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ON THE SPECTRUM OF TOEPLITZ OPERATORS

WITH QUASI–HOMOGENEOUS SYMBOLS

BARUSSEAU BENOIT

(Communicated by L. Rodman)

Abstract. In this paper, we fully describe the spectrum of a Toeplitz operator with quasi-homo-
geneous symbol and give formulas for the calculation of the spectral radius in the case where it
is maximal. Finally, Theorem 4 gives equivalent conditions on the quasi-homogeneous function
F to have ‖TF‖ = ‖F‖∞ . As a corollary we obtain some necessary and sufficient conditions for
such Toeplitz operators to verify the equality σ(TF) = F(�) .

1. Introduction

Let dA denote the normalized Lebesgue area measure on the unit disc � . The
Bergman space L2

a is the Hilbert space consisting of analytic functions which are con-
tained in L2(�, dA) . We recall some basic facts about L2

a . The scalar product of two
functions in L2(�,dA) is defined by

〈 f ,g〉 =
∫
�

f (z)g(z)dA(z).

The sequence (en)n∈� where en =
√

n+1zn , is an orthonormal basis of L2
a and L2

a

is an Hilbert space with a reproducing kernel Kz(w) = 1
(1−wz)2 . So, denoting PL2

a the

orthogonal projection from L2(�,dA) onto L2
a , for each f ∈ L2(�, dA) , for all z∈� ,

we have
PL2

a( f )(z) =
∫
�

f (w)Kz(w)dA(w).

For F ∈ L∞(�, dA) , we define the Toeplitz operator with symbol F , TF : L2
a −→ L2

a
by the equation

TF(g)(z) = PL2
a(Fg)(z) =

∫
�

F(w)g(w)Kz(w)dA(w).

We are particularly interested in a certain class of symbols: the bounded quasi-homo-
geneous functions defined and studied in [6] and [12]. We recall the definition in the
bounded case:
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DEFINITION 1. A function F ∈ L∞(�,dA) is said to be m-quasi-homogeneous if
there exists f ∈ L∞(0,1) and m ∈�∗ such that

∀z ∈�,F(z) = f (|z|)eimArg(z) (1)

In this case we write F ∼ ( f ,m) and f is the radial part of F . If (1) holds for m = 0,
F is said to be radial. Let us remark that ‖F‖∞ = ‖ f‖∞ .

For F ∈ L2(�,dA) , F(�) denotes the essential range of F defined by

F(�) = {z ∈� : ∀ε > 0, dA(F−1(D(z,ε)) > 0}

where D(z,ε) = {w ∈� : |w− z| < ε} .
Finally, for an operator T , we denote σ(T ) the spectrum of T , σe(T ) its essential

spectrum and ‖T‖e = infK∈K ‖T −K‖ , the essential norm of T .
In the following, we first show that the spectrum of TF is a closed disc for any

quasi-homogeneous symbol F . Then we give conditions for the spectral radius of TF

to be maximal, this means it is equal to ‖F‖∞ . These conditions depend on the Berezin
transform, the mean value of the radial part of F near the boundary of � , and other
quantities which are related to the compacity (see [1], [5], [13]).

Moreover, while solving our question we obtain equivalent conditions for TF to
verify ‖TF‖ = ‖F‖∞ . Remark that on the Hardy space, if F ∈ L∞(�) then we have
‖TF‖e = ‖TF‖= ‖F‖∞ (see [8]) . This implies that the only compact Toeplitz operators
on the Hardy space are the null ones. On the Bergman space, the same equality is true
considering [14] bounded harmonic functions over � . The double equality ‖TF‖e =
‖TF‖= ‖F‖∞ does not hold for all Toeplitz operators with quasi-homogeneousor radial
symbols. In fact, if F is a bounded quasi-homogeneous function then ‖TF‖e = ‖F‖∞
if and only if ‖TF‖ = ‖F‖∞ and so we see that there is no compact Toeplitz operator
with “maximal” norm.

In the final section, we answer the question: for which quasi-homogeneous symbol
F , is the equality σ(TF) = F(�) true? This question is quite natural because there is
an obvious link between the range of F and the spectrum of TF . Indeed, on the Hardy

space, �2 , if F is a continuous bounded function on � then σ(TF) = ̂F(�) the region
bounded by the closed curve F(�) (see [3]) and the essential spectrum is just F(�)
[11]. On the Bergman space, similar results have been obtained by G.McDonald and
C.Sundberg [7]. They show that if F is a bounded harmonic function continuous on
� then σe(TF) = F#(�) , where F# denotes the extension of F to � . Thus, if, in
addition, F is real valued then σ(TF) = σe(TF) = F(�) . Finally, if F is a bounded
analytic function then TF is just the associated multiplication operator, so it is easy to
prove that σ(TF) = F(�) .

2. The spectrum of TF

In this part, we show that the spectrum of TF in the quasi-homogeneous case is
always a disc. Before this, we recall a definition:
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DEFINITION 2. Let (an)n∈� be a complex sequence and E be a separable Hilbert
space. An operator T on E is said to be a weighted shift on E with weight (an)n∈� if
and only if there exists a basis (vn)n∈� of E such that

Tvn = anvn+1.

Let us describe TF in terms of weighted shifts over subspaces of L2
a :

PROPOSITION 1. Let F be a bounded m-quasi-homogeneous symbol.

(1) If m � 1 then TF is the direct sum of weighted shifts.

(2) If m � −1 then T ∗
F is the direct sum of weighted shifts.

Proof. Let F be a bounded m-quasi-homogeneous function with F ∼ ( f ,m) . An
easy calculation of the scalar product shows that: 〈TFen,ek〉 = 0 if k �= n+m and

TFen = cn(F)en+m (2)

where

cn(F) = 2
√

n+1
√

n+m+1
∫ 1

0
f (r)r2n+m+1ddddr

and cn(F) = 0 if n+m < 0. Now:
� if m = 1, it is clear that TF is a weighted shift with weight (cn(F))n∈� .
� if m > 1, for any integer j ∈ {0, . . . ,m−1} , we denote

Hj = Vect(e j,e j+m, . . . ,e j+nm, . . .)

and TF, j the restriction of TF to Hj . Then, we have

TF, je j+nm = c j+nm(F)e j+nm+m = c j+nm(F)e j+(n+1)m.

Thus TF, j is a weighted shift on Hj with weight (c j+nm(F))n∈� . Moreover, it is clear
that
L2

a = H0 ⊕ . . .⊕Hm−1 , where the Hj ’s are orthogonal. And TF, jHj ⊂ Hj , thus

TF = TF,0⊕ . . .⊕TF, j ⊕ . . .⊕TF,m−1 .

� if m � −1, it is easy to see that T ∗
F = TF and since F(z) = f (|z|)e− imArg(z) ,

F ∼ ( f ,−m) , so the previous case allows us to conclude. �

The quantity
∫ 1
0 f (r)rn−1ddddr is called the n -th order Mellin coefficient of f . To find

σ(TF) , we will use the following result, obtained by A. Shields, which characterizes
the spectrum of weighted shifts.
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THEOREM 1. [9] Let H be a separable Hilbert space and S a weighted shift with
weight (dn)n∈� over H . Then σ(S) is the closed disc with center 0 and radius ρ(S)
where ρ(S) is the spectral radius of S . Moreover, we have

ρ(S) = lim
p→∞

(
sup
n∈�

|dn . . .dn+k . . .dn+p|
) 1

p+1

.

Finally, we have the following proposition:

PROPOSITION 2. Let F be a bounded m-quasi-homogeneous function, then we
have

σ(TF) = ρ(F)�, (3)

where ρ(F) = max0� j�|m|−1ρ j(F) and

ρ j(F) = lim
p→∞

(sup
n∈�

(|c j+n|m|(F) . . .c j+(n+k)|m|(F) . . .c j+(n+p)|m|(F)|))1/(p+1).

Proof. We consider the case m � 1. Let F be a bounded quasi-homogeneous
function with F ∼ ( f ,m) . Then, by Proposition 1, we have the decomposition
TF = TF,0⊕ . . .⊕TF, j ⊕ . . .⊕TF,m−1 where the TF, j are weighted shifts with weight
(c j+nm(F))n∈� . The sum is direct so we can write

σ(TF) =
⋃

0� j�m−1

σ(TF, j).

Using this and the previous theorem we have

σ(TF, j) = ρ(TF, j)�,0 � j � m−1

thus, denoting ρ j(F) := ρ(TF, j) , we have

σ(TF) = max
0� j�m−1

ρ j(F)�.

If m � −1, then T ∗
F = TF so σ(TF) = σ(T ∗

F ) = σ(TF) . But, F is (−m)-quasi-
homogeneous and by the reasoning above, we have σ(TF) = ρ� , and we can con-
clude. �

From the discussion above, we know that σ(TF) = σ(TF) . Moreover F is m-
quasi-homogeneous if and only if F is (-m)-quasi-homogeneous. Thus, since we
are interested in σ(TF) , in the following, we give results only for F a m-quasi-
homogeneous function where m � 1 and let the reader deduce the corresponding results
for m � −1.

On the Hardy space the spectrum and the essential spectrum of a Toeplitz operator
with bounded symbol are always connected (see [3] and [11]). On the other hand, on
the Bergman space McDonald and Sundberg show in [7] that if ϕ is harmonic on �
and real or piecewise continuous on the boundary then the essential spectrum of Tϕ is
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connected. Grudsky and Vasilevski have proved in [4] that this is true for any Toeplitz
operator with radial symbol. The previous proposition shows that the spectrum of a
Toeplitz operator with quasi-homogeneous symbol is always connected. Notice that in
[10], Sundberg and Zheng gave an example of a harmonic symbol ϕ such that Tϕ has
disconnected spectrum and essential spectrum.

3. Calculation of ρ(F)

In this section, we simplify the expression of ρ(F) wich depends on (cn(F))n∈�
and we give a simpler characterization depending on the limit points of the sequence

Cn( f ) = (n+1)
∫ 1

0
f (r)rndr .

Now, by equation (2) we have,

∀n ∈�, c j+nm(F) = 2
√

j +nm+1
√

j +nm+m+1
∫ 1

0
f (r)r2( j+nm)+m+1 dr.

One can verify that ∀m ∈�
C2n+m+1( f ) ∼ cn(F) as n → ∞. (4)

we prove a simple lemma.

LEMMA 1. Let f ∈ L∞(0,1) , m ∈�∗ and F ∼ ( f ,m) . Then

lim
n→∞

Cn( f )−Cn+1( f ) = 0 (5)

and
lim
n→∞

cn(F)− cn+1(F) = 0.

Proof. The proof of (5) can be found in [4]. Now, equation (4) and the bounded-
ness of (Cn( f ))n∈� imply that

lim
n→∞

cn(F)− cn+1(F) = lim
n→∞

C2n+m+1( f )−C2n+m+3( f ),

so, by equation (5), we have

lim
n→∞

cn(F)− cn+1(F) = 0. �

Finally, let us state the main theorem of this section.

THEOREM 2. Let f ∈ L∞(0,1) , m a non negative integer with F ∼ ( f ,m) , and
l � 0 . The following assertions are equivalent:

(1) max j ρ j(F) = l ;
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(2) limsupn→∞ |cn(F)| = l ;

(3) limsupn→∞ |Cn( f )| = l .

Proof. We use the following general result: Let l � 0, if (Xn)n∈� is a sequence
of positive real numbers such that limn→∞Xn+1 −Xn = 0, then for all p,q ∈�∗ ×� ,
(Xn)n∈� and (Xpn+q)n∈� have the same limit points and in particular we have

limsup
n→∞

Xn = l ⇐⇒ limsup
n→∞

Xpn+q = l.(∗)

Now we can prove the theorem.
� (2) ⇐⇒ (3) . By the result above, we have that:

limsup
n→∞

|Cn( f )| = l ⇐⇒ limsup
n→∞

|C2nm+m+1( f )| = l,

so, by equations (∗) and (4) ,

limsup
n→∞

|Cn( f )| = l ⇐⇒ limsup
n→∞

|C2n+m+1( f )| = l ⇐⇒ limsup
n→∞

|cn( f )| = l .

� (1) ⇒ (2) . Suppose that limsupn |cn(F)| < l , then for all 0 � j � m−1,

limsup
n→∞

∣∣c j+nm(F)
∣∣< l.

By equation (∗) there exists ε0 > 0 and n0 ∈� such that for all 0 � j � m− 1, we
have that

n > n0 =⇒ |c j+nm(F)| < l− ε0 .

Thus ∀n ∈� , p > n0 imply

|c j+nm(F) . . .c j+(n+p)m(F)|) 1
p+1 � ‖F‖

n0+1
p+1
∞ (l− ε0)

p−n0
p+1 ,

so that

lim
p→∞

(
sup
n∈�

|c j+nm(F) . . .c j+(n+k)m(F) . . .c j+(n+p)m(F)|
) 1

p+1

� l− ε0 .

And so, for all 0 � j � m−1, ρ j(F) � l− ε0 .
By the same reasoning, if we suppose limsupn |cn(F)|> l , we obtain that ρ j(F) >

l . This contradicts (1) .
� (2) ⇒ (1) . Now suppose assertion (2) true. Then by (∗)

limsup
n→∞

|cnm(F)| = l .

So, let (γn)n∈� be a strictly increasing sequence of integers such that

lim
n→∞

|cγnm(F)| = l. (6)
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Let ε > 0, then by Lemma 1, we know that for all p ∈ � , there exists M′
p > 0 such

that (
n � M′

p and 0 � k � p
)

=⇒ |cγnm(F)− cγnm+km(F)| < ε.
Combining the previous equation and equation (6), it is clear that for all p ∈�∗ and
0 � k � p , there exists Mp � 0 such that

|cγMp m+km(F)| � |cγMpm(F)|− |cγMpm(F)− cγMpm+km(F)| � l−2ε.

Then

sup
n∈�

∣∣cnm(F) . . .cnm+pm(F)
∣∣1/(p+1) �

∣∣∣cγMpm(F) . . .cγMpm+pm(F)
∣∣∣ 1

p+1 � l−2ε ,

and so for all ε > 0, ρ0(F) � l−2ε .
Moreover, there exists n0 such that n > n0 =⇒ |cnm(F)| � l + ε . Thus for p > n0

we have

sup
n∈�

∣∣cnm(F) . . .c(n+p)m(F)
∣∣1/(p+1) � ‖F‖

n0+1
p+1
∞ (l + ε)

p−n0
p+1 .

This implies ρ0(F) = l . �
Let F be a bounded quasi-homogeneous function with F ∼ ( f ,m) . Then TF is

compact if and only if limn→∞ cn(F) = 0 and Tf is compact if and only if limn→∞Cn( f )
= 0. Taking l = 0 in Theorem 2, we have that TF is compact if and only if Tf is
compact.

The following corollary is an immediate consequence of Proposition 2 and Theo-
rem 2.

COROLLARY 1. Let F be a bounded m-quasi-homogeneous function and F ∼
( f ,m) then

σ(TF) = limsup
n→∞

|Cn( f )|�.

Now we give some more effective ways for calculating the spectral radius in the
case where it is equal to ‖F‖∞ . We are looking for conditions equivalent to equation
limsupn→∞ |Cn( f )| = ‖ f‖∞ .

4. Equivalent conditions to ρ(TF) = ‖F‖∞
In this section, we first give some simple conditions which imply ρ(F) = ‖F‖∞

(which we have already shown to be equivalent to limsupn→∞ |Cn( f )| = ‖ f‖∞ ). First,
we establish an important inequality concerning some conditions which can be linked
to the compacity problem.

DEFINITION 3. We denote by kz the normalized reproducing kernel on L2
a , so

kz(w) = 1−|z|2
(1−zw)2 . Let F ∈ L∞(�,dA) , the Berezin transform of F denoted F̃ is defined

by:

∀z ∈�, F̃(z) = 〈Fkz,kz〉 =
∫
�

F(w)
(1−|z|2)2

|1− zw|4 dA(w).
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For f ∈ L∞(0,1) , we define the Berezin transform of f to be the Berezin transform of

F ∼ ( f ,0) thus ∀z ∈� , f̃ (z) =
∫
�

f (|w|) (1−|z|2)2

|1−zw|4 dA(w) .

The Berezin transform can be used to characterize compact Toeplitz operators. In
[5], Korenblum and Zhu gave some equivalent conditions for a Toeplitz operator with
radial symbol to be compact.

THEOREM 3. [5] Let f ∈ L∞(0,1) the following three assertions are equivalent:

(1) limn→∞(n+1)
∫ 1
0 f (t)tndt = 0 ;

(2) limε→1
1

1−ε
∫ 1
ε f (t)dt = 0 ;

(3) limz→∂� f̃ (z) = 0 .

Let F ∈ L∞(�,dA) . In [1], S. Axler and D. Zheng give the following condition
on the Berezin transform: lim|z|→1 F̃(z) = 0 ⇐⇒ TF is compact .In the radial case,
F ∼ ( f ,0) with f ∈ L1([0,1],dA) , S. Grudsky and N. Vasilevski study in [4] the case
where F is a radial L1 function.

It is easy to obtain the same type of result concerning the radial part of the function
in the quasi-homogeneous case.

Now, we give some properties concerning the Berezin transform of quasi-homo-
geneous functions. The following lemma is proved by Ž. Čučković in [2].

LEMMA 2. Let F ∈ L∞(�) be a bounded m-quasi-homogeneous function such
that F ∼ ( f ,m) , if z = Reiθ then

F̃(z) = 2(1−R2)2R|m|eimθ
∞

∑
n=0

n(n+ |m|)
2n+ |m|+1

C2n+|m|( f )R2(n−1).

Notice that this lemma tells us that the Berezin transform of a m-quasi-homogeneous
function is another m-quasi-homogeneous function. But even if F0 ∼ ( f ,0) and Fm ∼
( f ,m) we see that F̃0 and F̃m do not have the same radial part. Despite this fact, we
show that F̃0 and F̃m have the same “values” near the boundary of the disc � .

LEMMA 3. Let F be a bounded quasi-homogeneous function, F ∼ ( f ,m) . We
have

lim
z→∂�

|F̃(z)|− | f̃ (z)| = 0.

In particular, we have
limsup

r→1
| f̃ (r)| = limsup

z→∂�
|F̃(z)|.

Proof. We will show that

lim
R→1

∣∣∣|F̃(R)|− | f̃ (R)|R|m|
∣∣∣= 0.
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It is equivalent to show that

lim
z→∂�

∣∣∣|F̃(z)|− | f̃ (z)|× |z||m|
∣∣∣= 0,

which easily implies the desired result.
By Lemma 2, if z = R , we have

∣∣∣|F̃(R)|− | f̃ (R)|R|m|
∣∣∣� 2(1−R2)2

∞

∑
n=0

∣∣∣∣ n(n+ |m|)
2n+ |m|+1

C2n+|m|( f )− n2

2n+1
C2n( f )

∣∣∣∣R2n−2 .

Now, let ε > 0. Since the sequence (Cn( f ))n∈� is uniformly bounded, n(n+|m|)
2n+|m|+1 is

equivalent to n2

2n+1 and limn→∞Cn( f )−Cn+1( f ) = 0 ([4]), there exists Mε > 0, such
that

n > Mε =⇒
∣∣∣∣ n(n+ |m|)
2n+ |m|+1

C2n+|m|( f )− n2

2n+1
C2n( f )

∣∣∣∣� n2

2n+1
ε .

But this means that

∣∣∣F̃(R)−| f̃ (R)|R|m|
∣∣∣� 2(1−R2)2

Mε

∑
n=0

n(n+ |m|)
2n+1

2‖ f‖∞R2n−2+(1−R2)2
∞

∑
n=Mε

εnR2n−2.

And taking the limit as R tends to 1, we see that the first term tends to 0. The second
one is smaller than the sum from indice 0, thus

limsup
R→1

∣∣∣F̃(R)−| f̃ (R)|R|m|
∣∣∣� lim

R→1
(1−R2)2

∞

∑
n=0

εnR2n−2 = ε.

Finally, for all ε > 0, we have

lim
R→1

∣∣∣|F̃(R)|− | f̃ (R)|R|m|
∣∣∣� ε

and the lemma is proved. �

4.1. Sufficient conditions: some simple cases

Using Theorem 3, one can give some conditions which guarantee ρ(F) = ‖F‖∞ .

PROPOSITION 3. Let F be a bounded m-quasi-homogeneous function and F ∼
( f ,m) . If any of the following conditions is true ;

(1) limt→1 f (t) = L with L ∈ ‖F‖∞� ,

(2) limε→1
1

1−ε
∫ 1
ε f (t)dt = L with L ∈ ‖F‖∞� ,

(3) limr→1− f̃ (r) = L with L ∈ ‖F‖∞� ,

then F verifies limsup |Cn( f )| = ‖F‖∞ .
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Proof. If limt→1 f (t) exists then it is easy to show that

lim
n→∞

Cn( f ) = lim
n→∞

(n+1)
∫ 1

0
f (t)tndt = lim

t→1
f (t).

Since ∀n ∈� , Cn( f −L) =Cn( f )−L , condition 1 implies the conclusion. Now, using
˜f −L = f̃ −L and applying Theorem 3, it is clear that if either (2) or (3) is true, then

lim
n→∞

|Cn( f )| = ‖F‖∞. �

The previous proposition deals with the case where (Cn( f ))n∈� has a limit. And
applying Proposition 3 condition 1, we have:

EXAMPLE.

(1) If F(z) = |z|keimArg(z) where k ∈�∗ and m ∈�∗ then σ(TF) = F(�) .

(2) Let F(z) = f (|z|)eiArg(z) where f (r) =
{

2r−1 if r � 1
2

g(r) if 0 � r � 1
2

and g is a function

from [0,1] to [0,1] . Then F is quasi-homogeneous and σ(TF) = F(�) .

(3) Let F defined by ∀z ∈� , F(z) = eimArg(z) sin(1−|z|)α/(1−|z|)β and α � β .

Then σ(TF) = F(�) if and only if α = β .

It is clear that if α = β then limr→1 sin(1−|z|)α/(1−|z|)β = 1 = ‖F‖∞ .

If α > β then limr→1 sin(1−|z|)α/(1−|z|)β = 0 and σ(TF) = {0} .

4.2. Equivalent conditions

In this section, we prove the equivalence result which follows.

THEOREM 4. Let F be a bounded quasi-homogeneous function, f ∈ L∞(0,1) and
m ∈ �∗ such that F ∼ ( f ,m) . The following conditions are equivalent

a) ‖TF‖ = ‖F‖∞ ;

b) limsupz→∂� |F̃(z)| = ‖F‖∞ ;

c) limsupz→∂� ‖TFkz‖2 = ‖F‖∞ ;

d) ‖TF‖e = ‖F‖∞ ;

e) limsupn→∞ |Cn( f )| = ‖F‖∞ ;

f ) limsupt→1

∣∣∣ 1
1−t

∫ 1
t f (r)dr

∣∣∣ = ‖ f‖∞ .

Considering the equivalence between assertions a) , b) , c) and d) , it is natural
to ask if we have the same equivalence for other F ∈ L

∞
(�) . In particular, it would

imply that in these cases a Toeplitz operator with maximal norm cannot be compact and
assertion b) would be equivalent to the condition that ‖TF‖ = ‖F‖∞ .

To prove this theorem, we need some tools. First, we give an important inequality:
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PROPOSITION 4. Let F ∼ ( f ,m) a bounded quasi-homogeneous symbol, we have

(1) ‖TF‖e = limsup
n→∞

|cn(F)| .

(2) limsup
z→∂�

|F̃(z)| � limsup
z→∂�

‖TFkz‖2 � ‖TF‖e � limsup
ε→1

∣∣∣∣ 1
1− ε

∫ 1

ε
f (r)dr

∣∣∣∣� ‖F‖∞.

Proof. (1) If we denote by Kn the compression of TF to Span(1,z, . . . ,zn) , then
Kn is compact. Since TFen = cn(F)en+m ∀n ∈� , we have

‖TF −Kn‖ = sup
k�n

|ck(F)|.

This implies that
‖TF‖e � limsup

k→∞
|ck(F)|.

Next, we consider (γn)n∈� an strictly increasing sequence of integers such that
limn→∞ |cγn(F)| = limsupn→∞ |cn(F)| . Since (eγn) converges weakly to 0, we have,
for any compact operator K , limn→∞ ‖Keγn‖ = 0 thus

lim
n→∞

‖(TF −K)eγn‖ = lim
n→∞

‖TFeγn‖ = lim
n→∞

|cγn(F)|,
and so

limsup
n→∞

|cn(F)| � ‖TF −K‖.
Thus we have limsupn |cn(F)| � ‖TF‖e , completing the proof of the equality.

(2) Now, we prove the inequalities from left to right. First, we have

∀z ∈�, |F̃(z)| = |〈Fkz,kz〉| = |〈TFkz,kz〉| � ‖TFkz‖2.

This establishes the first inequality. Now, since kz weakly converges to 0 as z → ∂� ,
we have that

limsup
z→∂�

‖TFkz‖2 � inf
K∈K

‖TF −K‖ = ‖TF‖e.

Finally, Theorem 2 implies

limsup
n→∞

|cn(F)| = limsup
n→∞

|Cn( f )|,

and in the Theorem 3.3 of [4], S. Grudsky and N. Vasilevski show that

|Cn( f )| � kn + constn2 exp(−n1/3) ∀n ∈�
where kn = sup1−n−2/3<u<1

1
1−u

∫ 1
u f (r)dr . Thus we see that

limsup
n→∞

|Cn( f )| � limsup
ε→1

1
1− ε

∣∣∣∣
∫ 1

ε
f (r)dr

∣∣∣∣ ,
and the third relation is established. The last inequality is obvious since ‖F‖∞ =
‖ f‖∞ . �

As a consequence of this proposition, we have that b) ⇒ c) ⇒ d) ⇒ e) ⇒ f ) in
Theorem 4. Next, we give some lemmas we will need to prove f ) ⇒ b) .
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4.2.1. Geometrical point of view.

REMARK. Let r ∈ �+ and let (Xn)n∈� be a complex sequence. If ∀n ∈ � ,
|Xn| � r , the following assertions are equivalent:

a)
limsup

n→∞
|Xn| = r;

b) there exists L ∈ r� such that

liminf
n→∞

|Xn−L| = 0.

This remark gives us an equivalent formulation for condition f ) of Theorem 4 as

∃L ∈ ‖ f‖∞�, liminf
t→1

∣∣∣∣ 1
1− t

∫ 1

t
( f (r)−L)dr

∣∣∣∣= 0 ,

and condition b) as

∃L ∈ ‖ f‖∞�, liminf
t→1

∣∣ f̃ (r)−L
∣∣= 0 .

NOTATION 1. For A ⊂� , we denote by E C (A) the convex hull of A .

In the following, μ denotes the Lebesgue measure on � .

LEMMA 4. (First geometric lemma) Let E be a real measurable set with μ(E) > 0
and ϕ : E →�+ μ -integrable on E such that

∫
E ϕdμ > 0 and f ∈ L∞(E) then

1∫
E ϕdμ

∫
E
ϕ(ω) f (ω)dμ(ω) ∈ E C ( f (E)),

the closure of E C f (E) .

Proof. This lemma is clear if ϕ is a simple function because in that case
∫
E ϕdμ

is a barycenter. By density, we conclude. �

LEMMA 5. (Second geometric lemma) Let ρ > 0 , K a compact subset of ρ�
and L ∈ ρ�\K . If (an)n∈� , (Mn)n∈� and (Nn)n∈� are complex sequences such that

an ∈ [0,1],Mn ∈ K,Nn ∈ ρ�,n ∈�. (∗∗)

Then

liminf
n→∞

an > 0 =⇒ liminf
n→∞

|anMn +(1−an)Nn −L| > 0.
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Proof. Let L ∈ ρ� . We denote ϕL : �2×]0,1] → � the application defined as
follow

ϕL(M,N,a) =
|aM +(1−a)N−L|

a
.

Let δ > 0. Since L is an extreme point of ρ� , for all (M,N,a) ∈ K×ρ�× [δ ,1] , it
is clear that

aM +(1−a)N−L �= 0

Since ϕL is a strictly positive continuous function on the compact set K×ρ�× [δ ,1] ,
it attains its minimum β > 0. So we have

|aM +(1−a)N−L| � βa � βδ .

Notice that β does not depend on a , M or N . Now let (an)n∈� , (Mn) et (Nn) be
sequences satisfying (∗∗ ).

Suppose liminfan > 0, then denoting δ := 1
2 liminfn→∞ an , there exists J > 0

such that
n � J =⇒ an ∈ [δ ,1].

With the same reasoning, if n � J and (Mn,Nn,an) ∈ K × ρ�× [δ ,1] , there exists
β > 0 such that

n � J =⇒ |anMn +(1−an)Nn −L| � βδ .

It is now clear that

liminf
n→∞

|anMn +(1−an)Nn −L| � βδ > 0. �

In the following, we will apply this lemma with sequences (an)n∈� of the form

an = μ({ω ∈ [1− 1
n
,1], | f (ω)−L| > ε}.

In order to express condition f ) of Theorem 4 in terms of the Berezin transform, we
introduce some more notation and give a lemma.

NOTATION 2. Let f : (0,1) →� , L ∈� , ε > 0 and s ∈�+∗ : we denote

(1) E−
L,s,ε = {ω ∈ [1− 1

s ,1], | f (ω)−L| > ε} .

(2) EL,s,ε = {ω ∈ [1− 1
s ,1], | f (ω)−L| � ε} .

If L is fixed, we simply denote E−
L,s,ε = E−

s,ε et EL,s,ε = Es,ε . The sets E and E
−

obviously depend on f , but since f is always fixed, we will not use it as an index.

LEMMA 6. Let f ∈ L∞(0,1) , L ∈ ‖ f‖∞� , the following conditions are equiva-
lent:

a) For all ε > 0 , liminfs→∞ sμ(E−
L,s,ε) = 0 ;
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b) liminfs→∞

∣∣∣s∫ 1
1−1/s( f (r)−L)dr

∣∣∣= 0 .

Proof. a) ⇒ b) . We fix ε > 0 and considering the given f ∈ L∞(0,1) and L ∈
‖ f‖∞� we define E−

L,s,ε and EL,s,ε as above. Now let (γn)n∈� be a sequence with
limn→∞ γn = +∞ such that

liminf
s→∞

sμ(E−
L,s,ε) = lim

n→∞
γnμ(E−

L,γn,ε).

Then we have

γn|
∫ 1

1−1/γn
( f (r)−L)dr| � γn

∫ 1

1−1/γn
| f (r)−L|dr

� γnμ(Eγn,ε)ε +2‖ f‖∞γnμ(E−
γn,ε ).

But by assumption a) , limn→∞ γnμ(E−
γn,ε) = 0, and it is clear that γnμ(Eγn,ε ) � 1, thus

0 � limsup
n→∞

γn|
∫ 1

1−1/γn
( f (r)−L)dr| � ε.

This is true for all ε > 0, then

lim
n→∞

γn|
∫ 1

1−1/γn
( f (r)−L)dr| = 0.

Now, for the converse b) ⇒ a) . Suppose a) is false, then there exists ε0 > 0 and (γn)n

as in the previous case such that

lim
n→∞

γnμ(E−
γn,ε0) = liminf

s→∞
sμ(E−

s,ε0) > 0.

We prepare ourselves to use our second geometric lemma.

First, let ρ = ‖ f‖∞ and K = E C (ρ�\D(L,ε0)) . Then K is compact as the con-
vex hull of a compact set, and L ∈ ρ�\K . Now, for all integers n , we denote

Nn =
1

μ(Eγn,ε0)

∫
Eγn ,ε

f (r)dr,

and

Mn =
1

μ(E−
γn,ε0)

∫
E−
γn,ε

f (r)dr.

Then, by the first geometric lemma, Nn ∈ E C ( f (]0,1[) ⊂ ρ� and Mn ∈ K . Finally,
denoting

an = γnμ(E−
γn,ε0) ,

we see that for all n ∈� , an ∈ [0,1] et γnμ(Eγn,ε0) = 1−an . Thus

γn
∫ 1

1−1/γn
( f (r)−L)dr = anMn +(1−an)Nn −L.
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And by assumption

liminf
n→∞

an = lim
n→∞

γnμ(E−
γn,ε0) = liminf

s→∞
sμ(E−

s,ε0) > 0.

So, applying the second geometric lemma, we get

liminf
n→∞

|γn
∫ 1

1−1/γn
f (r)dr−L |> 0 .

Thus b) is false. �

4.2.2. Proof of Theorem 4

First we show that a) ⇔ d) . Since |cn(F)| � 2
√

n+1
√

n+m+1
2n+m+2 ‖F‖∞ < ‖F‖∞ ,

supn |cn(F)| = ‖F‖∞ is equivalent to limsupn→∞ |cn(F)| = ‖F‖∞ . Thus, using the
equality from assertion 1 of Proposition 4 ‖TF‖ = supn |cn(F)| = ‖F‖∞ ⇐⇒ ‖TF‖e =
‖F‖∞ .

Now using assertion 2 of Proposition 4, we see that the proof of Theorem 4 will
be complete if we show that f ) ⇒ b) . So we suppose f ) . By Remark 4.2.1, we can
find L ∈ ‖ f‖∞� such that

liminf
r→1

∣∣∣∣ 1
1− r

∫ 1

r
( f (t)−L)dt

∣∣∣∣= 0.

By Lemma 6, this implies

∀ε > 0, liminf
s→∞

s.μ(E−
L,s,ε ) = 0. (7)

Now, in order to prove b) , it is enough to find, for each ε > 0, a sequence (Rε
n)n∈� ⊂

[0,1) such that limn→∞Rε
n = 1 and

liminf
n→∞

∣∣F̃(Rε
n)−L

∣∣< ε.

Using Lemma 3, it suffices to show the above inequality with F̃ replaced by f̃ .
Since for any R ∈ [0,1) , we have

∣∣ f̃ (R)−L
∣∣ �

∫
�

| f (|w|)−L| (1−R2)2

|1−Rw|4 dA(w)

= (1−R2)2
∫ 1

0
ρ | f (ρ)−L|

(
1
π

∫ 2π

0

1
|1−Rρeiθ |4 dθ

)
dρ .

Evaluating the integral by taking t = tan θ
2 , we see that

∣∣ f̃ (R)−L
∣∣� (1−R2)2

∫ 1

0
ρ | f (ρ)−L|2(1+R2ρ2)

(1−R2ρ2)3 dρ .
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Now, to simplify the above inequality as much as possible and transform our integral
into a function that we know how to calculate, we use the obvious inequalities: (1−
R2) � 4(1−R)2 , (1+R2ρ2) � 2 and (1−R2ρ2)3 � (1−Rρ)3 . Thus we obtain

| f̃ (R)−L|� 16(1−R)2
∫ 1

0

| f (ρ)−L|
(1−Rρ)3 dρ . (8)

Now, we fix ε > 0. By equation (7), we can find (γn)n∈� a sequence such that limγn =
+∞ and

lim
n→∞

γnμ(E−
L,γn,ε) = 0. (9)

Then, if we denote Rn = 1−
√

μ(E−
γn,ε )
γn , we have for any n∈� , Rn ∈ [0,1) and (Rn)∈�

converges to 1. Now, we use the inequality (8) with R = Rn and split the integral into
the following parts,

A1,n := (1−Rn)2
∫ 1− 1

γn

0

| f (ρ)−L|
(1−Rnρ)3 dρ ,

A2,n := (1−Rn)2
∫

E−
γn,ε

| f (ρ)−L|
(1−Rnρ)3 dρ ,

A3,n := (1−Rn)2
∫

Eγn,ε

| f (ρ)−L|
(1−Rnρ)3 dρ .

Considering A1,n , we have

A1,n � (1−Rn)2
∫ 1− 1

γn

0

2‖ f‖∞
(1−Rnρ)3 dρ

and evaluating the integral, we get

A1,n � ‖ f‖∞
Rn

(
1−Rn

1−Rn(1− 1
γn )

)2

.

We write
1−Rn

1−Rn(1− 1
γn )

=
1

1+ Rn
γn(1−Rn)

.

and using equation (9), we have Rn
γn(1−Rn)

= 1√
γnμ(E−

γn,ε)
− 1

γn −→ ∞ . So

lim
n→∞

A1,n = 0.

Considering A2,n , we have

A2,n � (1−Rn)2
∫

E−
γn,ε

2‖ f‖∞
(1−Rnρ)3 dρ

� 1
(1−Rn)

2‖ f‖∞μ(E−
γn,ε)

� 2‖ f‖∞
√
γnμ(E−

γn,ε)
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and once again equation (9) gives us that

lim
n→∞

A2,n = 0.

Finally,

A3,n � (1−Rn)2
∫

Eγn,ε

ε
(1−Rnρ)3 dρ

� (1−Rn)2
∫ 1

0

ε
(1−Rnρ)3 dρ

� ε(2−Rn)
2

� ε.

Thus
liminf
n→∞

| f̃ (Rn)−L
∣∣∣� 16ε.

As a conclusion, for all ε > 0, we have

liminf
r→1

| f̃ (r)−L| � 16ε,

so liminfr→1
∣∣ f̃ (r)−L

∣∣= 0 and the theorem is proved. �

Considering Proposition 4, we have

0 � limsup
z→∂�

|F̃(z)| � limsup
z→∂�

‖TFkz‖2 � ‖TF‖e � ‖TF‖ � ‖F‖∞

Theorem 2.2 of [1] together with Theorem 3 imply that if one of the quantities above
equals 0 then so do the others, and Theorem 4 implies the same result with 0 replaced
by ‖F‖∞ . Thus it is natural to ask the following question: let F ∼ ( f ,m) be a bounded
quasi-homogeneous symbol, is the following equivalence true:

‖TF‖e = limsup
n→∞

|cn(F)| = limsup
z→∂�

|F̃(z)| = limsup
s→1−

| 1
1− s

∫ 1

s
f (r)dr|.

The answer is no as can be shown using example 4 of [4].

5. The case σ(TF) = F(�)

Now we are ready to easily answer the question: for F a bounded quasi-homogeneous
symbol, under which assumptions is the equality σ(TF) = F(�) true?

THEOREM 5. Let F be a boundedm-quasi-homogeneous function. Then σ(TF)=
F(�) if and only if

(i) 0 ∈ F(�);
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(ii) F(�) is connected;

(iii) One of the following equivalent conditions is satisfied

a) ‖TF‖ = ‖F‖∞ ;

b) limsupz→∂� |F̃(z)| = ‖F‖∞ ;

c) limsupz→∂� ‖TFkz‖2 = ‖F‖∞ ;

d) ‖TF‖e = ‖F‖∞ ;

e) limsupn→∞ |(n+1)
∫ 1
0 f (t)tndt| = ‖F‖∞ ;

f ) limsupt→1

∣∣∣ 1
1−t

∫ 1
t f (r)dr

∣∣∣= ‖ f‖∞ .

Proof. The equivalence iii comes from Theorem 4.
Now, if σ(TF) = F(�) then F(�) = max0� j�m−1ρ j(F)� , thus the assertions

(i) and (ii) are true. Since max0� j�m−1ρ j(F) � ‖F‖∞ and F(�) contains a complex
number with module ‖F‖∞ , then ‖F‖∞ � max0� j�m−1ρ j(F) and (iii) is true using
Proposition 2 and Theorem 4.

For the converse, let us suppose (i) , (ii) and (iii) . The equality F(z)= f (|z|)eimArg(z)

implies that F(�) is rotation invariant so (i) and (ii) imply that F(�) = ‖F‖∞� . As-
sertion (iii) , e) means that max j ρ j(F) = ‖F‖∞ , and so, by Proposition 2, σ(TF) also
equals ‖F‖∞� . �
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