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A CONDITIONAL EXPECTATION TYPE OPERATOR ON L” SPACES

M. R. JABBARZADEH

(Communicated by N.-C. Wong)

Abstract. In this paper we discuss some of the basic operator-theoretic characterizations for
conditional expectation type operator 7 = EM,, on L” spaces.

1. Introduction and Preliminaries

Let L(X,Z,u) be a o-finite measure space. For any complete © -finite sub-
algebra o/ C X with 1 < p < oo, the L”-space LP(X,o/,u|ef) is abbreviated by
LP(47), and its norm is denoted by ||.||,. We understand L”(/) as a Banach sub-
space of L?(X). The support of a measurable function f is definedby o(f) ={x€ X :
f(x) #0}. All comparisons between two functions or two sets are to be interpreted as
holding up to a p-null set.

For any non-negative X-measurable function f as well as for any f € L?(X), by
the Radon-Nikodym theorem, there exists a unique 7 -measurable function E(f) such
that

/Efdu:/fdu, forall A € o
A A

Hence we obtain an operator E from L”(X) onto LP(.«/) which is called conditional
expectation operator associated with the o -algebra .o7. This operator will play a major
role in our work, and we list here some of its useful properties:

e If g is o7 -measurable then E(fg) = E(f)g.

o [E(P)P <E(fPP).

o IE), <111,

e If f>0 then E(f) > 0;if f> 0 then E(f) > 0.

Let f be a real-valued measurable function. Consider the set By = {x € X :
E(f")(x) = E(f™)(x) = o}. The function f is said to be conditionable with respect
to o7, if u(By) =0. If f is complex-valued, then f is conditionable if the real and
imaginary parts of f are conditionable and their respective expectations are not both
infinite on the same set of positive measure. We denote the linear space of all condi-
tionable X-measurable functions on X by L°(X). Itis known that |E(f)|*> = E(|f|?) if
and only if f € Lo(mf ). For more details on the properties of E see [5], [6] and [9].
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Recall that an <7 -atom of the measure u is an element A € &7 with u(A) >0
such that for each F € Z,if F C A then either u(F) =0 or u(F) = u(A). A measure
with no atoms is called non-atomic. It is well-known fact that every o -finite measure
space (X,.<, 4 ,) can be partitioned uniquely as X = (U, eyAn) UB, where {A;},en
is a countable collection of pairwise disjoint .27 -atoms and B, being disjoint from each
A, is non-atomic (see [12]). Note that since <7 is o - finite, it follows that p(A,) < oo
forevery n € N.

Combination of conditional expectation operator £ and multiplication operator
M, appears more often in the service of the study of other operators such as multipli-
cation operators, weighted composition operators and Lambert operators (see [8] and
[7]). These operators are closely related to averaging operators on order ideals in Ba-
nach lattices and to operators called conditional expectation-type operators introduced
in [1]. In this paper, we investigate some of the basic operator-theoretic questions for
the conditional type operator T = EM,, between L? spaces. For a beautiful exposition
of the study of weighted conditional expectation operators on L” -spaces, see [6] and
the references therein.

2. The operator T = EM,

Let 1 < p < oo. We shall always take u € L%() for which uf € L°(Z) for all
f € LP(X). In other words, the operator T = EM,, is defined on all LP(X). A straight-
forward calculation shows that for 1 < p < o, the adjoint operator T* : LY (/) — L1(Z)
is givenby T*f = iif, where % + é =1 (note that we can consider T* : LY(X) — L4(X)
as T* =MzE). Let 1 < g <oo. Itis proved by Alan Lambert in [8] that 7* is a bounded
operator if and only if E(Ju|?) € L*(<7). In this case || T*|| = ||E(|u\‘1)Hio/q In the case
q = o=, we claim that 7" is bounded if and only if ¥ € L*(X) and its norm is given by
|T*|| = ||u||o. Indeed, if u € L*(X) and f € L”(47), we have

|@fllmory = sup / fldu

Acd/, O<u(A

<ull=  sup /\f\du—H ool 1] 2=

Aedl, O0<u(A)<eo ,LL
It follows that T*(L*(«/)) C L= (&) C L*(X), and ||T*|| < ||u||. On the other hand,
if T* is bounded, then
[lulleo = [y lleo = 1T 2 [0 < (I T[] < oo
These observations establish the following proposition.

PROPOSITION 2.1. (a) T = EM, defines a bounded linear operator from L'(Z)
into L' (/) if and only if u € L™(X). In this case ||T|| = ||u]|o.

(b) Let 1 < p < eo. T defines a bounded operator from L? (X) into LP (<) if and
only if E(|u|?) € L*(&), where % + é = 1. In this case |T| = ||E(|u|‘1)Holo/q

In the following theorem we investigate a necessary and sufficient condition for T
to be compact.
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THEOREM 2.2. Let 1 < p <eo. Suppose (X, 4/, ,) can be partitioned as X =
(UnenAn) UB. Then the bounded linear operator T = EM,, from LP(Z) into LP (<) is
compact if and only if u(B) =0 (u(x) =0 for u-almost all x € B) and for any € >0,
the set {n € N: u(A, ND¢(u)) > 0} is finite, where Dg(u) = {x € X : E(|u|)(x) > €}.

Proof. Suppose T is a compact operator. First we show that u(B) = 0. Suppose
the contrary i.e., u{x € B:u(x) # 0}) > 0. Then there is § > 0 and By € & N B such
that 0 < u(BoNDg(u)) < eo. Since Jy := BoNDg(u) € &/ N By has no atoms, hence we
can choose a sequence {By},en € &7 N By, such that J, 1 CJ, CJy, 0 < u(Jpy1) =

% , where J,, := B, N Dg(u). Note that for all n € N, J, is &/ -measurable. Put
_ q—pr
_ o uful P,
LIE (2l )[|oopt (Jn) }

Boundedness of T implies that E(|u|?) € L” (/) and hence ||f,||, < 1. Now, for any
m,n € N with m > n we have

, neN.

|-

T fu— Tfm\l’—/ \E(u(f,— fin))|Pdu

_ /[E<|uf‘f“>]f’ Ty | gy 85T [
X NEQuDle |y ww)r|  NEQuDle Jrm 1)

8 u(\Im) o0 ( _ .U(Jm> gar
IE(ulDllee () NEQuDlle \ 1)/~ 2 E ()]l

which shows that the sequence {7 f; },en does not contain a convergent subsequence.
But this is a contradiction.

Now, we show that for any € > 0 the set {n € N: u(A, N D¢(u)) > 0} is fi-
nite. By the way of contradiction, for some & > 0, there is a subsequence {A}ren
of disjoint atoms in <« such that u(A; N De(u)) > 0, for all k € N. Put Gy = AN
D, (u). Hence, we obtain a sequence of pairwise disjoint sets {Gy}ren such that
for every k € N, Gy € & and 0 < u(Gy) = u(Ax) < oo. For any k € N, take f, =

ﬁ|u\ql;’pxgn/(HE(Mq)||o°,u(G,,))1/1’. Then ||f,]|, < 1. Since for each n # m, G, N
G, = 0, it follows that

(EW) Ao, [ EQ) " s, 267

T n_T m ZE(u|9)|-"
I fu = Thully > ||E ) [t (G) M S TEQul) [ (G) ™ 7 TEul)]]-

which contradicts the compactness of 7.

Conversely, suppose that u(B) = 0 and for an arbitrary € > 0, there exist at most
finite o7 -atoms {A¥}7_ C {A,},en such that u(AXNDg(u)) > 0. Put B, = UP_ A%,
Then E(|u|) < € on X\ B, and hence |u| < & on X \ (B¢ UB). Set v = yxp,u and
T\ = EM,. It is easy to see that u =v =0 on B and u =v on B.. Now, since
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B UB € &, then foe each f € LP(X) we have that

I =Tl = [ 1B wPdu= [ )P

<[ E(ufinau= [ jufldu<er [ |srdu=er|fi.
X\(BsUB) X\ (B:UB) X

On the other hand, we have

T\ f = E(xp.uf) = ZXAguf) = Y E(xqcuf)

EGuf) (A5 = 3 (1) (A2

k=1

I
~
Il M:
MR

Therefore, 77 has finite rank and hence T is compact. [

REMARK 2.3. Under the same assumptions as in Theorem 2.2, if we take f, =
uxr,/(||ullspt(J:)), then by the same method used in the proof of Theorem 2.2, T =
EM, from L'(X) into L'(/) is compact if and only if u(B) =0 and for any & > 0,
the set {x € X : E(Ju|)(x) > €} consists of finitely many atoms.

In the following theorem we show that if T = EM,, is weakly compact on L!(Z),
then it is compact. Recall that the operator T : L!(Z) — L'(Z) is said to be weakly
compact if it maps bounded subsets of L' (X) into weakly sequentially compact subsets
of L'(X). We begin with the following lemma, which can be deduced from Theorem
1V.8.9, and its Corollaries 8.10, 8.11 in [4].

LEMMA 2.4. Let H be a weakly sequentially compact set in L'(Z). Then for
each decreasing sequence {E,} in X such that lim,_... W(E,) =0 or (°_E, =0, the
sequence of integrals { [ |h|du} converges to zero uniformly for h in H.

THEOREM 2.5. Suppose (X,Z,u) can be partitioned as X = (U,eyAn) UB
Then the bounded operator T = EM,, is a weakly compact operator on L' (X) if and
only if it is compact.

Proof. Tt suffices to show the “ only if ” part. To prove the theorem, we use the
method which inspired by Takagi [10]. Let T be a weakly compact operator on L!(Z).
We first show that u(B) = 0. To obtain a contradiction, we may assume that for some
6 >0 and By C B, 0 < u(BpNDg(u)) < e=. By the same argument in the proof of
Theorem 2.2, as By is non-atomic, we can find a decreasing sequence {B,} C ByNZ
with 0 < u(B,) < 1 and 0 < (B, NDs(u)) <. Let U be the closed unit ball of
L'(Z). Since T(U) is weakly sequentially compact, we can apply Lemma 2.4, with
H=T(U) and E, = B,. Choose & = §%/||ul|.. Then there exists an n, € N such that

| o1rsidu < o

feu. (2.1)
Bu, 7 ||oo
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On the other hand if we take fy, = i)y, /(||ullctt(Jn,)). We have

uuy;,
rolan= [ 1 (e Y au
b, o \Tllott )

ul* % 1 2
= | E|i7—= du=7/ |ul* %, d1t
Buy (uoou(fng) [[tllootd (Ji,) JBs, ’
52
ulPdu > ——.
[Ju]ee

1
- HMH‘X’“(JHO)~/J

no

Since f,, € U, this contradicts (2.1). According to the Theorem 2.2, it remains to show
that for any € > 0, the set A := {n € N: u(A,NDe(u)) > 0} is finite. To this end,
without loss of generality, we can assume that A = N for some € > 0. Put K, = {A;:
k >n}. It follows that N;"_ K, = 0. Applying Lemma 2.4 once more, there exists an

N € N such that

82

ol e’

/ T fldp < feu.
Kn

Now, for any n with n > N, let g, = uxa,/(||ul|-t(As)). Then we have

|u|* xa 1 ) &2
Tg \du=/ E(* du=7/ uldu > ——.
/KN ! Ky \lullept(An) [[eelloott (An) Ja, [l oo

Since g, € U, this contradicts (2.1). This completes the proof of the theorem. [

COROLLARY 2.6. Let 1 < p < oo and E(Ju|) > 0 a.e. on X. If the bounded
operator T = EM,, : L (£) — LP (/) is (weakly) compact, then < is purely atomic.

Let o7 and % be separable Hilbert spaces. The set of all bounded linear oper-
ators from ¢ into J# is denoted by B( A, ). If # =4, B(A, ) will be
written by #(.7¢). For A € (%, ), the range and the null-space of A are denoted
by #(A) and A4 (A), respectively. If A € (), the spectrum of A is denoted by
Sp(A).

Now, we consider matrix form of 7 = EM,,. Notice that L?(X) is the direct sum
of the Z(E) = L?(</) with A/ (E)={f—Ef:f € L*(X)}. With respect to the direct
sum decomposition, L?(2) = L?(&/) & A (E), the matrix form of T is

T =

ETE ET(I—E>] _ [MEM EMM] . 2.2)

(I-E)YTE (I-E)YTI—E)|—| 0 0

In this sequel, we investigate closedness of range and spectrum of 7 on L*(X). We
begin with the following lemma, which can be deduced from Theorem 2.3 in [2] and
Example 7 in [3].

LEMMA 2.7. Let 5 and ¥ be separable Hilbert spaces. Suppose that A €
PB(H), Be B(K) and C € B(H , ).
AC

(i) If A and B are normal operators, then Sp ({O B]) = Sp(A)U Sp(B).
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(ii) If Z(A) and #(B) are closed, then the range % ({Ig g}) is closed if and
only if at least one of dim A (A*) or dim .4 (B) is finite.

THEOREM 2.8. Suppose that the operator T = EM,,: L*(X) — L*(.</) is bounded.
Then

(i) Sp(T)U{0} = ess range {E(u)} U{0}.

(ii) Let |E(u)| > 8 a.e. on 6(E(u)) for some 8 >0. Then T has closed range if
and only if |E(u)| > 0 a.e. on X except at most on finitely many atoms.

Proof. (i) If o #X,then Z(T) C L*(&/) C L>(X). Therefore T is not surjective
and so 0 € Sp(T). On the other hand, by Lemma 2.7 (i), since Sp (Mg, ) = ess range
{E(u)}, the result holds.

(if) It is known that the multiplication operator Mg, has closed range if and only
if |[E(u)| > 8 a.e. on 6(E(u)) for some & > 0. Now, by Lemma 2.7 (i) and (2.2) we
have:

MEu EMu
0 0
<= |E(u)| >0 a.e. on X except at most on finitely many atoms.

Z(T) is closed <= Z ]) is closed <= dim .4 (Mg;) < o

It is well known that every operator T can be decomposed into T = U|T| with
a partial isometry U, where |T| = (T*T)% . U is determined uniquely by the kernel
condition A" (U) = .#(T), then this decomposition is called the polar decomposition.

Now, by the operator matrices method we obtain the polar decomposition of 7' =
EM, . Direct computations show that

M 2 EM g

)
Mguwpe EMg, VE(u? E(uP)
T*T — |E(u)] uEu:| and |T| = (Ju#)
{ Mg, MzEM, | ‘ MEE(u)—\E(u)\Z M i@ EM,
V/E(u)?) VE(lu2)

Then for each f € L>(X) we have that
M pwp  EM_um

—— E
IT|[Ef f—Ef] = E(uP) V() !
M ipipwpe Moz EMy FEf
VE(uP) VEWP)

EWEWf) _mEwf) _ E@Ef)

L VEWPR) VEWPR)  VEWP) |

Notice that, since for each conditionable function u, E(|u|) = 0 implies that
E(u) =0 =u, we used the notational convention of ——2— for —=~ .
“ V@R O R e

Now, since the mapping f +— [E ff—Ef ] is an isometric isomorphism from
[2(Z) onto L2(o/) & N (E), then we get that |T|(f) = “£%)L  Hence for any f €

E(jul?)
L2(2), E(uf) = U( "iiml)) It is easy to check that U(f) = EE(?IQZ) and U is a

partial isometry (see [6]). These calculations establish the following proposition. [
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PROPOSITION 2.9. The polar decomposition of T = EM, on L*(Z) is U|T],

where U = MI/WT and |T| = \/WT

Let p € (0,o0). Recall that an operator A on a Hilbert space ¢ is p-hyponormal
if (A*A)? > (AA*)P; A is eo-hyponormal if A is p-hyponormal for all p; and A
is p-quasihyponormal if A*(A*A)PA > A*(AA*)PA. For all unit vectors x € J, if
||A|PU|A|Px|| > |||A|Px||?, then A is called a p-paranormal operator. By using the
property of real quadratic forms (see [11]), A is p-paranormal if and only if

|A|PU*|A|PPU|A|P — 2k|A|*P +k* >0, forall k> 0. (2.3)

The following lemma is significant amount of consideration for the next computations.

LEMMA 2.10. Let f € L*(X) and Af := @E(uf). Then for all p € (0,)

APf = ulE(|ul*))P~ E(uf).
Proof. Suppose f € L*(Z), then by induction we obtain

Anf = GlE(luf)) T E(uf), neN.

. . IR
Now the reiteration of powers of operator An , yields

m (1=n)m
Anf=ulE(ju)] [E(lul)" " E(uf), mneN.
Finally, by using of the functional calculus the desired formula is proved. [J
LEMMA 2.11. Let T = EM, be a bounded operator on L*(Z). Then T is -
hyponormal if and only id u € L* (/).

Proof: By Lemma 2.10, it is easy to verify that (7"T)P = Myg(,p2)p1T and
(TT*)P = Mg ju2)p » for all 0 < p <. Then we get that (T*T)7 > (TT*)” if and
only if

M[E(\u\z)]/”l (M,;T _ME(\M\Z)) 20 M;T — ME(|u|2) >0,

where we have used the fact that 717, >0 if T; >0, T» > 0 and 717, = T>T; for all
T; € B(H). Thus forany 0 < f € L?(o/) we have

0< (MeTf My f.f) = [ (@E(uf) = E(uP)f)fau
= [ (FE )~ E(uP)IfPdu = [ (EG)E~E(ul)|sPan.
Since f >0, this gives |E(u)|> > E(|u/?). On the other hand we always have |E (u)|?> <

E(Ju|?). Hence u € L(<7). Notice that if u € L*(/), then it is easy to see that
(T*T)? = (TT*?. O
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THEOREM 2.12. Let T = EM,, be a bounded operator on L*(X). Then the fol-

lowing are equivalent:
(i) T is eo-hyponormal.
(ii) T is p-hyponormal.
(iii) T is p-quasihyponormal.
(iv) T is p-paranormal.
(v) uel”(«).

Proof. By Lemma 2.11, we complete the proof by showing (iii) < (v) and (iv) <
(v) below.

(iii) < (v) By Lemma 2.10, it is easy to verify that T*(TT*)PT = Mg ,2)p T
and T (T T)PT M—lE( |2[ (|“|2 ]p 1T Therefore T*(T T) T*(TT*)pT if and
only if Mg, 2yp1 (Mg 2—ae(up)T) = 0. Therefore, for any 0 < f € L*(o) we
have

0< [ ()P~ G () Ew)|Pdu = [ (B~ EG@PE () Pdu.

It follows that |E(u)|> > E(|u|?) and hence |E(u)|* = E(Ju|?). Thus u € L*(</).
Conversely, if u € L*(<7), then

T*(T*T)PT =T*(TT*)"T = M2 T,

which proves the desired implication.

We now prove (iv) < (v). Since |T|(f) = +=—E(5 ) by Lemma 2.10
VE(uP) JE (%)
we get that
2
TIP(f) = AE(ul) T E@wf),  feL(D).
Also since U*(f) = —=“—E(f), by a direct computation, we have

VE(|ul?)
[TIPUHTPPUIT P f = alE(jul®)PP 2 E@)PE@f),  feL* ().
By condition (2.3), T is p-paranormal if and only if

k2 — 2leI[E(|u|2)]”’l T +ME[EUMIZ)]Z,;—ZIE(M)IZT = 07 for all k >0

2 _
= Mygupyer215wpT 2 Magqupye-1T)" = Mg uz)pe-21g(u) T-
Therefore, for any 0 < f € L?(</) we have

JEGOPE P2 ()P~ E(u) 7 Pdu > 0.

It follows that |E (u)|? > E(|u|?) and hence u € L (o7). Conversely, if u € L*(.e7), it is
easy to check that condition (2.3) holds for all £ > 0. Hence the proof is complete. []
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EXAMPLE 2.13. Let X = [—1,1], du = dx, X the Lebesgue sets, and </ the o-
subalgebra generated by the symmetric sets about the origin. Now any real valued func-
tion on X can be written uniquely as a sum of an even function and an odd function, one

simply uses the functions f.(x) = (f(x)+ f(—x))/2 and f,(x) = (f(x) — f(—x))/2.
Put 0 < a < 1. Then for each f € L*(Z) we have [* E(f)(x)dx = [, f.(x)dx and
consequently, Ef = f,. This example is due to Alan Lambert [8]. Now, if u is an
even and continuous function on X, then T = EM,, is e-hyponormal and hence is
p-paranormal. Note that if u(x) = 1+x, then T is not p-paranormal.
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