ � 1

2

(
2√
3
‖A‖

)
=

1√
3
‖A‖.

Since the choice of A was arbitrary, β2(M0
3(C)sa) � 1√

3
. Since

β2

⎛
⎝
⎡
⎣ 0 1 i

1 0 1
−i 1 0

⎤
⎦
⎞
⎠ =

1√
3
,

we have β2(M0
3(C)sa) = 1√

3
. �

The following proposition establishes the second entry of the third column of Table
1.4.3:

PROPOSITION 6.2.2. β2(M0
4(C)sa) = 1√

3
≈ .5774 .

Proof. By Proposition 6.2.1,

1√
3

= β2(M0
3(C)sa) � β2(M0

4(C)sa).

Now let A ∈ M
0
4(C)sa , with α2(A) = 1. We aim to show that ‖A‖ �

√
3. Associate

a graph G = (V,E) with A as follows: V = {1,2,3,4} and (i, j) ∈ E if and only if
‖A{i, j}‖ < 1. We may assume that G has the following properties:

I. The graph
• •

• •
is not a subgraph of G . Otherwise, A has a (2,2)-paving of norm less than 1,
contradicting α2(A) = 1.

II. G has no isolated vertices. Otherwise, if vertex i is isolated, then the i th row
(and column) of A has three entries of modulus greater than or equal to 1, which
implies that ‖A‖ �

√
3 (and we are done).

III. By removing a vertex (and all associated edges) from G one cannot arrive at the
“edgeless” graph ({i, j,k}, /0) . Otherwise α2(A{i, j,k}) � 1 (since every (1,2)-
paving has norm greater than or equal to 1), which implies ‖A{i, j,k}‖ �

√
3 (by

Proposition 6.2.1). Then ‖A‖ � ‖A{i, j,k}‖ �
√

3 (and we are done).

Checking [11, p. 8], there are no such graphs G . Thus ‖A‖ �
√

3. Since the choice of
A was arbitrary, β2(M0

4(C)sa) � 1√
3
, and so β2(M0

4(C)sa) = 1√
3
. �

The following proposition establishes the third entry of the third column of Table
1.4.3:



334 GARY WEISS AND VREJ ZARIKIAN

PROPOSITION 6.2.3. β2(M0
5(C)sa) = β2(M0

5(R)sa) = 2√
5
≈ .8944 .

Proof. Let A ∈ M
0
5(C)sa . Then by Lemma 6.1.1, Theorem 1.3.4, and Corollary

6.1.5,

α2(A) � α2(|A|) � 1
2
‖|A|‖ � 1

2

(
4√
5
‖A‖

)
=

2√
5
‖A‖.

Since the choice of A was arbitrary, β2(M0
5(C)sa) � 2√

5
. Since

β2

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

0 1 1 1 1
1 0 1 1 −1
1 1 0 −1 1
1 1 −1 0 −1
1 −1 1 −1 0

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ =

2√
5
,

we have 2√
5

� β2(M0
5(R)sa) � β2(M0

5(C)sa) � 2√
5
. �

The following proposition establishes the fourth entry of the third column of Table
1.4.3:

PROPOSITION 6.2.4. β2(M0
6(C)sa) = β2(M0

6(R)sa) = 2√
5
≈ .8944 .

Proof. By Proposition 6.2.3,

2√
5

= β2(M0
5(R)sa) � β2(M0

6(R)sa) � β2(M0
6(C)sa).

Now let A ∈ M
0
6(C)sa , with α2(A) = 1. We aim to show that ‖A‖ �

√
5

2 . By as-
sumption, every (3,3)-paving of A has norm greater than or equal to 1. Thus for all
{{i, j,k},{l,m,n}} ∈ Π6

2 , either ‖A{i, j,k}‖ � 1 or ‖A{l,m,n}‖ � 1. Since there are 10
such partitions, we can break the proof into 210 = 1024 cases. Here are four such cases:

Case 1: Suppose ‖Aσ‖ � 1 for all

σ ∈ Σ := {{1,2,3},{1,2,4},{1,2,5},{1,2,6},{1,3,4},
{1,3,5},{1,3,6},{1,4,5},{1,4,6},{1,5,6}}.

Then by Lemmas 6.1.4 and 6.1.3,

12‖A‖2 = 4‖A‖2 +8‖A‖2

� 4‖A{2,3,4,5,6}‖2 +8‖�A1‖2

� ‖A{2,3,4,5,6}‖2
HS +8‖�A1‖2

HS

= ∑
σ∈Σ

‖Aσ‖2
HS � 3

2 ∑σ∈Σ
‖Aσ‖2 � 3

2
(10) = 15.

Here �A1 is the first column of A .
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Case 256: Suppose ‖Aσ‖ � 1 for all

σ ∈ Σ := {{1,2,3},{1,2,4},{3,4,6},{3,4,5},{2,5,6},
{2,4,6},{2,4,5},{2,3,6},{2,3,5},{2,3,4}}.

Then

12‖A‖2 = 4‖A‖2 +4‖A‖2 +2‖A‖2 +2‖A‖2

� 4‖A{2,3,4,5,6}‖2 +4‖�A2‖2 +2‖�A3‖2 +2‖�A4‖2

� ‖A{2,3,4,5,6}‖2
HS +4‖�A2‖2

HS +2‖�A3‖2
HS +2‖�A4‖2

HS

= ∑
σ∈Σ

‖Aσ‖2
HS � 3

2 ∑σ∈Σ
‖Aσ‖2 � 3

2
(10) = 15.

Case 257: Suppose ‖Aσ‖ � 1 for all

σ ∈ Σ := {{1,2,3},{3,5,6},{1,2,5},{1,2,6},{1,3,4},
{1,3,5},{1,3,6},{1,4,5},{1,4,6},{1,5,6}}.

Then

12‖A‖2 = 4‖A‖2 +4‖A‖2 +4‖A‖2

� 4‖A{1,2,3,5,6}‖2 +4‖A{1,3,4,5,6}‖2 +4‖�A1‖2

� ‖A{1,2,3,5,6}‖2
HS +‖A{1,3,4,5,6}‖2

HS +4‖�A1‖2
HS

= ∑
σ∈Σ

‖Aσ‖2
HS � 3

2 ∑σ∈Σ
‖Aσ‖2 � 3

2
(10) = 15.

Case 683: Suppose ‖Aσ‖ � 1 for all

σ ∈ Σ := {{4,5,6},{1,2,4},{3,4,6},{1,2,6},{2,5,6},
{1,3,5},{2,4,5},{1,4,5},{2,3,5},{1,5,6}}.

Then

12‖A‖2 = 6‖A‖2 +4‖A‖2 +2‖A‖2

� 6‖A‖2 +4‖A{1,2,4,5,6}‖2 +2‖�A5‖2

� ‖A‖2
HS +‖A{1,2,4,5,6}‖2

HS +2‖�A5‖2
HS

= ∑
σ∈Σ

‖Aσ‖2
HS � 3

2 ∑σ∈Σ
‖Aσ‖2 � 3

2
(10) = 15.

The remaining 1020 cases work similarly (they are checked by computer). Thus, ‖A‖�√
5

2 . Since the choice of A was arbitrary, β2(M0
6(C)sa) � 2√

5
, and so β2(M0

6(C)sa) =

β2(M0
6(R)sa) = 2√

5
. �

REMARK 6.2.5. The proof of Proposition 6.2.4 only uses the fact that every (3,3)-
paving of A has norm greater than or equal to 1 rather than the full set of implications
arising from α2(A) = 1.
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6.3. Computation of 3 -paving parameters

The following proposition establishes the first entry in the first column of Table
1.4.2:

PROPOSITION 6.3.1. β3(M0
4(C)sa) = 1√

3
≈ .5774 .

Proof. Let A ∈ M
0
4(C)sa with α3(A) = 1. We aim to show that ‖A‖ �

√
3. By

assumption, every (1,1,2)-paving of A has norm greater than or equal to 1. Thus,
every 2-compression of A has norm greater than or equal to 1, i.e., |ai j| � 1 for all
i �= j . But then every row and column of A has norm greater than or equal to

√
3,

which implies ‖A‖ �
√

3. Since the choice of A was arbitrary, β3(M0
4(C)sa) � 1√

3
.

Since

β3

⎛
⎜⎜⎝
⎡
⎢⎢⎣

0 i 1 1
−i 0 1 −1
1 1 0 i
1 −1 −i 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠ =

1√
3
,

we have β3(M0
4(C)sa) = 1√

3
. �

The following proposition establishes the second entry in the first column of Table
1.4.2:

PROPOSITION 6.3.2. β3(M0
5(C)sa) = 1√

3
≈ .5774 .

Proof. By Proposition 6.3.1,

1√
3

= β3(M0
4(C)sa) � β3(M0

5(C)sa).

Now let A ∈ M
0
5(C)sa with α3(A) = 1. We aim to show that ‖A‖ �

√
3. Associate

a graph G = (V,E) with A as follows: V = {1,2, ...,5} and (i, j) ∈ E if and only if
‖A{i, j}‖ < 1. We may assume that G has the following properties:

I. The graph
• • •

• •
is not a subgraph of G . Otherwise, A has a (1,2,2)-paving of norm less than 1,
contradicting α3(A) = 1.

II. For every i , the degree of vertex i is greater than or equal to 2. Otherwise the
i th row (and column) of A has at least three entries of modulus greater than or
equal to 1, which implies that ‖A‖ �

√
3 (and we are done).
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Checking [11, p. 8], there are no such graphs G . Thus ‖A‖ �
√

3. Since the choice of
A was arbitrary, β3(M0

5(C)sa) � 1√
3
, and so β3(M0

5(C)sa) = 1√
3
. �

The following proposition establishes the third entry in the first column of Table
1.4.2:

PROPOSITION 6.3.3. β3(M0
6(C)sa) = 1√

3
≈ .5774 .

Proof. By Proposition 6.3.1,

1√
3

= β3(M0
4(C)sa) � β3(M0

6(C)sa).

Now let A ∈ M
0
6(C)sa with α3(A) = 1. We aim to show that ‖A‖ �

√
3. Associate

a graph G = (V,E) with A as follows: V = {1,2, ...,6} and (i, j) ∈ E if and only if
‖A{i, j}‖ < 1. We may assume that G has the following properties:

I. The graph
• • •

• • •
is not a subgraph of G . Otherwise, A has a (2,2,2)-paving of norm less than 1,
contradicting α3(A) = 1.

II. For every i , the degree of vertex i is greater than or equal to 3. Otherwise the
i th row (and column) of A has at least three entries of modulus greater than or
equal to 1, which implies that ‖A‖ �

√
3 (and we are done).

Checking [11, p. 9-11], there are no such graphs G . Thus ‖A‖ �
√

3. Since the choice
of A was arbitrary, β3(M0

6(C)sa) � 1√
3
, and so β3(M0

6(C)) = 1√
3
. �

The following proposition establishes the fourth entry in the first column of Table
1.4.2:

PROPOSITION 6.3.4. β3(M0
7(C)sa) � 2√

7
≈ .7559 .

Proof. Let A ∈ M
0
7(C)sa . Then by Lemma 6.1.1, Theorem 1.3.4, and Corollary

6.1.5,

α3(A) � α3(|A|) � 1
3
‖|A|‖ � 1

3

(
6√
7
‖A‖

)
=

2√
7
‖A‖. �

The following proposition establishes the fifth entry in the first column of Table
1.4.2:

PROPOSITION 6.3.5. β3(M0
8(C)sa) �

√
7

3 ≈ .8819 .
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Proof. Let A ∈ M
0
8(C)sa . Then by Lemma 6.1.1, Theorem 1.3.4, and Corollary

6.1.5,

α3(A) � α3(|A|) � 1
3
‖|A|‖ � 1

3
(
√

7‖A‖) =
√

7
3

‖A‖. �

The following proposition establishes the sixth entry in the first column of Table
1.4.2:

PROPOSITION 6.3.6. β3(M0
9(C)sa) � 8

9 ≈ .8889 .

Proof. Let A ∈ M
0
9(C)sa . Then by Lemma 6.1.1, Theorem 1.3.4, and Corollary

6.1.5,

α3(A) � α3(|A|) � 1
3
‖|A|‖ � 1

3

(
8
3
‖A‖

)
=

8
9
‖A‖. �

7. Paving real symmetric matrices

In this section we establish the second column of Table 1.4.2 and the fourth column
of Table 1.4.3.

7.1. Tools

LEMMA 7.1.1. For

0 �= A =

⎡
⎣0 a b

a 0 c
b c 0

⎤
⎦ ∈ M

0
3(C)sa,

we have
|a|2 + |b|2 + |c|2

‖A‖2 +
2|Re(abc)|

‖A‖3 = 1.

In fact, λ = ‖A‖ is the largest solution of the equation

|a|2 + |b|2 + |c|2
λ 2 +

2|Re(abc)|
λ 3 = 1.

Proof. An easy calculation shows that the characteristic polynomial of A equals

P(λ ) = λ 3− (|a|2 + |b|2 + |c|2)λ −2Re(abc).

Let −‖A‖� λ1 � λ2 � λ3 � ‖A‖ be the eigenvalues of A .

Case 1: Suppose λ3 = ‖A‖ . Since λ1 + λ2 + λ3 = 0, it must be that λ1,λ2 � 0.
Thus, 2Re(abc) = λ1λ2λ3 � 0, which implies that

P(λ ) = λ 3− (|a|2 + |b|2 + |c|2)λ −2|Re(abc)|.
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Since λ = ‖A‖ is the largest solution of the equation P(λ ) = 0, it is also
the largest solution of the equation

|a|2 + |b|2 + |c|2
λ 2 +

2|Re(abc)|
λ 3 = 1.

Case 2: Suppose λ1 =−‖A‖ . Then ‖−A‖= ‖A‖ is an eigenvalue of −A . By Case
1, λ = ‖−A‖ is the largest solution of the equation

|−a|2 + |−b|2 + |− c|2
λ 2 +

|Re((−a)(−b)(−c))|
λ 3 = 1.

Thus, λ = ‖A‖ is the largest solution of the equation

|a|2 + |b|2 + |c|2
λ 2 +

2|Re(abc)|
λ 3 = 1. �

COROLLARY 7.1.2. For

A =

⎡
⎣0 a b

a 0 c
b c 0

⎤
⎦ ∈ M

0
3(R)sa,

we have ‖|A|‖ = ‖A‖ .

Proof. By Lemma 7.1.1, both λ = ‖|A|‖ and λ = ‖A‖ are the largest solution of
the equation

a2 +b2 + c2

λ 2 +
2|abc|
λ 3 = 1. �

REMARK 7.1.3. For A ∈ Mk×m(C) , B ∈ Mk×n(C) , C ∈ Ml×m(C) , and D ∈
Ml×n(C) , ∥∥∥∥

[
A B
C D

]∥∥∥∥ =
∥∥∥∥
[−A B

C −D

]∥∥∥∥ .

This follows from the identity[−A B
C −D

]
=

[−Ik 0
0 Il

][
A B
C D

][
Im 0
0 −In

]
.

LEMMA 7.1.4. Let X ∈ M
0
3(R)sa and Y ∈ M3(R) . If ‖X‖ � 1 and |yi j| � 1 for

all 1 � i, j � 3 , then
∥∥[X Y

]∥∥ �
√

17
2 ≈ 2.0616 . This inequality is sharp.

Proof. Let

X =

⎡
⎣0 a b

a 0 c
b c 0

⎤
⎦ and Y =

⎡
⎣r s t

u v w
x y z

⎤
⎦ .
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Since ∥∥∥[ 1
‖X‖X Y

]∥∥∥ =
∥∥∥∥[X Y

][ 1
‖X‖ I3 0

0 I3

]∥∥∥∥ �
∥∥[X Y

]∥∥ ,

we may assume that ‖X‖= 1. Permuting the indices 1, 2 , and 3, we may assume that
|a| � |b| � |c| . Pre- and post-multiplying

[
X Y

]
by diagonal orthogonal matrices, we

may assume that a,b,r,s,t � 0. By Remark 7.1.3, we may assume that c � 0. Finally,
permuting the indices 4, 5 , and 6, we may assume that u and v have the same sign.
Applying Lemma 6.1.3 to X , we conclude that a2 + b2 + c2 � 3/4. It follows that
a2 � 1/4. We claim that bc � 1/4. Indeed, if bc > 1/4, then 2abc > 1/4. But then,
applying Lemma 7.1.1 to X , we have that

1 = (a2 +b2 + c2)+2abc > 3/4+1/4 = 1,

a contradiction. Therefore (by Lemma 5.2.1)

∥∥[X Y
]∥∥2 �

∥∥∥∥
[
0 a b r s
a 0 c u v

]∥∥∥∥2

� 2a2 +b2 + c2 +4+
√

02 +4(bc+ ru+ sv)2

2

� 1+4+
√

4(1.75)2

2
=

17
4

.

The matrices

X =

⎡
⎣ 0 1/2 1/2

1/2 0 1/2
1/2 1/2 0

⎤
⎦ and Y =

⎡
⎣ 1 1 1

1 −1 −1
−1 −1 1

⎤
⎦

show that the inequality is sharp. �

COROLLARY 7.1.5. Let

A =
[

X Y
Y ∗ Z

]
∈ M

0
6(R)sa,

where X ,Z ∈ M
0
3(R)sa and Y ∈ M3(R) . If ‖X‖,‖Z‖ � 1 and |yi j| � 1 for all 1 �

i, j � 3 , then ‖A‖ �
√

17
2 ≈ 2.0616 . This inequality is sharp.

Proof. By Lemma 7.1.4,

‖A‖ �
∥∥[X Y

]∥∥ �
√

17
2

.

The matrices

X =

⎡
⎣ 0 1/2 1/2

1/2 0 1/2
1/2 1/2 0

⎤
⎦ , Y =

⎡
⎣ 1 1 1

1 −1 −1
−1 −1 1

⎤
⎦ , and Z =

⎡
⎣ 0 1/2 −1/2

1/2 0 1/2
−1/2 1/2 0

⎤
⎦

show that the inequality is sharp. �
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LEMMA 7.1.6. Let

A =

⎡
⎢⎢⎣

0 a b c
a 0 d e
b d 0 f
c e f 0

⎤
⎥⎥⎦ ∈ M

0
4(R)sa.

If |a|, |b|, |c|� 1 and ‖A{2,3,4}‖ � 1 , then ‖A‖ � μ := 1.79333220781535 .

Proof. Conjugating by a diagonal orthogonalmatrix, we may assume that a,b,c �
0. Permuting the indices 2, 3 , and 4, we may assume that d and e have the same sign.
Finally, by Remark 7.1.3, we may assume that d,e � 0.

Case 1: Suppose d2 + e2 � r2 , where r := −1 +
√

2μ2−3 ≈ .8526. Then (d +
e)2 � d2 + e2 � r2 . Thus (by Lemma 5.2.1)

‖A‖2 � ‖A{1,2},{1,2,3,4}‖2 =
∥∥∥∥
[
0 a b c
a 0 d e

]∥∥∥∥2

=
2a2 +b2 + c2 +d2 + e2 +

√
(b2 + c2−d2− e2)2 +4(bd + ce)2

2

� 4+ r2 +
√

02 +4r2

2
=

r2 +2r+4
2

= μ2.

Case 2: Suppose s2 < d2 + e2 � r2 , where s :=
√

μ4−4μ2+3
μ2−2

≈ .6275. Define a

sequence {sn : n ∈ N} recursively as follows: s1 := r and

sn+1 :=

√
2(μ2−1)−

√
4(2μ2−3)+ (2− s2

n)2, n ∈ N .

Since sn ↘ s , it suffices to consider the subcase s2
n+1 � d2 + e2 � s2

n . Then

(d + e)2 � d2 + e2 � s2
n+1.

Thus (by Lemma 5.2.1)

‖A‖2 � ‖A{1,2},{1,2,3,4}‖2 =
∥∥∥∥
[
0 a b c
a 0 d e

]∥∥∥∥2

=
2a2 +b2 + c2 +d2 + e2 +

√
(b2 + c2−d2− e2)2 +4(bd + ce)2

2

�
4+ s2

n+1 +
√

(2− s2
n)2 +4s2

n+1

2
= μ2.
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Case 3: Suppose | f | � t , where t := μ2−2
μ ≈ .6781. Then (by Lemmas 7.1.2 and

2.1.1)

‖A‖ � ‖A{1,3,4}‖ =

∥∥∥∥∥∥
⎡
⎣0 b c

b 0 f
c f 0

⎤
⎦
∥∥∥∥∥∥ =

∥∥∥∥∥∥
⎡
⎣0 b c

b 0 | f |
c | f | 0

⎤
⎦
∥∥∥∥∥∥

�

∥∥∥∥∥∥
⎡
⎣0 1 1

1 0 t
1 t 0

⎤
⎦
∥∥∥∥∥∥ =

t +
√

t2 +8
2

= μ .

Case 4: Suppose d2 + e2 � s2 and | f | � t . Applying Lemma 7.1.1 to A{2,3,4} , we
have that

1 =
d2 + e2 + f 2

‖A{2,3,4}‖2 +
2|de f |

‖A{2,3,4}‖3 � d2 + e2 + f 2 +2|de f |� s2 + t2 +2det.

Thus,

de � 1− s2− t2

2t
.

Hence (by Lemma 5.2.1)

‖A‖2 � ‖A{1,2},{1,2,3,4}‖2 =
∥∥∥∥
[
0 a b c
a 0 d e

]∥∥∥∥2

=
2a2 +b2 + c2 +d2 + e2 +

√
(b2 + c2−d2− e2)2 +4(bd + ce)2

2

� 4+d2 + e2 +
√

(2−d2− e2)2 +4(d + e)2

2

=
4+d2 + e2 +

√
(d2 + e2)2 +8de+4
2

� 4+2de+
√

(2de)2 +8de+4
2

= 3+2de

� 3+
1− s2− t2

t
> μ2. �

7.2. Computation of 2 -paving parameters

The following proposition establishes the first entry in the fourth column of Table
1.4.3:

PROPOSITION 7.2.1. β2(M0
3(R)sa) = β2(M0

3(R+)sa) = 1
2 = .5000 .

Proof. Let A ∈ M
0
3(R)sa . Then by Theorem 1.3.4 and Corollary 7.1.2,

α2(A) = α2(|A|) � 1
2
‖|A|‖ =

1
2
‖A‖.
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Since the choice of A was arbitrary, β2(M0
3(R)sa) � 1

2 . Since

β2

⎛
⎝
⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦
⎞
⎠ =

1
2
,

we have 1
2 � β2(M0

3(R+)sa) � β2(M0
3(R)sa) � 1

2 . �
The following proposition establishes the second entry in the fourth column of

Table 1.4.3:

PROPOSITION 7.2.2. β2(M0
4(R)sa) � .5577 .

Proof. Let A ∈ M
0
4(R)sa , with α2(A) = 1. We aim to show that ‖A‖ � μ =

1.79333220781535. Associate a graph G = (V,E) with A as follows: V = {1,2,3,4}
and (i, j) ∈ E if and only if ‖A{i, j}‖ < 1. We may assume that G has the following
properties:

I. The graph
• •

• •
is not a subgraph of G . Otherwise, A has a (2,2)-paving of norm less than 1,
contradicting α2(A) = 1.

II. By removing a vertex (and all associated edges) from G one cannot arrive at the
“edgeless” graph ({i, j,k}, /0) . Otherwise, α2(A{i, j,k}) � 1 (since every (1,2)-
paving has norm greater than or equal to 1), which implies ‖A{i, j,k}‖� 2 (Propo-
sition 7.2.1). Then ‖A‖ � ‖A{i, j,k}‖ � 2 > μ (and we are done).

Checking [11, p. 8], we see that G must be

• •

•

������� •
Thus (after a permutation of the indices)

A =

⎡
⎢⎢⎣

0 � � �
� 0 • •
� • 0 •
� • • 0

⎤
⎥⎥⎦ ,

where “•” indicates an entry of modulus less than 1 and “�” indicates an entry of
modulus greater than or equal to 1. By assumption, the {{1},{2,3,4}} -paving of A
has norm greater than or equal to 1. Thus, ‖A{2,3,4}‖ � 1. By Lemma 7.1.6, ‖A‖� μ .

Since the choice of A was arbitrary, β2(M0
4(R)sa) � 1

μ � 0.5577. �
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REMARK 7.2.3. The third and fourth entries in the fourth column of Table 1.4.3
were already established by Propositions 6.2.3 and 6.2.4, respectively.

7.3. Computation of 3 -paving parameters

The following proposition establishes the first entry of the second column of Table
1.4.2:

PROPOSITION 7.3.1. β3(M0
4(R)sa) = 1√

5
≈ .4472 .

Proof. Let

A =

⎡
⎢⎢⎣

0 a b c
a 0 d e
b d 0 f
c e f 0

⎤
⎥⎥⎦ ∈ M

0
4(R)sa,

with α3(A) = 1. We aim to show that ‖A‖ �
√

5. By assumption, every (1,1,2)-
paving of A has norm greater than or equal to 1. Thus, every 2-compression of A
has norm greater than or equal to 1, i.e. |a|, |b|, |c|, |d|, |e|, | f | � 1. Conjugating by a
diagonal orthogonal matrix, if necessary, we may assume a,b,c � 0. Permuting the
indices 2, 3 , and 4, if necessary, we may assume d and e have the same sign. Finally,
applying Remark 7.1.3, if necessary, we may assume d,e � 0. Thus, by Lemma 2.1.1,

‖A‖ � ‖A{1,2},{1,2,3,4}‖ =
∥∥∥∥
[
0 a b c
a 0 d e

]∥∥∥∥ �
∥∥∥∥
[
0 1 1 1
1 0 1 1

]∥∥∥∥ =
√

5.

Since the choice of A was arbitrary, β3(M0
4(R)sa) � 1√

5
. Since

β3

⎛
⎜⎜⎝
⎡
⎢⎢⎣

0 1 1 1
1 0 1 1
1 1 0 −1
1 1 −1 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠ =

1√
5
,

we see that β3(M0
4(R)sa) = 1√

5
. �

The following proposition establishes the second entry of the second column of
Table 1.4.2:

PROPOSITION 7.3.2. β3(M0
5(R)sa) = 1√

5
≈ .4472 .

Proof. By Proposition 7.3.1,

1√
5

= β3(M0
4(R)sa) � β3(M0

5(R)sa).

Now let A ∈ M
0
5(R)sa with α3(A) = 1. We aim to show that ‖A‖ �

√
5. Associate

a graph G = (V,E) with A as follows: V = {1,2, ...,5} and (i, j) ∈ E if and only if
‖A{i, j}‖ < 1. We may assume that G has the following properties:
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I. The graph
• • •

• •
is not a subgraph of G . Otherwise, A has a (1,2,2)-paving of norm less than 1,
contradicting α3(A) = 1.

II. By removing a vertex (and all associated edges) from G one cannot arrive at
the “edgeless” graph ({i, j,k, l}, /0) . Otherwise, α3(A{i, j,k,l}) � 1 (since ev-
ery (1,1,2)-paving has norm greater than or equal to 1) which implies that
‖A{i, j,k,l}‖ �

√
5 (Proposition 7.3.1). Then ‖A‖ � ‖A{i, j,k,l}‖ �

√
5 (and we

are done).

Checking [11, p. 8], we see that G must be

•

��
��

��
� • •

• •
Thus (after a permutation of the indices)

A =

⎡
⎢⎢⎢⎢⎣

0 • • a b
• 0 • c d
• • 0 e f
a c e 0 g
b d f g 0

⎤
⎥⎥⎥⎥⎦ ,

where “•” indicates an entry of modulus less than 1 and |a|, |b|, |c|, |d|, |e|, | f |, |g| � 1.
Conjugating by a diagonal orthogonal matrix, if necessary, we may assume b,d, f ,g �
0. Permuting the indices 1, 2 , and 3, if necessary, we may assume a and c have the
same sign. Finally, by Remark 7.1.3, we may assume a,c � 0. Thus (by Lemma 2.1.1)

‖A‖ � ‖A{4,5},{1,2,4,5}}‖ =
∥∥∥∥
[
a c 0 g
b d g 0

]∥∥∥∥ �
∥∥∥∥
[
1 1 0 1
1 1 1 0

]∥∥∥∥ =
√

5.

Since the choice of A was arbitrary, β3(M0
5(R)sa)� 1√

5
, and so β3(M0

5(R)sa)= 1√
5
. �

The following proposition establishes the third entry of the second column of Table
1.4.2:

PROPOSITION 7.3.3. β3(M0
6(R)sa) = 2√

17
≈ .4851 .

Proof. Let A ∈ M
0
6(R)sa , with α3(A) = 1. We aim to show that ‖A‖ �

√
17
2 ≈

2.0616. Associate a graph G = (V,E) with A as follows: V = {1,2, ...,6} and (i, j) ∈
E if and only if ‖A{i, j}‖ < 1. We may assume that G has the following properties:
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I. The graph
• • •

• • •
is not a subgraph of G . Otherwise, A has a (2,2,2)-paving of norm less than 1,
contradicting α3(A) = 1.

II. G has no isolated vertices. Otherwise, if vertex i is isolated, then the i th row
(and column) of A has five entries of modulus greater than or equal to 1, which
implies ‖A‖ �

√
5 >

√
17
2 (and we are done).

III. By removing two vertices (and all associated edges) from G , one cannot arrive
at the “edgeless” graph ({i, j,k, l}, /0) . Otherwise, α3(A{i, j,k,l}) � 1 (since every
(1,1,2)-paving has norm greater than or equal to 1) which implies ‖A{i, j,k,l}‖ �√

5 (Proposition 7.3.1). Then ‖A‖� ‖A{i, j,k,l}‖ �
√

5 >
√

17
2 (and we are done).

IV. G is not the graph
i k m

j

��������
l n

where a dotted line indicates an edge which may or may not be there. Oth-
erwise, α3(A{i, j,l,m,n}) � 1 (see the proof of Proposition 3.3.3), which implies

‖A{i, j,k,l,m}‖ �
√

5 (Proposition 7.3.2). Then ‖A‖ � ‖A{i, j,k,l,m}‖ �
√

5 >
√

17
2

(and we are done).

Checking [11, p. 9-11], we see that G must be

• • •

•

������� •

������� •
Thus (up to a permutation of the indices)

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 • • � � �
• 0 • � � �
• • 0 � � �
� � � 0 • •
� � � • 0 •
� � � • • 0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

where “•” indicates an entry of modulus less than 1 and “�” indicates an entry of
modulus greater than or equal to 1. Since the ({1,2,3},{4},{5,6})-paving of A has
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norm greater than or equal to 1 and ‖A{5,6}‖ < 1, it must be that ‖A{1,2,3}‖ � 1. Like-

wise, ‖A{4,5,6}‖ � 1. By Corollary 7.1.5, ‖A‖ �
√

17
2 . Since the choice of A was

arbitrary, β3(M0
6(R)sa) � 2√

17
. Since

β3

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1/2 1/2 1 1 1
1/2 0 1/2 1 −1 −1
1/2 1/2 0 −1 −1 1
1 1 −1 0 1/2 −1/2
1 −1 −1 1/2 0 1/2
1 −1 1 −1/2 1/2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠ =

2√
17

,

we have that β3(M0
6(R)sa) = 2√

17
. �

REMARK 7.3.4. The fourth, fifth, and sixth entries of the second column of Table
1.4.2 follow from Propositions 6.3.4, 6.3.5, and 6.3.6, respectively.

8. Paving self-adjoint circulants

In this section we establish the third (and last) column of Table 1.4.2 and the fifth
(and last) column of Table 1.4.3.

8.1. Computation of 2-paving parameters

The following proposition establishes the first entry of the last column of Table
1.4.3:

PROPOSITION 8.1.1. β2(M0
3(C)�,sa = 1√

3
≈ .5774 .

Proof. Let

A =

⎡
⎣0 a a

a 0 a
a a 0

⎤
⎦ ∈ M

0
3(C)�,sa,

with α2(A) = 1. We aim to show that ‖A‖ �
√

3 ≈ 1.7321. Since the {{1,2},{3}} -
paving of A has norm greater than or equal to 1, |a| � 1. Thus (by Lemma 6.1.4)

6 � ‖A‖2
HS � 2‖A‖2,

which implies ‖A‖ �
√

3. Since the choice of A was arbitrary, β2(M0
3(C)�,sa) � 1√

3
.

Since

β2

⎛
⎝
⎡
⎣ 0 i −i
−i 0 i
i −i 0

⎤
⎦
⎞
⎠ =

1√
3
,

we see that β2(M0
3(C)�,sa) = 1√

3
. �

The following proposition establishes the second entry of the last column of Table
1.4.3:
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PROPOSITION 8.1.2. β2(M0
4(C)�,sa) = 1

1+
√

2
≈ .4142 .

Proof. Let

A =

⎡
⎢⎢⎣

0 a b a
a 0 a b
b a 0 a
a b a 0

⎤
⎥⎥⎦ ∈ M

0
4(C)�,sa,

with α3(A) = 1. We aim to show that ‖A‖ � 1 +
√

2 ≈ 2.4142. By Lemma 5.2.2,
|a|, |b|� 1. Let a = reiθ , where r � 1 and θ ∈ R . By Equation (1),

‖A‖ = max{|az3 +bz2 +az| : z = ±1,±i}
= max{2r|cos(θ )|+ |b|,2r|sin(θ )|+ |b|}
� max{2|cos(θ )|+1,2|sin(θ )|+1}� 1+

√
2.

Since the choice of A was arbitrary, β3(M0
4(C)�,sa) � 1

1+
√

2
. Since

β3

⎛
⎜⎜⎝
⎡
⎢⎢⎣

0 eπ i/4 1 e−π i/4

e−π i/4 0 eπ i/4 1
1 e−π i/4 0 eπ i/4

eπ i/4 1 e−π i/4 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠ =

1

1+
√

2
,

we have that β3(M0
4(C)�,sa) = 1

1+
√

2
. �

The following proposition establishes the third entry of the last column of Table
1.4.3:

PROPOSITION 8.1.3. β2(M0
5(C)�,sa) = 2√

5
≈ .8944 .

Proof. By Proposition 6.2.3, β2(M0
5(C)�,sa) � β2(M0

5(C)sa) � 2√
5
. Since

β2

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

0 e2π i/5 e−π i/5 eπ i/5 e−2π i/5

e−2π i/5 0 e2π i/5 e−π i/5 eπ i/5

eπ i/5 e−2π i/5 0 e2π i/5 e−π i/5

e−π i/5 eπ i/5 e−2π i/5 0 e2π i/5

e2π i/5 e−π i/5 eπ i/5 e−2π i/5 0

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ =

2√
5
,

we have that β2(M0
5(C)�,sa) = 2√

5
. �

REMARK 8.1.4. The sixth entry of the last column of Table 1.4.3 follows from
Proposition 6.2.4.
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8.2. Computation of 3-paving parameters

The following proposition establishes the first entry of the last column of Table
1.4.2:

PROPOSITION 8.2.1. β3(M0
4(C)�,sa) = 1

1+
√

2
≈ .4142 .

Proof. Proposition 8.1.2 and Lemma 5.2.2. �

The following proposition establishes the second entry of the last column of Table
1.4.2:

PROPOSITION 8.2.2. β3(M0
5(C)�,sa) = 1√

5
≈ .4472 .

Proof. Let

A =

⎡
⎢⎢⎢⎢⎣

0 a b b a
a 0 a b b
b a 0 a b
b b a 0 a
a b b a 0

⎤
⎥⎥⎥⎥⎦ ∈ M

0
5(C)�,sa,

with α3(A) = 1. We aim to show that ‖A‖ �
√

5 ≈ 2.2361. Since the {{1,2},{3,4},
{5}} -paving of A has norm greater than or equal to 1, |a| � 1. Likewise, since the
{{1,3},{2,4},{5}} -paving of A has norm greater than or equal to 1, |b| � 1. By
Lemma 6.1.4,

20 � ‖A‖2
HS � 4‖A‖2,

which implies ‖A‖ �
√

5. Since the choice of A was arbitrary, β3(M0
5(C)�,sa) � 1√

5
.

Since

β3

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

0 e2π i/5 e−π i/5 eπ i/5 e−2π i/5

e−2π i/5 0 e2π i/5 e−π i/5 eπ i/5

eπ i/5 e−2π i/5 0 e2π i/5 e−π i/5

e−π i/5 eπ i/5 e−2π i/5 0 e2π i/5

e2π i/5 e−π i/5 eπ i/5 e−2π i/5 0

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ =

1√
5
,

we have that β3(M0
5(C)�,sa) = 1√

5
. �

The following proposition establishes the third entry of the last column of Table
1.4.2:

PROPOSITION 8.2.3. β3(M0
6(C)�,sa) � 1

δ ≈ 0.4495 , where δ := 2cos(5π/12)+
1+ cos(π/4)≈ 2.2247 .
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Proof. Let

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 a b c b a
a 0 a b c b
b a 0 a b c
c b a 0 a b
b c b a 0 a
a b c b a 0

⎤
⎥⎥⎥⎥⎥⎥⎦ ∈ M

0
6(C)�,sa,

with α3(A) = 1. We aim to show that ‖A‖ � cos(π/4)+2cos(5π/12)+1≈ 2.2247.
Arguing as in the proof of Proposition 5.4.2, we see that |a|, |c| � 1 and |b| � 1

2 .
Replacing A by −A , if necessary, we may assume that c � 0. Now by Equation (1),

‖A‖ = max{|az5 +bz4 + cz3 +bz2 +az| : z6 = 1}
= max{|2Re(az5)+2Re(bz4)+ cz3| : z6 = 1}
= max{|2Re(az2)+2Re(bz)+ c| : z6 = 1}
= max

{
|2Re(az2)+ c|+2|Re(bz)| : z = 1,e2π i/3,e4π i/3

}
.

For k ∈Z/24Z , define Wk =
{

reiθ : r � 0, θ ∈
[

kπ
12 , (k+1)π

12

]}
. Clearly a∈Wk implies

ae2π i/3 ∈Wk+8 and ae4π i/3 ∈Wk+16 .

Case 1: Suppose a /∈ Wk for any k = 3,4,11,12,19,20. Then there exists a z ∈
{1,e2π i/3,e4π i/3} such that az2 ∈Wj for some j = 0,1,2,21,22,23. Then

‖A‖ � |2Re(az2)+ c|� 2cos(π/4)+1≈ 2.4142 > δ .

Case 2: Suppose a∈Wk for some k = 3,11,19. Then there exists a z∈{1,e2π i/3,e4π i/3}
such that az2 ∈W3 .

Case 2.1: Suppose bz /∈Wj for any j = 5,6,17,18. Then

‖A‖ � |2Re(az2)+ c|+2|Re(bz)|
� 2cos(π/3)+1+ cos(5π/12)≈ 2.2588 > δ .

Case 2.2: Suppose bz ∈Wj for some j = 5,6,17,18. Set w = ze2π i/3 . Then
w∈{1,e2π i/3,e4π i/3} , aw2 ∈W19 , and bw∈Wi for some i = 1,2,13,14.
Thus

‖A‖ � |2Re(aw2)+ c|+2|Re(bw)|
� 2cos(5π/12)+1+ cos(π/4) = δ .

Case 3: Suppose a ∈Wk for some k = 4,12,20. Then arguing as in Case 2, we can
show that ‖A‖ � δ . �

REMARK 8.2.4. The fourth, fifth, and sixth entries of the last column of Table
1.4.2 follow from Propositions 6.3.4, 6.3.5, and 6.3.6, respectively.
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Appendix – Worst-known 3-paver

The worst-known 3-paver A is a 13×13 complex circulant obtained by computer
experimentation. The first column of A is (approximately) equal to

�A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−0.055522930135728+0.149717916185917i
−0.085982594349687−0.167559358391542i
0.012524801908532−0.005174683700118i
0.211884289354117−0.450037958090483i
0.181822822115818+0.190955159891972i
0.351168610117535−0.052615522797929i
0.003304818602041+0.071138805339765i
−0.242643523991422+0.113229168904351i
0.147040327638516+0.000763498011691i
0.306857154117503−0.502250996138940i
−0.333648956442746−0.012814790427734i
−0.255497016354932−0.470756522956261i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We have that A∗A ≈ 1.3474I13 , i.e. A is (approximately) a scalar multiple of a uni-
tary. The eigenvalues of A are (somewhat) uniformly distributed on the circle of radius√

1.3474, except for a (nearly) multiplicity-two eigenvalue near the negative real axis.
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