CONVERSES OF JENSEN'S OPERATOR INEQUALITY

Jadranka Mićić, Josip Pečarić and Yuki Seo

(Communicated by C.-K. Li)

Abstract

We give a generalization of converses of Jensen's operator inequality for fields of positive linear mappings $\left(\phi_{t}\right)_{t \in T}$ such that $\int_{T} \phi_{t}(\mathbf{1}) d \mu(t)=k \mathbf{1}$ for some positive scalar k. We consider different types of converse inequalities.

1. Introduction

Let f be an operator convex function defined on an interval I. Ch.Davis [2] proved a Schwarz inequality

$$
f(\phi(x)) \leqslant \phi(f(x)),
$$

where $\phi: \mathscr{A} \rightarrow B$ is a unital completely positive linear map from a C^{*}-algebra \mathscr{A} to linear operators on a Hilbert space K, and x is a self-adjoint element in \mathscr{A} with spectrum in I. Subsequently M.D.Choi [1] noted that it is enough to assume that ϕ is unital and positive. In fact, the restriction of ϕ to the commutative C^{*}-algebra generated by x and the identity operator $\mathbf{1}$ is automatically completely positive by a theorem of Stinespring [13].
B. Mond and J. Pečarić [11] proved the inequality

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} \omega_{i} \phi_{i}\left(x_{i}\right)\right) \leqslant \sum_{i=1}^{n} \omega_{i} \phi_{i}\left(f\left(x_{i}\right)\right) \tag{1}
\end{equation*}
$$

for an operator convex function f defined on an interval I, where $\left(\phi_{1}, \ldots, \phi_{n}\right)$ is an n-tuple of unital positive linear maps $\phi_{i}: B(H) \rightarrow B(K),\left(x_{1}, \ldots, x_{n}\right)$ is an n-tuple of self-adjoint operators with spectra in I and $\left(\omega_{1}, \ldots, \omega_{n}\right)$ is an n-tuple of non-negative real numbers with sum one.

Also, without the assumption of operator convexity, B. Mond and J. Pečarić [10, 12] showed the following extension of the converses of Jensen's inequality:

$$
\begin{equation*}
F\left[\sum_{i=1}^{n} \omega_{i} \phi_{i}\left(f\left(x_{i}\right)\right), f\left(\sum_{i=1}^{n} \omega_{i} \phi_{i}\left(x_{i}\right)\right)\right] \leqslant \max _{m \leqslant z \leqslant M} F\left[\alpha_{f} z+\beta_{f}, f(z)\right] \mathbf{1} \tag{2}
\end{equation*}
$$

Mathematics subject classification (2010): 47A63, 47A64.
Keywords and phrases: Converses of Jensen's operator inequality, convex function, Mond-Pečarić method, power functions, power means.
for a convex function f defined on $[m, M]$, a real valued function $F(u, v)$ which is operator monotone in its first variable, where $\left(\phi_{1}, \ldots, \phi_{n}\right)$ is an n-tuple of unital positive linear maps $\phi_{i}: B(H) \rightarrow B(K),\left(x_{1}, \ldots, x_{n}\right)$ is an n-tuple of self-adjoint operators with spectra in $[m, M]$ and $\left(\omega_{1}, \ldots, \omega_{n}\right)$ is an n-tuple of non-negative real numbers with sum one. Here we use the standard notation for a real valued continuous function $f:[m, M] \rightarrow \mathbb{R}$

$$
\alpha_{f}:=\frac{f(M)-f(m)}{M-m} \quad \text { and } \quad \beta_{f}:=\frac{M f(m)-m f(M)}{M-m}
$$

J. Mićić, Y. Seo, S.-E. Takahasi and M. Tominaga [9] generalized (2) for a convex function f and any continuous function g on $[m, M]$.

Recently F. Hansen, J. Pečarić and I. Perić in [7] gave a general formulation of Jensen's operator inequality for unital field of positive linear mappings and its converses. They proved a generalization of (1) and (2) given in next two theorems. They say that a field $\left(\phi_{t}\right)_{t \in T}$ of mappings $\phi_{t}: \mathscr{A} \rightarrow \mathscr{B}$ is unital if it is integrable with $\int_{T} \phi_{t}(\mathbf{1}) d \mu(t)=\mathbf{1}$, where \mathscr{A} and \mathscr{B} are C^{*}-algebras of operators on a Hilbert spaces H and K, respectively.

THEOREM A. Let $f: I \rightarrow \mathbb{R}$ be an operator convex function defined on an interval I, and let \mathscr{A} and \mathscr{B} be unital C^{*}-algebras on a Hilbert spaces H and K respectively. If $\left(\phi_{t}\right)_{t \in T}$ is a unital field of positive linear mappings $\phi_{t}: \mathscr{A} \rightarrow \mathscr{B}$ defined on a locally compact Hausdorff space T with a bounded Radon measure μ, then the inequality

$$
\begin{equation*}
f\left(\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right) \leqslant \int_{T} \phi_{t}\left(f\left(x_{t}\right)\right) d \mu(t) \tag{3}
\end{equation*}
$$

holds for every bounded continuous field $\left(x_{t}\right)_{t \in T}$ of self-adjoint elements in \mathscr{A} with spectra contained in I.

THEOREM B. Let $\left(x_{t}\right)_{t \in T}$ be a bounded continuous field of self-adjoint elements in a unital C^{*}-algebra \mathscr{A} with spectra in $[m, M]$ defined on a locally compact Hausdorff space T equipped with a bounded Radon measure μ, and let $\left(\phi_{t}\right)_{t \in T}$ be a unital field of positive linear maps $\phi_{t}: \mathscr{A} \rightarrow \mathscr{B}$ from \mathscr{A} to another unital C^{*}-algebra \mathscr{B}. Let $f, g:[m, M] \rightarrow \mathbb{R}$ and $F: U \times V \rightarrow \mathbb{R}$ be functions such that $f([m, M]) \subset U$, $g([m, M]) \subset V$ and F is bounded. If F is operator monotone in the first variable and f is convex in the interval $[m, M]$, then

$$
\begin{equation*}
F\left[\int_{T} \phi_{t}\left(f\left(x_{t}\right)\right) d \mu(t), g\left(\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right)\right] \leqslant \sup _{m \leqslant z \leqslant M} F\left[\alpha_{f} z+\beta_{f}, g(z)\right] \mathbf{1} \tag{4}
\end{equation*}
$$

In the dual case (when f is concave) the opposite inequality holds in (4) with inf instead of sup.

Furthermore, J. I. Fujii, M. Nakamura, J. Pečarić and Y. Seo [4] observed the reverse inequality of Kadison's Schwarz inequality, without the assumption of the normalization of map Φ given in next lemma.

Lemma C. Let Φ be a positive linear map on $B(H)$ such that $\Phi(\mathbf{1})=k \mathbf{1}$ for some positive scalar k. If A is a positive operator on H such that $0<m \mathbf{1} \leqslant A \leqslant M \mathbf{1}$ for some scalars $m<M$, then for each $\lambda>0$

$$
\Phi(A) \leqslant \lambda \Phi\left(A^{-1}\right)^{-1}+C(m, M, \lambda, k) \mathbf{1}
$$

where

$$
C(m, M, \lambda, k)= \begin{cases}k(m+M)-2 \sqrt{\lambda m M} & \text { if } m \leqslant \sqrt{\lambda m M} / k \leqslant M \\ (k-\lambda / k) M & \text { if } \sqrt{\lambda m M} / k \leqslant m \\ (k-\lambda / k) m & \text { if } M \leqslant \sqrt{\lambda m M} / k\end{cases}
$$

In this paper, using the idea given in Lemma C , we consider a generalization of Theorem A and Theorem B in the case when a field $\left(\phi_{t}\right)_{t \in T}$ of mappings $\phi_{t}: \mathscr{A} \rightarrow \mathscr{B}$, such that the field $t \rightarrow \phi_{t}(\mathbf{1})$ is integrable with $\int_{T} \phi_{t}(\mathbf{1}) d \mu(t)=k \mathbf{1}$ for some positive scalar k. We consider some applications given in $[6,7,8]$ under the new formulation.

2. Main results

Let T be a locally compact Hausdorff space, and let \mathscr{A} be a C^{*}-algebra of operators on a Hilbert space H. We say that a field $\left(x_{t}\right)_{t \in T}$ of operators in \mathscr{A} is continuous if the function $t \rightarrow x_{t}$ is norm continuous on T. If in addition μ is a bounded Radon measure on T and the function $t \rightarrow\left\|x_{t}\right\|$ is integrable, then we can form the Bochner integral $\int_{T} x_{t} d \mu(t)$, which is the unique element in the multiplier algebra

$$
M(\mathscr{A})=\{a \in B(H) \mid \forall x \in \mathscr{A}: a x+x a \in \mathscr{A}\}
$$

such that

$$
\varphi\left(\int_{T} x_{t} d \mu(t)\right)=\int_{T} \varphi\left(x_{t}\right) d \mu(t)
$$

for every linear functional φ in the norm dual \mathscr{A}^{*}, cf. [5].
Assume furthermore that there is a field $\left(\phi_{t}\right)_{t \in T}$ of positive linear mappings ϕ_{t} : $\mathscr{A} \rightarrow \mathscr{B}$ from \mathscr{A} to another C^{*}-algebra \mathscr{B} of operators on a Hilbert space K. We say that such a field is continuous if the function $t \rightarrow \phi_{t}(x)$ is continuous for every $x \in \mathscr{A}$.

THEOREM 2.1. Let \mathscr{A} and \mathscr{B} be unital C^{*}-algebras on H and K respectively. Let $\left(x_{t}\right)_{t \in T}$ be a bounded continuous field of self-adjoint elements in \mathscr{A} with spectra in an interval I defined on a locally compact Hausdorff space T equipped with a bounded Radon measure μ. Furthermore, let $\left(\phi_{t}\right)_{t \in T}$ be a field of positive linear maps $\phi_{t}: \mathscr{A} \rightarrow$ \mathscr{B}, such that the field $t \rightarrow \phi_{t}(\mathbf{1})$ is integrable with $\int_{T} \phi_{t}(\mathbf{1}) d \mu(t)=k \mathbf{1}$ for some positive scalar k. Then the inequality

$$
\begin{equation*}
f\left(\frac{1}{k} \int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right) \leqslant \frac{1}{k} \int_{T} \phi_{t}\left(f\left(x_{t}\right)\right) d \mu(t) \tag{5}
\end{equation*}
$$

holds for each operator convex function $f: I \rightarrow \mathbb{R}$ defined on I. In the dual case (when f is operator concave) the opposite inequality holds in (5).

Proof. This theorem follows from Theorem A, since $\left(\frac{1}{k} \phi_{t}\right)_{t \in T}$ is a unital field of positive linear mappings $\frac{1}{k} \phi_{t}: \mathscr{A} \rightarrow \mathscr{B}$.

In the present context we may obtain results of the Li-Mathias type cf. [6, Chapter 3].

THEOREM 2.2. Let $\left(x_{t}\right)_{t \in T}$ be a bounded continuous field of self-adjoint elements in a unital C^{*}-algebra \mathscr{A} with spectra in $[m, M]$ defined on a locally compact Hausdorff space T equipped with a bounded Radon measure μ. Furthermore, let $\left(\phi_{t}\right)_{t \in T}$ be a field of positive linear maps $\phi_{t}: \mathscr{A} \rightarrow \mathscr{B}$ from \mathscr{A} to another unital C^{*}-algebra \mathscr{B}, such that the field $t \rightarrow \phi_{t}(\mathbf{1})$ is integrable with $\int_{T} \phi_{t}(\mathbf{1}) d \mu(t)=k \mathbf{1}$ for some positive scalar k. Let $f:[m, M] \rightarrow \mathbb{R}, g:[k m, k M] \rightarrow \mathbb{R}$ and $F: U \times V \rightarrow \mathbb{R}$ be functions such that $(k f)([m, M]) \subset U, g([k m, k M]) \subset V$ and F is bounded. If F is operator monotone in the first variable, then

$$
\begin{align*}
\inf _{k m \leqslant z \leqslant k M} F\left[k \cdot h_{1}\left(\frac{1}{k} z\right), g(z)\right] \mathbf{1} & \leqslant F\left[\int_{T} \phi_{t}\left(f\left(x_{t}\right)\right) d \mu(t), g\left(\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right)\right] \\
& \leqslant \sup _{k m \leqslant z \leqslant k M} F\left[k \cdot h_{2}\left(\frac{1}{k} z\right), g(z)\right] \mathbf{1} \tag{6}
\end{align*}
$$

holds for every operator convex function h_{1} on $[m, M]$ such that $h_{1} \leqslant f$ and for every operator concave function h_{2} on $[m, M]$ such that $h_{2} \geqslant f$.

Proof. We only prove RHS of (6). Let h_{2} be operator concave function on $[m, M]$ such that $f(z) \leqslant h_{2}(z)$ for every $z \in[m, M]$. By using the functional calculus, it follows that $f\left(x_{t}\right) \leqslant h_{2}\left(x_{t}\right)$ for every $t \in T$. Applying the positive linear maps ϕ_{t} and integrating, we obtain

$$
\int_{T} \phi_{t}\left(f\left(x_{t}\right)\right) d \mu(t) \leqslant \int_{T} \phi_{t}\left(h_{2}\left(x_{t}\right)\right) d \mu(t)
$$

Furthermore, by using Theorem 2.1, we have

$$
\frac{1}{k} \int_{T} \phi_{t}\left(h_{2}\left(x_{t}\right)\right) d \mu(t) \leqslant h_{2}\left(\frac{1}{k} \int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right)
$$

and hence $\int_{T} \phi_{t}\left(f\left(x_{t}\right)\right) d \mu(t) \leqslant k \cdot h_{2}\left(\frac{1}{k} \int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right)$. Since $m \phi_{t}(\mathbf{1}) \leqslant \phi_{t}\left(x_{t}\right) \leqslant$ $M \phi_{t}(\mathbf{1})$, it follows that $k m \mathbf{1} \leqslant \int_{T} \phi_{t}\left(x_{t}\right) d \mu(t) \leqslant k M \mathbf{1}$. Using operator monotonicity of $F(\cdot, v)$, we obtain

$$
\begin{aligned}
& F\left[\int_{T} \phi_{t}\left(f\left(x_{t}\right)\right) d \mu(t), g\left(\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right)\right] \\
& \quad \leqslant F\left[k \cdot h_{2}\left(\frac{1}{k} \int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right), g\left(\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right)\right] \\
& \quad \leqslant \sup _{k m \leqslant z \leqslant k M} F\left[k \cdot h_{2}\left(\frac{1}{k} z\right), g(z)\right] \mathbf{1 .}
\end{aligned}
$$

Applying RHS of (6) for a convex function f (or LHS of (6) for a concave function f) we obtain the following generalization of Theorem B.

THEOREM 2.3. Let $\left(x_{t}\right)_{t \in T}$ and $\left(\phi_{t}\right)_{t \in T}$ be as in Theorem 2.2. Let $f:[m, M] \rightarrow$ $\mathbb{R}, g:[k m, k M] \rightarrow \mathbb{R}$ and $F: U \times V \rightarrow \mathbb{R}$ be functions such that $(k f)([m, M]) \subset U$, $g([k m, k M]) \subset V$ and F is bounded. If F is operator monotone in the first variable and f is convex in the interval $[m, M]$, then

$$
\begin{equation*}
F\left[\int_{T} \phi_{t}\left(f\left(x_{t}\right)\right) d \mu(t), g\left(\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right)\right] \leqslant \sup _{k m \leqslant z \leqslant k M} F\left[\alpha_{f} z+\beta_{f} k, g(z)\right] \mathbf{1} \tag{7}
\end{equation*}
$$

In the dual case (when f is concave) the opposite inequality holds in (7) with inf instead of sup.

Proof. We only prove the convex case. For convex f the inequality $f(z) \leqslant \alpha_{f} z+$ β_{f} holds for every $z \in[m, M]$. Thus, by putting $h_{2}(z)=\alpha_{f} z+\beta_{f}$ in RHS of (6) we obtain (7).

Numerous applications of the previous theorem can be given (see [6]). Applying Theorem 2.3 for the function $F(u, v)=u-\lambda v$, we obtain the following generalization of [6, Theorem 2.4].

Corollary 2.4. Let $\left(x_{t}\right)_{t \in T}$ and $\left(\phi_{t}\right)_{t \in T}$ be as in Theorem 2.2. If $f:[m, M] \rightarrow$ \mathbb{R} is convex in the interval $[m, M]$ and $g:[k m, k M] \rightarrow \mathbb{R}$, then for any $\lambda \in \mathbb{R}$

$$
\begin{equation*}
\int_{T} \phi_{t}\left(f\left(x_{t}\right)\right) d \mu(t) \leqslant \lambda g\left(\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right)+C \mathbf{1} \tag{8}
\end{equation*}
$$

where

$$
C=\sup _{k m \leqslant z \leqslant k M}\left\{\alpha_{f} z+\beta_{f} k-\lambda g(z)\right\}
$$

Iffurthermore λg is strictly convex differentiable, then the constant $C \equiv C(m, M, f, g, k, \lambda)$ can be written more precisely as

$$
C=\alpha_{f} z_{0}+\beta_{f} k-\lambda g\left(z_{0}\right)
$$

where

$$
z_{0}= \begin{cases}g^{\prime-1}\left(\alpha_{f} / \lambda\right) & \text { for } \lambda g^{\prime}(k m) \leqslant \alpha_{f} \leqslant \lambda g^{\prime}(k M) \\ k m & \text { for } \lambda g^{\prime}(k m) \geqslant \alpha_{f} \\ k M & \text { for } \lambda g^{\prime}(k M) \leqslant \alpha_{f}\end{cases}
$$

In the dual case (when f is concave and λg is strictly concave differentiable) the opposite inequality holds in (8) with min instead of max with the opposite condition while determining z_{0}.

REMARK 2.5. We assume that $\left(x_{t}\right)_{t \in T}$ and $\left(\phi_{t}\right)_{t \in T}$ are as in Theorem 2.3. If $f:[m, M] \rightarrow \mathbb{R}$ is convex and $\lambda g:[k m, k M] \rightarrow \mathbb{R}$ is strictly concave differentiable, then the constant $C \equiv C(m, M, f, g, k, \lambda)$ in (8) can be written more precisely as

$$
C=\left\{\begin{array}{l}
\alpha_{f} k M+\beta_{f} k-\lambda g(k M) \text { for } \quad \alpha_{f}-\lambda \alpha_{g, k} \geqslant 0 \\
\alpha_{f} k m+\beta_{f} k-\lambda g(k m) \text { for } \quad \alpha_{f}-\lambda \alpha_{g, k} \leqslant 0
\end{array}\right.
$$

where

$$
\alpha_{g, k}=\frac{g(k M)-g(k m)}{k M-k m} .
$$

Setting $\phi_{t}\left(A_{t}\right)=\left\langle A_{t} \xi_{t}, \xi_{t}\right\rangle$ for $\xi_{t} \in H$ and $t \in T$ in Corollary 2.4 and Remark 2.5 give a generalization of all results from [6, Section 2.4]. For example, we obtain the following two corollaries.

Corollary 2.6. Let $\left(A_{t}\right)_{t \in T}$ be a continuous field of positive operators on a Hilbert space H defined on a locally compact Hausdorff space T equipped with a bounded Radon measure μ. We assume the spectra are in $[m, M$] for some $0<m<M$. Let furthermore $\left(\xi_{t}\right)_{t \in T}$ be a continuous field of vectors in H such that $\int_{T}\left\|\xi_{t}\right\|^{2} d \mu(t)=$ k for some scalar $k>0$. Then for any real λ, q, p

$$
\begin{equation*}
\int_{T}\left\langle A_{t}^{p} \xi_{t}, \xi_{t}\right\rangle d \mu(t)-\lambda\left(\int_{T}\left\langle A_{t} \xi_{t}, \xi_{t}\right\rangle d \mu(t)\right)^{q} \leqslant C \tag{9}
\end{equation*}
$$

where the constant $C \equiv C(\lambda, m, M, p, q, k)$ is

$$
C=\left\{\begin{array}{lc}
(q-1) \lambda\left(\frac{\alpha_{p}}{\lambda q}\right)^{q /(q-1)}+\beta_{p} k \text { for } \lambda q m^{q-1} \leqslant \frac{\alpha_{p}}{k^{q-1}} \leqslant \lambda q M^{q-1}, \tag{10}\\
k M^{p}-\lambda(k M)^{q} & \text { for } \frac{\alpha_{p}}{k^{q-1}} \geqslant \lambda q M^{q-1}, \\
k m^{p}-\lambda(k m)^{q} & \text { for } \frac{\alpha_{p}}{k^{q-1}} \leqslant \lambda q m^{q-1}
\end{array}\right.
$$

in the case $\lambda q(q-1)>0$ and $p \in \mathbb{R} \backslash(0,1)$
or

$$
C=\left\{\begin{array}{l}
k M^{p}-\lambda(k M)^{q} \text { for } \alpha_{p}-\lambda k^{q-1} \alpha_{q} \geqslant 0 \tag{11}\\
k m^{p}-\lambda(k m)^{q} \text { for } \alpha_{p}-\lambda k^{q-1} \alpha_{q} \leqslant 0
\end{array}\right.
$$

in the case $\lambda q(q-1)<0$ and $p \in \mathbb{R} \backslash(0,1)$.
In the dual case: $\lambda q(q-1)<0$ and $p \in(0,1)$ the opposite inequality holds in (9) with the opposite condition while determining the constant C in (10). But in the dual case: $\lambda q(q-1)>0$ and $p \in(0,1)$ the opposite inequality holds in (9) with the opposite condition while determining the constant C in (11).

Constants α_{p} and β_{p} in terms above are the constants α_{f} and β_{f} associated with the function $f(z)=z^{p}$.

Corollary 2.7. Let $\left(A_{t}\right)_{t \in T}$ and $\left(\xi_{t}\right)_{t \in T}$ be as in Corollary 2.6. Then for any real number $r \neq 0$ we have

$$
\begin{align*}
& \int_{T}\left\langle\exp \left(r A_{t}\right) \xi_{t}, \xi_{t}\right\rangle d \mu(t)-\exp \left(r \int_{T}\left\langle A_{t} \xi_{t}, \xi_{t}\right\rangle d \mu(t)\right) \leqslant C_{1} \tag{12}\\
& \int_{T}\left\langle\exp \left(r A_{t}\right) \xi_{t}, \xi_{t}\right\rangle d \mu(t) \leqslant C_{2} \exp \left(r \int_{T}\left\langle A_{t} \xi_{t}, \xi_{t}\right\rangle d \mu(t)\right) \tag{13}
\end{align*}
$$

where the constant $C_{1} \equiv C_{1}(r, m, M, k)$

$$
C_{1}=\left\{\begin{array}{l}
\frac{\alpha}{r} \ln \left(\frac{\alpha}{r e}\right)+k \beta \quad \text { for } r e^{r k m} \leqslant \alpha \leqslant r e^{r k M} \\
k M \alpha+k \beta-\mathrm{e}^{r k M} \text { for } r e^{r k M} \leqslant \alpha \\
k m \alpha+k \beta-\mathrm{e}^{r k m} \text { for } r e^{r k m} \geqslant \alpha
\end{array}\right.
$$

and the constant $C_{2} \equiv C_{2}(r, m, M, k)$

$$
C_{2}=\left\{\begin{array}{l}
\frac{\alpha}{r e} e^{k r \beta / \alpha} \text { for } k r e^{r m} \leqslant \alpha \leqslant k r e^{r M} \\
k \mathrm{e}^{(1-k) r m} \text { for } k r e^{r m} \geqslant \alpha \\
k \mathrm{e}^{(1-k) r M} \text { for } k r e^{r M} \leqslant \alpha
\end{array}\right.
$$

Constants α and β in terms above are the constants α_{f} and β_{f} associated with the function $f(z)=\mathrm{e}^{r z}$.

Proof. We set $f(z) \equiv g(z)=\mathrm{e}^{r z}$ and $\phi_{t}\left(A_{t}\right)=\left\langle A_{t} \xi_{t}, \xi_{t}\right\rangle, t \in T$, in Corollary 2.4. Then the problem is reduced to determine $\max _{k m \leqslant z \leqslant k M} h(z)$ where $h(z)=\alpha z+k \beta-\mathrm{e}^{r z}$ in the inequality (12) and $h(z)=(\alpha z+k \beta) / \mathrm{e}^{r z}$ in the inequality (13). Applying the differential calculus we get C_{1} and C_{2}. We omit the details.

Applying the inequality $f(x) \leqslant \frac{M-x}{M-m} f(m)+\frac{x-m}{M-m} f(M)$ (for a convex function f on $[m, M]$) to positive operators $\left(A_{t}\right)_{t \in T}$ and using $0<A_{t} \leqslant\left\|A_{t}\right\| \mathbf{1}$, we obtain the following theorem, which is a generalization of results from [7, 3].

THEOREM 2.8. Let f be a convex function on $[0, \infty)$ and let $\|\cdot\|$ be a normalized unitarily invariant norm on $B(H)$ for some finite dimensional Hilbert space H. Let $\left(\phi_{t}\right)_{t \in T}$ be a field of positive linear maps $\phi_{t}: B(H) \rightarrow B(K)$, where K is a Hilbert space, defined on a locally compact Hausdorff space T equipped with a bounded Radon measure μ. If the field $t \rightarrow \phi_{t}(\mathbf{1})$ is integrable with $\int_{T} \phi_{t}(\mathbf{1}) d \mu(t)=k \mathbf{1}$ for some positive scalar k, then for every continuous field of positive operators $\left(A_{t}\right)_{t \in T}$ we have

$$
\begin{equation*}
\int_{T} \phi_{t}\left(f\left(A_{t}\right)\right) d \mu(t) \leqslant k f(0) \mathbf{1}+\int_{T} \frac{f\left(\left\|A_{t}\right\|\right)-f(0)}{\left\|A_{t}\right\|} \phi_{t}\left(A_{t}\right) d \mu(t) . \tag{14}
\end{equation*}
$$

Especially, for $f(0) \leqslant 0$, the inequality

$$
\begin{equation*}
\int_{T} \phi_{t}\left(f\left(A_{t}\right)\right) d \mu(t) \leqslant \int_{T} \frac{f\left(\left\|A_{t}\right\|\right)}{\left\|A_{t}\right\|} \phi_{t}\left(A_{t}\right) d \mu(t) \tag{15}
\end{equation*}
$$

is valid.

Proof. This theorem follows from [7, Theorem 3.5] when we replace ϕ_{t} by $\frac{1}{k} \phi_{t}$, $t \in T$.

In the present context and by using subdifferentials we can give an estimation from below in the sense of Theorem 2.3. The following theorem is a generalization of [7, Theorem 3.8]. It follows from Theorem 2.2 applying LHS of (6) for a convex function f (or RHS of (6) for a concave function f).

THEOREM 2.9. Let $\left(x_{t}\right)_{t \in T}$ be a bounded continuous field of self-adjoint elements in a unital C^{*}-algebra \mathscr{A} with spectra in $[m, M]$ defined on a locally compact Hausdorff space T equipped with a bounded Radon measure μ. Let $\left(\phi_{t}\right)_{t \in T}$ be a field of positive linear maps $\phi_{t}: \mathscr{A} \rightarrow \mathscr{B}$ from \mathscr{A} to another unital C^{*} - algebra \mathscr{B}, such that the field $t \rightarrow \phi_{t}(\mathbf{1})$ is integrable with $\int_{T} \phi_{t}(\mathbf{1}) d \mu(t)=k \mathbf{1}$ for some positive scalar k. Furthermore, let $f:[m, M] \rightarrow \mathbb{R}, g:[k m, k M] \rightarrow \mathbb{R}$ and $F: U \times V \rightarrow \mathbb{R}$ be functions such that $(k f)([m, M]) \subset U, g([k m, k M]) \subset V, F$ is bounded and $f(y)+l(y)(t-y) \in$ U for every $y, t \in[m, M]$ where l is the subdifferential of f. If F is operator monotone in the first variable and f is convex on $[m, M]$, then

$$
\begin{equation*}
F\left[\int_{T} \phi_{t}\left(f\left(x_{t}\right)\right) d \mu(t), g\left(\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right)\right] \geqslant \inf _{k m \leqslant z \leqslant k M} F[f(y) k+l(y)(z-y k), g(z)] \mathbf{1} \tag{16}
\end{equation*}
$$

holds for every $y \in[m, M]$. In the dual case (when f is concave) the opposite inequality holds in (16) with sup instead of inf.

Proof. We only prove the convex case. Since f is convex we have $f(z) \geqslant f(y)+$ $l(y)(z-y)$ for every $z, y \in[m, M]$. Thus, by putting $h_{1}(z)=f(y)+l(y)(z-y)$ in LHS of (6) we obtain (16).

Though $f(z)=\ln z$ is operator concave, the Schwarz inequality $\phi(f(x)) \leqslant f(\phi(x))$ does not hold in the case of non-unital ϕ. However, as applications of Corollary 2.4 and Theorem 2.9, we obtain the following corollary, which is a generalization of [6, Corollary 2.34].

Corollary 2.10. Let $\left(x_{t}\right)_{t \in T}$ and $\left(\phi_{t}\right)_{t \in T}$ be as in Theorem 2.9 for $0<m<M$. Then

$$
\begin{equation*}
C_{1} \mathbf{1} \leqslant \int_{T} \phi_{t}\left(\ln \left(x_{t}\right)\right) d \mu(t)-\ln \left(\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right) \leqslant C_{2} \mathbf{1} \tag{17}
\end{equation*}
$$

where the constant $C_{1} \equiv C_{1}(m, M, k)$

$$
C_{1}= \begin{cases}k \beta+\ln (\mathrm{e} / L(m, M)) \text { for } k m \leqslant L(m, M) \leqslant k M \\ \ln \left(M^{k-1} / k\right) & \text { for } k M \leqslant L(m, M) \\ \ln \left(m^{k-1} / k\right) & \text { for } k m \geqslant L(m, M)\end{cases}
$$

the constant $C_{2} \equiv C_{2}(m, M, k)$

$$
C_{2}= \begin{cases}\ln \left(\frac{L(m, M)^{k} k^{k-1}}{\mathrm{e}^{k} m}\right)+\frac{m}{L(m, M)} & \text { for } m \leqslant k L(m, M) \leqslant M \\ \ln \left(M^{k-1} / k\right) & \text { for } k L(m, M) \geqslant M \\ \ln \left(m^{k-1} / k\right) & \text { for } k L(m, M) \leqslant m\end{cases}
$$

and the logarithmic mean $L(m, M)$ is defined by $L(m, M)=\frac{M-m}{\ln M-\ln m}$ for $M \neq m$ and $L(m, M)=m$ for $M=m, \beta$ is the constant β_{f} associated with the function $f(z)=\ln z$.

Proof. We set $f(z) \equiv g(z)=\ln z$ in Corollary 2.4. Then we obtain the lower bound C_{1} when we determine $\min _{k m \leqslant z \leqslant k M}(\alpha z+k \beta-\ln z)$.

Next, we shall obtain the upper bound C_{2}. We set $F(u, v)=u-v$ and $f(z) \equiv$ $g(z)=\ln z$ in Theorem 2.9. We obtain

$$
\begin{aligned}
& \int_{T} \phi_{t}\left(\ln \left(x_{t}\right)\right) d \mu(t)-\ln \left(\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right) \\
& \quad \leqslant \max \left\{\ln \left(\frac{y^{k}}{\mathrm{e}^{k} k m}\right)+\frac{k m}{y}, \ln \left(\frac{y^{k}}{\mathrm{e}^{k} k M}\right)+\frac{k M}{y}\right\} \mathbf{1}
\end{aligned}
$$

for every $y \in[m, M]$, since $h(z)=k \ln y+\frac{1}{y}(z-k y)-\ln z$ is a convex function and it implies that

$$
\max _{k m \leqslant z \leqslant k M} h(z)=\max \{h(k m), h(k M)\} .
$$

Now, if $m \leqslant k L(m, M) \leqslant M$, then we choose $y=k L(m, M)$. In this case we have $h(k m)=h(k M)$. But, if $m \geqslant k L(m, M)$, then it follows $0<k \leqslant 1$, which implies that $\max \{h(k m), h(k M)\}=h(k m)$ for every $y \in[m, M]$. In this case we choose $y=m$, since $h(y)=\ln \left(\frac{y^{k}}{\mathrm{e}^{k} k m}\right)+\frac{k m}{y}$ is an increasing function in $[m, M]$. If $M \leqslant k L(m, M)$, then the proof is similar to above.

By using subdifferentials, we also give generalizations of some results from [7, 3].
THEOREM 2.11. Let $\left(x_{t}\right)_{t \in T}$ be a bounded continuous field of self-adjoint elements in a unital C^{*}-algebra \mathscr{A} with spectra in $[m, M]$ defined on a locally compact Hausdorff space T equipped with a bounded Radon measure μ, and let $\left(\phi_{t}\right)_{t \in T}$ be a field of positive linear maps $\phi_{t}: \mathscr{A} \rightarrow \mathscr{B}$ from \mathscr{A} to another unital C^{*}-algebra \mathscr{B}. If the field $t \rightarrow \phi_{t}(\mathbf{1})$ is integrable with $\int_{T} \phi_{t}(\mathbf{1}) d \mu(t)=k \mathbf{1}$ for some positive scalar k and $f:[m, M] \rightarrow \mathbb{R}$ is a convex function then

$$
\begin{align*}
f(y) k \mathbf{1} & +l(y)\left(\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)-y k \mathbf{1}\right) \\
& \leqslant \int_{T} \phi_{t}\left(f\left(x_{t}\right)\right) d \mu(t) \\
& \leqslant f(x) k \mathbf{1}-x \int_{T} \phi_{t}\left(l\left(x_{t}\right)\right) d \mu(t)+\int_{T} \phi_{t}\left(l\left(x_{t}\right) x_{t}\right) d \mu(t) \tag{18}
\end{align*}
$$

for every $x, y \in[m, M]$, where l is the subdifferential of f. In the dual case (f is concave) the opposite inequality holds.

Proof. We obtain this theorem by replacing ϕ_{t} by $\frac{1}{k} \phi_{t}$ in [7, Theorem 3.7]. For the sake of completeness we give the direct proof. Since f is convex in $[m, M]$, then for each $y \in[m, M]$ the inequality $f(x) \geqslant f(y)+l(y)(x-y)$ holds for every $x \in[m, M]$. By using the functional calculus in the variable x and applying the positive linear maps ϕ_{t} and integrating, we obtain LHS of (18). Next, since f is convex, then for each $x \in[m, M]$ the inequality $f(y) \leqslant f(x)-l(y)(x-y)$ holds for every $y \in[m, M]$. By using the functional calculus in the variable y, we obtain that $f\left(x_{t}\right) \leqslant f(x) \mathbf{1}-x l\left(x_{t}\right)+$ $l\left(x_{t}\right) x_{t}$ holds for every $x \in[m, M]$ and $t \in T$. Applying the positive linear maps ϕ_{t} and integrating, we obtain RHS of (18).

THEOREM 2.12. Let $\left(x_{t}\right)_{t \in T}$ be a bounded continuous field of positive elements in a unital C^{*}-algebra \mathscr{A} defined on a locally compact Hausdorff space T equipped with a bounded Radon measure μ. Let $\left(\phi_{t}\right)_{t \in T}$ be a field of positive linear maps $\phi_{t}: \mathscr{A} \rightarrow \mathscr{B}$ from \mathscr{A} to another unital C^{*}-algebra \mathscr{B} acting on a finite dimensional Hilbert space K, such that the field $t \rightarrow \phi_{t}(\mathbf{1})$ is integrable with $\int_{T} \phi_{t}(\mathbf{1}) d \mu(t)=k \mathbf{1}$ for some positive scalar k. Let $\|\cdot\|$ be unitarily invariant norm on $B(K)$ and let $f:[0, \infty) \rightarrow \mathbb{R}$ be an increasing function.

1. If $\|\mathbf{1}\|=1$ and f is convex with $f(0) \leqslant 0$ then

$$
\begin{equation*}
f\left(\frac{\left\|\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right\|}{k}\right) \leqslant \frac{\left\|\int_{T} \phi_{t}\left(f\left(x_{t}\right)\right) d \mu(t)\right\|}{k} \tag{19}
\end{equation*}
$$

2. If $\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t) \leqslant\left\|\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right\| \mathbf{1}$ and f is concave then

$$
\begin{equation*}
\frac{1}{k} \int_{T} \phi_{t}\left(f\left(x_{t}\right)\right) d \mu(t) \leqslant f\left(\frac{\left\|\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right\|}{k}\right) \mathbf{1} \tag{20}
\end{equation*}
$$

Proof. We replace ϕ_{t} by $\frac{1}{k} \phi_{t}$ for $t \in T$ in [7, Theorem 3.9].

3. Ratio type inequalities

In this section, we consider the order among the following power functions of operators:

$$
\begin{equation*}
I_{r}(\mathbf{x}, \phi):=\left(\int_{T} \phi_{t}\left(x_{t}^{r}\right) d \mu(t)\right)^{1 / r} \quad \text { if } \quad r \in \mathbf{R} \backslash\{0\} \tag{21}
\end{equation*}
$$

at these conditions: $\left(x_{t}\right)_{t \in T}$ is a bounded continuous field of positive operators in a unital C^{*}-algebra \mathscr{A} with spectra in $[m, M]$ for some scalars $0<m<M$, defined on a locally compact Hausdorff space T equipped with a bounded Radon measure μ, and $\left(\phi_{t}\right)_{t \in T}$ is a field of positive linear maps $\phi_{t}: \mathscr{A} \rightarrow \mathscr{B}$ from \mathscr{A} to another unital C^{*} algebra \mathscr{B}, such that the field $t \rightarrow \phi_{t}(\mathbf{1})$ is integrable with $\int_{T} \phi_{t}(\mathbf{1}) d \mu(t)=k \mathbf{1}$ for some positive scalar k.

In order to prove the ratio type order among power functions (21), we need some previous results given in the following two lemmas.

LEMMA 3.1. Let $\left(x_{t}\right)_{t \in T}$ be a bounded continuous field of positive operators in a unital C^{*}-algebra \mathscr{A} with spectra in $[m, M]$ for some scalars $0<m<M$, defined on a locally compact Hausdorff space T equipped with a bounded Radon measure μ, and let $\left(\phi_{t}\right)_{t \in T}$ be a field of positive linear maps $\phi_{t}: \mathscr{A} \rightarrow \mathscr{B}$ from \mathscr{A} to another unital C^{*}-algebra \mathscr{B}, such that the field $t \rightarrow \phi_{t}(\mathbf{1})$ is integrable with $\int_{T} \phi_{t}(\mathbf{1}) d \mu(t)=k \mathbf{1}$ for some positive scalar k.

If $0<p \leqslant 1$, then

$$
\begin{equation*}
\int_{T} \phi_{t}\left(x_{t}^{p}\right) d \mu(t) \leqslant k^{1-p}\left(\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right)^{p} \tag{22}
\end{equation*}
$$

If $-1 \leqslant p<0$ or $1 \leqslant p \leqslant 2$, then the opposite inequality holds in (22).

Proof. We obtain this lemma by applying Theorem 2.1 for the function $f(z)=z^{p}$ and using the proposition that it is an operator concave function for $0<p \leqslant 1$ and an operator convex one for $-1 \leqslant p<0$ and $1 \leqslant p \leqslant 2$.

The following lemma is a generalization of [8, Lemma 2].
Lemma 3.2. Assume that the conditions of Lemma 3.1 hold. If $0<p \leqslant 1$, then

$$
\begin{equation*}
k^{1-p} K(m, M, p)\left(\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right)^{p} \leqslant \int_{T} \phi_{t}\left(x_{t}^{p}\right) d \mu(t) \leqslant k^{1-p}\left(\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right)^{p} \tag{23}
\end{equation*}
$$

if $-1 \leqslant p<0$ or $1 \leqslant p \leqslant 2$, then

$$
\begin{equation*}
k^{1-p}\left(\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right)^{p} \leqslant \int_{T} \phi_{t}\left(x_{t}^{p}\right) d \mu(t) \leqslant k^{1-p} K(m, M, p)\left(\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right)^{p} \tag{24}
\end{equation*}
$$

if $p<-1$ or $p>2$, then

$$
\begin{align*}
& k^{1-p} K(m, M, p)^{-1}\left(\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right)^{p} \\
& \quad \leqslant \int_{T} \phi_{t}\left(x_{t}^{p}\right) d \mu(t) \leqslant k^{1-p} K(m, M, p)\left(\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right)^{p} \tag{25}
\end{align*}
$$

where a generalized Kantorovich constant $K(m, M, p)[6, \S 2.7]$ is defined as

$$
\begin{equation*}
K(m, M, p):=\frac{m M^{p}-M m^{p}}{(p-1)(M-m)}\left(\frac{p-1}{p} \frac{M^{p}-m^{p}}{m M^{p}-M m^{p}}\right)^{p} \quad \text { for all } p \in \mathbb{R} \tag{*}
\end{equation*}
$$

Proof. We obtain this lemma by applying Corollary 2.4 for the function $f(z) \equiv$ $g(z)=z^{p}$ and choosing λ such that $C=0$.

In the following theorem we give the ratio type order among power functions.
THEOREM 3.3. Let $\left(x_{t}\right)_{t \in T}$ be a bounded continuous field of positive operators in a unital C^{*}-algebra \mathscr{A} with spectra in $[m, M]$ for some scalars $0<m<M$, defined on a locally compact Hausdorff space T equipped with a bounded Radon measure μ, and let $\left(\phi_{t}\right)_{t \in T}$ be a field of positive linear maps $\phi_{t}: \mathscr{A} \rightarrow \mathscr{B}$ from \mathscr{A} to another unital C^{*}-algebra \mathscr{B}, such that the field $t \rightarrow \phi_{t}(\mathbf{1})$ is integrable with $\int_{T} \phi_{t}(\mathbf{1}) d \mu(t)=k \mathbf{1}$ for some positive scalar k. Let regions (i) - (v) $)_{1}$ be as in Figure 1.

Figure 1: Regions in the (r, s)-plain
If (r, s) in (i), then

$$
k^{\frac{s-r}{r s}} \Delta(h, r, s)^{-1} I_{s}(\mathbf{x}, \phi) \leqslant I_{r}(\mathbf{x}, \phi) \leqslant k^{\frac{s-r}{r s}} I_{s}(\mathbf{x}, \phi)
$$

if (r, s) in (ii) or (iii), then

$$
k^{\frac{s-r}{r s}} \Delta(h, r, s)^{-1} I_{s}(\mathbf{x}, \phi) \leqslant I_{r}(\mathbf{x}, \phi) \leqslant k^{\frac{s-r}{r s}} \Delta(h, r, s) I_{s}(\mathbf{x}, \phi)
$$

if (r, s) in (iv), then

$$
\begin{aligned}
& k^{\frac{s-r}{r s}} \Delta(h, s, 1)^{-1} \Delta(h, r, s)^{-1} I_{s}(\mathbf{x}, \phi) \leqslant I_{r}(\mathbf{x}, \phi) \\
\leqslant & k^{\frac{s-r}{r s}} \min \{\Delta(h, r, 1), \Delta(h, s, 1) \Delta(h, r, s)\} I_{s}(\mathbf{x}, \phi)
\end{aligned}
$$

if (r, s) in (v) or (iv) $)_{1}$ or $(\mathrm{v})_{1}$, then

$$
k^{\frac{s-r}{r s}} \Delta(h, s, 1)^{-1} \Delta(h, r, s)^{-1} I_{s}(\mathbf{x}, \phi) \leqslant I_{r}(\mathbf{x}, \phi) \leqslant k^{\frac{s-r}{r s}} \Delta(h, s, 1) I_{s}(\mathbf{x}, \phi)
$$

where a generalized Specht ratio $\Delta(h, r, s)[6, \S 2.7]$ is defined as

$$
\begin{equation*}
\Delta(h, r, s)=\left\{\frac{r\left(h^{s}-h^{r}\right)}{(s-r)\left(h^{r}-1\right)}\right\}^{1 / s}\left\{\frac{s\left(h^{r}-h^{s}\right)}{(r-s)\left(h^{s}-1\right)}\right\}^{-1 / r}, \quad h=\frac{M}{m} \tag{26}
\end{equation*}
$$

Proof. This theorem follows from Lemma 3.2 by putting $p=s / r$ or $p=r / s$ and then using function order of positive operators cf. [6, Chapter 8]. We use the same technique as in the proof of [8, Theorem 11].

4. Difference type inequalities

In order to prove the difference type order among power functions (21), we need some previous results given in the following lemma. It is a generalization of [8, Lemma 3].

LEMMA 4.1. Let $\left(x_{t}\right)_{t \in T}$ be a bounded continuous field of positive operators in a unital C^{*}-algebra \mathscr{A} with spectra in $[m, M]$ for some scalars $0<m<M$, defined on a locally compact Hausdorff space T equipped with a bounded Radon measure μ, and let $\left(\phi_{t}\right)_{t \in T}$ be a field of positive linear maps $\phi_{t}: \mathscr{A} \rightarrow \mathscr{B}$ from \mathscr{A} to another unital C^{*}-algebra \mathscr{B}, such that the field $t \rightarrow \phi_{t}(\mathbf{1})$ is integrable with $\int_{T} \phi_{t}(\mathbf{1}) d \mu(t)=k \mathbf{1}$ for some positive scalar k.

If $0<p \leqslant 1$, then

$$
\begin{equation*}
\alpha_{p} \int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)+k \beta_{p} \mathbf{1} \leqslant \int_{T} \phi_{t}\left(x_{t}^{p}\right) d \mu(t) \leqslant k^{1-p}\left(\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right)^{p} \tag{27}
\end{equation*}
$$

if $-1 \leqslant p<0$ or $1 \leqslant p \leqslant 2$, then

$$
\begin{equation*}
k^{1-p}\left(\int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)\right)^{p} \leqslant \int_{T} \phi_{t}\left(x_{t}^{p}\right) d \mu(t) \leqslant \alpha_{p} \int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)+k \beta_{p} \mathbf{1} \tag{28}
\end{equation*}
$$

if $p<-1$ or $p>2$, then

$$
\begin{equation*}
p y^{p-1} \int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)+k(1-p) y^{p} \mathbf{1} \leqslant \int_{T} \phi_{t}\left(x_{t}^{p}\right) d \mu(t) \leqslant \alpha_{p} \int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)+k \beta_{p} \mathbf{1} \tag{29}
\end{equation*}
$$

for every $y \in[m, M]$. Constants α_{p} and β_{p} are the constants α_{f} and β_{f} associated with the function $f(z)=z^{p}$.

Proof. RHS of (27) and LHS of (28) are proven in Lemma 3.1. LHS of (27) and RHS of (28) and (29) follow from Corollary 2.4 for $f(z)=z^{p}, g(z)=z$ and $\lambda=\alpha_{p}$. LHS of (29) follows from LHS of (18) in Theorem 2.11 putting $f(y)=y^{p}$ and $l(y)=$ $p y^{p-1}$.

REMARK 4.2. Setting $y=\left(\alpha_{p} / p\right)^{1 /(p-1)} \in[m, M]$ the inequality (29) gives

$$
\begin{align*}
& \alpha_{p} \int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)+k(1-p)\left(\alpha_{p} / p\right)^{p /(p-1)} \mathbf{1} \\
& \quad \leqslant \int_{T} \phi_{t}\left(x_{t}^{p}\right) d \mu(t) \leqslant \alpha_{p} \int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)+k \beta_{p} \mathbf{1} \tag{30}
\end{align*}
$$

for $p<-1$ or $p>2$.

Furthermore, setting $y=m$ or $y=M$ gives

$$
\begin{align*}
& p m^{p-1} \int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)+k(1-p) m^{p} \mathbf{1} \\
& \quad \leqslant \int_{T} \phi_{t}\left(x_{t}^{p}\right) d \mu(t) \leqslant \alpha_{p} \int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)+k \beta_{p} \mathbf{1} \tag{31}
\end{align*}
$$

or

$$
\begin{align*}
& p M^{p-1} \int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)+k(1-p) M^{p} \mathbf{1} \\
& \quad \leqslant \int_{T} \phi_{t}\left(x_{t}^{p}\right) d \mu(t) \leqslant \alpha_{p} \int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)+k \beta_{p} \mathbf{1} . \tag{32}
\end{align*}
$$

We remark that the operator in LHS of (31) is positive for $p>2$, since

$$
\begin{align*}
0<k m^{p} \mathbf{1} & \leqslant p m^{p-1} \int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)+k(1-p) m^{p} \mathbf{1} \\
& \leqslant k\left(p m^{p-1} M+(1-p) m^{p}\right) \mathbf{1}<k M^{p} \mathbf{1} \tag{33}
\end{align*}
$$

and the operator in LHS of (32) is positive for $p<-1$, since

$$
\begin{align*}
0<k M^{p} \mathbf{1} & \leqslant p M^{p-1} \int_{T} \phi_{t}\left(x_{t}\right) d \mu(t)+k(1-p) M^{p} \mathbf{1} \\
& \leqslant k\left(p M^{p-1} m+(1-p) M^{p}\right) \mathbf{1}<k m^{p} \mathbf{1} \tag{34}
\end{align*}
$$

(We have the inequality $p m^{p-1} M+(1-p) m^{p}<M^{p}$ in RHS of (33) and $p M^{p-1} m+$ $(1-p) M^{p}<m^{p}$ in RHS of (34) by using Bernoulli's inequality.)

In the following theorem we give the difference type order among power functions.
THEOREM 4.3. Let $\left(x_{t}\right)_{t \in T}$ be a bounded continuous field of positive operators in a unital C^{*}-algebra \mathscr{A} with spectra in $[m, M]$ for some scalars $0<m<M$, defined on a locally compact Hausdorff space T equipped with a bounded Radon measure μ, and let $\left(\phi_{t}\right)_{t \in T}$ be a field of positive linear maps $\phi_{t}: \mathscr{A} \rightarrow \mathscr{B}$ from \mathscr{A} to another unital C^{*}-algebra \mathscr{B}, such that the field $t \rightarrow \phi_{t}(\mathbf{1})$ is integrable with $\int_{T} \phi_{t}(\mathbf{1}) d \mu(t)=k \mathbf{1}$ for some positive scalar k. Let regions (i) $)_{1}-(\mathrm{v})_{1}$ be as in Figure 2.

Then

$$
\begin{equation*}
C_{2} \mathbf{1} \leqslant I_{S}(\mathbf{x}, \phi)-I_{r}(\mathbf{x}, \phi) \leqslant C_{1} \mathbf{1} \tag{35}
\end{equation*}
$$

where constants $C_{1} \equiv C_{1}(m, M, s, r, k)$ and $C_{2} \equiv C_{2}(m, M, s, r, k)$ are

$$
\begin{aligned}
& C_{1}= \begin{cases}\widetilde{\Delta}_{k}, & \text { for }(r, s) \text { in }(\mathrm{i})_{1} \text { or }(\mathrm{ii})_{1} \text { or }(\mathrm{iii})_{1} ; \\
\widetilde{\Delta}_{k}+\min \left\{C_{k}(s), C_{k}(r)\right\}, & \text { for }(r, s) \text { in }(\mathrm{iv}) \text { or }(\mathrm{v}) \text { or }(\mathrm{iv})_{1} \text { or }(\mathrm{v})_{1} ;\end{cases} \\
& C_{2}= \begin{cases}\left(k^{1 / s}-k^{1 / r}\right) m, & \text { for }(r, s) \text { in }(\mathrm{i})_{1} ; \\
\widetilde{D}_{k}, & \text { for }(r, s) \text { in }(\mathrm{ii})_{1} ; \\
\bar{D}_{k}, & \text { for }(r, s) \text { in }(\mathrm{iii})_{1} ; \\
\max \left\{\widetilde{D}_{k}-C_{k}(s),\left(k^{1 / s}-k^{1 / r}\right) m-C_{k}(r)\right\}, & \text { for }(r, s) \text { in }(\mathrm{iv}) ; \\
\max \left\{\bar{D}_{k}-C_{k}(r),\left(k^{1 / s}-k^{1 / r}\right) m-C_{k}(s)\right\}, & \text { for }(r, s) \text { in }(\mathrm{v}) ; \\
\left(k^{1 / s}-k^{1 / r}\right) m-\min \left\{C_{k}(r), C_{k}(s)\right\}, & \text { for }(r, s) \text { in }(\mathrm{iv})_{1} \text { or }(\mathrm{v})_{1} .\end{cases}
\end{aligned}
$$

Figure 2: Regions in the (r, s)-plain

A constant $\widetilde{\Delta}_{k} \equiv \widetilde{\Delta}_{k}(m, M, r, s)$ is

$$
\widetilde{\Delta}_{k}=\max _{\theta \in[0,1]}\left\{k^{1 / s}\left[\theta M^{s}+(1-\theta) m^{s}\right]^{1 / s}-k^{1 / r}\left[\theta M^{r}+(1-\theta) m^{r}\right]^{1 / r}\right\}
$$

a constant $\widetilde{D}_{k} \equiv \widetilde{D}_{k}(m, M, r, s)$ is

$$
\widetilde{D}_{k}=\min \left\{\left(k^{\frac{1}{s}}-k^{\frac{1}{r}}\right) m, k^{\frac{1}{s}} m\left(s \frac{M^{r}-m^{r}}{r m^{r}}+1\right)^{\frac{1}{s}}-k^{\frac{1}{r}} M\right\}
$$

$\bar{D}_{k} \equiv \bar{D}_{k}(m, M, r, s)=-\widetilde{D}_{k}(M, m, s, r)$ and a constant $C_{k}(p) \equiv C_{k}(m, M, p)$ is

$$
C_{k}(p)=k^{1 / p} \cdot C\left(m^{p}, M^{p}, 1 / p\right) \quad \text { for } p \neq 0
$$

where a constant $C(n, N, p)$ is defined by

$$
\begin{equation*}
C(n, N, p)=(p-1)\left(\frac{1}{p} \frac{N^{p}-n^{p}}{N-n}\right)^{p /(p-1)}+\frac{N n^{p}-n N^{p}}{N-n} \quad \text { for all } p \in \mathbb{R} \tag{36}
\end{equation*}
$$

(this is type of a generalized Kantorovich constant for difference, see [6, §2.7, Lemma 2.59]).

Proof. By the same technique as in the proof of [8, Theorem 7], we have this theorem. However, we give a proof for the sake of completeness. By Lemma 4.1 by putting $p=s / r$ or $p=r / s$ and then using the Löwner-Heinz inequality and the function order of positive operators, cf. [6, Chapter 8]:

$$
\begin{aligned}
& A \geqslant B>0 \text { and } \operatorname{Sp}(B) \subseteq[m, M] \text { imply } A^{p}+C(m, M, p) \mathbf{1} \geqslant B^{p}>0 \text { for all } p>1, \\
& A \geqslant B>0 \text { and } \operatorname{Sp}(A) \subseteq[m, M] \text { imply } B^{p}+C(m, M, p) \mathbf{1} \geqslant A^{p}>0 \text { for all } p<-1,
\end{aligned}
$$

we have the following inequalities.
(a) If $r \leqslant s \leqslant-1$ or $1 \leqslant s \leqslant-r$ or $0<r \leqslant s \leqslant 2 r, s \geqslant 1$, then

$$
\begin{gather*}
\left(k^{1 / s}-k^{1 / r}\right) m \mathbf{1} \leqslant\left(k^{\frac{r-s}{r s}}-1\right) I_{r}(\mathbf{x}, \phi) \leqslant I_{s}(\mathbf{x}, \phi)-I_{r}(\mathbf{x}, \phi) \tag{37}\\
\leqslant\left(\widetilde{\alpha} \int_{T} \phi_{t}\left(x_{t}^{r}\right) d \mu(t)+k \widetilde{\beta} \mathbf{1}\right)^{1 / s}-I_{r}(\mathbf{x}, \phi) \leqslant \widetilde{\Delta}_{k} \mathbf{1}
\end{gather*}
$$

(b) If $0<-r<s, s \geqslant 1$ or $0<2 r<s, s \geqslant 1$, then

$$
\begin{gather*}
m\left(\frac{s}{r} m^{-r} \int_{T} \phi_{t}\left(x_{t}^{r}\right) d \mu(t)+k \frac{r-s}{r} \mathbf{1}\right)^{1 / s}-I_{r}(\mathbf{x}, \phi) \leqslant I_{s}(\mathbf{x}, \phi)-I_{r}(\mathbf{x}, \phi) \tag{38}\\
\leqslant\left(\widetilde{\alpha} \int_{T} \phi_{t}\left(x_{t}^{r}\right) d \mu(t)+k \widetilde{\beta} \mathbf{1}\right)^{1 / s}-I_{r}(\mathbf{x}, \phi) \leqslant \widetilde{\Delta}_{k} \mathbf{1}
\end{gather*}
$$

(c) If $r \leqslant s,-1 \leqslant s<0$ or $s \leqslant-r, 0<s \leqslant 1 \quad$ or $0<r \leqslant s \leqslant 2 r, s \leqslant 1$, then

$$
\begin{align*}
& \left(\left(k^{1 / s}-k^{1 / r}\right) m-C_{k}(s)\right) \mathbf{1} \leqslant\left(k^{\frac{r-s}{r s}}-1\right) I_{r}(\mathbf{x}, \phi)-C_{k}(s) \mathbf{1} \leqslant I_{s}(\mathbf{x}, \phi)-I_{r}(\mathbf{x}, \phi)(3 \tag{39}\\
& \quad \leqslant\left(\widetilde{\alpha} \int_{T} \phi_{t}\left(x_{t}^{r}\right) d \mu(t)+k \widetilde{\beta} \mathbf{1}\right)^{1 / s}-I_{r}(\mathbf{x}, \phi)+C_{k}(s) \mathbf{1} \leqslant\left(\widetilde{\Delta}_{k}+C_{k}(s)\right) \mathbf{1}
\end{align*}
$$

(d) If $0<-r<s \leqslant 1$ or $0<2 r<s \leqslant 1$, then

$$
\begin{gather*}
m\left(\frac{s}{r} m^{-r} \int_{T} \phi_{t}\left(x_{t}^{r}\right) d \mu(t)+k \frac{r-s}{r} \mathbf{1}\right)^{1 / s}-I_{r}(\mathbf{x}, \phi)-C_{k}(s) \mathbf{1} \tag{40}\\
\leqslant I_{s}(\mathbf{x}, \phi)-I_{r}(\mathbf{x}, \phi) \\
\leqslant\left(\widetilde{\alpha} \int_{T} \phi_{t}\left(x_{t}^{r}\right) d \mu(t)+k \widetilde{\beta} \mathbf{1}\right)^{1 / s}-I_{r}(\mathbf{x}, \phi)+C_{k}(s) \mathbf{1} \leqslant\left(\widetilde{\Delta}_{k}+C_{k}(s)\right) \mathbf{1}
\end{gather*}
$$

Moreover, we can obtain the following inequalities:
$\left(a_{1}\right)$ If $1 \leqslant r \leqslant s$ or $-s \leqslant r \leqslant-1$ or $2 s \leqslant r \leqslant s<0, r \leqslant-1$, then

$$
\begin{gather*}
\widetilde{\Delta}_{k} \mathbf{1} \geqslant I_{s}(\mathbf{x}, \phi)-\left(\bar{\alpha} \int_{T} \phi_{t}\left(x_{t}^{s}\right) d \mu(t)+k \bar{\beta} \mathbf{1}\right)^{1 / r} \geqslant I_{s}(\mathbf{x}, \phi)-I_{r}(\mathbf{x}, \phi) \tag{41}\\
\geqslant\left(1-k^{\frac{s-r}{r s}}\right) I_{s}(\mathbf{x}, \phi) \geqslant\left(k^{1 / s}-k^{1 / r}\right) m \mathbf{1}
\end{gather*}
$$

$\left(b_{1}\right)$ If $r<-s<0, r \leqslant-1$ or $r<2 s<0, r \leqslant-1$, then

$$
\begin{gather*}
\widetilde{\Delta}_{k} \mathbf{1} \geqslant I_{s}(\mathbf{x}, \phi)-\left(\bar{\alpha} \int_{T} \phi_{t}\left(x_{t}^{s}\right) d \mu(t)+k \bar{\beta} \mathbf{1}\right)^{1 / r} \geqslant I_{s}(\mathbf{x}, \phi)-I_{r}(\mathbf{x}, \phi) \tag{42}\\
\geqslant I_{s}(\mathbf{x}, \phi)-M\left(\frac{r}{s} M^{-s} \int_{T} \phi_{t}\left(x_{t}^{s}\right) d \mu(t)+k \frac{s-r}{s} \mathbf{1}\right)^{1 / r}
\end{gather*}
$$

$\left(c_{1}\right)$ If $r \leqslant s, 0<r \leqslant 1$ or $-s \leqslant r,-1 \leqslant r<0 \quad$ or $2 s \leqslant r \leqslant s<0, r \geqslant-1$, then

$$
\begin{gather*}
\left(\widetilde{\Delta}_{k}+C_{k}(r)\right) \mathbf{1} \geqslant I_{s}(\mathbf{x}, \phi)-\left(\bar{\alpha} \int_{T} \phi_{t}\left(x_{t}^{S}\right) d \mu(t)+k \bar{\beta} \mathbf{1}\right)^{1 / r}+C_{k}(r) \mathbf{1} \tag{43}\\
\geqslant I_{s}(\mathbf{x}, \phi)-I_{r}(\mathbf{x}, \phi) \geqslant\left(1-k^{\frac{s-r}{r s}}\right) I_{s}(\mathbf{x}, \phi)-C_{k}(r) \mathbf{1} \geqslant\left(\left(k^{1 / s}-k^{1 / r}\right) m-C_{k}(r)\right) \mathbf{1}
\end{gather*}
$$

$\left(d_{1}\right)$ If $-1 \leqslant r<-s<0$ or $-1 \leqslant r<2 s<0$, then

$$
\begin{gather*}
\left(\widetilde{\Delta}_{k}+C_{k}(r)\right) \mathbf{1} \geqslant I_{s}(\mathbf{x}, \phi)-\left(\bar{\alpha} \int_{T} \phi_{t}\left(x_{t}^{s}\right) d \mu(t)+k \bar{\beta} \mathbf{1}\right)^{1 / r}+C_{k}(r) \mathbf{1} \tag{44}\\
\geqslant I_{s}(\mathbf{x}, \phi)-I_{r}(\mathbf{x}, \phi) \geqslant I_{s}(\mathbf{x}, \phi)-M\left(\frac{r}{s} M^{-s} \int_{T} \phi_{t}\left(x_{t}^{s}\right) d \mu(t)+k \frac{s-r}{s} \mathbf{1}\right)^{1 / r}-C_{k}(r) \mathbf{1}
\end{gather*}
$$

where we denote

$$
\begin{gathered}
\widetilde{\alpha}=\frac{M^{s}-m^{s}}{M^{r}-m^{r}}, \quad \widetilde{\beta}=\frac{M^{r} m^{s}-M^{s} m^{r}}{M^{r}-m^{r}}, \quad \bar{\alpha}=\frac{M^{r}-m^{r}}{M^{s}-m^{s}}, \quad \bar{\beta}=\frac{M^{s} m^{r}-M^{r} m^{s}}{M^{s}-m^{s}}, \\
C\left(k m^{s}, k M^{s}, 1 / s\right)=k^{1 / s} C\left(m^{s}, M^{s}, 1 / s\right)=C_{k}(s), \\
\widetilde{\Delta}_{k}=\max _{z \in \bar{T}_{1}}\left\{k^{1 / s}(\widetilde{\alpha} z+\widetilde{\beta})^{1 / s}-k^{1 / r} z^{1 / r}\right\}=\max _{z \in \bar{T}_{2}}\left\{k^{1 / s} z^{1 / s}-k^{1 / r}(\bar{\alpha} z+\bar{\beta})^{1 / r}\right\},
\end{gathered}
$$

and \bar{T}_{1} and \bar{T}_{2} denote the closed intervals joining m^{r} to M^{r} and m^{s} to M^{s}, respectively.

We will determine lower bounds in LHS of (b) and (d), in RHS of $\left(b_{1}\right)$ and $\left(d_{1}\right)$. On LHS of inequalities (38) and (40) we can apply the following inequality

$$
\begin{gather*}
m\left(\frac{s}{r} m^{-r} \int_{T} \phi_{t}\left(x_{t}^{r}\right) d \mu(t)+k \frac{r-s}{r} \mathbf{1}\right)^{1 / s}-I_{r}(\mathbf{x}, \phi) \tag{45}\\
\geqslant \min _{z \in \bar{T}_{1}}\left\{k^{1 / s} m\left(\frac{s}{r} m^{-r} z+1-\frac{s}{r}\right)^{1 / s}-k^{1 / r} z^{1 / r}\right\} \mathbf{1}=\widetilde{D}_{k} \mathbf{1} .
\end{gather*}
$$

Using substitution $z=r m^{r}\left(x-\frac{1}{s}\right)$, finding the minimum of

$$
h(z)=k^{1 / s} m\left(\frac{s}{r} m^{-r} z+\frac{r-s}{r}\right)^{1 / s}-k^{1 / r} z^{1 / r} \text { on } \bar{T}_{1}
$$

is equivalent to finding the minimum of $h_{1}(x)=k^{1 / s} m\left(s\left(x-\frac{1}{r}\right)\right)^{1 / s}-k^{1 / r} m\left(r\left(x-\frac{1}{s}\right)\right)^{1 / r}$ on $\bar{T}=\left[\frac{1}{s}+\frac{1}{r}, \frac{1}{s}+\frac{1}{r} \frac{M^{r}}{m^{r}}\right]$, where $r<s, s>0$. The minimum value of the function h_{1} on \bar{T} is achieved at one end point of this interval. Really, functions h_{1} and h_{1}^{\prime} are continuous on \bar{T}. If there is a stationary point x_{0} of h_{1} in $\left(\frac{1}{s}+\frac{1}{r}, \frac{1}{s}+\frac{1}{r} \frac{m^{r}}{m^{r}}\right)$ then $h_{1}\left(x_{0}\right)$ is the maximum value, since $h_{1}^{\prime \prime}\left(x_{0}\right)=k^{\frac{1}{s}} m\left(s\left(x_{0}-\frac{1}{r}\right)\right)^{1 / s-2}\left(r\left(x_{0}-\frac{1}{s}\right)\right)^{-1}(r-s)\left(x_{0}+\right.$ $\left.1-\frac{r+s}{r s}\right)<0$. It follows that

$$
\min _{z \in \bar{T}_{1}} h(z)=\min _{x \in \bar{T}} h_{1}(x)=\min \left\{h_{1}\left(\frac{1}{s}+\frac{1}{r}\right), h_{1}\left(\frac{1}{s}+\frac{1}{r} \frac{M^{r}}{m^{r}}\right)\right\}=\widetilde{D}_{k} .
$$

So in the case (b) we obtain:

$$
\begin{equation*}
\widetilde{D}_{k} \mathbf{1} \leqslant I_{s}(\mathbf{x}, \phi)-I_{r}(\mathbf{x}, \phi) \leqslant \widetilde{\Delta}_{k} \mathbf{1} \tag{46}
\end{equation*}
$$

and in the case (d) we obtain:

$$
\begin{equation*}
\left(\widetilde{D}_{k}-C_{k}(s)\right) \mathbf{1} \leqslant I_{s}(\mathbf{x}, \phi)-I_{r}(\mathbf{x}, \phi) \leqslant\left(\widetilde{\Delta}_{k}+C_{k}(s)\right) \mathbf{1} \tag{47}
\end{equation*}
$$

Similarly, for the RHS of (42) we obtain

$$
\begin{aligned}
& I_{s}(\mathbf{x}, \phi)-M\left(\frac{r}{s} M^{-s} \int_{T} \phi_{t}\left(x_{t}^{r}\right) d \mu(t)+k \frac{s-r}{s} \mathbf{1}\right)^{1 / r} \\
\geqslant & \min _{z \in \bar{T}_{2}}\left\{k^{1 / s} z^{1 / s}-k^{1 / r} M\left(\frac{r}{s} M^{-s} z+1-\frac{r}{s}\right)^{1 / r}\right\} \mathbf{1} \\
= & \min \left\{k^{1 / s} m-k^{1 / r} M\left(\frac{r}{s} \frac{m^{s}}{M^{s}}+1-\frac{r}{s}\right)^{1 / r},\left(k^{1 / s}-k^{1 / r}\right) M\right\} \mathbf{1} \\
= & \bar{D}_{k} \mathbf{1}
\end{aligned}
$$

So in the case $\left(b_{1}\right)$ we obtain:

$$
\begin{equation*}
\bar{D}_{k} \mathbf{1} \leqslant I_{s}(\mathbf{x}, \phi)-I_{r}(\mathbf{x}, \phi) \leqslant \widetilde{\Delta}_{k} \mathbf{1} \tag{48}
\end{equation*}
$$

and in the case $\left(d_{1}\right)$ we obtain:

$$
\begin{equation*}
\left(\bar{D}_{k}-C_{k}(r)\right) \mathbf{1} \leqslant I_{s}(\mathbf{x}, \phi)-I_{r}(\mathbf{x}, \phi) \leqslant\left(\widetilde{\Delta}_{k}+C_{k}(r)\right) \mathbf{1} \tag{49}
\end{equation*}
$$

Finally, we can obtain desired bounds C_{1} and C_{2} in (35), taking into account that (37) holds in the region (i) 1_{1}, (46) holds in (ii) ${ }_{1}$, (48) holds in (iii) ${ }_{1}$, (47) and (43) hold in (iv), (39) and (49) hold in (v), (39) and (43) hold in (iv) ${ }_{1}$ and (v) ${ }_{1}$.

REMARK 4.4. If we replace $\left(\phi_{t}\right)_{t \in T}$ by $\left(\frac{1}{k} \phi_{t}\right)_{t \in T}$ in Theorem 3.3 and Theorem 4.3 then we can obtain the order among operator means $M_{r}(\mathbf{x}, \phi):=\left(\int_{T} \frac{1}{k} \phi_{t}\left(x_{t}^{r}\right) d \mu(t)\right)^{1 / r}$, $r \in \mathbf{R} \backslash\{0\}$. The order among these means in the discrete case $T=\{1, \ldots, n\}$ is given in [8, Theorem 11] and [8, Theorem 7].

Note that in this case, for difference type inequalities we have $\widetilde{D}_{k}=\widetilde{D}_{1}=$ $m\left(s \frac{M^{r}-m^{r}}{r m^{r}}+1\right)^{\frac{1}{s}}-M$ and we can choose better bounds using that $C\left(m^{r}, M^{r}, 1 / r\right) \geqslant$ $C\left(m^{s}, M^{s}, 1 / s\right)$ for $r \leqslant s$ and $M>m>0$ (see [8, Lemma 8]).

REFERENCES

[1] M. D. Choi, A Schwarz inequality for positive linear maps on C^{*}-algebras, Illinois J. Math., 18 (1974) 565-574.
[2] Ch. Davis, A Schwarz inequality for convex operator functions, Proc. Amer. Math. Soc., 8 (1957), 42-44.
[3] R. Drnovšek, T. Kosem, Inequalities between $f(\|A\|)$ and $\|f(|A|)\|$, Math. Inequal. Appl., 8 (2005), 1-6.
[4] J. I. Fujii, M. Nakamura, J. Pečarić and Y. Seo, Bounds for the ratio and difference between parallel sum and series via Mond-Pečarić method, Math. Inequal. Appl., 9 (2006), 749-759.
[5] F. Hansen and G. K. Pedersen, Jensen's operator inequality, Bull. London Math. Soc., 35 (2003), 553-564.
[6] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić method in operator inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
[7] F. Hansen, J. Pečarić and I. Perić, Jensen's operator inequality and it's converses, Math. Scand., 100 (2007), 61-73.
[8] J. MićIć and J. Pečarić, Order among power means of positive operators, II, Sci. Math. Japon. Online (2009), 677-693.
[9] J.MićIć, Y.SEo, S.-E.TAKAHASI AND M.Tominaga, Inequalities of Furuta and Mond-Pečarić, Math. Inequal. Appl., 2 (1999), 83-111.
[10] B. Mond And J. E. PEČARIĆ, Converses of Jensen's inequality for linear maps of operators, Analele Universit. din Timişoara, Seria Math.-Inform., XXXI, 2 (1993), 223-228.
[11] B. Mond and J. PečARIĆ, Converses of Jensen's inequality for several operators, Revue d'Analyse Numer. et de Thé orie de l'Approxim., 23 (1994), 179-183.
[12] B. Mond and J. E. PečARIĆ, Bounds for Jensen's inequality for several operators, Houston J. Math., 20, 4 (1994), 645-651.
[13] W. F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc., 6 (1955), 211-216.
(Received July 20, 2009)
Jadranka Mićić
Faculty of Mechanical Engineering and Naval Architecture
University of Zagreb
Ivana Lučića 5
10000 Zagreb
Croatia
e-mail: jmicic@fsb.hr
Josip Pečarić
Faculty of Textile Technology
University of Zagreb
Prilaz baruna Filipovića 30
10000 Zagreb
Croatia
e-mail: pecaric@hazu.hr
Yuki Seo
Faculty of Engineering
Shibaura Institute of Technology
307 Fukasaku, Minuma-ku
Saitama-City, Saitama 337-8570
Japan
e-mail: yukis@sic.shibaura-it.ac.jp

