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Abstract. Let A and A ′ be two algebras over a field F and ξ ∈F a scalar. A map Φ : A →A ′
is called a ξ -Lie multiplicative isomorphism if Φ is bijective and satisfies Φ(AB− ξBA) =
Φ(A)Φ(B)− ξΦ(B)Φ(A) for all A,B ∈ A . The additivity of ξ -Lie multiplicative isomor-
phisms on prime algebras is discussed. A characterization of ξ -Lie multiplicative isomorphisms
between matrix algebras over a field of characteristic not 2 and a characterization of ξ -Lie mul-
tiplicative isomorphisms between infinite dimensional Banach space standard operator algebras
are obtained.

1. Introduction

Commutation relations between self-adjoint operators in a complex Hilbert space
H play an important role in the interpretation of quantum mechanical observable and
the analysis of their spectra. Accordingly, such relations have been extensively stud-
ied in the mathematical literature (see [12]). An interesting related aspect concerns the
commutativity up to a factor for pairs of elements. Let A and B be two elements in an
algebra. If A and B satisfy the algebraic relation AB = ξBA for some nonzero scalar
ξ , we say that A and B are commutative up to a factor ξ . More recently, the commu-
tativity up to a factor for pairs of operators has been studied in the context of quantum
groups, and their matrix realizations give examples of operator pairs commuting up to
a factor (see, for example, [3], [7], [8] and [14]). The concept of commutativity is
closely related to the concept of Lie products, i.e., [A,B] = AB−BA . It is clear that
two elements are commutative if and only if their Lie product is zero. Motivated by
product and Lie product, for each scalar ξ , we can define ξ -Lie product of A and B
by [A,B]ξ = AB−ξBA . It is clear that ξ -Lie product is the usual product if ξ = 0; the
Lie product if ξ = 1; the Jordan product if ξ =−1. It is also obvious that A commutes
with B up to a factor ξ if and only if their ξ -Lie product is zero.

Let A and A ′ be two algebras over a field F . Recall that a map Φ : A → A ′
is called a multiplicative map if Φ(AB) = Φ(A)Φ(B) for all A,B ∈ A ; is called a Lie
multiplicative map if Φ([A,B]) = [Φ(A),Φ(B)] ; is called a Jordan multiplicative map
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if Φ(AB+BA) =Φ(A)Φ(B)+Φ(B)Φ(A) . Here we may introduce a concept of ξ -Lie
multiplicative maps which unifies the above three kinds of maps. A map Φ : A → A ′
is called a ξ -Lie multiplicative map if Φ([A,B]ξ ) = [Φ(A),Φ(B)]ξ for all A,B ∈ A .
In addition, a map Φ : A → A ′ is called a ξ -Lie multiplicative isomorphism if Φ is
bijective and ξ -Lie multiplicative; is called a ξ -Lie ring isomorphism if Φ is bijective,
additive and ξ -Lie multiplicative. A linear (conjugate linear) ξ -Lie ring isomorphism
between two algebras is called a ξ -Lie isomorphism (conjugate ξ -Lie isomorphism).

The question when a multiplicative map is additive is studied by many mathemati-
cians. It is a well known result due to Matindale [10] that every multiplicative bijective
map from a prime ring containing a nontrivial idempotent onto an arbitrary ring is
necessarily additive. Recently Matindale’s result has been generalized in several di-
rections, such as multiplicative maps and Jordan multiplicative maps between standard
operator algebras or nest algebras (see [1], [9] and the references therein). However, it
was proved in [2] that, if R , R ′ be prime rings with R being unital and containing
a nontrivial idempotent, and if Φ : R → R ′ is a Lie multiplicative bijective map, then
Φ(T +S) =Φ(T )+Φ(S)+Z′

T,S for all T,S∈R , where Z′
T,S is an element in the center

Z ′ of R ′ depending on T and S . This result reveals that the Lie multiplicativity of a
map does not imply its additivity anymore. Then, an interesting question is, for ξ �= 1,
whether every ξ -Lie multiplicative bijection between algebras is necessarily additive?
The purpose of this paper is to answer this question and to show that every ξ -Lie mul-
tiplicative bijective map with ξ �= 1 from an algebra with some properties (weaker than
primeness) onto another algebra must be additive. Then, based on this result, we give
a complete characterization of ξ -Lie multiplicative isomorphisms on matrix algebras
over a field of characteristic not 2 and ξ -Lie multiplicative isomorphisms on infinite
dimensional Banach space standard operator algebras.

This paper is organized as follows. In Section 2, we discuss the additivity of ξ -Lie
multiplicative isomorphisms. Let A and A ′ be two algebras over a field F . Assume
that A is unital with unit I and contains a nontrivial idempotent P . Let ξ be a scalar
and Φ : A → A ′ be a ξ -Lie multiplicative bijective map. We prove that, if ξ �= 1
and if A satisfies PiAPj = 0 whenever PiAPjA Pl = 0 or PlA PiAPj = 0 (P1 = P,P2 =
I−P1,1 � i, j, l � 2) (particularly, this is the case when A is prime), then Φ is additive
and thus a ξ -Lie ring isomorphism; if ξ = 1 and if A is prime, then Φ is almost
additive (Theorem 2.1). In Section 3, we discuss the question of characterizing the
unital ξ -Lie multiplicative isomorphisms on matrix algebras and infinite dimensional
Banach space standard operator algebras. For the matrix algebra case, let Mn(F) be the
algebra of all n× n matrices (n > 1) over a field F of characteristic not 2. We first
give a characterization of additive maps on Mn(F) preserving zero ξ -Lie products in
both directions with ξ �= 0,1 (Theorem 3.1). Then this result, together with Theorem
2.1, is applied to show that, for a ξ -Lie multiplicative isomorphism Φ : Mn(F) →
Mn(F) , there exists a field automorphism τ : F → F and a nonsingular matrix T ∈
Mn(F) such that (1) if ξ = 1 and F is also of characteristic not 3, then either Φ(A) =
TAτT−1+h(A)I for all A∈Mn(F) or Φ(A) =−T (Aτ)trT−1+h(A)I for all A∈Mn(F) ,
where h : Mn(F) → F is a functional satisfying h([A,B]) = 0 for all A,B ; (2) if ξ =
−1, then either Φ(A) = TAτT−1 for all A or Φ(A) = T (Aτ )trT−1 for all A ; (3) if
ξ �= ±1, then Φ(A) = TAτT−1 for all A and τ satisfies τ(ξ ) = ξ (Theorem 3.2).
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Here Atr denotes the transpose of A and Aτ denotes the matrix obtained from A by
applying τ to all the entries of A . For the infinite dimensional case, by use of Theorem
2.1 and a characterization of additive maps preserving zero ξ -Lie products in [6], we
characterize all ξ -Lie multiplicative isomorphisms on Banach space standard operator
algebras (Theorem 3.4).

2. The additivity of ξ -Lie multiplicative maps

In this section, we discuss the additivity of ξ -Lie multiplicative bijective maps
between general algebras. The following is our main result.

THEOREM 2.1. Let A , A ′ be two algebras over a field F . Assume that A is
unital with unit I and contains a nontrivial idempotent P. Denote P1 = P, P2 = I−P1

and let ξ be a scalar. Assume that Φ : A → A ′ is a ξ -Lie multiplicative bijective
map, that is,

Φ(AB− ξBA) = Φ(A)Φ(B)− ξΦ(B)Φ(A) ∀A,B ∈ A . (2.1)

(1) If ξ = 1 and A is prime, then Φ(A+B) =Φ(A)+Φ(B)+ZA,B for all A,B ∈
A , where ZA,B is an element in the center Z of A ′ depending on A and B.

(2) If ξ �= 1 and A satisfies the condition that PiAPj = 0 whenever PiAPjA Pl = 0
or PlA PiAPj = 0 (1 � i, j, l � 2) , then Φ is additive and thus a ξ -Lie ring isomor-
phism.

Proof. The main technique we will use in the following arguments will be called
a standard argument: Suppose that S,A,B ∈ A are such that Φ(S) = Φ(A)+Φ(B) .
Multiplying this equation by Φ(T ) (T ∈A ) from the left and the right, respectively, we
get Φ(T )Φ(S) = Φ(T )Φ(A)+Φ(T )Φ(B) and Φ(S)Φ(T ) = Φ(A)Φ(T )+Φ(B)Φ(T ) .
Then

Φ(T )Φ(S)− ξΦ(S)Φ(T ) = Φ(T )Φ(A)− ξΦ(A)Φ(T )+Φ(T )Φ(B)− ξΦ(B)Φ(T ).

It follows that

Φ(TS− ξST) = Φ(TA− ξAT)+Φ(TB− ξBT).

Moreover, if we have

Φ(TA− ξAT)+Φ(TB− ξBT) = Φ(TA− ξAT +TB− ξBT),

then by the injectivity of Φ , we get

TS− ξST = TA− ξAT +TB− ξBT.

We’ll prove the theorem by considering three cases.
Case 1. ξ = 1.
By [2, Main Theorem] and its proof, it is easily seen that the condition A ′ is

prime is superfluous. Hence the statement (1) of Theorem 2.1 is true.
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Case 2. ξ = 0.
By using a similar argument to that of [10], one can show that Φ is additive.
Case 3. ξ �= 0,1.
We’ll divide the proof into checking several claims.
Claim 1. Φ(0) = 0 .
Since Φ is surjective, we can find an element A ∈ A such that Φ(A) = 0. There-

fore Φ(0) = Φ(0A− ξA0) = Φ(0)Φ(A)− ξΦ(A)Φ(0) = 0.
In the sequel, we set Ai j = PiA Pj , i, j = 1,2, and thus A = A11+̇A12+̇A21+̇A22 .

For an element Si j ∈ A , we always mean that Si j ∈ Ai j .
Claim 2. For every Aii and Ai j , we have Φ(Aii +Ai j) =Φ(Aii)+Φ(Ai j) , 1 � i �=

j � 2 .
Since Φ is surjective, we may find an element S = S11 +S12 +S21 +S22 ∈A such

that
Φ(S) = Φ(Aii)+Φ(Ai j). (2.2)

For Tj j ∈ A j j , applying a standard argument to Eq.(2.2), we obtain

Φ(STj j − ξTj jS) = Φ(AiiTj j − ξTj jAii)+Φ(Ai jTj j − ξTj jAi j) = Φ(Ai jTj j).

Therefore STj j − ξTj jS = Ai jTj j ∈ Ai j for every Tj j ∈ A j j, which implies that S ji =
S j j = 0. Hence the equation STj j − ξTj jS = Ai jTj j becomes Si jTj j = Ai jTj j . So Si j =
Ai j .

For Ti j ∈ Ai j , applying a standard argument to Eq.(2.2) again, we have

Φ(Ti jS− ξSTi j) = Φ(Ti jAii − ξAiiTi j)+Φ(Ti jAi j − ξAi jTi j) = Φ(−ξAiiTi j).

Therefore Ti jS− ξSTi j = −ξAiiTi j for every Ti j ∈ Ai j. Note that S ji = S j j = 0 and
ξ �= 0. We have SiiTi j = AiiTi j since ξ is invertible. Hence Sii = Aii . Consequently,
S = Aii +Ai j.

Similarly, one can check that
Claim 3. For every Aii and Aji , we have that Φ(Aii +Aji) = Φ(Aii) +Φ(Aji) ,

1 � i �= j � 2 .
Claim 4. Φ is additive on A12.
For any A12,B12 ∈ A12 , since

A12 +B12 = (P1 +B12)(A12 +P2)
= (P1 +B12)(A12 +P2)− ξ (A12 +P2)(P1 +B12),

using Eq.(2.1), Claim 2-3, we get

Φ(A12 +B12) = Φ(P1 +B12)Φ(A12 +P2)− ξΦ(A12 +P2)Φ(P1 +B12)
= (Φ(P1)+Φ(B12))(Φ(A12)+Φ(P2))

−ξ (Φ(A12)+Φ(P2))(Φ(P1)+Φ(B12))
= (Φ(P1)Φ(A12)− ξΦ(A12)Φ(P1))+ (Φ(P1)Φ(P2)− ξΦ(P2)Φ(P1))

+(Φ(B12)Φ(A12)− ξΦ(A12)Φ(B12))
+(Φ(B12)Φ(P2)− ξΦ(P2)Φ(B12))

= Φ(P1A12− ξA12P1)+Φ(P1P2− ξP2P1)
+Φ(B12A12− ξA12B12)+Φ(B12P2− ξP2B12)

= Φ(A12)+Φ(B12).
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Claim 5. Φ is additive on A21.
Let A21,B21 ∈ A21 . Note that

A21 +B21 = (A21 +P2)(P1 +B21)
= (A21 +P2)(P1 +B21)− ξ (P1 +B21)(A21 +P2).

Now we can complete the proof by using a computation similar to that in the proof of
Claim 4.

Claim 6. Φ is additive on Aii , i = 1,2.
Let Aii,Bii ∈ Aii and choose S = S11 +S12 +S21 +S22 ∈ A such that

Φ(S) =Φ(Aii)+Φ(Bii). (2.3)

Let j �= i . For Tj j ∈A j j , applying a standard argument to Eq.(2.3), we get Tj jS−
ξSTj j = 0. It follows that Si j = S ji = S j j = 0.

Now it remains to prove that Sii = Aii + Bii . For Ti j ∈ Ai j , applying a standard
argument to Eq.(2.3) again, we get Φ(Ti jS − ξSTi j) = Φ(−ξAiiTi j) +Φ(−ξBiiTi j) .
Hence by the injectivity of Φ and Claim 4-5, we have Ti jS− ξSTi j = −ξ (Aii +Bii)Ti j

for every Ti j ∈ Ai j . Since Si j = S ji = S j j = 0, it follows that SiiTi j = (Aii +Bii)Ti j for
every Ti j ∈ Ai j . Thus we get Sii = Aii +Bii .

Claim 7. Φ is additive on P1A = A11 +A12.
Let A11,B11 ∈ A11, A12,B12 ∈ A12. Then by Claim 2, Claim 4 and Claim 6, we

see that

Φ((A11 +A12)+ (B11 +B12)) = Φ((A11 +B11)+ (A12 +B12))
= Φ(A11 +B11)+Φ(A12 +B12)
= Φ(A11)+Φ(B11)+Φ(A12)+Φ(B12)
= (Φ(A11)+Φ(A12))+ (Φ(B11)+Φ(B12))
= Φ(A11 +A12)+Φ(B11 +B12).

Claim 8. Φ(A11 +A22) = Φ(A11)+Φ(A22).
Choose S = S11 +S12 +S21 +S22 ∈ A such that

Φ(S) = Φ(A11)+Φ(A22). (2.4)

Then applying a standard argument to Eq.(2.4), we have

P1S− ξSP1 = P1A11− ξA11P1 = (1− ξ )A11.

By a simple computation, we get that S12 = S21 = 0 and S11 = A11 .
Next we prove that S22 = A22 . For T22 ∈ A22 , applying a standard argument to

Eq.(2.4) again, we get T22S− ξST22 = T22A22 − ξA22T22 . Since we have shown that
S12 = S21 = 0, the above equation reduces to T22(S22 − A22)− ξ (S22 −A22)T22 = 0
for every T22 ∈ A22 . Particularly, taking T22 = P2 we get S22 = A22. Consequently,
S = A11 +A22.

Claim 9. Φ(A12 +A21) = Φ(A12)+Φ(A21).
Choose S = S11 +S12 +S21 +S22 ∈ A such that

Φ(S) = Φ(A12)+Φ(A21). (2.5)
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For T12 ∈ A12 , applying a standard argument to Eq.(2.5), we get

Φ(T12S− ξST12) = Φ(T12A12− ξA12T12)+Φ(T12A21− ξA21T12)
= Φ(T12A21− ξA21T12).

By the injectivity of Φ, we have that

T12S− ξST12 = T12A21− ξA21T12 (2.6)

for every T12 ∈ A12. Multiplying this equation by P1 from the right, we get T12S21 =
T12A21 for every T12 ∈ A12. It follows that S21 = A21.

An argument similar to what has led to the equation S21 = A21 proves that S12 =
A12 also holds. The following we will prove that S11 = S22 = 0.

Applying a standard argument to Eq.(2.5) again, we have

Φ(P2S− ξSP2) = Φ(−ξA12)+Φ(A21)

and
Φ(SP1− ξP1S) = Φ(−ξA12)+Φ(A21).

Therefore Φ(P2S− ξSP2) = Φ(SP1 − ξP1S), which implies that P2S− ξSP2 = SP1 −
ξP1S . A simple computation gets S11 = S22 = 0. Consequently, S = A12 +A21.

Claim 10. Φ(A11 +A12 +A21) = Φ(A11)+Φ(A12)+Φ(A21) .
Let S = S11 +S12 +S21 +S22 ∈ A be such that

Φ(S) = Φ(A11)+Φ(A12)+Φ(A21). (2.7)

Then by Claim 2 and Claim 3, we have

Φ(S) = Φ(A11 +A12)+Φ(A21) (2.8)

and
Φ(S) = Φ(A11 +A21)+Φ(A12). (2.9)

For T21 ∈ A21 , applying a standard argument to Eq.(2.8), we have

Φ(T21S− ξST21) = Φ(T21A11 +T21A12− ξA12T21).

Hence by the injectivity of Φ , we obtain

T21S− ξST21 = T21A11 +T21A12− ξA12T21. (2.10)

for every T21 ∈ A21 . Multiplying this equation by P2 from the right, we get that
T21S12 = T21A12 holds for every T21 ∈ A21 . So S12 = A12. Similarly, for T12 ∈ A12 ,
applying a standard argument to Eq.(2.9), we can get S21 = A21.

For T22 ∈ A22 , applying a standard argument to Eq.(2.8), and using Claim 9, we
have

Φ(T22S− ξST22) = Φ(T22(A11 +A12)− ξ (A11 +A12)T22)
+Φ(T22A21− ξA21T22)

= Φ(−ξA12T22)+Φ(T22A21)
= Φ(−ξA12T22 +T22A21),
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that is, T22S−ξST22 = −ξA12T22 +T22A21. Since S12 = A12 and S21 = A21, it follows
that S22 = 0. Multiplying Eq.(2.10) by P2 from the left, we get that T21(S11 −A11) =
ξS22T21 = 0 holds for every T21 ∈ A21 . Hence S11 = A11 . Consequently, S = A11 +
A12 +A21 .

Claim 11. Φ(A11 +A12 +A21 +A22) = Φ(A11)+Φ(A12)+Φ(A21)+Φ(A22) .
Let S = S11 +S12 +S21 +S22 ∈ A be such that

Φ(S) = Φ(A11)+Φ(A12)+Φ(A21)+Φ(A22). (2.11)

Then we have

Φ(P1S− ξSP1) = Φ(P1)Φ(S)− ξΦ(S)Φ(P1)
= Φ(P1)(Φ(A11)+Φ(A12)+Φ(A21)+Φ(A22))

−ξ (Φ(A11)+Φ(A12)+Φ(A21)+Φ(A22))Φ(P1)
= Φ((1− ξ )A11)+Φ(A12)+Φ(−ξA21)
= Φ((1− ξ )A11 +A12− ξA21).

It follows that P1S− ξSP1 = (1− ξ )A11 + A12 − ξA21. By a simple computation, we
get S11 = A11, S12 = A12, S21 = A21.

For T12 ∈ A12 , applying a standard argument to Eq.(2.11), we have

Φ(T12S− ξST12) = Φ(−ξA11T12)+Φ(T12A21− ξA21T12)+Φ(T12A22).

Furthermore, applying a standard argument to the above equation, and using Claim 2
and Claim 4, we have

Φ(P1(T12S− ξST12)− ξ (T12S− ξST12)P1)
= Φ(−ξA11T12)+Φ(T12A21− ξT12A21)+Φ(T12A22)
= Φ(−ξA11T12 +T12A21− ξT12A21 +T12A22).

Thus we get

T12S21 +T12S22− ξS11T12− ξT12S21 = −ξA11T12 +T12A21− ξT12A21 +T12A22.

Since we have shown that S11 = A11, S12 = A12, S21 = A21, it follows that T12S22 =
T12A22 for every T12 ∈A12 and hence S22 = A22 . Consequently, S = A11 +A12 +A21 +
A22 .

Claim 12. For any A,B ∈ A , we have Φ(A+B) = Φ(A)+Φ(B) .
Let A = A11 + A12 + A21 + A22 and B = B11 + B12 + B21 + B22 be in A . Then

using Claim 2-11, we have

Φ(A+B) = Φ((A11 +B11)+ (A12 +B12)+ (A21 +B21)+ (A22 +B22))
= Φ(A11 +B11)+Φ(A12 +B12)+Φ(A21 +B21)+Φ(A22 +B22)
= Φ(A11)+Φ(B11)+Φ(A12)+Φ(B12)

+Φ(A21)+Φ(B21)+Φ(A22)+Φ(B22)
= Φ(A11 +A12 +A21 +A22)+Φ(B11 +B12 +B21 +B22)
= Φ(A)+Φ(B).

That is, Φ is additive. Combining Case (2) and (3), the proof of the statement (2) is
completed.

The proof is finished. �
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3. A characterization of ξ -Lie multiplicative isomorphisms

In this section, we apply Theorem 2.1 to give a complete classification of unital
ξ -Lie multiplicative isomorphisms on matrix algebras and infinite dimensional Banach
space standard operator algebras.

For the matrix algebra case, we first give a characterization of additive maps on
Mn(F) which preserve zero ξ -Lie products in both directions with ξ �= 0,1 (i.e. AB =
ξBA if and only if Φ(A)Φ(B) = ξΦ(B)Φ(A)).

THEOREM 3.1. Let Mn(F) be the algebra of all n× n matrices (n > 1) over a
field F of characteristic not 2. Suppose that Φ : Mn(F) → Mn(F) is a unital additive
surjection and ξ is a scalar with ξ �= 0,1 . Then Φ preserves zero ξ -Lie product in
both directions if and only if one of the followings holds:

(1) There exists a field automorphism τ : F → F satisfying τ(ξ ) = ξ , and there
exists a nonsingular matrix T ∈ Mn(F) such that Φ(A) = TAτT−1 for all A ∈ Mn(F) .

(2) There exists a field automorphism τ : F → F satisfying τ(ξ ) = ξ−1 , and
there exists a nonsingular matrix T ∈ Mn(F) such that Φ(A) = T (Aτ )trT−1 for all
A ∈ Mn(F) .

Here Atr denotes the transpose of A and Aτ denotes the matrix obtained from A
by applying τ to all the entries of A.

Proof. For A∈Mn(F) , if rank(A) = 1, then it is obvious that there exist x, f ∈Fn ,
and a scalar k such that A = x f t and A2 = kA . We will use symbol x⊗ f to stand for
x f t .

Clearly, we need only to prove the necessity. Assume that Φ preserves zero
ξ -Lie product in both directions, that is, AB− ξBA = 0 if and only if Φ(A)Φ(B)−
ξΦ(B)Φ(A) = 0 for all A,B∈ Mn(F) . We finish the proof by checking several claims.

Claim 1. Φ(0) = 0 and Φ is injective.
Let Φ(A) = 0. Then for any B ∈ Mn(F) , we have Φ(A)Φ(B) = ξΦ(B)Φ(A) , and

hence AB = ξBA for every B∈Mn(F) . In particular, A = ξA , thus A = 0 since ξ �= 1.
Claim 2. Φ preserves rank one idempotents in both directions.
We first prove that Φ preserves idempotents. Let P ∈ Mn(F) be an idempotent.

Then P(I −P) = ξ (I−P)P implies that Φ(P)(I −Φ(P)) = ξ (I−Φ(P))Φ(P) . Since
ξ �= 1, it follows that Φ(P) = Φ(P)2 . That is, Φ(P) is an idempotent.

Now suppose that an idempotent P is of rank one while Φ(P) is not of rank
one. Then Φ(P) can be written as a sum of an idempotent and a rank one idempotent
in Mn(F) . Since Φ−1 satisfies the same hypotheses as Φ does, what we have just
proved shows that the rank one idempotent P can be also written as a sum of two
nonzero idempotents, a contradiction. So Φ preserves rank one idempotents. Applying
the same discussion to Φ−1 , we obtain that Φ−1 preserves idempotents and rank one
idempotents. Hence Φ preserves rank one idempotents in both directions.

Claim 3. Φ preserves rank one matrices in both directions.
Let P be a rank one idempotent. Then for every nonzero scalar λ , we have

(λP)(I−P) = ξ (I−P)(λP) , so Φ(λP)(I−Φ(P)) = ξ (I−Φ(P))Φ(λP), that is,
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(1− ξ )Φ(λP) = Φ(λP)Φ(P)− ξΦ(P)Φ(λP). (3.1)

Since Φ(P) is a rank one matrix and ξ �= 0, multiplying Φ(P) in (3.1) from the left
and the right, respectively, we get

Φ(λP)Φ(P) = Φ(P)Φ(λP)Φ(P) = Φ(P)Φ(λP). (3.2)

Combining (3.1), (3.2) with ξ �= 1, we have

Φ(λP) = Φ(λP)Φ(P) = Φ(P)Φ(λP) = Φ(P)Φ(λP)Φ(P),

which implies that Φ(λP) is of rank one, and there exists fP(λ )∈F such that Φ(λP)=
fP(λ )Φ(P) .

Next we prove that Φ preserves rank one nilpotent matrices. Let N = x⊗ f be a
rank one nilpotent matrix. Take f1 ∈ Fn such that 〈x, f1〉= 1 and let f2 = f1− f . Then
Pi = x⊗ fi (i = 1,2) are rank one idempotents and N = P1−P2 = x⊗ f1− x⊗ f2 . Let
Φ(Pi) = yi⊗gi , yi,gi ∈Fn . By Claim 2, 〈yi,gi〉= 1. Note that F is of characteristic not
2 and P = 1

2 (P1+P2) is a rank one idempotent. So Φ(P) = 1
2 (y1⊗g1+y2⊗g2) is a rank

one idempotent, which implies that either y1,y2 are linear dependent or g1,g2 are linear
dependent. Without loss of generality, assume y1 = y2 . Thus Φ(N) = y1⊗g1−y1⊗g2

is a rank one nilpotent matrix.
So far we have proved that Φ preserves rank one matrices. A same discussion is

applied to Φ−1 , we get that Φ−1 preserves rank one matrices. Hence Φ preserves rank
one matrices in both directions.

Claim 4. There exists a field automorphism τ : F → F and a nonsingular matrix
T ∈ Mn(F) such that either

(a) Φ(A) = TAτT−1 for all A ∈ Mn(F) , or
(b) Φ(A) = T (Aτ)trT−1 for all A ∈Mn(F) , where Aτ denotes the matrix obtained

from A by applying τ to all the entries of A .
Since Φ is additive and preserves rank one matrices in both directions, it is well

known that such maps have the form (a) or (b) (for eg., ref. [4, 13]).
Claim 5. The statements (1)-(2) in the theorem hold true.
If Φ takes the form Φ(A) = TAτT−1 for all A ∈ Mn(F) , then, for any A,B ∈

Mn(F) with AB = ξBA �= 0, we have AτBτ = ξBτAτ . That is, (AB)τ = ξ (BA)τ . This
implies that τ(ξ ) = ξ . So the statement (1) holds true.

If Φ take the form Φ(A) = T (Aτ)trT−1 for all A ∈Mn(F) , then, for A,B ∈Mn(F)
with AB = ξBA �= 0, we have (Aτ)tr(Bτ)tr = ξ (Bτ)tr(Aτ)tr, that is, (BA)τ = ξ (AB)τ .
So (BA)τ = ξ (ξBA)τ = ξτ(ξ )(BA)τ , and hence ξτ(ξ ) = 1, i.e., τ(ξ ) = ξ−1 . So (2)
holds true, completing the proof. �

The next result gives a characterization of ξ -Lie multiplicative isomorphisms on
Mn(F) .

THEOREM 3.2. Let Mn(F) be the algebra of all n× n matrices (n > 1) over
a field F of characteristic not 2 and ξ be a scalar. Then a unital bijective map Φ :
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Mn(F)→Mn(F) is ξ -Lie multiplicative (i.e., Φ(AB−ξBA)=Φ(A)Φ(B)−ξΦ(B)Φ(A)
for all A,B ∈ Mn(F)) if and only if the following statements hold:

(1) ξ = 1 and F is of characteristic not 3. There exists a functional h : Mn(F)→F

with h([A,B]) = 0 for all A,B, a field automorphism τ : F → F , and a nonsingular
matrix T ∈ Mn(F) such that either Φ(A) = TAτT−1 + h(A)I for all A ∈ Mn(F) or
Φ(A) = −T (Aτ)trT−1 +h(A)I for all A ∈ Mn(F) .

(2) ξ =−1 . There exists a field automorphism τ : F→F and a nonsingularmatrix
T ∈Mn(F) such that either Φ(A) = TAτT−1 for all A∈Mn(F) or Φ(A) = T (Aτ)trT−1

for all A ∈ Mn(F) .
(3) ξ �=±1 . There exists a field automorphism τ : F→ F satisfying τ(ξ ) = ξ and

a nonsingular matrix T ∈ Mn(F) such that Φ(A) = TAτT−1 for all A ∈ Mn(F) .

Proof. The “if” part is clear. Let us check the “only if” part.
Assume that Φ is a ξ -Lie multiplicative isomorphism.
For the case of ξ = 1, we need a result in [2, Corollary] which states that every

Lie multiplicative isomorphism φ from a prime ring R of characteristic neither 2 nor
3 onto a prime ring R ′ is of the form φ = ψ + h , where ψ is a ring isomorphism or
a negative ring anti-isomorphism and h is a map from R into the extended centroid
of R ′ vanishing all commutators. Applying this result to Φ : Mn(F) → Mn(F) , it is
obvious that the statement (1) holds true.

If ξ = −1, the statement (2) holds by Theorem 2.1 and Theorem 3.1.
If ξ = 0, then, by Theorem 2.1, Φ is a ring isomorphism and thus has the form

stated in (3) as τ(0) = 0.
If ξ �= 0,±1, then, by Theorem 2.1 and Theorem 3.1, there exist a nonsingular

matrix T and a field automorphism τ such that τ(ξ ) = ξ and Φ(A) = TAτT−1 for
all A or τ(ξ ) = ξ−1 and Φ(A) = T (Aτ)trT−1 for all A . We claim that the last form
never occur. Assume, on the contrary, that the last one occurs, then, the condition
Φ(AB−ξBA) = Φ(A)Φ(B)−ξΦ(B)Φ(A) implies that −ξ−1 = 1 and hence ξ = −1,
a contradiction. So (3) holds true, completing the proof. �

Since the only field automorphism of the real field R is the identity, the following
corollary is immediate.

COROLLARY 3.3. Let Mn(R) be the algebra of all real n× n matrices (n > 1)
and ξ be a real number. Then a unital bijective map Φ : Mn(R) → Mn(R) is ξ -Lie
multiplicative if and only if the following statements hold:

(1) ξ = 1 . There exists a functional h : Mn(R)→ R with h([A,B]) = 0 for all A,B
and a nonsingular matrix T ∈ Mn(R) such that either Φ(A) = TAT−1 +h(A)I for all
A ∈ Mn(R) or Φ(A) = −TAtrT−1 +h(A)I for all A ∈ Mn(R) .

(2) ξ = −1 . Then there exists a nonsingular matrix T ∈ Mn(R) such that either
Φ(A) = TAT−1 for all A ∈ Mn(R) or Φ(A) = TAtrT−1 for all A ∈ Mn(R) , where Atr

denotes the transpose of A.
(3) ξ �= ±1 . There exists a nonsingular matrix T ∈ Mn(R) such that Φ(A) =

TAT−1 for all A ∈ Mn(R) .
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Recall that a subalgebra A of B(X) , the algebra of all bounded linear operators
on a Banach space X , is called a standard operator algebra if it contains all finite rank
operators and the identity operator I .

For the infinite dimensional case, we have the following result.

THEOREM 3.4. Let A and B be standard operator algebras on infinite dimen-
sional Banach spaces X and Y over the real or complex field F , respectively. Assume
that Φ : A →B is a unital bijection and ξ is a scalar. Then Φ is ξ -Lie multiplicative
if and only if one of the followings holds:

(1) ξ = 1 . There exists a functional h : A →F with h([A,B]) = 0 for all A,B, and
either there exists an invertible bounded linear or conjugate linear operator T : X →Y
such that Φ(A) = TAT−1 +h(A)I for all A ∈ A or there exists an invertible bounded
linear or conjugate linear operator T : X∗ → Y such that Φ(A) = −TA∗T−1 + h(A)I
for all A ∈ A . In the last case, X and Y are reflexive.

(2) ξ = −1 . Either there exists an invertible bounded linear or conjugate linear
operator T : X →Y such that Φ(A) =TAT−1 for all A∈A or there exists an invertible
bounded linear or conjugate linear operator T : X∗ → Y such that Φ(A) = TA∗T−1

for all A ∈ A . In the last case, X and Y are reflexive.
(3) ξ ∈ R\ {±1} . There exists an invertible bounded linear operator T : X → Y

such that Φ(A) = TAT−1 for all A ∈ A if F = R; there exists an invertible bounded
linear or conjugate linear operator T : X →Y such that Φ(A) = TAT−1 for all A ∈A
if F = C .

(4) ξ ∈ C\R . There exists an invertible bounded linear operator T : X →Y such
that Φ(A) = TAT−1 for all A ∈ A .

We remark that, by Theorem 3.4, a ξ -Lie multiplicative isomorphism on infinite
dimensional Banach space standard operator algebra is automatically continuous. It fol-
lows from Theorem 3.2 that every continuous unital ξ -Lie multiplicative isomorphism
on Mn(C) has the same form stated in Theorem 3.4.

To prove Theorem 3.4, we need a result from [6], which gives a characterization
of the unital additive surjective maps between standard operator algebras on infinite
dimensional Banach spaces that preserve zero ξ -Lie products in both directions with
ξ �= 0,±1. To the convenience for readers, we list this result in [6] as a lemma here.

LEMMA 3.5. ([6, Theorem 2.1]) Let A and B be standard operator algebras
on real or complex infinite dimensional Banach spaces X and Y , respectively. Assume
that Φ : A →B is a unital additive surjection. Then Φ preserves commutativity up to
a factor ξ in both directions with ξ �= 0,±1 if and only if one of the followings holds:

(1) If ξ ∈ R , then there exists an invertible bounded linear or conjugate linear
operator T : X → Y such that Φ(A) = TAT−1 for all A ∈ A .

(2) If ξ ∈ C\R and |ξ | �= 1 , then there exists an invertible bounded linear oper-
ator T : X → Y such that Φ(A) = TAT−1 for all A ∈ A .

(3) If |ξ | = 1 , then either there exists an invertible bounded linear operator T :
X → Y such that Φ(A) = TAT−1 for all A ∈ A or there exists an invertible bounded
conjugate linear operator T : X∗ → Y such that Φ(A) = TA∗T−1 for all A ∈ A . In
the last case, X and Y are reflexive.
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Now we give the proof of Theorem 3.4.

Proof. The “if” part is clear. Let us check the “only if” part. Assume that Φ is a
ξ -Lie multiplicative isomorphism.

For the case of ξ = 1, by [11], it is easily seen that the statement (1) holds true.
If ξ =−1, the statement (2) holds by Theorem 2.1 and a result in [15], which gives

a characterization of unital additive surjective maps preserving Jordan zero products
in both directions between standard operator algebras on infinite dimensional Banach
spaces.

If ξ = 0, then, by Theorem 2.1, Φ is a ring isomorphism and thus has the form
stated in (3) (see [5]).

If ξ �= 0,±1, then, by Theorem 2.1, Φ is additive, and thus preserves zero ξ -Lie
products in both directions. So, Lemma 3.5 is applied. The remain is to check that the
form Φ(A) = TA∗T−1 for all A in (3) of Lemma 3.5 can not occur. If, on the contrary,
Φ(A) = TA∗T−1 for all A , then T (AB− ξBA)∗T−1 = Φ([A,B]ξ ) = [Φ(A),Φ(B)]ξ =
T (BA− ξAB)∗T−1 . It follows that AB− ξBA = BA− ξAB holds for all A,B ∈ A ,
which is impossible since ξ �= −1. The proof is complete. �
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