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CONVERSES OF JENSEN’S OPERATOR INEQUALITY

JADRANKA MIĆIĆ, JOSIP PEČARIĆ AND YUKI SEO

(Communicated by C.-K. Li)

Abstract. We give a generalization of converses of Jensen’s operator inequality for fields of
positive linear mappings (φt)t∈T such that

∫
T φt(1)dμ(t) = k1 for some positive scalar k . We

consider different types of converse inequalities.

1. Introduction

Let f be an operator convex function defined on an interval I. Ch.Davis [2] proved
a Schwarz inequality

f (φ(x)) � φ ( f (x)) ,

where φ : A → B is a unital completely positive linear map from a C∗ -algebra A to
linear operators on a Hilbert space K, and x is a self-adjoint element in A with spec-
trum in I. Subsequently M.D.Choi [1] noted that it is enough to assume that φ is unital
and positive. In fact, the restriction of φ to the commutative C∗ -algebra generated
by x and the identity operator 1 is automatically completely positive by a theorem of
Stinespring [13].

B. Mond and J. Pečarić [11] proved the inequality

f

(
n

∑
i=1

ωiφi(xi)

)
�

n

∑
i=1

ωiφi( f (xi)) (1)

for an operator convex function f defined on an interval I, where (φ1, . . . ,φn) is an
n -tuple of unital positive linear maps φi : B(H) → B(K) , (x1, . . . ,xn) is an n -tuple of
self-adjoint operators with spectra in I and (ω1, . . . ,ωn) is an n -tuple of non-negative
real numbers with sum one.

Also, without the assumption of operator convexity, B. Mond and J. Pečarić [10,
12] showed the following extension of the converses of Jensen’s inequality:

F

[
n

∑
i=1

ωiφi ( f (xi)) , f

(
n

∑
i=1

ωiφi (xi)

)]
� max

m�z�M
F
[
α f z+β f , f (z)

]
1, (2)
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for a convex function f defined on [m,M] , a real valued function F(u,v) which is
operatormonotone in its first variable, where (φ1, . . . ,φn) is an n -tuple of unital positive
linear maps φi : B(H)→ B(K) , (x1, . . . ,xn) is an n -tuple of self-adjoint operators with
spectra in [m,M] and (ω1, . . . ,ωn) is an n -tuple of non-negative real numbers with
sum one. Here we use the standard notation for a real valued continuous function
f : [m,M] → R

α f :=
f (M)− f (m)

M−m
and β f :=

M f (m)−mf (M)
M−m

.

J. Mićić, Y. Seo, S.-E. Takahasi and M. Tominaga [9] generalized (2) for a convex
function f and any continuous function g on [m,M] .

Recently F. Hansen, J. Pečarić and I. Perić in [7] gave a general formulation of
Jensen’s operator inequality for unital field of positive linear mappings and its con-
verses. They proved a generalization of (1) and (2) given in next two theorems. They
say that a field (φt)t∈T of mappings φt : A → B is unital if it is integrable with∫
T φt(1)dμ(t) = 1 , where A and B are C∗ -algebras of operators on a Hilbert spaces

H and K , respectively.

THEOREM A. Let f : I → R be an operator convex function defined on an in-
terval I, and let A and B be unital C∗ -algebras on a Hilbert spaces H and K
respectively. If (φt)t∈T is a unital field of positive linear mappings φt : A →B defined
on a locally compact Hausdorff space T with a bounded Radon measure μ , then the
inequality

f

(∫
T
φt(xt)dμ(t)

)
�
∫

T
φt( f (xt ))dμ(t) (3)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with
spectra contained in I.

THEOREM B. Let (xt)t∈T be a bounded continuous field of self-adjoint elements
in a unital C∗ -algebra A with spectra in [m,M] defined on a locally compact Haus-
dorff space T equipped with a bounded Radon measure μ , and let (φt)t∈T be a uni-
tal field of positive linear maps φt : A → B from A to another unital C∗−algebra
B . Let f ,g : [m,M] → R and F : U ×V → R be functions such that f ([m,M]) ⊂U,
g([m,M]) ⊂ V and F is bounded. If F is operator monotone in the first variable and
f is convex in the interval [m,M] , then

F

[∫
T
φt ( f (xt))dμ(t),g

(∫
T
φt(xt)dμ(t)

)]
� sup

m�z�M
F
[
α f z+β f ,g(z)

]
1. (4)

In the dual case (when f is concave) the opposite inequality holds in (4) with inf
instead of sup .

Furthermore, J. I. Fujii, M. Nakamura, J. Pečarić and Y. Seo [4] observed the
reverse inequality of Kadison’s Schwarz inequality, without the assumption of the nor-
malization of map Φ given in next lemma.
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LEMMA C. Let Φ be a positive linear map on B(H) such that Φ(1) = k1 for
some positive scalar k . If A is a positive operator on H such that 0 < m1 � A � M1
for some scalars m < M, then for each λ > 0

Φ(A) � λΦ
(
A−1)−1

+C(m,M,λ ,k)1,

where

C(m,M,λ ,k) =

⎧⎨⎩
k(m+M)−2

√
λmM i f m �

√
λmM/k � M,

(k−λ/k)M i f
√
λmM/k � m,

(k−λ/k)m i f M �
√
λmM/k.

In this paper, using the idea given in Lemma C, we consider a generalization of
Theorem A and Theorem B in the case when a field (φt )t∈T of mappings φt : A →B ,
such that the field t → φt(1) is integrable with

∫
T φt(1)dμ(t) = k1 for some positive

scalar k . We consider some applications given in [6, 7, 8] under the new formulation.

2. Main results

Let T be a locally compact Hausdorff space, and let A be a C∗ -algebra of oper-
ators on a Hilbert space H. We say that a field (xt)t∈T of operators in A is continuous
if the function t → xt is norm continuous on T. If in addition μ is a bounded Radon
measure on T and the function t → ‖xt‖ is integrable, then we can form the Bochner
integral

∫
T xt dμ(t) , which is the unique element in the multiplier algebra

M(A ) = {a ∈ B(H) | ∀x ∈ A : ax+ xa ∈ A }
such that

ϕ
(∫

T
xt dμ(t)

)
=
∫

T
ϕ(xt)dμ(t)

for every linear functional ϕ in the norm dual A ∗, cf. [5].
Assume furthermore that there is a field (φt)t∈T of positive linear mappings φt :

A → B from A to another C∗ -algebra B of operators on a Hilbert space K. We say
that such a field is continuous if the function t → φt(x) is continuous for every x ∈ A .

THEOREM 2.1. Let A and B be unital C∗ -algebras on H and K respectively.
Let (xt)t∈T be a bounded continuous field of self-adjoint elements in A with spectra in
an interval I defined on a locally compact Hausdorff space T equipped with a bounded
Radon measure μ . Furthermore, let (φt)t∈T be a field of positive linear maps φt : A →
B , such that the field t → φt(1) is integrable with

∫
T φt(1)dμ(t)= k1 for some positive

scalar k . Then the inequality

f

(
1
k

∫
T
φt(xt)dμ(t)

)
� 1

k

∫
T
φt( f (xt))dμ(t) (5)

holds for each operator convex function f : I →R defined on I . In the dual case (when
f is operator concave) the opposite inequality holds in (5).
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Proof. This theorem follows from Theorem A, since ( 1
kφt)t∈T is a unital field of

positive linear mappings 1
kφt : A → B . �

In the present context we may obtain results of the Li-Mathias type cf. [6, Chapter
3].

THEOREM 2.2. Let (xt)t∈T be a bounded continuous field of self-adjoint elements
in a unital C∗ -algebra A with spectra in [m,M] defined on a locally compact Haus-
dorff space T equipped with a bounded Radon measure μ . Furthermore, let (φt)t∈T

be a field of positive linear maps φt : A → B from A to another unital C∗−algebra
B , such that the field t → φt(1) is integrable with

∫
T φt(1)dμ(t) = k1 for some posi-

tive scalar k . Let f : [m,M] → R , g : [km,kM] → R and F : U ×V → R be functions
such that (k f )([m,M]) ⊂ U, g([km,kM]) ⊂ V and F is bounded. If F is operator
monotone in the first variable, then

inf
km�z�kM

F

[
k ·h1

(
1
k
z

)
,g(z)

]
1 � F [

∫
T φt ( f (xt ))dμ(t),g(

∫
T φt(xt)dμ(t))]

� sup
km�z�kM

F

[
k ·h2

(
1
k
z

)
,g(z)

]
1

(6)

holds for every operator convex function h1 on [m,M] such that h1 � f and for every
operator concave function h2 on [m,M] such that h2 � f .

Proof. We only prove RHS of (6). Let h2 be operator concave function on [m,M]
such that f (z) � h2(z) for every z ∈ [m,M] . By using the functional calculus, it fol-
lows that f (xt) � h2(xt) for every t ∈ T . Applying the positive linear maps φt and
integrating, we obtain ∫

T
φt ( f (xt ))dμ(t) �

∫
T
φt (h2(xt))dμ(t).

Furthermore, by using Theorem 2.1, we have

1
k

∫
T
φt (h2(xt)) dμ(t) � h2

(
1
k

∫
T
φt (xt)dμ(t)

)

and hence
∫

T
φt ( f (xt ))dμ(t) � k · h2

(
1
k

∫
T
φt(xt)dμ(t)

)
. Since mφt(1) � φt(xt) �

Mφt (1) , it follows that km1 �
∫
T φt(xt)dμ(t) � kM 1 . Using operator monotonicity of

F(·,v) , we obtain

F

[∫
T
φt ( f (xt))dμ(t),g

(∫
T
φt(xt)dμ(t)

)]
� F

[
k ·h2

(
1
k

∫
T
φt(xt)dμ(t)

)
,g

(∫
T
φt(xt)dμ(t)

)]
� sup

km�z�kM
F

[
k ·h2

(
1
k
z

)
,g(z)

]
1. �
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Applying RHS of (6) for a convex function f (or LHS of (6) for a concave function
f ) we obtain the following generalization of Theorem B.

THEOREM 2.3. Let (xt)t∈T and (φt )t∈T be as in Theorem 2.2. Let f : [m,M] →
R , g : [km,kM] → R and F : U ×V → R be functions such that (k f )([m,M]) ⊂ U,
g([km,kM]) ⊂ V and F is bounded. If F is operator monotone in the first variable
and f is convex in the interval [m,M] , then

F

[∫
T
φt ( f (xt))dμ(t),g

(∫
T
φt(xt)dμ(t)

)]
� sup

km�z�kM
F
[
α f z+β f k,g(z)

]
1. (7)

In the dual case (when f is concave) the opposite inequality holds in (7) with inf
instead of sup .

Proof. We only prove the convex case. For convex f the inequality f (z) � α f z+
β f holds for every z ∈ [m,M] . Thus, by putting h2(z) = α f z + β f in RHS of (6) we
obtain (7). �

Numerous applications of the previous theorem can be given (see [6]). Applying
Theorem 2.3 for the function F(u,v) = u−λv , we obtain the following generalization
of [6, Theorem 2.4].

COROLLARY 2.4. Let (xt)t∈T and (φt)t∈T be as in Theorem 2.2. If f : [m,M] →
R is convex in the interval [m,M] and g : [km,kM] → R , then for any λ ∈ R

∫
T
φt ( f (xt ))dμ(t) � λ g

(∫
T
φt(xt)dμ(t)

)
+C1, (8)

where

C = sup
km�z�kM

{
α f z+β f k−λg(z)

}
.

If furthermore λg is strictly convex differentiable, then the constant C≡C(m,M, f ,g,k,λ )
can be written more precisely as

C = α f z0 +β f k−λg(z0),

where

z0 =

⎧⎨⎩
g′−1(α f /λ ) for λg′(km) � α f � λg′(kM),
km for λg′(km) � α f ,
kM for λg′(kM) � α f .

In the dual case (when f is concave and λg is strictly concave differentiable) the
opposite inequality holds in (8) with min instead of max with the opposite condition
while determining z0 .
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REMARK 2.5. We assume that (xt)t∈T and (φt)t∈T are as in Theorem 2.3. If
f : [m,M]→ R is convex and λg : [km,kM] → R is strictly concave differentiable, then
the constant C ≡C(m,M, f ,g,k,λ ) in (8) can be written more precisely as

C =
{
α f kM +β f k−λg(kM) for α f −λαg,k � 0,
α f km+β f k−λg(km) for α f −λαg,k � 0,

where

αg,k =
g(kM)−g(km)

kM− km
.

Setting φt(At) = 〈Atξt ,ξt〉 for ξt ∈ H and t ∈ T in Corollary 2.4 and Remark 2.5
give a generalization of all results from [6, Section 2.4]. For example, we obtain the
following two corollaries.

COROLLARY 2.6. Let (At)t∈T be a continuous field of positive operators on a
Hilbert space H defined on a locally compact Hausdorff space T equipped with a
bounded Radon measure μ . We assume the spectra are in [m,M] for some 0 < m < M.
Let furthermore (ξt)t∈T be a continuous field of vectors in H such that

∫
T ‖ξt‖2dμ(t)=

k for some scalar k > 0 . Then for any real λ ,q, p

∫
T
〈Ap

t ξt ,ξt〉dμ(t)−λ
(∫

T
〈Atξt ,ξt〉dμ(t)

)q

� C, (9)

where the constant C ≡C(λ ,m,M, p,q,k) is

C =

⎧⎪⎪⎨⎪⎪⎩
(q−1)λ

(
αp
λq

)q/(q−1)
+βpk for λqmq−1 � αp

kq−1 � λqMq−1,

kMp −λ (kM)q for αp

kq−1 � λqMq−1,

kmp−λ (km)q for αp

kq−1 � λqmq−1,

(10)

in the case λq(q−1) > 0 and p ∈ R\ (0,1)
or

C =
{

kMp −λ (kM)q for αp−λkq−1αq � 0,
kmp−λ (km)q for αp−λkq−1αq � 0,

(11)

in the case λq(q−1) < 0 and p ∈ R\ (0,1) .
In the dual case: λq(q− 1) < 0 and p ∈ (0,1) the opposite inequality holds in

(9) with the opposite condition while determining the constant C in (10). But in the
dual case: λq(q− 1) > 0 and p ∈ (0,1) the opposite inequality holds in (9) with the
opposite condition while determining the constant C in (11).

Constants αp and βp in terms above are the constants α f and β f associated with
the function f (z) = zp.
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COROLLARY 2.7. Let (At)t∈T and (ξt)t∈T be as in Corollary 2.6. Then for any
real number r = 0 we have∫

T
〈exp(rAt)ξt ,ξt〉dμ(t)− exp

(
r
∫

T
〈Atξt ,ξt〉dμ(t)

)
� C1, (12)

∫
T
〈exp(rAt)ξt ,ξt〉dμ(t) � C2 exp

(
r
∫

T
〈Atξt ,ξt〉dμ(t)

)
, (13)

where the constant C1 ≡C1(r,m,M,k)

C1 =

⎧⎪⎨⎪⎩
α
r ln
( α

re

)
+ kβ for rerkm � α � rerkM,

kMα + kβ − erkM for rerkM � α,

kmα + kβ − erkm for rerkm � α

and the constant C2 ≡C2(r,m,M,k)

C2 =

⎧⎪⎪⎨⎪⎪⎩
α
re e

krβ/α for krerm � α � krerM ,

ke(1−k)rm for krerm � α,

ke(1−k)rM for krerM � α.

Constants α and β in terms above are the constants α f and β f associated with the
function f (z) = erz.

Proof. We set f (z) ≡ g(z) = erz and φt(At) = 〈Atξt ,ξt〉, t ∈ T, in Corollary 2.4.
Then the problem is reduced to determine maxkm�z�kM h(z) where h(z) =αz+kβ−erz

in the inequality (12) and h(z) = (αz + kβ )/erz in the inequality (13). Applying the
differential calculus we get C1 and C2 . We omit the details. �

Applying the inequality f (x) � M−x
M−m f (m)+ x−m

M−m f (M) (for a convex function f
on [m,M]) to positive operators (At)t∈T and using 0 < At � ‖At‖1 , we obtain the
following theorem, which is a generalization of results from [7, 3].

THEOREM 2.8. Let f be a convex function on [0,∞) and let ‖ · ‖ be a normal-
ized unitarily invariant norm on B(H) for some finite dimensional Hilbert space H. Let
(φt)t∈T be a field of positive linear maps φt : B(H)→B(K), where K is a Hilbert space,
defined on a locally compact Hausdorff space T equipped with a bounded Radon mea-
sure μ . If the field t → φt (1) is integrable with

∫
T φt(1)dμ(t) = k1 for some positive

scalar k , then for every continuous field of positive operators (At)t∈T we have∫
T
φt( f (At ))dμ(t) � k f (0)1+

∫
T

f (‖At‖)− f (0)
‖At‖ φt(At)dμ(t). (14)

Especially, for f (0) � 0, the inequality∫
T
φt( f (At ))dμ(t) �

∫
T

f (‖At‖)
‖At‖ φt(At)dμ(t). (15)

is valid.
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Proof. This theorem follows from [7, Theorem 3.5] when we replace φt by 1
kφt ,

t ∈ T . �

In the present context and by using subdifferentials we can give an estimation from
below in the sense of Theorem 2.3. The following theorem is a generalization of [7,
Theorem 3.8]. It follows from Theorem 2.2 applying LHS of (6) for a convex function
f (or RHS of (6) for a concave function f ).

THEOREM 2.9. Let (xt)t∈T be a bounded continuous field of self-adjoint elements
in a unital C∗ -algebra A with spectra in [m,M] defined on a locally compact Haus-
dorff space T equipped with a bounded Radon measure μ . Let (φt )t∈T be a field of
positive linear maps φt : A → B from A to another unital C∗−algebra B , such that
the field t → φt(1) is integrable with

∫
T φt(1)dμ(t) = k1 for some positive scalar k .

Furthermore, let f : [m,M] → R , g : [km,kM] → R and F : U ×V → R be functions
such that (k f )([m,M]) ⊂U, g([km,kM]) ⊂V , F is bounded and f (y)+ l(y)(t − y) ∈
U for every y, t ∈ [m,M] where l is the subdifferential of f . If F is operator monotone
in the first variable and f is convex on [m,M] , then

F

[∫
T
φt ( f (xt )) dμ(t),g

(∫
T
φt(xt)dμ(t)

)]
� inf

km�z�kM
F [ f (y)k+ l(y)(z− yk),g(z)]1

(16)
holds for every y∈ [m,M] . In the dual case (when f is concave) the opposite inequality
holds in (16) with sup instead of inf .

Proof. We only prove the convex case. Since f is convex we have f (z) � f (y)+
l(y)(z− y) for every z,y ∈ [m,M] . Thus, by putting h1(z) = f (y)+ l(y)(z− y) in LHS
of (6) we obtain (16). �

Though f (z)= ln z is operator concave, the Schwarz inequality φ ( f (x)) � f (φ(x))
does not hold in the case of non-unital φ . However, as applications of Corollary 2.4
and Theorem 2.9, we obtain the following corollary, which is a generalization of [6,
Corollary 2.34].

COROLLARY 2.10. Let (xt)t∈T and (φt)t∈T be as in Theorem 2.9 for 0 < m < M.
Then

C11 �
∫

T
φt (ln(xt)) dμ(t)− ln

(∫
T
φt(xt)dμ(t)

)
� C21, (17)

where the constant C1 ≡C1(m,M,k)

C1 =

⎧⎪⎨⎪⎩
kβ + ln(e/L(m,M)) for km � L(m,M) � kM,

ln
(
Mk−1/k

)
for kM � L(m,M),

ln
(
mk−1/k

)
for km � L(m,M),
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the constant C2 ≡C2(m,M,k)

C2 =

⎧⎪⎪⎨⎪⎪⎩
ln
(

L(m,M)kkk−1

ekm

)
+ m

L(m,M) for m � kL(m,M) � M

ln
(
Mk−1/k

)
for kL(m,M) � M,

ln
(
mk−1/k

)
for kL(m,M) � m,

and the logarithmic mean L(m,M) is defined by L(m,M) = M−m
lnM−lnm for M = m and

L(m,M) = m for M = m, β is the constant β f associated with the function f (z) = lnz.

Proof. We set f (z) ≡ g(z) = lnz in Corollary 2.4. Then we obtain the lower
bound C1 when we determine min

km�z�kM
(αz+ kβ − lnz) .

Next, we shall obtain the upper bound C2 . We set F(u,v) = u− v and f (z) ≡
g(z) = lnz in Theorem 2.9. We obtain∫

T
φt (ln(xt)) dμ(t)− ln

(∫
T
φt(xt)dμ(t)

)
� max

{
ln

(
yk

ekkm

)
+

km
y

, ln

(
yk

ekkM

)
+

kM
y

}
1

for every y ∈ [m,M] , since h(z) = k lny+
1
y
(z− ky)− lnz is a convex function and it

implies that
max

km�z�kM
h(z) = max{h(km),h(kM)}.

Now, if m � kL(m,M) � M , then we choose y = kL(m,M) . In this case we have
h(km) = h(kM) . But, if m � kL(m,M) , then it follows 0 < k � 1, which implies that
max{h(km),h(kM)} = h(km) for every y ∈ [m,M] . In this case we choose y = m ,

since h(y) = ln

(
yk

ekkm

)
+

km
y

is an increasing function in [m,M] . If M � kL(m,M) ,

then the proof is similar to above. �
By using subdifferentials, we also give generalizations of some results from [7, 3].

THEOREM 2.11. Let (xt)t∈T be a bounded continuous field of self-adjoint ele-
ments in a unital C∗ -algebra A with spectra in [m,M] defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure μ , and let (φt)t∈T be a
field of positive linear maps φt : A → B from A to another unital C∗ -algebra B .
If the field t → φt (1) is integrable with

∫
T φt(1)dμ(t) = k1 for some positive scalar k

and f : [m,M] → R is a convex function then

f (y)k1+ l(y)
(∫

T
φt (xt)dμ(t)− yk1

)
�
∫

T
φt( f (xt ))dμ(t)

� f (x)k1− x
∫

T
φt(l(xt ))dμ(t)+

∫
T
φt (l(xt)xt)dμ(t) (18)
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for every x,y ∈ [m,M] , where l is the subdifferential of f . In the dual case ( f is
concave) the opposite inequality holds.

Proof. We obtain this theorem by replacing φt by 1
kφt in [7, Theorem 3.7]. For

the sake of completeness we give the direct proof. Since f is convex in [m,M] , then
for each y∈ [m,M] the inequality f (x) � f (y)+ l(y)(x−y) holds for every x ∈ [m,M] .
By using the functional calculus in the variable x and applying the positive linear maps
φt and integrating, we obtain LHS of (18). Next, since f is convex, then for each
x ∈ [m,M] the inequality f (y) � f (x)− l(y)(x− y) holds for every y ∈ [m,M] . By
using the functional calculus in the variable y , we obtain that f (xt ) � f (x)1− xl(xt )+
l(xt)xt holds for every x ∈ [m,M] and t ∈ T . Applying the positive linear maps φt and
integrating, we obtain RHS of (18). �

THEOREM 2.12. Let (xt)t∈T be a bounded continuous field of positive elements
in a unital C∗ -algebra A defined on a locally compact Hausdorff space T equipped
with a bounded Radon measure μ . Let (φt)t∈T be a field of positive linear maps
φt : A → B from A to another unital C∗ -algebra B acting on a finite dimensional
Hilbert space K , such that the field t → φt(1) is integrable with

∫
T φt(1)dμ(t) = k1

for some positive scalar k . Let ‖ · ‖ be unitarily invariant norm on B(K) and let
f : [0,∞) → R be an increasing function.

1. If ‖1‖ = 1 and f is convex with f (0) � 0 then

f

(‖∫T φt(xt)dμ(t)‖
k

)
� ‖∫T φt( f (xt ))dμ(t)‖

k
. (19)

2. If
∫
T φt(xt)dμ(t) � ‖∫T φt(xt)dμ(t)‖1 and f is concave then

1
k

∫
T
φt( f (xt ))dμ(t) � f

(‖∫T φt(xt)dμ(t)‖
k

)
1. (20)

Proof. We replace φt by 1
kφt for t ∈ T in [7, Theorem 3.9]. �

3. Ratio type inequalities

In this section, we consider the order among the following power functions of
operators:

Ir(x,φ) :=
(∫

T
φt (xr

t )dμ(t)
)1/r

if r ∈ R\{0}, (21)

at these conditions: (xt)t∈T is a bounded continuous field of positive operators in a
unital C∗ -algebra A with spectra in [m,M] for some scalars 0 < m < M , defined on
a locally compact Hausdorff space T equipped with a bounded Radon measure μ , and
(φt)t∈T is a field of positive linear maps φt : A → B from A to another unital C∗ -
algebra B , such that the field t → φt(1) is integrable with

∫
T φt(1)dμ(t) = k1 for

some positive scalar k .
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In order to prove the ratio type order among power functions (21), we need some
previous results given in the following two lemmas.

LEMMA 3.1. Let (xt)t∈T be a bounded continuous field of positive operators in a
unital C∗ -algebra A with spectra in [m,M] for some scalars 0 < m < M, defined on
a locally compact Hausdorff space T equipped with a bounded Radon measure μ , and
let (φt )t∈T be a field of positive linear maps φt : A → B from A to another unital
C∗ -algebra B , such that the field t → φt(1) is integrable with

∫
T φt(1)dμ(t) = k1 for

some positive scalar k .
If 0 < p � 1 , then∫

T
φt
(
xp
t

)
dμ(t) � k1−p

(∫
T
φt(xt)dμ(t)

)p

. (22)

If −1 � p < 0 or 1 � p � 2 , then the opposite inequality holds in (22).

Proof. We obtain this lemma by applying Theorem 2.1 for the function f (z) = zp

and using the proposition that it is an operator concave function for 0 < p � 1 and an
operator convex one for −1 � p < 0 and 1 � p � 2. �

The following lemma is a generalization of [8, Lemma 2].

LEMMA 3.2. Assume that the conditions of Lemma 3.1 hold.
If 0 < p � 1 , then

k1−pK(m,M, p)
(∫

T
φt(xt)dμ(t)

)p

�
∫

T
φt
(
xp
t

)
dμ(t) � k1−p

(∫
T
φt(xt)dμ(t)

)p

,

(23)

if −1 � p < 0 or 1 � p � 2 , then

k1−p
(∫

T
φt(xt)dμ(t)

)p

�
∫

T
φt
(
xp
t

)
dμ(t) � k1−pK(m,M, p)

(∫
T
φt(xt)dμ(t)

)p

,

(24)

if p < −1 or p > 2 , then

k1−pK(m,M, p)−1
(∫

T
φt(xt)dμ(t)

)p

�
∫

T
φt
(
xp
t

)
dμ(t) � k1−pK(m,M, p)

(∫
T
φt(xt)dμ(t)

)p

, (25)

where a generalized Kantorovich constant K(m,M, p) [6, §2.7] is defined as

K(m,M, p) :=
mMp−Mmp

(p−1)(M−m)

(
p−1

p
Mp −mp

mMp −Mmp

)p

for all p ∈ R . (∗)
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Proof. We obtain this lemma by applying Corollary 2.4 for the function f (z) ≡
g(z) = zp and choosing λ such that C = 0. �

In the following theorem we give the ratio type order among power functions.

THEOREM 3.3. Let (xt)t∈T be a bounded continuous field of positive operators
in a unital C∗ -algebra A with spectra in [m,M] for some scalars 0 < m < M, defined
on a locally compact Hausdorff space T equipped with a bounded Radon measure μ ,
and let (φt )t∈T be a field of positive linear maps φt : A →B from A to another unital
C∗ -algebra B , such that the field t → φt(1) is integrable with

∫
T φt(1)dμ(t) = k1 for

some positive scalar k . Let regions (i) – (v)1 be as in Figure 1.

1/2

1/2

(i)

(ii) s 1, -1 < r < 1/2, r 0,

<

=

(iv)

r s, s (-1,1), r (-1,1)
1/2 r 1 s
r -1 s -1/2,

or

or

� �i� �i

-s r < s/2, r 0, 0 < s 1,=
1/2

1/2

1

1 1

1

� �
�v
1

� �
�v
1

�
�v 1

�
�v 1

� �i i� �i i

� �v� �v
� �i i i� �i i i

� �i� �i

� �i� �i

(iv)1

2s r s, -1 r < 0.(v)1

r s 2r, 0 < s 1,

(v) r/2 < s -r, s 0, -1 r < 0,=

� �i v� �i v

r -1, -1/2 < s < 1, s 0,=(iii)

Figure 1: Regions in the (r,s) -plain

If (r,s) in (i), then

k
s−r
rs Δ(h,r,s)−1 Is(x,φ) � Ir(x,φ) � k

s−r
rs Is(x,φ),

if (r,s) in (ii) or (iii), then

k
s−r
rs Δ(h,r,s)−1 Is(x,φ) � Ir(x,φ) � k

s−r
rs Δ(h,r,s) Is(x,φ),

if (r,s) in (iv), then

k
s−r
rs Δ(h,s,1)−1Δ(h,r,s)−1 Is(x,φ) � Ir(x,φ)

� k
s−r
rs min{Δ(h,r,1),Δ(h,s,1)Δ(h,r,s)} Is(x,φ),

if (r,s) in (v) or (iv)1 or (v)1 , then

k
s−r
rs Δ(h,s,1)−1Δ(h,r,s)−1 Is(x,φ) � Ir(x,φ) � k

s−r
rs Δ(h,s,1) Is(x,φ),

where a generalized Specht ratio Δ(h,r,s) [6, § 2.7] is defined as

Δ(h,r,s) =
{

r(hs −hr)
(s− r)(hr −1)

}1/s { s(hr −hs)
(r− s)(hs −1)

}−1/r

, h =
M
m

. (26)
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Proof. This theorem follows from Lemma 3.2 by putting p = s/r or p = r/s and
then using function order of positive operators cf. [6, Chapter 8]. We use the same
technique as in the proof of [8, Theorem 11]. �

4. Difference type inequalities

In order to prove the difference type order among power functions (21), we need
some previous results given in the following lemma. It is a generalization of [8, Lemma 3].

LEMMA 4.1. Let (xt)t∈T be a bounded continuous field of positive operators in a
unital C∗ -algebra A with spectra in [m,M] for some scalars 0 < m < M, defined on
a locally compact Hausdorff space T equipped with a bounded Radon measure μ , and
let (φt )t∈T be a field of positive linear maps φt : A → B from A to another unital
C∗ -algebra B , such that the field t → φt(1) is integrable with

∫
T φt(1)dμ(t) = k1 for

some positive scalar k .
If 0 < p � 1 , then

αp

∫
T
φt(xt)dμ(t)+ kβp1 �

∫
T
φt(x

p
t )dμ(t) � k1−p

(∫
T
φt (xt)dμ(t)

)p

, (27)

if −1 � p < 0 or 1 � p � 2 , then

k1−p
(∫

T
φt(xt)dμ(t)

)p

�
∫

T
φt(x

p
t )dμ(t) � αp

∫
T
φt(xt)dμ(t)+ kβp1, (28)

if p < −1 or p > 2 , then

pyp−1
∫

T
φt(xt)dμ(t)+ k(1− p)yp1 �

∫
T
φt(x

p
t )dμ(t) � αp

∫
T
φt(xt)dμ(t)+ kβp1

(29)
for every y ∈ [m,M] . Constants αp and βp are the constants α f and β f associated
with the function f (z) = zp.

Proof. RHS of (27) and LHS of (28) are proven in Lemma 3.1. LHS of (27) and
RHS of (28) and (29) follow from Corollary 2.4 for f (z) = zp , g(z) = z and λ = αp .
LHS of (29) follows from LHS of (18) in Theorem 2.11 putting f (y) = yp and l(y) =
pyp−1 . �

REMARK 4.2. Setting y = (αp/p)1/(p−1) ∈ [m,M] the inequality (29) gives

αp

∫
T
φt(xt)dμ(t)+ k(1− p)(αp /p)p/(p−1)1

�
∫

T
φt(x

p
t )dμ(t) � αp

∫
T
φt(xt)dμ(t)+ kβp1 (30)

for p < −1 or p > 2.
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Furthermore, setting y = m or y = M gives

pmp−1
∫

T
φt (xt)dμ(t)+ k(1− p)mp1

�
∫

T
φt(x

p
t )dμ(t) � αp

∫
T
φt(xt)dμ(t)+ kβp1 (31)

or

pMp−1
∫

T
φt(xt)dμ(t)+ k(1− p)Mp1

�
∫

T
φt(x

p
t )dμ(t) � αp

∫
T
φt(xt)dμ(t)+ kβp1. (32)

We remark that the operator in LHS of (31) is positive for p > 2, since

0 < kmp1 � pmp−1
∫

T
φt (xt)dμ(t)+ k(1− p)mp1

� k(pmp−1M +(1− p)mp)1 < kMp1 (33)

and the operator in LHS of (32) is positive for p < −1, since

0 < kMp1 � pMp−1
∫

T
φt(xt)dμ(t)+ k(1− p)Mp1

� k(pMp−1m+(1− p)Mp)1 < kmp1. (34)

(We have the inequality pmp−1M +(1− p)mp < Mp in RHS of (33) and pMp−1m+
(1− p)Mp < mp in RHS of (34) by using Bernoulli’s inequality.)

In the following theorem we give the difference type order among power functions.

THEOREM 4.3. Let (xt)t∈T be a bounded continuous field of positive operators
in a unital C∗ -algebra A with spectra in [m,M] for some scalars 0 < m < M, defined
on a locally compact Hausdorff space T equipped with a bounded Radon measure μ ,
and let (φt )t∈T be a field of positive linear maps φt : A →B from A to another unital
C∗ -algebra B , such that the field t → φt(1) is integrable with

∫
T φt(1)dμ(t) = k1 for

some positive scalar k . Let regions (i)1 – (v)1 be as in Figure 2.

Then
C21 � Is(x,φ)− Ir(x,φ) � C11, (35)

where constants C1 ≡C1(m,M,s,r,k) and C2 ≡C2(m,M,s,r,k) are

C1 =

{
Δ̃k, for (r,s) in (i)1 or (ii)1 or (iii)1;

Δ̃k +min{Ck(s),Ck(r)} , for (r,s) in (iv) or (v) or (iv)1 or (v)1;

C2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k1/s − k1/r)m, for (r,s) in (i)1;

D̃k, for (r,s) in (ii)1;

Dk, for (r,s) in (iii)1;

max
{

D̃k −Ck(s),
(
k1/s − k1/r

)
m−Ck(r)

}
, for (r,s) in (iv);

max
{
Dk −Ck(r),

(
k1/s − k1/r

)
m−Ck(s)

}
, for (r,s) in (v);

(k1/s − k1/r)m−min{Ck(r),Ck(s)} , for (r,s) in (iv)1 or (v)1.
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≥
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�
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=
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r -1, r/2 < s < 1, s 0,=

Figure 2: Regions in the (r,s) -plain

A constant Δ̃k ≡ Δ̃k(m,M,r,s) is

Δ̃k = max
θ∈[0,1]

{
k1/s[θMs +(1−θ )ms]1/s− k1/r[θMr +(1−θ )mr]1/r

}
,

a constant D̃k ≡ D̃k(m,M,r,s) is

D̃k = min

{(
k

1
s − k

1
r

)
m,k

1
s m

(
s
Mr −mr

rmr +1

) 1
s

− k
1
r M

}
,

Dk ≡ Dk(m,M,r,s) = −D̃k(M,m,s,r) and a constant Ck(p) ≡Ck(m,M, p) is

Ck(p) = k1/p ·C(mp,Mp,1/p) for p = 0 ,

where a constant C(n,N, p) is defined by

C(n,N, p) = (p−1)
(

1
p

Np−np

N−n

)p/(p−1)

+
Nnp−nNp

N−n
for all p ∈ R (36)

(this is type of a generalized Kantorovich constant for difference, see [6, §2.7, Lemma
2.59]).

Proof. By the same technique as in the proof of [8, Theorem 7], we have this
theorem. However, we give a proof for the sake of completeness. By Lemma 4.1
by putting p = s/r or p = r/s and then using the Löwner-Heinz inequality and the
function order of positive operators, cf. [6, Chapter 8]:

A � B > 0 and Sp(B) ⊆ [m,M] imply Ap +C(m,M, p)1 � Bp > 0 for all p > 1,

A � B > 0 and Sp(A) ⊆ [m,M] imply Bp +C(m,M, p)1 � Ap > 0 for all p < −1,

we have the following inequalities.
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(a) If r � s � −1 or 1 � s � −r or 0 < r � s � 2r , s � 1, then(
k1/s − k1/r

)
m1 �

(
k

r−s
rs −1

)
Ir(x,φ) � Is(x,φ)− Ir(x,φ) (37)

�
(
α̃
∫
T φt(xr

t )dμ(t)+ kβ̃1
)1/s− Ir(x,φ) � Δ̃k1.

(b) If 0 < −r < s , s � 1 or 0 < 2r < s , s � 1, then

m
(

s
r m

−r ∫
T φt(xr

t )dμ(t)+ k r−s
r 1
)1/s− Ir(x,φ) � Is(x,φ)− Ir(x,φ) (38)

�
(
α̃
∫
T φt(xr

t )dμ(t)+ kβ̃1
)1/s− Ir(x,φ) � Δ̃k1.

(c) If r � s , −1 � s < 0 or s � −r , 0 < s � 1 or 0 < r � s � 2r , s � 1,
then((

k1/s− k1/r
)
m−Ck(s)

)
1 �

(
k

r−s
rs −1

)
Ir(x,φ)−Ck(s)1 � Is(x,φ)− Ir(x,φ)(39)

�
(
α̃
∫
T φt(xr

t )dμ(t)+ kβ̃1
)1/s− Ir(x,φ)+Ck(s)1 �

(
Δ̃k +Ck(s)

)
1.

(d) If 0 < −r < s � 1 or 0 < 2r < s � 1, then

m
(

s
r m

−r ∫
T φt (xr

t )dμ(t)+ k r−s
r 1
)1/s− Ir(x,φ)−Ck(s)1 (40)

� Is(x,φ)− Ir(x,φ)

�
(
α̃
∫
T φt(xr

t )dμ(t)+ kβ̃1
)1/s− Ir(x,φ)+Ck(s)1 �

(
Δ̃k +Ck(s)

)
1.

Moreover, we can obtain the following inequalities:
(a1) If 1 � r � s or −s � r � −1 or 2s � r � s < 0, r � −1, then

Δ̃k1 � Is(x,φ)−
(
α
∫
T φt(xs

t )dμ(t)+ kβ1
)1/r

� Is(x,φ)− Ir(x,φ) (41)

�
(
1− k

s−r
rs

)
Is(x,φ) �

(
k1/s− k1/r

)
m1.

(b1) If r < −s < 0, r � −1 or r < 2s < 0, r � −1, then

Δ̃k1 � Is(x,φ)−
(
α
∫
T φt(xs

t )dμ(t)+ kβ1
)1/r

� Is(x,φ)− Ir(x,φ) (42)

� Is(x,φ)−M
(

r
sM

−s ∫
T φt(xs

t )dμ(t)+ k s−r
s 1
)1/r

.

(c1) If r � s , 0 < r � 1 or −s � r , −1 � r < 0 or 2s � r � s < 0, r �−1,
then

(Δ̃k +Ck(r))1 � Is(x,φ)−
(
α
∫
T φt(xs

t )dμ(t)+ kβ1
)1/r

+Ck(r)1 (43)

� Is(x,φ)− Ir(x,φ) �
(
1− k

s−r
rs

)
Is(x,φ)−Ck(r)1 �

((
k1/s− k1/r

)
m−Ck(r)

)
1.
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(d1) If −1 � r < −s < 0 or −1 � r < 2s < 0, then

(Δ̃k +Ck(r))1 � Is(x,φ)−
(
α
∫
T φt(xs

t )dμ(t)+ kβ1
)1/r

+Ck(r)1 (44)

� Is(x,φ)− Ir(x,φ) � Is(x,φ)−M
(

r
sM

−s ∫
T φt (xs

t )dμ(t)+ k s−r
s 1
)1/r −Ck(r)1,

where we denote

α̃ = Ms−ms

Mr−mr , β̃ = Mrms−Msmr

Mr−mr , α = Mr−mr

Ms−ms , β = Msmr−Mrms

Ms−ms ,

C (kms,kMs,1/s) = k1/s C (ms,Ms,1/s) = Ck(s),

Δ̃k = max
z∈T 1

{
k1/s

(
α̃ z+ β̃

)1/s− k1/rz1/r
}

= max
z∈T 2

{
k1/sz1/s− k1/r

(
α z+β

)1/r
}

,

and T 1 and T 2 denote the closed intervals joining mr to Mr and ms to Ms , respec-
tively.

We will determine lower bounds in LHS of (b) and (d) , in RHS of (b1) and (d1) .
On LHS of inequalities (38) and (40) we can apply the following inequality

m
(

s
rm

−r ∫
T φt(xr

t )dμ(t)+ k r−s
r 1
)1/s− Ir(x,φ) (45)

� minz∈T 1

{
k1/sm

(
s
rm

−rz+1− s
r

)1/s− k1/rz1/r
}

1 = D̃k1.

Using substitution z = rmr
(
x− 1

s

)
, finding the minimum of

h(z) = k1/sm

(
s
r
m−rz+

r− s
r

)1/s

− k1/rz1/r on T 1

is equivalent to finding the minimum of h1(x)= k1/sm
(
s(x− 1

r )
)1/s−k1/rm

(
r(x− 1

s )
)1/r

on T = [ 1
s + 1

r ,
1
s + 1

r
Mr

mr ] , where r < s , s > 0. The minimum value of the function h1

on T is achieved at one end point of this interval. Really, functions h1 and h′1 are con-

tinuous on T . If there is a stationary point x0 of h1 in
(

1
s + 1

r ,
1
s + 1

r
Mr

mr

)
then h1(x0)

is the maximum value, since h′′1(x0) = k
1
s m
(
s(x0− 1

r )
)1/s−2 (

r(x0− 1
s )
)−1 (r− s)(x0 +

1− r+s
rs ) < 0. It follows that

min
z∈T 1

h(z) = min
x∈T

h1(x) = min

{
h1

(
1
s

+
1
r

)
,h1

(
1
s

+
1
r

Mr

mr

)}
= D̃k.

So in the case (b) we obtain:

D̃k1 � Is(x,φ)− Ir(x,φ) � Δ̃k1 (46)

and in the case (d) we obtain:(
D̃k −Ck(s)

)
1 � Is(x,φ)− Ir(x,φ) �

(
Δ̃k +Ck(s)

)
1. (47)
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Similarly, for the RHS of (42) we obtain

Is(x,φ)−M

(
r
s
M−s

∫
T
φt(xr

t )dμ(t)+ k
s− r

s
1
)1/r

� min
z∈T 2

{
k1/sz1/s− k1/rM

( r
s
M−sz+1− r

s

)1/r
}

1

= min

{
k1/sm− k1/rM

(
r
s

ms

Ms +1− r
s

)1/r

,
(
k1/s− k1/r

)
M

}
1

= Dk1.

So in the case (b1) we obtain:

Dk1 � Is(x,φ)− Ir(x,φ) � Δ̃k1 (48)

and in the case (d1) we obtain:(
Dk −Ck(r)

)
1 � Is(x,φ)− Ir(x,φ) �

(
Δ̃k +Ck(r)

)
1. (49)

Finally, we can obtain desired bounds C1 and C2 in (35), taking into account that
(37) holds in the region (i)1 , (46) holds in (ii)1 , (48) holds in (iii)1 , (47) and (43) hold
in (iv), (39) and (49) hold in (v), (39) and (43) hold in (iv)1 and (v)1 . �

REMARK 4.4. If we replace (φt)t∈T by ( 1
kφt)t∈T in Theorem 3.3 and Theorem 4.3

then we can obtain the order among operator means Mr(x,φ) :=
(∫

T
1
k φt (xr

t )dμ(t)
)1/r

,
r ∈ R\{0}. The order among these means in the discrete case T = {1, . . . ,n} is given
in [8, Theorem 11] and [8, Theorem 7].

Note that in this case, for difference type inequalities we have D̃k = D̃1 =

m
(
sMr−mr

rmr +1
) 1

s −M and we can choose better bounds using that C(mr,Mr ,1/r) �
C(ms,Ms,1/s) for r � s and M > m > 0 (see [8, Lemma 8]).
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[10] B. MOND AND J. E. PEČARIĆ, Converses of Jensen’s inequality for linear maps of operators, Analele
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Numer. et de Th éorie de l’Approxim., 23 (1994), 179–183.
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