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Abstract. A classical finite dimensional result of Berman and Plemmons says that a nonnegative
matrix with a nonnegative reflexive generalized inverse has a nonnegative rank factorization. In
this article, we propose a notion of nonnegative rank factorization that is applicable in the infinite
dimensional setting over more general cones and prove an infinite dimensional generalization of
Berman and Plemmons’s result. As a consequence, a simpler proof of the finite dimensional
result (on the existence of nonnegative rank factorizations) is obtained. Characterizations of
nonnegativity of the group inverse (when it exists) in infinite dimensions are also presented.

1. Introduction

A non-singular matrix whose inverse has nonnegative entries is called inverse pos-
itive or monotone. Such matrices were first studied by Collatz [10] in connection with
iterative methods to solve PDEs. A natural question arises as to what happens when
A is singular or more generally, rectangular. In this context, nonnegativity of various
generalized inverses were investigated and various other notions of monotonicity were
proposed [3, 4]. Some of the commonly used notions are rectangular monotonicity (ex-
istence of a nonnegative left inverse), semi-monotonicity (nonnegativity of the Moore-
Penrose inverse) and group monotonicity (nonnegativity of the group inverse, when it
exists). Many of the above mentioned notions of monotonicity have been used pro-
foundly in areas like linear economic models, numerical analysis, eigenvalue problems
etc., to name a few. A good source of reference on this subject matter is the mono-
graph by Berman and Plemmons [5]. Not much work has been done in the infinite
dimensional setting, in relation to nonnegativity of various generalized inverses. For
some recent work on this topic, refer [16, 21, 22, 23, 29, 30, 32]. Very little is known
concerning nonnegativity of reflexive generalized inverses in infinite dimensions. A
generalization of a finite dimensional result of Mangasarian was obtained by Kulkarni
and Sivakumar (Theorem 2.16, [21]). Some interesting results were also obtained by
Jayaraman and Sivakumar recently (Theorems 3.16, 3.26 and 3.27, [16]). Recently,
Sivakumar applied nonnegative Moore-Penrose inverses to a special class of optimiza-
tion problems in infinite dimensions [31].
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Perhaps the most prominent use of nonnegative matrices having nonnegative re-
flexive generalized inverses is in deriving a nonnegative rank factorization. For A ∈
Rm×n , the set of all m× n matrices over R , a factorization A = BC such that B ∈
Rm×r,C ∈ Rr×n and r = rank(A) is called a rank factorization of A . If B and C are
entrywise nonnegative, then such a factorization is called a nonnegative rank factoriza-
tion. Berman and Plemmons posed the problem of characterizing those nonnegative
matrices that admit a nonnegative rank factorization [2]. This question was answered
by Thomas [35], who characterized the existence of a nonnegative rank factorization
using simplicial cones and went on to prove that every nonnegative matrix with rank
1 or 2 has a nonnegative rank factorization. Thomas also gave an example of a non-
negative matrix that does not admit any nonnegative rank factorization. The matrix

A =

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0

⎞
⎟⎟⎠ , identified by Thomas, has no nonnegative rank factorization. Later

on, a large class of matrices was constructed by Jeter and Pye [19] such that no member
of the class possessed a nonnegative rank factorization. In fact, the matrix A above
falls into that class. They also obtained necessary and sufficient conditions for the ex-
istence of nonnegative rank factorizations in terms of polar cones [20]. It is a well
known result due to Berman and Plemmons that if a nonnegative matrix A has a non-
negative reflexive generalized inverse then, A has a nonnegative rank factorization [3].
The proof given by Berman and Plemmons (Theorem 4, [3]) uses a particular represen-
tation of nonnegative idempotent matrices due to Flor [12]. A more detailed work on
this topic was later on carried out by Tam, involving simpliciality of the cones A(Rn

+)
and R(A)∩Rm

+ [33, 34]. Campbell and Poole also discussed methods of computing a
nonnegative rank factorization [6]. The importance of nonnegative rank factorizations
was brought out recently in a paper by Jayaraman and Sivakumar [17] in disproving a
conjecture of Peris and Subiza concerning weak monotonicity of a nonnegative matrix
A and the existence of a {1}-inverse that is nonnegative on the range space of A . (Refer
Theorem 4 and the paragraph following it, [25].) Nonnegative rank factorization was
also used by Jayaraman and Sivakumar in deriving certain structural results concerning
weak monotone operators in infinite dimensional spaces [16]. Interestingly, Jain and
Tynan [14] used the nonnegativity of A†A and/or AA† to obtain nonnegative rank fac-
torizations of a nonnegative matrix A over the nonnegative orthants of Rn . Interesting
contributions were also made by Chen [9] in generalizing certain results of Richman
and Schneider [27] on semigroups of nonnegative matrices.

A notion of nonnegative rank factorization in the infinite dimensional setting and
also over more general cones was proposed recently by Jayaraman and Sivakumar [16]
and was used to study properties of weak monotone operators that possessed such fac-
torizations. In this article, we prove the existence of a nonnegative rank factorization
for nonnegative operators A ∈ B(H1,H2) (nonnegative with respect to two self-dual
cones P1,P2 ) and having a nonnegative reflexive generalized inverse. Our result thus
generalizes the existing finite dimensional result due to Berman and Plemmons over the
usual nonnegative orthant. We also give a simpler proof of the same. Finally, we apply
our results on nonnegative rank factorization to characterize nonnegativity of the group
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inverse in infinite dimensions, when it exists.
The paper is organised as follows. The next section contains the basic defini-

tions and notations used throughout the manuscript. The main results are presented in
Section 3. A notion of nonnegative rank factorization that is applicable in the infinite
dimensional setting and also over more general cones is introduced in Definition 3.3.
The importance of self-dual cones in the definition of nonnegative rank factorization
is brought out next. An important result (Theorem 3.5) due to Sivakumar concerning
obtuseness of the image cone A(P) is stated next. A generalization of Sivakumar’s re-
sult seems elusive if we replace the assumption on nonnegativity of A†A by that of XA
for some reflexive generalized inverse X of A . However, when X is nonnegative (with
respect to two self-dual cones), obtuseness of A(P) can be deduced. We prove this re-
sult (Theorem 3.11) after proving a preliminary result (Lemma 3.9). As a consequence
of Theorem 3.11, a generalization of Berman and Plemmons’s result on the existence
of a nonnegative rank factorization is presented (Theorem 3.12). Characterizations of
existence and nonnegativity of the group inverse in terms of rank and nonnegative rank
factorizations, respectively, are presented in the end (Theorems 3.20 and 3.21), with a
view to generalize the finite dimensional results of Berman and Plemmons.

2. Notations, Definitions and Preliminaries

Let H1 and H2 be real Hilbert spaces. We shall denote the set of all bounded
operators between H1 and H2 , by B(H1,H2) . For A ∈ B(H1,H2) the range and null
spaces will be denoted by R(A) and N(A) , respectively.

A subset P of a vector space V is called a cone if αP⊆ P,∀ α � 0 and P+P = P .
P is said to be pointed if P∩−P = {0} and generating if V = P−P .

DEFINITION 2.1. Let V1 and V2 be vector spaces with cones P1 and P2 , respec-
tively. A linear map A : V1 → V2 is said to be nonnegative, if A(P1) ⊆ P2 .

We shall henceforth use the phrase A is (P1,P2 )-nonnegative, to denote nonnega-
tivity of A with respect to two cones P1 and P2 . For a cone P in a Hilbert space H ,
the dual cone of P , denoted by P∗ , is defined by

P∗ := {x ∈ H : 〈x,y〉 � 0 ∀ y ∈ P} .

A cone P is said to be acute if 〈x,y〉 � 0 for all x,y ∈ P and obtuse if P∗ ∩{span(P)}
is acute [8]. In particular, for the image cone A(P) , obtuseness is defined to be acute-
ness of (A(P))∗ ∩R(A) [8]. According to Novikoff [24], a cone P in a Hilbert space is
said to be acute if P ⊆ P∗ and obtuse if P∗ ⊆ P . Therefore for the image cone A(P) ,
obtuseness should be replaced by the condition (A(P))∗ ∩R(A) ⊆ A(P) . Notice that
when A is invertible, the above inclusion becomes (A(P))∗ ⊆ A(P) and coincides with
Novikoff’s definition. This is not clear when the operator is singular. The inclusion
(A(P))∗ ∩R(A) ⊆ A(P) always implies acuteness of (A(P))∗ ∩R(A) whereas, the re-
verse implication requires nonnegativity of A†A . This was pointed out by Sivakumar
(Lemma 3.11, [32]). A cone is self-dual if it is both acute and obtuse. The nonnegative
orthant R

n
+ of the Euclidean space R

n and the standard cone in �2 , denoted by �2
+
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and defined by �2
+ := {x = (xi) ∈ �2 : xi � 0 ∀ i} are examples of pointed, self-dual

(closed) generating cones. Rn
+ has non-empty interior, while �2

+ has empty interior.

DEFINITION 2.2. Given an m×n real /complex matrix A , its Moore-Penrose in-
verse, denoted by A† , is the unique n×m matrix such that AXA = A,XAX = X ,(AX)∗ =
AX ,(XA)∗ = XA .

For A ∈ B(H1,H2) consider the following four equations for X ∈ B(H2,H1) :

AXA = A (2.1)

XAX = X (2.2)

(AX)∗ = AX (2.3)

(XA)∗ = XA (2.4)

It is well known that a solution exists and is unique. Such an X is denoted by A†

and is called the Moore-Penrose inverse of A . Also, A† is bounded iff R(A) is closed
[7].

For a non-empty subset λ of {1,2,3,4} , X ∈ B(H2,H1) is called a λ -inverse
of A , if X satisfies those equations corresponding to each element of λ . For example,
X ∈B(H2,H1) is called a {1,2}-inverse of A ∈B(H1,H2) , if X satisfies the equations
AXA = A and XAX = X . Again, such a transformation exists as a bounded operator if
and only if R(A) is closed [7]. For a non-empty subset λ of {1,2,3,4}, we say that A
is λ -monotone if A has a nonnegative λ -inverse.

ASSUMPTIONS. We shall confine ourselves to bounded operators with closed
range throughout this article.

3. Main results

The notion of rank factorization can be posed over the infinite dimensional setting
as well. Although there is no notion of rank in the infinite dimensional case, we retain
the term rank to compare with the existing finite dimensional notion. The definition is
given below.

DEFINITION 3.1. A ∈ B(H1,H2) is said to have a rank factorization if there ex-
ists a Hilbert space H , operators B ∈ B(H,H2) and C ∈ B(H1,H) such that A = BC ,
with N(B) = {0} , R(C) = H .

Note that if A = BC is a rank factorization, then R(B) and R(C) are closed by
definition. It is well known that any finite matrix over R or C always has a rank
factorization [1]. We prove below that any bounded linear map with closed range has a
rank factorization.

LEMMA 3.2. (Lemma 3.3, [16]) Every A ∈ B(H1,H2) with closed range has a
rank factorization A = BC.
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Proof. Since we are assuming that R(A) is closed, R(A) is itself a Hilbert space.
Let us denote this space by H . Let C : H1 →H be defined by Cx = Ax and let B : H ↪→
H2 be the inclusion operator. Then B is injective, C is surjective and A = BC . �

It should be remarked that any rank factorization is isomorphic to the one con-
structed above [7]. (Also refer Theorem 2, [26].) We now define the notion of a non-
negative rank factorization over general cones in the infinite dimensional setting.

DEFINITION 3.3. A ∈B(H1,H2) is said to have a nonnegative rank factorization
A = BC , if in addition to being a rank factorization, P1 , P2 and P are self-dual cones
in H1 , H2 and H , respectively, such that B(P) ⊆ P2 and C(P1) ⊆ P .

REMARK 3.4. There are two primary reasons for imposing self-duality of the
cones in Definition 3.3. First, the existing notion in finite dimensions should follow
as a particular case, which it does. Second, if A has a nonnegative rank factorization
A = BC , then we would like A∗ to have the nonnegative rank factorization A∗ =C∗B∗ .
It is a known fact that if P1 and P2 are self-dual cones in Hilbert spaces H1 and H2 ,
respectively, then A∈B(H1,H2) is (P1,P2 )-nonnegative if and only if A∗ ∈B(H2,H1)
is (P2,P1 )-nonnegative.

As stated earlier, a well known result due to Berman and Plemmons says that if a
nonnegative matrix A is {1,2}-monotone, then it has a nonnegative rank factorization.
The following theorem characterizes obtuseness of the image cone using nonnegativity
of the Moore-Penrose inverse.

THEOREM 3.5. (Theorem 3.17, [32]) Let A ∈ B(H1,H2) have closed range.
Further, assume that A†A(P) ⊆ P, where P is a closed cone in H1 . Then, the fol-
lowing are equivalent :

(1) (A†)∗(P∗) is acute.

(2) (A∗A)†(P∗) ⊆ P+N(A) .

(3) A(P) is obtuse.

(4) For every x∈H2 , there exists y∈H2 such that y±x∈ A(P) and ||y||� ||x|| .

It is not hard to prove that if A ∈ B(H1,H2) is nonnegative with respect to self-
dual cones P1 and P2 , then A(P1) is an acute cone in R(A) . Therefore, it follows from
Theorem 3.5 that, in the presence of self-dual cones P1 and P2 , nonnegativity of A†

guarantees self-duality of the image cone A(P1) in R(A) . As far as nonnegative rank
factorizations are concerned, this is not a desirable result. Even over the nonnegative
orthants nonnegativity of a reflexive generalized inverse is enough, as was observed
by Berman and Plemmons. It is not clear if the above theorem can be generalized by
replacing nonnegativity of A†A by that of XA for some reflexive generalized inverse X
of A . Nevertheless, obtuseness of the cone A(P) can be deduced from nonnegativity
of X , as we prove below. The following results will be used.
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LEMMA 3.6. Let A ∈ B(H1,H2) and b ∈ H2 be such that the equation Ax = b
is consistent. Then, the general solution is given by x = Tb+ z for some {1}-inverse
T ∈ B(H2,H1) and z ∈ N(A) .

THEOREM 3.7. (Proposition 8, [11]) Let A : H1 →H2 be a linear operator. Then
the following statements are equivalent:

(1) T is a {1,2}-inverse of A.

(2) AT is idempotent and R(T )⊕N(A) = H1 .

(3) TA is idempotent and R(A)⊕N(T ) = H2 .

(4) AT is idempotent, R(AT ) = R(A) and N(AT ) = N(T ) .
(5) TA is idempotent, R(TA) = R(T ) , and N(TA) = N(A) .

LEMMA 3.8. (Lemma 3.1, [32]) u ∈ (A(P))∗ ⇒ A∗u ∈ P∗ .

LEMMA 3.9. Let P1 and P2 be self-dual cones in Hilbert spaces, respectively. Let
X ∈ B(H2,H1) be a reflexive generalized inverse of A ∈ B(H1,H2) such that X(P2) ⊆
P1 . Then P1∩R(A∗) ⊆ A∗A(P1)+N(A) .

Proof. Let y = A∗x ∈ P1,v := X∗y,u := Xv . Since X(P2) ⊆ P1 and the cones are
self-dual, we see that X∗(P1)⊆ P2 . Therefore, v∈P2,u∈ P1 . From Xv = u , we see that
v = Au+ p, p ∈ N(X) ; that is, p = v−Au ∈ R(A)∩N(X) and so, p = 0 (by Theorem
3.7). Thus X∗y = Au . From this, we get y = A∗Au+ q,q ∈ N(A) (again, by Theorem
3.7). Therefore, P1∩R(A∗) ⊆ A∗A(P1)+N(A) . �

The following result on obtuseness of the image cone A(P) was obtained by
Sivakumar.

LEMMA 3.10. (Lemma 3.11, [32]) Let A†A(P) ⊆ P. Then (A(P))∗ ∩R(A) is
acute if and only if (A(P))∗ ∩R(A) ⊆ A(P) .

In the proof of Theorem 3.10, deriving acuteness of (A(P))∗ ∩ R(A) from the
inclusion (A(P))∗ ∩R(A) ⊆ A(P) does not require nonnegativity of A†A . The crux of
the following theorem is that (A(P))∗ ∩R(A) ⊆ A(P) can actually be deduced from
nonnegativity of X .

THEOREM 3.11. Let A ∈ B(H1,H2) have closed range. Let P1,P2 be self-dual
cones in H1,H2 , respectively. Further, assume that X(P2) ⊆ P1 , where X is a reflexive
generalized inverse of A. Then A(P1) is obtuse.

Proof. Let y ∈ A(P1)∗ ∩R(A) . Then, y = Ax and A∗y ∈ P1 . Thus A∗y ∈ P1 ∩
R(A∗) . By Lemma 3.9, A∗y = A∗Au+z,u∈P1,z∈N(A) . This implies, y = (A†)∗A∗Au+
w = Au+w,w ∈ N(A∗) (by Lemma 3.6). Since y ∈ R(A) , we have that w = 0. There-
fore, y ∈ A(P1) and hence, (A(P1))∗ ∩R(A) ⊆ A(P1) . It now follows from the suffi-
ciency part of Theorem 3.10 that the cone A(P1) is obtuse. �

As a consequence, we obtain the following generalization of Berman and Plem-
mons’s result.
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THEOREM 3.12. Let A ∈ B(H1,H2) have closed range where, H1 and H2 are
equipped wih self-dual cones P1 and P2 , respectively. Assume that A(P1)⊆ P2 and that
A has a reflexive generalized inverse X ∈ B(H2,H1) such that X(P2) ⊆ P1 . Then, A
has a nonnegative rank factorization.

Proof. Nonnegativity of A and self-duality of the cones imply that A(P1) is acute.
Theorem 3.11 guarantees obtuseness of A(P1) . The factorization constructed in Lemma
3.2 then yields a nonnegative rank factorization of A . �

Theorem 3.12 not only generalizes Berman and Plemmons’s result to infinite di-
mensions (and also over more general cones), it also gives a simple proof of the existing
finite dimensional version. The finite dimensional version over the nonnegative orthants
assumes that the Hilbert space H is R

r and the underlying cone is R
r
+ , whereas the

above proof allows for more general cones in the Hilbert space R(A) . The following
example illustrates our results.

EXAMPLE 3.13. Let A be the bounded operator on �2 given by Ax = (2(x1 +
x2),2(x1 + x2),x3,x4,x5,0, . . .) . A has as a reflexive generalized inverse the opera-
tor T ∈ B(�2) given by Tx = (x1/2,0,x3,x4,x5,0, . . .) . Notice that both A and T
are (�2

+, �2
+ )-nonnegative. Therefore A(�2

+) is self-dual (by Theorem 3.12) and con-
sequently, the canonical factorization as constructed in Lemma 3.2 gives a nonneg-
ative rank factorization of A . Observe that A = B∗B where, B : �2 −→ R6 is de-
fined by Bx = (x1 + x2,x3,x1 + x2,x5,x4,0)t . B also has a nonnegative rank factor-
ization B = UV over the usual cones in Rn and �2 where, U : R4 −→ R6 is given
by Ux = (x1,x2,x1,x4,x3,0)t and V : �2 −→ R4 is given by Vx = (x1 + x2,x3,x4,x5)t .
Then, B∗ has a nonnegative rank factorization given by B∗ = V ∗U∗ . Observe that the
matrix U∗U is a 4×4 non-singular matrix with nonnegative entries. Therefore, A has
a nonnegative rank factorization given by A = V ∗(U∗U)V .

Applications to group monotonicity

We now apply Theorem 3.12 to characterize group monotonicity in infinite dimen-
sions. Recall that the group inverse of A is the unique operator X such that AXA =
A,XAX = X and AX = XA . Such an X , if it exists, is unique and is denoted by A# .
A# ∈ B(H) if and only if R(A) is closed. It is a well known result that in finite dimen-
sions, A# exists if and only if N(A) = N(A2) ; equivalently, R(A) = R(A2) [1]. How-
ever, in the infinite dimensional setting, N(A) = N(A2) does not imply R(A) = R(A2)
(for example, the right shift operator on �2 ). It was proved by Robert that in infinite
dimensional Hilbert spaces, A# exists if and only if N(A) = N(A2) and R(A) = R(A2)
(Theorem 4, [28]). It is also known that if a square matrix A has a rank factorization
A = BC , then A# exists if and only if CB is invertible, in which case A# = B(CB)−2C .
This is also true in infinite dimensions and we prove this below.

LEMMA 3.14. Let A ∈ B(H) have a rank factorization A = BC. Then the group
inverse A# of A exixts if and only if CB is invertible.
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Proof. Suppose CB is invertible. It then follows easily that X = B(CB)−2C is a
{1,2}-inverse of A that commutes with A . Thus A# exists. Conversely, suppose A#

exists. Then N(A) and R(A) are complementary subspaces of H (Theorem 4, [28]).
Suppose CBx = 0 Then, Bx ∈ N(C) = N(A) . Also, Bx ∈ R(B) = R(A) . It then follows
that x = 0. Thus CB is injective. Note that since A has a rank factorization, there
exists a Hilbert space H1 such that B ∈ B(H1,H) , C ∈ B(H,H1) with A = BC . Now
let y ∈ H1 . Since C is surjective, there exists x ∈ H such that Cx = y . Let x = x1 + x2

where, x1 ∈ R(A) = R(B),x2 ∈ N(A) = N(C) . Then, Cx =Cx1 . Since x1 ∈ R(B) , there
exists z ∈ H1 such that Cx1 = CBz which implies y = CBz , proving the surjectivity of
CB . Therefore CB is invertible. �

We now give the definition of an operator being group monotone.

DEFINITION 3.15. A ∈ B(H) is said to be group monotone if the group inverse
A# of A exists and is (P,P)-nonnegative, where P is a cone in H .

The following two results due to Berman and Plemmons characterize group mono-
tonicity over the nonnegative orthants in terms of nonnegative rank factorizations.

THEOREM 3.16. (Theorem 2, [4]) Let A be a nonnegative matrix. Then A is
group monotone if and only if A has a nonnegative rank factorization A = BC, where
CB is monomial. In this case every such factorization has this property.

THEOREM 3.17. (Theorem 3, [4]) Let A be a nonnegative matrix. Then A = A#

if and only if A has a nonnegative rank factorization A = BC such that CB = (CB)−1 .
In this case every such rank factorization has this property.

Before proving generalizations of the above, we state the definition of a monomial
operator.

DEFINITION 3.18. Let H1,H2 be Hilbert spaces with cones P1,P2 , respectively.
A∈B(H1,H2) is said to be monomial if A is invertible and in addition, A and A−1 are
nonnegative with respect to (P1,P2 ) and (P2,P1 ), respectively.

We now present below a generalization of the Theorem 3.16 to infinite dimensions.
Let us recall that an operator A ∈ B(H1,H2) is said to be (P1,P2 ) monotone if Ax ∈
P2 ⇒ x ∈ P1 and (P1,P2 ) weak monotone if Ax ∈ P2 ⇒ x ∈ P1 +N(A) . It can be easily
proved that if A is {1,2}-monotone, then it is weak monotone (Lemma 3.6, [16]). The
proof of the following theorem uses the following result due to Kulkarni and Sivakumar.
The following terminology will be used in the theorems that follow. We say that a
Hilbert space H equipped with a cone P has positive property with respect to P (P
for short), if it has an orthonormal basis {uα} such that uα ∈ P , ∀ α ∈ J , J being an
index set. Rn with the usual cone Rn

+ has property P . The standard basis {e1, ...,en}
of Rn satisfies ei ∈ Rn

+ ∀ i . �2 with its usual cone �2
+ := {x = (xi) ∈ �2 : xi � 0 ∀ i}

has property P .
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THEOREM 3.19. (Theorem 2.16, [21]) Let H1 and H2 be Hilbert spaces with
cones P1 and P2 , respectively with P1 generating and P2 self-dual. Assume that H1

has property P . Let A ∈ B(H1,H2) with N(A∗)+P2 closed. Then A is monotone if
and only if there exists a nonnegative operator X ∈ B(H2,H1) such that XA = I .

THEOREM 3.20. If A ∈ B(H) is (P,P)-nonnegative (P is a self-dual generating
cone in H ) and has a nonnegative rank factorization A = BC with CB monomial, then
A is group monotone. Conversely, assume that H has property P with N(A∗) + P
closed and A being group monotone. Then, CB is monomial.

Proof. We know that if A# exists, it is given by A# = B(CB)−2C . Since CB is
monomial, (CB)−1 is nonnegative. Thus, A# is nonnegative.

Conversely, suppose A is group monotone. Then, A has a nonnegative {1,2}-
inverse, namely, A# itself. Therefore, A is weak monotone and also has a nonnegative
rank factorization A = BC (by Theorem 3.12). From this, it follows that B is also weak
monotone and hence, monotone since it is injective. It now follows from Theorem
3.19 that B has a (P,A(P))-nonnegative left inverse, say X . Since A# exists, CB is
invertible. Also, CB is (A(P),A(P))-nonnegative. We also know that A# is given by
the formula A# = B(CB)−2C . Now, nonnegativity of A# implies that of B(CB)−2C .
Premultiplying by X and postmultiplying by B , we see that CB is monomial. �

Similarly, the following result can be obtained.

THEOREM 3.21. If A ∈ B(H) is (P,P)-nonnegative (P is a self-dual generating
cone in H ) and has a nonnegative rank factorization A = BC with CB = (CB)−1 , then
A is group monotone. Conversely, assume that H has property P , that N(A∗)+P is
closed and that A = A# . Then, CB = (CB)−1 .

Jain and Tynan [15] also studied nonnegative matrices A for which the group
inverse existed and such that AA# is nonnegative. Using this, they also obtained a
characterization of nonnegative group inverses. It should be mentioned that the no-
tion of nonnegativity of the group inverse of a matrix A over general polyhedral cones
was studied by Wall and Haynsworth [37, 38], with a view to generalize the results of
Berman and Plemmons. Their results were concerned with the existence of the group
inverse A# of a nonnegative matrix A such that A# = Ak for some positive integer k .
A generalization of Wall and Haynsworth’s results does not seem amenable to be ex-
tended to the infinite dimensional setting, as the notion of polyhedral cones does not
seem plausible.
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