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A CONDITIONAL EXPECTATION TYPE OPERATOR ON Lp SPACES

M. R. JABBARZADEH

(Communicated by N.-C. Wong)

Abstract. In this paper we discuss some of the basic operator-theoretic characterizations for
conditional expectation type operator T = EMu on Lp spaces.

1. Introduction and Preliminaries

Let L(X ,Σ,μ) be a σ -finite measure space. For any complete σ -finite sub-
algebra A ⊆ Σ with 1 � p � ∞ , the Lp -space Lp(X ,A ,μ |A ) is abbreviated by
Lp(A ) , and its norm is denoted by ‖.‖p . We understand Lp(A ) as a Banach sub-
space of Lp(Σ) . The support of a measurable function f is defined by σ( f ) = {x ∈ X :
f (x) �= 0} . All comparisons between two functions or two sets are to be interpreted as
holding up to a μ -null set.

For any non-negative Σ-measurable function f as well as for any f ∈ Lp(Σ) , by
the Radon-Nikodym theorem, there exists a unique A -measurable function E( f ) such
that ∫

A
E f dμ =

∫
A

f dμ , for all A ∈ A .

Hence we obtain an operator E from Lp(Σ) onto Lp(A ) which is called conditional
expectation operator associated with the σ -algebra A . This operator will play a major
role in our work, and we list here some of its useful properties:

• If g is A -measurable then E( f g) = E( f )g .
• |E( f )|p � E(| f |p) .
• ‖E( f )‖p � ‖ f‖p .
• If f � 0 then E( f ) � 0; if f > 0 then E( f ) > 0.

Let f be a real-valued measurable function. Consider the set Bf = {x ∈ X :
E( f +)(x) = E( f−)(x) = ∞} . The function f is said to be conditionable with respect
to A , if μ(Bf ) = 0. If f is complex-valued, then f is conditionable if the real and
imaginary parts of f are conditionable and their respective expectations are not both
infinite on the same set of positive measure. We denote the linear space of all condi-
tionable Σ-measurable functions on X by L0(Σ) . It is known that |E( f )|2 = E(| f |2) if
and only if f ∈ L0(A ) . For more details on the properties of E see [5], [6] and [9].
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Recall that an A -atom of the measure μ is an element A ∈ A with μ(A) > 0
such that for each F ∈ Σ , if F ⊆ A then either μ(F) = 0 or μ(F) = μ(A) . A measure
with no atoms is called non-atomic. It is well-known fact that every σ -finite measure
space (X ,A ,μ|A ) can be partitioned uniquely as X = (

⋃
n∈N An)∪B , where {An}n∈N

is a countable collection of pairwise disjoint A -atoms and B , being disjoint from each
An , is non-atomic (see [12]). Note that since A is σ - finite, it follows that μ(An) < ∞
for every n ∈ N .

Combination of conditional expectation operator E and multiplication operator
Mu appears more often in the service of the study of other operators such as multipli-
cation operators, weighted composition operators and Lambert operators (see [8] and
[7]). These operators are closely related to averaging operators on order ideals in Ba-
nach lattices and to operators called conditional expectation-type operators introduced
in [1]. In this paper, we investigate some of the basic operator-theoretic questions for
the conditional type operator T = EMu between Lp spaces. For a beautiful exposition
of the study of weighted conditional expectation operators on Lp -spaces, see [6] and
the references therein.

2. The operator T = EMu

Let 1 � p � ∞ . We shall always take u ∈ L0(Σ) for which u f ∈ L0(Σ) for all
f ∈ Lp(Σ) . In other words, the operator T = EMu is defined on all Lp(Σ) . A straight-
forward calculation shows that for 1 � p <∞ , the adjoint operator T ∗ : Lq(A )→ Lq(Σ)
is given by T ∗ f = u f , where 1

p + 1
q = 1 (note that we can consider T ∗ : Lq(Σ)→ Lq(Σ)

as T ∗ = MuE ). Let 1 � q <∞ . It is proved by Alan Lambert in [8] that T ∗ is a bounded

operator if and only if E(|u|q) ∈ L∞(A ) . In this case ‖T ∗‖= ‖E(|u|q)‖1/q
∞ . In the case

q = ∞ , we claim that T ∗ is bounded if and only if u ∈ L∞(Σ) and its norm is given by
‖T ∗‖ = ‖u‖∞ . Indeed, if u ∈ L∞(Σ) and f ∈ L∞(A ) , we have

‖u f‖L∞(A ) = sup
A∈A , 0<μ(A)<∞

1
μ(A)

∫
A
|u f |dμ

� ‖u‖∞ sup
A∈A , 0<μ(A)<∞

1
μ(A)

∫
A
| f |dμ = ‖u‖∞‖ f‖L∞(A ).

It follows that T ∗(L∞(A )) ⊆ L∞(A ) ⊆ L∞(Σ) , and ‖T ∗‖ � ‖u‖∞ . On the other hand,
if T ∗ is bounded, then

‖u‖∞ = ‖uχX ‖∞ = ‖T ∗χX ‖∞ � ‖T ∗‖ < ∞.

These observations establish the following proposition.

PROPOSITION 2.1. (a) T = EMu defines a bounded linear operator from L1(Σ)
into L1(A ) if and only if u ∈ L∞(Σ) . In this case ‖T‖ = ‖u‖∞ .

(b) Let 1 < p < ∞ . T defines a bounded operator from Lp(Σ) into Lp(A ) if and

only if E(|u|q) ∈ L∞(A ) , where 1
p + 1

q = 1 . In this case ‖T‖ = ‖E(|u|q)‖1/q
∞ .

In the following theorem we investigate a necessary and sufficient condition for T
to be compact.
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THEOREM 2.2. Let 1 < p < ∞ . Suppose (X ,A ,μ|A ) can be partitioned as X =
(
⋃

n∈N An)∪B. Then the bounded linear operator T = EMu from Lp(Σ) into Lp(A ) is
compact if and only if u(B) = 0 (u(x) = 0 for μ -almost all x ∈ B) and for any ε > 0 ,
the set {n ∈ N : μ(An ∩Dε(u)) > 0} is finite, where Dε(u) = {x ∈ X : E(|u|)(x) � ε} .

Proof. Suppose T is a compact operator. First we show that u(B) = 0. Suppose
the contrary i.e., μ{x ∈ B : u(x) �= 0}) > 0. Then there is δ > 0 and B0 ∈ A ∩B such
that 0 < μ(B0∩Dδ (u)) <∞ . Since J0 := B0∩Dδ (u)∈A ∩B0 has no atoms, hence we
can choose a sequence {Bn}n∈N ⊆ A ∩B0 , such that Jn+1 ⊆ Jn ⊆ J0 , 0 < μ(Jn+1) =
μ(Jn)

2 , where Jn := Bn∩Dδ (u) . Note that for all n ∈ N , Jn is A -measurable. Put

fn =
u|u| q−p

p χJn

{‖E(|u|q)‖∞μ(Jn)}
1
p

, n ∈ N.

Boundedness of T implies that E(|u|q) ∈ L∞(A ) and hence ‖ fn‖p � 1. Now, for any
m,n ∈ N with m > n we have

‖T fn −T fm‖p
p =

∫
X
|E(u( fn − fm))|pdμ

=
∫

X

[E(|u| q
p +1)]p

‖E(|u|q)‖∞

∣∣∣∣∣ χJn

μ(Jn)
1
p

− χJm

μ(Jm)
1
p

∣∣∣∣∣
p

dμ � δ ( q
p +1)p

‖E(|u|q)‖∞
∫

Jn\Jm
dμ
μ(Jn)

=
δ q+p

‖E(|u|q)‖∞
μ(Jn\Jm)
μ(Jn)

=
δ q+p

‖E(|u|q)‖∞

(
1− μ(Jm

μ(Jn)

)
>

δ q+p

2‖E(|u|q)‖∞ ,

which shows that the sequence {T fn}n∈N does not contain a convergent subsequence.
But this is a contradiction.

Now, we show that for any ε > 0 the set {n ∈ N : μ(An ∩Dε(u)) > 0} is fi-
nite. By the way of contradiction, for some ε > 0, there is a subsequence {Ak}k∈N

of disjoint atoms in A such that μ(Ak ∩Dε(u)) > 0, for all k ∈ N . Put Gk = Ak ∩
Dε(u) . Hence, we obtain a sequence of pairwise disjoint sets {Gk}k∈N such that
for every k ∈ N , Gk ∈ A and 0 < μ(Gk) = μ(Ak) < ∞ . For any k ∈ N , take fn =

u|u| q−p
p χGn/(‖E(|u|q)‖∞μ(Gn))1/p . Then ‖ fn‖p � 1. Since for each n �= m , Gn ∩

Gm = /0 , it follows that

‖T fn −T fm‖p
p �

∫
X

(E(|u|))q+pχGn

‖E(|u|q)‖∞μ(Gn)
dμ+

∫
X

(E(|u|))q+pχGm

‖E(|u|q)‖∞μ(Gm)
dμ � 2εq+p

|E(|u|q)‖∞ ,

which contradicts the compactness of T .
Conversely, suppose that u(B) = 0 and for an arbitrary ε > 0, there exist at most

finite A -atoms {Ak
ε}n

k=1 ⊆ {An}n∈N such that μ(Ak
ε ∩Dε(u)) > 0. Put Bε = ∪n

k=1A
k
ε .

Then E(|u|) < ε on X \ Bε and hence |u| < ε on X \ (Bε ∪B) . Set v = χBεu and
T1 = EMv . It is easy to see that u = v = 0 on B and u = v on Bε . Now, since
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Bε ∪B ∈ A , then foe each f ∈ Lp(Σ) we have that

‖(T −T1) f‖p
p =

∫
X
|E(u− v) f |pdμ =

∫
X\(Bε∪B)

|E(u f )|pdμ

�
∫

X\(Bε∪B)
E(|u f |p)dμ =

∫
X\(Bε∪B)

|u f |dμ � ε p
∫

X
| f |pdμ = ε p‖ f‖p

p.

On the other hand, we have

T1 f = E(χBεu f ) = E(
n

∑
k=1

χAk
ε
u f ) =

n

∑
k=1

E(χAk
ε
u f )

=
n

∑
k=1

E(u f )(Ak
ε)χAk

ε
=

n

∑
k=1

(T f )(Ak
ε )χAk

ε
.

Therefore, T1 has finite rank and hence T is compact. �

REMARK 2.3. Under the same assumptions as in Theorem 2.2, if we take fn =
uχJn/(‖u‖∞μ(Jn)) , then by the same method used in the proof of Theorem 2.2, T =
EMu from L1(Σ) into L1(A ) is compact if and only if u(B) = 0 and for any ε > 0,
the set {x ∈ X : E(|u|)(x) � ε} consists of finitely many atoms.

In the following theorem we show that if T = EMu is weakly compact on L1(Σ) ,
then it is compact. Recall that the operator T : L1(Σ) → L1(Σ) is said to be weakly
compact if it maps bounded subsets of L1(Σ) into weakly sequentially compact subsets
of L1(Σ) . We begin with the following lemma, which can be deduced from Theorem
IV.8.9, and its Corollaries 8.10, 8.11 in [4].

LEMMA 2.4. Let H be a weakly sequentially compact set in L1(Σ) . Then for
each decreasing sequence {En} in Σ such that limn→∞ μ(En) = 0 or ∩∞

n=1En = /0 , the
sequence of integrals {∫En

|h|dμ} converges to zero uniformly for h in H .

THEOREM 2.5. Suppose (X ,Σ,μ) can be partitioned as X = (
⋃

n∈N An) ∪ B.
Then the bounded operator T = EMu is a weakly compact operator on L1(Σ) if and
only if it is compact.

Proof. It suffices to show the “ only if ” part. To prove the theorem, we use the
method which inspired by Takagi [10]. Let T be a weakly compact operator on L1(Σ) .
We first show that u(B) = 0. To obtain a contradiction, we may assume that for some
δ > 0 and B0 ⊆ B , 0 < μ(B0 ∩Dδ (u)) < ∞ . By the same argument in the proof of
Theorem 2.2, as B0 is non-atomic, we can find a decreasing sequence {Bn} ⊆ B0 ∩Σ
with 0 < μ(Bn) < 1

n and 0 < μ(Bn ∩Dδ (u)) < ∞ . Let U be the closed unit ball of
L1(Σ) . Since T (U) is weakly sequentially compact, we can apply Lemma 2.4, with
H = T (U) and En = Bn . Choose ε = δ 2/‖u‖∞ . Then there exists an no ∈ N such that

∫
Bno

|T f |dμ <
δ 2

‖u‖∞ , f ∈U. (2.1)
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On the other hand if we take fno = uχJno
/(‖u‖∞μ(Jno)) , we have

∫
Bno

|T f |dμ =
∫

Bno

|E
(

uuχJno

‖u‖∞μ(Jno)

)
|dμ

=
∫

Bno

E

(
|u|2χJno

‖u‖∞μ(Jno)

)
dμ =

1
‖u‖∞μ(Jno)

∫
Bno

|u|2χJno
dμ

=
1

‖u‖∞μ(Jno)

∫
Jno

|u|2dμ � δ 2

‖u‖∞ .

Since fno ∈U , this contradicts (2.1). According to the Theorem 2.2, it remains to show
that for any ε > 0, the set A := {n ∈ N : μ(An ∩Dε(u)) > 0} is finite. To this end,
without loss of generality, we can assume that A = N for some ε > 0. Put Kn = {Ak :
k � n} . It follows that ∩∞

n=1Kn = /0 . Applying Lemma 2.4 once more, there exists an
N ∈ N such that ∫

KN

|T f |dμ <
ε2

‖u‖∞ , f ∈U.

Now, for any n with n � N, let gn = uχAn/(‖u‖∞μ(An)) . Then we have

∫
KN

|Tgn|dμ =
∫

KN

E

( |u|2χAn

‖u‖∞μ(An)

)
dμ =

1
‖u‖∞μ(An)

∫
An

|u|2dμ � ε2

‖u‖∞ .

Since gn ∈U , this contradicts (2.1). This completes the proof of the theorem. �

COROLLARY 2.6. Let 1 � p < ∞ and E(|u|) > 0 a.e. on X . If the bounded
operator T = EMu : Lp(Σ) → Lp(A ) is (weakly) compact, then A is purely atomic.

Let H and K be separable Hilbert spaces. The set of all bounded linear oper-
ators from K into H is denoted by B(K ,H ) . If H = K , B(H ,H ) will be
written by B(H ) . For A∈B(K ,H ) , the range and the null-space of A are denoted
by R(A) and N (A) , respectively. If A ∈ B(H ) , the spectrum of A is denoted by
Sp(A) .

Now, we consider matrix form of T = EMu . Notice that L2(Σ) is the direct sum
of the R(E) = L2(A ) with N (E) = { f −E f : f ∈ L2(Σ)} . With respect to the direct
sum decomposition, L2(Σ) = L2(A )⊕N (E) , the matrix form of T is

T =
[

ETE ET (I−E)
(I−E)TE (I−E)T (I−E)

]
=
[

MEu EMu

0 0

]
. (2.2)

In this sequel, we investigate closedness of range and spectrum of T on L2(Σ) . We
begin with the following lemma, which can be deduced from Theorem 2.3 in [2] and
Example 7 in [3].

LEMMA 2.7. Let H and K be separable Hilbert spaces. Suppose that A ∈
B(H ) , B ∈ B(K ) and C ∈ B(K ,H ) .

(i) If A and B are normal operators, then Sp

([
A C
0 B

])
= Sp(A)∪ Sp(B).
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(ii) If R(A) and R(B) are closed, then the range R

([
A C
0 B

])
is closed if and

only if at least one of dimN (A∗) or dimN (B) is finite.

THEOREM 2.8. Suppose that the operator T = EMu : L2(Σ)→ L2(A ) is bounded.
Then

(i) Sp(T )∪{0}= ess range {E(u)}∪{0} .
(ii) Let |E(u)| � δ a.e. on σ(E(u)) for some δ > 0 . Then T has closed range if

and only if |E(u)| > 0 a.e. on X except at most on finitely many atoms.

Proof. (i) If A �=Σ , then R(T )⊆ L2(A )⊂ L2(Σ) . Therefore T is not surjective
and so 0 ∈ Sp(T ) . On the other hand, by Lemma 2.7 (i), since Sp(MEu) = ess range
{E(u)} , the result holds.

(ii) It is known that the multiplication operator MEu has closed range if and only
if |E(u)| � δ a.e. on σ(E(u)) for some δ > 0. Now, by Lemma 2.7 (i) and (2.2) we
have:

R(T ) is closed ⇐⇒ R

([
MEu EMu

0 0

])
is closed ⇐⇒ dimN (MEu) < ∞

⇐⇒ |E(u)| > 0 a.e. on X except at most on finitely many atoms.

It is well known that every operator T can be decomposed into T = U |T | with

a partial isometry U , where |T | = (T ∗T )
1
2 . U is determined uniquely by the kernel

condition N (U) = N (T ) , then this decomposition is called the polar decomposition.
Now, by the operator matrices method we obtain the polar decomposition of T =

EMu . Direct computations show that

T ∗T =
[

M|E(u)|2 EMuEu
MuEu MuEMu

]
and |T | =

⎡
⎢⎢⎣

M |E(u)|2√
E(|u|2)

EM uEu√
E(|u|2)

M uE(u)−|E(u)|2√
E(|u|2)

M u−Eu√
E(|u|2)

EMu

⎤
⎥⎥⎦ .

Then for each f ∈ L2(Σ) we have that

|T |[E f f −E f
]
=

⎡
⎢⎢⎣

M |E(u)|2√
E(|u|2)

EM uEu√
E(|u|2)

M uE(u)−|E(u)|2√
E(|u|2)

M u−Eu√
E(|u|2)

EMu

⎤
⎥⎥⎦
⎡
⎣ E f

f −E f

⎤
⎦

=
[

E(u)E(u f )√
E(|u|2)

uE(u f )√
E(|u|2) −

E(u)E(u f )√
E(|u|2)

]
.

Notice that, since for each conditionable function u , E(|u|) = 0 implies that
E(u) = 0 = u , we used the notational convention of u√

E(|u|2) for u√
E(|u|2)χσ(u) .

Now, since the mapping f �→ [
E f f −E f

]
is an isometric isomorphism from

L2(Σ) onto L2(A )⊕N (E) , then we get that |T |( f ) = uE(u f )√
E(|u|2) . Hence for any f ∈

L2(Σ) , E(u f ) = U( uE(u f )√
E(|u|2) ) . It is easy to check that U( f ) = E(u f )√

E(|u|2) and U is a

partial isometry (see [6]). These calculations establish the following proposition. �
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PROPOSITION 2.9. The polar decomposition of T = EMu on L2(Σ) is U |T | ,
where U = M

1/
√

E(|u|2)T and |T | = M
u/
√

E(|u|2)T .

Let p ∈ (0,∞) . Recall that an operator A on a Hilbert space H is p -hyponormal
if (A∗A)p � (AA∗)p ; A is ∞-hyponormal if A is p -hyponormal for all p ; and A
is p -quasihyponormal if A∗(A∗A)pA � A∗(AA∗)pA . For all unit vectors x ∈ H , if
‖|A|pU |A|px‖ � ‖|A|px‖2 , then A is called a p -paranormal operator. By using the
property of real quadratic forms (see [11]), A is p -paranormal if and only if

|A|pU∗|A|2pU |A|p−2k|A|2p + k2 � 0, for all k � 0. (2.3)

The following lemma is significant amount of consideration for the next computations.

LEMMA 2.10. Let f ∈ L2(Σ) and A f := uE(u f ) . Then for all p ∈ (0,∞)

Ap f = u[E(|u|2)]p−1E(u f ).

Proof. Suppose f ∈ L2(Σ) , then by induction we obtain

A
1
n f = u[E(|u|2)] 1−n

n E(u f ), n ∈ N.

Now the reiteration of powers of operator A
1
n , yields

A
m
n f = u[E(|u|2)] (1−n)m

n [E(|u|2)]m−1E(u f ), m,n ∈ N.

Finally, by using of the functional calculus the desired formula is proved. �

LEMMA 2.11. Let T = EMu be a bounded operator on L2(Σ) . Then T is ∞-
hyponormal if and only id u ∈ L∞(A ) .

Proof. By Lemma 2.10, it is easy to verify that (T ∗T )p = Mu[E(|u|2)]p−1T and
(TT ∗)p = M[E(|u|2)]p , for all 0 < p < ∞ . Then we get that (T ∗T )p � (TT ∗)p if and
only if

M[E(|u|2)]p−1(MuT −ME(|u|2)) � 0 ⇐⇒ MuT −ME(|u|2) � 0,

where we have used the fact that T1T2 � 0 if T1 � 0, T2 � 0 and T1T2 = T2T1 for all
Ti ∈ B(H ) . Thus for any 0 < f ∈ L2(A ) we have

0 � (MuT f −ME(|u|2) f , f ) =
∫

X
(uE(u f )−E(|u|2) f ) f dμ

=
∫

X
(uE(u)−E(|u|2))| f |2dμ =

∫
X
(|E(u)|2−E(|u|2))| f |2dμ .

Since f > 0, this gives |E(u)|2 � E(|u|2) . On the other hand we always have |E(u)|2 �
E(|u|2) . Hence u ∈ L∞(A ) . Notice that if u ∈ L∞(A ) , then it is easy to see that
(T ∗T )p � (TT ∗)p . �
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THEOREM 2.12. Let T = EMu be a bounded operator on L2(Σ) . Then the fol-
lowing are equivalent:

(i) T is ∞-hyponormal.

(ii) T is p-hyponormal.

(iii) T is p-quasihyponormal.

(iv) T is p-paranormal.

(v) u ∈ L∞(A ) .

Proof. By Lemma 2.11, we complete the proof by showing (iii)⇔ (v) and (iv)⇔
(v) below.

(iii) ⇔ (v) By Lemma 2.10, it is easy to verify that T ∗(TT ∗)pT = Mu[E(|u|2)]pT
and T ∗(T ∗T )pT = Mu|E(u)|2[E(|u|2)]p−1T . Therefore, T ∗(T ∗T )p � T ∗(TT ∗)pT if and

only if M[E(|u|2)]p−1(Mu|E(u)|2−uE(|u|2)T ) � 0. Therefore, for any 0 < f ∈ L2(A ) we
have

0 �
∫

X
(u|E(u)|2− uE(|u|2))E(u)| f |2dμ =

∫
X
(|E(u)|4−|E(u)|2E(|u|2))| f |2dμ .

It follows that |E(u)|2 � E(|u|2) and hence |E(u)|2 = E(|u|2) . Thus u ∈ L∞(A ) .
Conversely, if u ∈ L∞(A ) , then

T ∗(T ∗T )pT = T ∗(TT ∗)pT = Mu|u|2pT,

which proves the desired implication.
We now prove (iv) ⇔ (v) . Since |T |( f ) = u

4
√

E(|u|2)E( u f
4
√

E(|u|2) ) , by Lemma 2.10

we get that

|T |p( f ) = u[E(|u|2)] p−2
2 E(u f ), f ∈ L2(Σ).

Also since U∗( f ) = u√
E(|u|2)E( f ) , by a direct computation, we have

|T |pU∗|T |2pU |T |p f = u[E(|u|2)]2p−2|E(u)|2E(u f ), f ∈ L2(Σ).

By condition (2.3), T is p -paranormal if and only if

k2−2kMu[E(|u|2)]p−1T +Mu[E(|u|2)]2p−2|E(u)|2T � 0, for all k � 0

⇐⇒ Mu[E(|u|2)]2p−2|E(u)|2T � (Mu[E(|u|2)]p−1T )2 = Mu[E(|u|2)]2p−2|E(|u|2)T.

Therefore, for any 0 < f ∈ L2(A ) we have

∫
X
|E(u)|2(E(|u|2)2p−2 (|E(u)|2−E(|u|2)) | f |2dμ � 0.

It follows that |E(u)|2 � E(|u|2) and hence u∈ L∞(A ) . Conversely, if u∈L∞(A ) , it is
easy to check that condition (2.3) holds for all k � 0. Hence the proof is complete. �
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EXAMPLE 2.13. Let X = [−1,1] , dμ = dx , Σ the Lebesgue sets, and A the σ -
subalgebra generated by the symmetric sets about the origin. Now any real valued func-
tion on X can be written uniquely as a sum of an even function and an odd function, one
simply uses the functions fe(x) = ( f (x)+ f (−x))/2 and fo(x) = ( f (x)− f (−x))/2.
Put 0 < a � 1. Then for each f ∈ L2(Σ) we have

∫ a
−a E( f )(x)dx =

∫ a
−a fe(x)dx and

consequently, E f = fe . This example is due to Alan Lambert [8]. Now, if u is an
even and continuous function on X , then T = EMu is ∞-hyponormal and hence is
p -paranormal. Note that if u(x) = 1+ x , then T is not p -paranormal.

Acknowledgement. The author would like to thank the referees for very helpful
comments and valuable suggestions.

RE F ER EN C ES

[1] P. DODDS, C. HUIJSMANS AND B. DE PAGTER, Characterizations of conditional expectation-type
operators, Pacific J. Math., 141 (1990), 55–77.
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