A CONDITIONAL EXPECTATION TYPE OPERATOR ON L^{p} SPACES

M. R. JabBaRZADEH

(Communicated by N.-C. Wong)

Abstract

In this paper we discuss some of the basic operator-theoretic characterizations for conditional expectation type operator $T=E M_{u}$ on L^{p} spaces.

1. Introduction and Preliminaries

Let $L(X, \Sigma, \mu)$ be a σ-finite measure space. For any complete σ-finite subalgebra $\mathscr{A} \subseteq \Sigma$ with $1 \leqslant p \leqslant \infty$, the L^{p}-space $L^{p}(X, \mathscr{A}, \mu \mid \mathscr{A})$ is abbreviated by $L^{p}(\mathscr{A})$, and its norm is denoted by $\|\cdot\|_{p}$. We understand $L^{p}(\mathscr{A})$ as a Banach subspace of $L^{p}(\Sigma)$. The support of a measurable function f is defined by $\sigma(f)=\{x \in X$: $f(x) \neq 0\}$. All comparisons between two functions or two sets are to be interpreted as holding up to a μ-null set.

For any non-negative Σ-measurable function f as well as for any $f \in L^{p}(\Sigma)$, by the Radon-Nikodym theorem, there exists a unique \mathscr{A}-measurable function $E(f)$ such that

$$
\int_{A} E f d \mu=\int_{A} f d \mu, \quad \text { for all } A \in \mathscr{A}
$$

Hence we obtain an operator E from $L^{p}(\Sigma)$ onto $L^{p}(\mathscr{A})$ which is called conditional expectation operator associated with the σ-algebra \mathscr{A}. This operator will play a major role in our work, and we list here some of its useful properties:

- If g is \mathscr{A}-measurable then $E(f g)=E(f) g$.
- $|E(f)|^{p} \leqslant E\left(|f|^{p}\right)$.
- $\|E(f)\|_{p} \leqslant\|f\|_{p}$.
- If $f \geqslant 0$ then $E(f) \geqslant 0$; if $f>0$ then $E(f)>0$.

Let f be a real-valued measurable function. Consider the set $B_{f}=\{x \in X$: $\left.E\left(f^{+}\right)(x)=E\left(f^{-}\right)(x)=\infty\right\}$. The function f is said to be conditionable with respect to \mathscr{A}, if $\mu\left(B_{f}\right)=0$. If f is complex-valued, then f is conditionable if the real and imaginary parts of f are conditionable and their respective expectations are not both infinite on the same set of positive measure. We denote the linear space of all conditionable Σ-measurable functions on X by $L^{0}(\Sigma)$. It is known that $|E(f)|^{2}=E\left(|f|^{2}\right)$ if and only if $f \in L^{0}(\mathscr{A})$. For more details on the properties of E see [5], [6] and [9].

[^0]Recall that an \mathscr{A}-atom of the measure μ is an element $A \in \mathscr{A}$ with $\mu(A)>0$ such that for each $F \in \Sigma$, if $F \subseteq A$ then either $\mu(F)=0$ or $\mu(F)=\mu(A)$. A measure with no atoms is called non-atomic. It is well-known fact that every σ-finite measure space $\left(X, \mathscr{A}, \mu_{\left.\right|_{\mathscr{A}}}\right)$ can be partitioned uniquely as $X=\left(\bigcup_{n \in \mathbb{N}} A_{n}\right) \cup B$, where $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ is a countable collection of pairwise disjoint \mathscr{A}-atoms and B, being disjoint from each A_{n}, is non-atomic (see [12]). Note that since \mathscr{A} is σ - finite, it follows that $\mu\left(A_{n}\right)<\infty$ for every $n \in \mathbb{N}$.

Combination of conditional expectation operator E and multiplication operator M_{u} appears more often in the service of the study of other operators such as multiplication operators, weighted composition operators and Lambert operators (see [8] and [7]). These operators are closely related to averaging operators on order ideals in $\mathrm{Ba}-$ nach lattices and to operators called conditional expectation-type operators introduced in [1]. In this paper, we investigate some of the basic operator-theoretic questions for the conditional type operator $T=E M_{u}$ between L^{p} spaces. For a beautiful exposition of the study of weighted conditional expectation operators on L^{p}-spaces, see [6] and the references therein.

2. The operator $\mathbf{T}=\mathbf{E M}_{\mathbf{u}}$

Let $1 \leqslant p \leqslant \infty$. We shall always take $u \in L^{0}(\Sigma)$ for which $u f \in L^{0}(\Sigma)$ for all $f \in L^{p}(\Sigma)$. In other words, the operator $T=E M_{u}$ is defined on all $L^{p}(\Sigma)$. A straightforward calculation shows that for $1 \leqslant p<\infty$, the adjoint operator $T^{*}: L^{q}(\mathscr{A}) \rightarrow L^{q}(\Sigma)$ is given by $T^{*} f=\bar{u} f$, where $\frac{1}{p}+\frac{1}{q}=1$ (note that we can consider $T^{*}: L^{q}(\Sigma) \rightarrow L^{q}(\Sigma)$ as $\left.T^{*}=M_{\bar{u}} E\right)$. Let $1 \leqslant q<\infty$. It is proved by Alan Lambert in [8] that T^{*} is a bounded operator if and only if $E\left(|u|^{q}\right) \in L^{\infty}(\mathscr{A})$. In this case $\left\|T^{*}\right\|=\left\|E\left(|u|^{q}\right)\right\|_{\infty}^{1 / q}$. In the case $q=\infty$, we claim that T^{*} is bounded if and only if $u \in L^{\infty}(\Sigma)$ and its norm is given by $\left\|T^{*}\right\|=\|u\|_{\infty}$. Indeed, if $u \in L^{\infty}(\Sigma)$ and $f \in L^{\infty}(\mathscr{A})$, we have

$$
\begin{aligned}
\|\bar{u} f\|_{L^{\infty}(\mathscr{A})} & =\sup _{A \in \mathscr{A}, 0<\mu(A)<\infty} \frac{1}{\mu(A)} \int_{A}|\bar{u} f| d \mu \\
& \leqslant\|u\|_{\infty} \sup _{A \in \mathscr{A}, 0<\mu(A)<\infty} \frac{1}{\mu(A)} \int_{A}|f| d \mu=\|u\|_{\infty}\|f\|_{L^{\infty}(\mathscr{A})}
\end{aligned}
$$

It follows that $T^{*}\left(L^{\infty}(\mathscr{A})\right) \subseteq L^{\infty}(\mathscr{A}) \subseteq L^{\infty}(\Sigma)$, and $\left\|T^{*}\right\| \leqslant\|u\|_{\infty}$. On the other hand, if T^{*} is bounded, then

$$
\|u\|_{\infty}=\left\|\bar{u} \chi_{X}\right\|_{\infty}=\left\|T^{*} \chi_{X}\right\|_{\infty} \leqslant\left\|T^{*}\right\|<\infty
$$

These observations establish the following proposition.
Proposition 2.1. (a) $T=E M_{u}$ defines a bounded linear operator from $L^{1}(\Sigma)$ into $L^{1}(\mathscr{A})$ if and only if $u \in L^{\infty}(\Sigma)$. In this case $\|T\|=\|u\|_{\infty}$.
(b) Let $1<p<\infty$. T defines a bounded operator from $L^{p}(\Sigma)$ into $L^{p}(\mathscr{A})$ if and only if $E\left(|u|^{q}\right) \in L^{\infty}(\mathscr{A})$, where $\frac{1}{p}+\frac{1}{q}=1$. In this case $\|T\|=\left\|E\left(|u|^{q}\right)\right\|_{\infty}^{1 / q}$.

In the following theorem we investigate a necessary and sufficient condition for T to be compact.

THEOREM 2.2. Let $1<p<\infty$. Suppose $\left(X, \mathscr{A}, \mu_{\mathscr{A}}\right)$ can be partitioned as $X=$ $\left(\bigcup_{n \in \mathbb{N}} A_{n}\right) \cup B$. Then the bounded linear operator $T=E M_{u}$ from $L^{p}(\Sigma)$ into $L^{p}(\mathscr{A})$ is compact if and only if $u(B)=0(u(x)=0$ for μ-almost all $x \in B)$ and for any $\varepsilon>0$, the set $\left\{n \in \mathbb{N}: \mu\left(A_{n} \cap D_{\varepsilon}(u)\right)>0\right\}$ is finite, where $D_{\varepsilon}(u)=\{x \in X: E(|u|)(x) \geqslant \varepsilon\}$.

Proof. Suppose T is a compact operator. First we show that $u(B)=0$. Suppose the contrary i.e., $\mu\{x \in B: u(x) \neq 0\})>0$. Then there is $\delta>0$ and $B_{0} \in \mathscr{A} \cap B$ such that $0<\mu\left(B_{0} \cap D_{\delta}(u)\right)<\infty$. Since $J_{0}:=B_{0} \cap D_{\delta}(u) \in \mathscr{A} \cap B_{0}$ has no atoms, hence we can choose a sequence $\left\{B_{n}\right\}_{n \in \mathbb{N}} \subseteq \mathscr{A} \cap B_{0}$, such that $J_{n+1} \subseteq J_{n} \subseteq J_{0}, 0<\mu\left(J_{n+1}\right)=$ $\frac{\mu\left(J_{n}\right)}{2}$, where $J_{n}:=B_{n} \cap D_{\delta}(u)$. Note that for all $n \in \mathbb{N}, J_{n}$ is \mathscr{A}-measurable. Put

$$
f_{n}=\frac{\bar{u}|u|^{\frac{q-p}{p}} \chi_{J_{n}}}{\left\{\left\|E\left(|u|^{q}\right)\right\|_{\infty} \mu\left(J_{n}\right)\right\}^{\frac{1}{p}}}, \quad n \in \mathbb{N} .
$$

Boundedness of T implies that $E\left(|u|^{q}\right) \in L^{\infty}(\mathscr{A})$ and hence $\left\|f_{n}\right\|_{p} \leqslant 1$. Now, for any $m, n \in \mathbb{N}$ with $m>n$ we have

$$
\begin{gathered}
\left\|T f_{n}-T f_{m}\right\|_{p}^{p}=\int_{X}\left|E\left(u\left(f_{n}-f_{m}\right)\right)\right|^{p} d \mu \\
=\int_{X} \frac{\left[E\left(|u|^{\frac{q}{p}+1}\right)\right]^{p}}{\left\|E\left(|u|^{q}\right)\right\|_{\infty}}\left|\frac{\chi_{J_{n}}}{\mu\left(J_{n}\right)^{\frac{1}{p}}}-\frac{\chi_{J_{m}}}{\mu\left(J_{m}\right)^{\frac{1}{p}}}\right|^{p} d \mu \geqslant \frac{\delta^{\left(\frac{q}{p}+1\right) p}}{\left\|E\left(|u|^{q}\right)\right\|_{\infty}} \int_{J_{n} \backslash J_{m}} \frac{d \mu}{\mu\left(J_{n}\right)} \\
=\frac{\delta^{q+p}}{\left\|E\left(|u|^{q}\right)\right\|_{\infty}} \frac{\mu\left(J_{n} \backslash J_{m}\right)}{\mu\left(J_{n}\right)}=\frac{\delta^{q+p}}{\left\|E\left(|u|^{q}\right)\right\|_{\infty}}\left(1-\frac{\mu\left(J_{m}\right.}{\mu\left(J_{n}\right)}\right)>\frac{\delta^{q+p}}{2\left\|E\left(|u|^{q}\right)\right\|_{\infty}}
\end{gathered}
$$

which shows that the sequence $\left\{T f_{n}\right\}_{n \in \mathbb{N}}$ does not contain a convergent subsequence. But this is a contradiction.

Now, we show that for any $\varepsilon>0$ the set $\left\{n \in \mathbb{N}: \mu\left(A_{n} \cap D_{\varepsilon}(u)\right)>0\right\}$ is finite. By the way of contradiction, for some $\varepsilon>0$, there is a subsequence $\left\{A_{k}\right\}_{k \in \mathbb{N}}$ of disjoint atoms in \mathscr{A} such that $\mu\left(A_{k} \cap D_{\varepsilon}(u)\right)>0$, for all $k \in \mathbb{N}$. Put $G_{k}=A_{k} \cap$ $D_{\varepsilon}(u)$. Hence, we obtain a sequence of pairwise disjoint sets $\left\{G_{k}\right\}_{k \in \mathbb{N}}$ such that for every $k \in \mathbb{N}, G_{k} \in \mathscr{A}$ and $0<\mu\left(G_{k}\right)=\mu\left(A_{k}\right)<\infty$. For any $k \in \mathbb{N}$, take $f_{n}=$ $\bar{u}|u|^{\frac{q-p}{p}} \chi_{G_{n}} /\left(\left\|E\left(|u|^{q}\right)\right\|_{\infty} \mu\left(G_{n}\right)\right)^{1 / p}$. Then $\left\|f_{n}\right\|_{p} \leqslant 1$. Since for each $n \neq m, G_{n} \cap$ $G_{m}=\emptyset$, it follows that

$$
\left\|T f_{n}-T f_{m}\right\|_{p}^{p} \geqslant \int_{X} \frac{(E(|u|))^{q+p} \chi_{G_{n}}}{\left\|E\left(|u|^{q}\right)\right\|_{\infty} \mu\left(G_{n}\right)} d \mu+\int_{X} \frac{(E(|u|))^{q+p} \chi_{G_{m}}}{\left\|E\left(|u|^{q}\right)\right\|_{\infty} \mu\left(G_{m}\right)} d \mu \geqslant \frac{2 \varepsilon^{q+p}}{\mid E\left(|u|^{q}\right) \|_{\infty}}
$$

which contradicts the compactness of T.
Conversely, suppose that $u(B)=0$ and for an arbitrary $\varepsilon>0$, there exist at most finite \mathscr{A}-atoms $\left\{A_{\varepsilon}^{k}\right\}_{k=1}^{n} \subseteq\left\{A_{n}\right\}_{n \in \mathbb{N}}$ such that $\mu\left(A_{\varepsilon}^{k} \cap D_{\varepsilon}(u)\right)>0$. Put $B_{\varepsilon}=\cup_{k=1}^{n} A_{\varepsilon}^{k}$. Then $E(|u|)<\varepsilon$ on $X \backslash B_{\varepsilon}$ and hence $|u|<\varepsilon$ on $X \backslash\left(B_{\varepsilon} \cup B\right)$. Set $v=\chi_{B_{\varepsilon}} u$ and $T_{1}=E M_{v}$. It is easy to see that $u=v=0$ on B and $u=v$ on B_{ε}. Now, since
$B_{\varepsilon} \cup B \in \mathscr{A}$, then foe each $f \in L^{p}(\Sigma)$ we have that

$$
\begin{aligned}
\left\|\left(T-T_{1}\right) f\right\|_{p}^{p} & =\int_{X}|E(u-v) f|^{p} d \mu=\int_{X \backslash\left(B_{\varepsilon} \cup B\right)}|E(u f)|^{p} d \mu \\
& \leqslant \int_{X \backslash\left(B_{\varepsilon} \cup B\right)} E\left(|u f|^{p}\right) d \mu=\int_{X \backslash\left(B_{\varepsilon} \cup B\right)}|u f| d \mu \leqslant \varepsilon^{p} \int_{X}|f|^{p} d \mu=\varepsilon^{p}\|f\|_{p}^{p}
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
T_{1} f & =E\left(\chi_{B_{\varepsilon}} u f\right)=E\left(\sum_{k=1}^{n} \chi_{A_{\varepsilon}^{k}} u f\right)=\sum_{k=1}^{n} E\left(\chi_{A_{\varepsilon}^{k}} u f\right) \\
& =\sum_{k=1}^{n} E(u f)\left(A_{\varepsilon}^{k}\right) \chi_{A_{\varepsilon}^{k}}=\sum_{k=1}^{n}(T f)\left(A_{\varepsilon}^{k}\right) \chi_{A_{\varepsilon}^{k}}
\end{aligned}
$$

Therefore, T_{1} has finite rank and hence T is compact.

REMARK 2.3. Under the same assumptions as in Theorem 2.2, if we take $f_{n}=$ $\bar{u} \chi_{J_{n}} /\left(\|u\|_{\infty} \mu\left(J_{n}\right)\right)$, then by the same method used in the proof of Theorem 2.2, $T=$ $E M_{u}$ from $L^{1}(\Sigma)$ into $L^{1}(\mathscr{A})$ is compact if and only if $u(B)=0$ and for any $\varepsilon>0$, the set $\{x \in X: E(|u|)(x) \geqslant \varepsilon\}$ consists of finitely many atoms.

In the following theorem we show that if $T=E M_{u}$ is weakly compact on $L^{1}(\Sigma)$, then it is compact. Recall that the operator $T: L^{1}(\Sigma) \rightarrow L^{1}(\Sigma)$ is said to be weakly compact if it maps bounded subsets of $L^{1}(\Sigma)$ into weakly sequentially compact subsets of $L^{1}(\Sigma)$. We begin with the following lemma, which can be deduced from Theorem IV.8.9, and its Corollaries 8.10, 8.11 in [4].

LEMMA 2.4. Let H be a weakly sequentially compact set in $L^{1}(\Sigma)$. Then for each decreasing sequence $\left\{E_{n}\right\}$ in Σ such that $\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=0$ or $\cap_{n=1}^{\infty} E_{n}=\emptyset$, the sequence of integrals $\left\{\int_{E_{n}}|h| d \mu\right\}$ converges to zero uniformly for h in H.

THEOREM 2.5. Suppose (X, Σ, μ) can be partitioned as $X=\left(\bigcup_{n \in \mathbb{N}} A_{n}\right) \cup B$. Then the bounded operator $T=E M_{u}$ is a weakly compact operator on $L^{1}(\Sigma)$ if and only if it is compact.

Proof. It suffices to show the " only if " part. To prove the theorem, we use the method which inspired by Takagi [10]. Let T be a weakly compact operator on $L^{1}(\Sigma)$. We first show that $u(B)=0$. To obtain a contradiction, we may assume that for some $\delta>0$ and $B_{0} \subseteq B, 0<\mu\left(B_{0} \cap D_{\delta}(u)\right)<\infty$. By the same argument in the proof of Theorem 2.2, as B_{0} is non-atomic, we can find a decreasing sequence $\left\{B_{n}\right\} \subseteq B_{0} \cap \Sigma$ with $0<\mu\left(B_{n}\right)<\frac{1}{n}$ and $0<\mu\left(B_{n} \cap D_{\delta}(u)\right)<\infty$. Let U be the closed unit ball of $L^{1}(\Sigma)$. Since $T(U)$ is weakly sequentially compact, we can apply Lemma 2.4, with $H=T(U)$ and $E_{n}=B_{n}$. Choose $\varepsilon=\delta^{2} /\|u\|_{\infty}$. Then there exists an $n_{o} \in \mathbb{N}$ such that

$$
\begin{equation*}
\int_{B_{n_{o}}}|T f| d \mu<\frac{\delta^{2}}{\|u\|_{\infty}}, \quad f \in U \tag{2.1}
\end{equation*}
$$

On the other hand if we take $f_{n_{o}}=\bar{u} \chi_{J_{n_{o}}} /\left(\|u\|_{\infty} \mu\left(J_{n_{o}}\right)\right)$, we have

$$
\begin{aligned}
\int_{B_{n_{o}}}|T f| d \mu & =\int_{B_{n_{o}}}\left|E\left(\frac{u \bar{u} \chi_{J_{n_{o}}}}{\|u\|_{\infty} \mu\left(J_{n_{o}}\right)}\right)\right| d \mu \\
& =\int_{B_{n_{o}}} E\left(\frac{|u|^{2} \chi_{J_{n_{o}}}}{\|u\|_{\infty} \mu\left(J_{n_{o}}\right)}\right) d \mu=\frac{1}{\|u\|_{\infty} \mu\left(J_{n_{o}}\right)} \int_{B_{n_{o}}}|u|^{2} \chi_{J_{n_{o}}} d \mu \\
& =\frac{1}{\|u\|_{\infty} \mu\left(J_{n_{o}}\right)} \int_{J_{n_{o}}}|u|^{2} d \mu \geqslant \frac{\delta^{2}}{\|u\|_{\infty}} .
\end{aligned}
$$

Since $f_{n_{o}} \in U$, this contradicts (2.1). According to the Theorem 2.2, it remains to show that for any $\varepsilon>0$, the set $\mathrm{A}:=\left\{n \in \mathbb{N}: \mu\left(A_{n} \cap D_{\varepsilon}(u)\right)>0\right\}$ is finite. To this end, without loss of generality, we can assume that $\mathrm{A}=\mathbb{N}$ for some $\varepsilon>0$. Put $\mathrm{K}_{n}=\left\{A_{k}\right.$: $k \geqslant n\}$. It follows that $\cap_{n=1}^{\infty} K_{n}=\emptyset$. Applying Lemma 2.4 once more, there exists an $\mathrm{N} \in \mathbb{N}$ such that

$$
\int_{\mathrm{K}_{\mathrm{N}}}|T f| d \mu<\frac{\varepsilon^{2}}{\|u\|_{\infty}}, \quad f \in U
$$

Now, for any n with $n \geqslant \mathrm{~N}$, let $g_{n}=\bar{u} \chi_{A_{n}} /\left(\|u\|_{\infty} \mu\left(A_{n}\right)\right)$. Then we have

$$
\int_{\mathrm{K}_{N}}\left|T g_{n}\right| d \mu=\int_{\mathrm{K}_{N}} E\left(\frac{|u|^{2} \chi_{A_{n}}}{\|u\|_{\infty} \mu\left(A_{n}\right)}\right) d \mu=\frac{1}{\|u\|_{\infty} \mu\left(A_{n}\right)} \int_{A_{n}}|u|^{2} d \mu \geqslant \frac{\varepsilon^{2}}{\|u\|_{\infty}}
$$

Since $g_{n} \in U$, this contradicts (2.1). This completes the proof of the theorem.
COROLLARY 2.6. Let $1 \leqslant p<\infty$ and $E(|u|)>0$ a.e. on X. If the bounded operator $T=E M_{u}: L^{p}(\Sigma) \rightarrow L^{p}(\mathscr{A})$ is (weakly) compact, then \mathscr{A} is purely atomic.

Let \mathscr{H} and \mathscr{K} be separable Hilbert spaces. The set of all bounded linear operators from \mathscr{K} into \mathscr{H} is denoted by $\mathscr{B}(\mathscr{K}, \mathscr{H})$. If $\mathscr{H}=\mathscr{K}, \mathscr{B}(\mathscr{H}, \mathscr{H})$ will be written by $\mathscr{B}(\mathscr{H})$. For $A \in \mathscr{B}(\mathscr{K}, \mathscr{H})$, the range and the null-space of A are denoted by $\mathscr{R}(A)$ and $\mathscr{N}(A)$, respectively. If $A \in \mathscr{B}(\mathscr{H})$, the spectrum of A is denoted by $\operatorname{Sp}(A)$.

Now, we consider matrix form of $T=E M_{u}$. Notice that $L^{2}(\Sigma)$ is the direct sum of the $\mathscr{R}(E)=L^{2}(\mathscr{A})$ with $\mathscr{N}(E)=\left\{f-E f: f \in L^{2}(\Sigma)\right\}$. With respect to the direct sum decomposition, $L^{2}(\Sigma)=L^{2}(\mathscr{A}) \oplus \mathscr{N}(E)$, the matrix form of T is

$$
T=\left[\begin{array}{cr}
E T E & E T(I-E) \tag{2.2}\\
(I-E) T E & (I-E) T(I-E)
\end{array}\right]=\left[\begin{array}{rr}
M_{E u} E M_{u} \\
0 & 0
\end{array}\right] .
$$

In this sequel, we investigate closedness of range and spectrum of T on $L^{2}(\Sigma)$. We begin with the following lemma, which can be deduced from Theorem 2.3 in [2] and Example 7 in [3].

Lemma 2.7. Let \mathscr{H} and \mathscr{K} be separable Hilbert spaces. Suppose that $A \in$ $\mathscr{B}(\mathscr{H}), B \in \mathscr{B}(\mathscr{K})$ and $C \in \mathscr{B}(\mathscr{K}, \mathscr{H})$.
(i) If A and B are normal operators, then $S p\left(\left[\begin{array}{cc}A & C \\ 0 & B\end{array}\right]\right)=\operatorname{Sp}(A) \cup \operatorname{Sp}(B)$.
(ii) If $\mathscr{R}(A)$ and $\mathscr{R}(B)$ are closed, then the range $\mathscr{R}\left(\left[\begin{array}{cc}A & C \\ 0 & B\end{array}\right]\right)$ is closed if and only if at least one of $\operatorname{dim} \mathscr{N}\left(A^{*}\right)$ or $\operatorname{dim} \mathscr{N}(B)$ is finite.

THEOREM 2.8. Suppose that the operator $T=E M_{u}: L^{2}(\Sigma) \rightarrow L^{2}(\mathscr{A})$ is bounded. Then
(i) $\operatorname{Sp}(T) \cup\{0\}=$ ess range $\{E(u)\} \cup\{0\}$.
(ii) Let $|E(u)| \geqslant \delta$ a.e. on $\sigma(E(u))$ for some $\delta>0$. Then T has closed range if and only if $|E(u)|>0$ a.e. on X except at most on finitely many atoms.

Proof. (i) If $\mathscr{A} \neq \Sigma$, then $\mathscr{R}(T) \subseteq L^{2}(\mathscr{A}) \subset L^{2}(\Sigma)$. Therefore T is not surjective and so $0 \in \operatorname{Sp}(T)$. On the other hand, by Lemma 2.7 (i), since $\operatorname{Sp}\left(M_{E u}\right)=$ ess range $\{E(u)\}$, the result holds.
(ii) It is known that the multiplication operator $M_{E u}$ has closed range if and only if $|E(u)| \geqslant \delta$ a.e. on $\sigma(E(u))$ for some $\delta>0$. Now, by Lemma 2.7 (i) and (2.2) we have:

$$
\mathscr{R}(T) \text { is closed } \Longleftrightarrow \mathscr{R}\left(\left[\begin{array}{rr}
M_{E u} E M_{u} \\
0 & 0
\end{array}\right]\right) \text { is closed } \Longleftrightarrow \operatorname{dim} \mathscr{N}\left(M_{\overline{E u}}\right)<\infty
$$

$\Longleftrightarrow|E(u)|>0$ a.e. on X except at most on finitely many atoms.
It is well known that every operator T can be decomposed into $T=U|T|$ with a partial isometry U, where $|T|=\left(T^{*} T\right)^{\frac{1}{2}} . U$ is determined uniquely by the kernel condition $\mathscr{N}(U)=\mathscr{N}(T)$, then this decomposition is called the polar decomposition.

Now, by the operator matrices method we obtain the polar decomposition of $T=$ $E M_{u}$. Direct computations show that

$$
T^{*} T=\left[\begin{array}{rr}
M_{|E(u)|^{2}} & E M_{u \overline{E u}} \\
M_{\bar{u} E u} & M_{\bar{u}} E M_{u}
\end{array}\right] \text { and }|T|=\left[\begin{array}{cc}
M_{\frac{|E(u)|^{2}}{}}^{\sqrt{E\left(|u|^{2}\right)}} & E M_{\frac{u \overline{E u}}{\sqrt{E\left(|u|^{2}\right)}}} \\
M_{\frac{\bar{u}(u)-|E(u)|^{2}}{}}^{\sqrt{E\left(|u|^{2}\right)}} & M_{\frac{\bar{u}-\overline{E u}}{\sqrt{E\left(|u|^{2}\right)}} E M_{u}}
\end{array}\right] .
$$

Then for each $f \in L^{2}(\Sigma)$ we have that

$$
\begin{aligned}
|T|[E f f-E f] & =\left[\begin{array}{cc}
M_{\frac{|E(u)|^{2}}{}}^{\sqrt{E\left(|u|^{2}\right)}} & E M_{\frac{u \overline{E u}}{\sqrt{E\left(|u|^{2}\right)}}}^{M_{\bar{u} E(u)-|E(u)|^{2}}} \\
\frac{M^{E\left(\mid u u^{2}\right)}}{} & \frac{\bar{u}-\overline{E u}}{\sqrt{E\left(|u|^{2}\right)}} E M_{u}
\end{array}\right]\left[\begin{array}{r}
E f \\
f-E f
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{E(u) E(u f)}{\sqrt{E\left(|u|^{2}\right)}} & \frac{\bar{u} E(u f)}{\sqrt{E\left(|u|^{2}\right)}}-\frac{\overline{E(u)} E(u f)}{\sqrt{E\left(|u|^{2}\right)}}
\end{array}\right] .
\end{aligned}
$$

Notice that, since for each conditionable function $u, E(|u|)=0$ implies that $E(u)=0=u$, we used the notational convention of $\frac{u}{\sqrt{E\left(|u|^{2}\right)}}$ for $\frac{u}{\sqrt{E\left(|u|^{2}\right)}} \chi_{\sigma(u)}$.

Now, since the mapping $f \mapsto[E f f-E f]$ is an isometric isomorphism from $L^{2}(\Sigma)$ onto $L^{2}(\mathscr{A}) \oplus \mathscr{N}(E)$, then we get that $|T|(f)=\frac{\bar{u} E(u f)}{\sqrt{E\left(|u|^{2}\right)}}$. Hence for any $f \in$ $L^{2}(\Sigma), E(u f)=U\left(\frac{\bar{u} E(u f)}{\sqrt{E\left(|u|^{2}\right)}}\right)$. It is easy to check that $U(f)=\frac{E(u f)}{\sqrt{E\left(|u|^{2}\right)}}$ and U is a partial isometry (see [6]). These calculations establish the following proposition.

Proposition 2.9. The polar decomposition of $T=E M_{u}$ on $L^{2}(\Sigma)$ is $U|T|$, where $U=M_{1 / \sqrt{E\left(|u|^{2}\right)} T}$ and $|T|=M_{\bar{u} / \sqrt{E\left(|u|^{2}\right)}} T$.

Let $p \in(0, \infty)$. Recall that an operator A on a Hilbert space \mathscr{H} is p-hyponormal if $\left(A^{*} A\right)^{p} \geqslant\left(A A^{*}\right)^{p} ; A$ is ∞-hyponormal if A is p-hyponormal for all p; and A is p-quasihyponormal if $A^{*}\left(A^{*} A\right)^{p} A \geqslant A^{*}\left(A A^{*}\right)^{p} A$. For all unit vectors $x \in \mathscr{H}$, if $\left\||A|^{p} U|A|^{p} x\right\| \geqslant\left\||A|^{p} x\right\|^{2}$, then A is called a p-paranormal operator. By using the property of real quadratic forms (see [11]), A is p-paranormal if and only if

$$
\begin{equation*}
|A|^{p} U^{*}|A|^{2 p} U|A|^{p}-2 k|A|^{2 p}+k^{2} \geqslant 0, \quad \text { for all } k \geqslant 0 \tag{2.3}
\end{equation*}
$$

The following lemma is significant amount of consideration for the next computations.
Lemma 2.10. Let $f \in L^{2}(\Sigma)$ and $A f:=\bar{u} E(u f)$. Then for all $p \in(0, \infty)$

$$
A^{p} f=\bar{u}\left[E\left(|u|^{2}\right)\right]^{p-1} E(u f)
$$

Proof. Suppose $f \in L^{2}(\Sigma)$, then by induction we obtain

$$
A^{\frac{1}{n}} f=\bar{u}\left[E\left(|u|^{2}\right)\right]^{\frac{1-n}{n}} E(u f), \quad n \in \mathbb{N}
$$

Now the reiteration of powers of operator $A^{\frac{1}{n}}$, yields

$$
A^{\frac{m}{n}} f=\bar{u}\left[E\left(|u|^{2}\right)\right]^{\frac{(1-n) m}{n}}\left[E\left(|u|^{2}\right)\right]^{m-1} E(u f), \quad m, n \in \mathbb{N}
$$

Finally, by using of the functional calculus the desired formula is proved.
LEMMA 2.11. Let $T=E M_{u}$ be a bounded operator on $L^{2}(\Sigma)$. Then T is ∞ hyponormal if and only id $u \in L^{\infty}(\mathscr{A})$.

Proof. By Lemma 2.10, it is easy to verify that $\left(T^{*} T\right)^{p}=M_{\bar{u}\left[E\left(|u|^{2}\right)\right]^{p-1}} T$ and $\left(T T^{*}\right)^{p}=M_{\left[E\left(|u|^{2}\right)\right]^{p}}$, for all $0<p<\infty$. Then we get that $\left(T^{*} T\right)^{p} \geqslant\left(T T^{*}\right)^{p}$ if and only if

$$
M_{\left[E\left(|u|^{2}\right)\right]^{p-1}}\left(M_{\bar{u}} T-M_{E\left(|u|^{2}\right)}\right) \geqslant 0 \Longleftrightarrow M_{\bar{u}} T-M_{E\left(|u|^{2}\right)} \geqslant 0
$$

where we have used the fact that $T_{1} T_{2} \geqslant 0$ if $T_{1} \geqslant 0, T_{2} \geqslant 0$ and $T_{1} T_{2}=T_{2} T_{1}$ for all $T_{i} \in \mathscr{B}(\mathscr{H})$. Thus for any $0<f \in L^{2}(\mathscr{A})$ we have

$$
\begin{aligned}
0 & \leqslant\left(M_{\bar{u}} T f-M_{E\left(|u|^{2}\right)} f, f\right)=\int_{X}\left(\bar{u} E(u f)-E\left(|u|^{2}\right) f\right) \bar{f} d \mu \\
& =\int_{X}\left(\bar{u} E(u)-E\left(|u|^{2}\right)\right)|f|^{2} d \mu=\int_{X}\left(|E(u)|^{2}-E\left(|u|^{2}\right)\right)|f|^{2} d \mu .
\end{aligned}
$$

Since $f>0$, this gives $|E(u)|^{2} \geqslant E\left(|u|^{2}\right)$. On the other hand we always have $|E(u)|^{2} \leqslant$ $E\left(|u|^{2}\right)$. Hence $u \in L^{\infty}(\mathscr{A})$. Notice that if $u \in L^{\infty}(\mathscr{A})$, then it is easy to see that $\left(T^{*} T\right)^{p} \geqslant\left(T T^{*}\right)^{p}$.

THEOREM 2.12. Let $T=E M_{u}$ be a bounded operator on $L^{2}(\Sigma)$. Then the following are equivalent:
(i) T is ∞-hyponormal.
(ii) T is p-hyponormal.
(iii) T is p-quasihyponormal.
(iv) T is p-paranormal.
(v) $u \in L^{\infty}(\mathscr{A})$.

Proof. By Lemma 2.11, we complete the proof by showing $(i i i) \Leftrightarrow(v)$ and $(i v) \Leftrightarrow$ (v) below.
(iii) $\Leftrightarrow(v)$ By Lemma 2.10, it is easy to verify that $T^{*}\left(T T^{*}\right)^{p} T=M_{\bar{u}\left[E\left(|u|^{2}\right)\right]^{p}} T$ and $T^{*}\left(T^{*} T\right)^{p} T=M_{\bar{u}|E(u)|^{2}\left[E\left(|u|^{2}\right)\right]^{p-1}} T$. Therefore, $T^{*}\left(T^{*} T\right)^{p} \geqslant T^{*}\left(T T^{*}\right)^{p} T$ if and only if $M_{\left[E\left(|u|^{2}\right)\right]^{p-1}}\left(M_{\bar{u}|E(u)|^{2}-\bar{u} E\left(|u|^{2}\right)} T\right) \geqslant 0$. Therefore, for any $0<f \in L^{2}(\mathscr{A})$ we have

$$
0 \leqslant \int_{X}\left(\bar{u}|E(u)|^{2}-\bar{u} E\left(|u|^{2}\right)\right) E(u)|f|^{2} d \mu=\int_{X}\left(|E(u)|^{4}-|E(u)|^{2} E\left(|u|^{2}\right)\right)|f|^{2} d \mu .
$$

It follows that $|E(u)|^{2} \geqslant E\left(|u|^{2}\right)$ and hence $|E(u)|^{2}=E\left(|u|^{2}\right)$. Thus $u \in L^{\infty}(\mathscr{A})$. Conversely, if $u \in L^{\infty}(\mathscr{A})$, then

$$
T^{*}\left(T^{*} T\right)^{p} T=T^{*}\left(T T^{*}\right)^{p} T=M_{\bar{u}|u|^{2 p}} T
$$

which proves the desired implication.
We now prove $(i v) \Leftrightarrow(v)$. Since $|T|(f)=\frac{\bar{u}}{\sqrt[4]{E\left(|u|^{2}\right)}} E\left(\frac{u f}{\sqrt[4]{E\left(|u|^{2}\right)}}\right)$, by Lemma 2.10 we get that

$$
|T|^{p}(f)=\bar{u}\left[E\left(|u|^{2}\right)\right]^{\frac{p-2}{2}} E(u f), \quad f \in L^{2}(\Sigma)
$$

Also since $U^{*}(f)=\frac{\bar{u}}{\sqrt{E\left(|u|^{2}\right)}} E(f)$, by a direct computation, we have

$$
|T|^{p} U^{*}|T|^{2 p} U|T|^{p} f=\bar{u}\left[E\left(|u|^{2}\right)\right]^{2 p-2}|E(u)|^{2} E(u f), \quad f \in L^{2}(\Sigma)
$$

By condition (2.3), T is p-paranormal if and only if

$$
\begin{aligned}
& k^{2}-2 k M_{\bar{u}\left[E\left(|u|^{2}\right)\right]^{p-1}} T+M_{\bar{u}\left[E\left(|u|^{2}\right)\right]^{2 p-2}|E(u)|^{2}} T \geqslant 0, \quad \text { for all } k \geqslant 0 \\
\Longleftrightarrow & M_{\bar{u}\left[E\left(|u|^{2}\right)\right]^{2 p-2}|E(u)|^{2}} T \geqslant\left(M_{\bar{u}\left[E\left(|u|^{2}\right)\right]^{p-1}} T\right)^{2}=M_{\bar{u}\left[E\left(|u|^{2}\right)\right]^{2 p-2} \mid E\left(|u|^{2}\right)} T .
\end{aligned}
$$

Therefore, for any $0<f \in L^{2}(\mathscr{A})$ we have

$$
\int_{X}|E(u)|^{2}\left(E\left(|u|^{2}\right)^{2 p-2}\left(|E(u)|^{2}-E\left(|u|^{2}\right)\right)|f|^{2} d \mu \geqslant 0\right.
$$

It follows that $|E(u)|^{2} \geqslant E\left(|u|^{2}\right)$ and hence $u \in L^{\infty}(\mathscr{A})$. Conversely, if $u \in L^{\infty}(\mathscr{A})$, it is easy to check that condition (2.3) holds for all $k \geqslant 0$. Hence the proof is complete.

Example 2.13. Let $X=[-1,1], d \mu=d x, \Sigma$ the Lebesgue sets, and \mathscr{A} the $\sigma-$ subalgebra generated by the symmetric sets about the origin. Now any real valued function on X can be written uniquely as a sum of an even function and an odd function, one simply uses the functions $f_{e}(x)=(f(x)+f(-x)) / 2$ and $f_{o}(x)=(f(x)-f(-x)) / 2$. Put $0<a \leqslant 1$. Then for each $f \in L^{2}(\Sigma)$ we have $\int_{-a}^{a} E(f)(x) d x=\int_{-a}^{a} f_{e}(x) d x$ and consequently, $E f=f_{e}$. This example is due to Alan Lambert [8]. Now, if u is an even and continuous function on X, then $T=E M_{u}$ is ∞-hyponormal and hence is p-paranormal. Note that if $u(x)=1+x$, then T is not p-paranormal.

Acknowledgement. The author would like to thank the referees for very helpful comments and valuable suggestions.

REFERENCES

[1] P. Dodds, C. Huissmans and B. De Pagter, Characterizations of conditional expectation-type operators, Pacific J. Math., 141 (1990), 55-77.
[2] Y. N. Dou, G. CḊu, C. F. ShaO, H. K. Du, Closedness of ranges of upper-triangular operators, J. Math. Anal. Appl., 356 (2009), 13-20.
[3] H. K. Du and P. Jin, Perturbation of spectrums of 2×2 operator matrices, Proc. Amer. Math. Soc., 121 (1994), 761-766.
[4] N. Dunford and J. Schwartz, Linear operators, Part I, General Theory, Interscience, New York, 1958.
[5] J. J. Grobler and B. De Pagter, Operators representable as multiplication-conditional expectation operators, J. Operator Theory, 48 (2002), 15-40.
[6] J. Herron, Weighted conditional expectation operators on L^{p} spaces, UNC Charlotte Doctoral Dissertation, 2004.
[7] M. R. Jabbarzadeh and S. Khalil Sarbaz, Lambert multipliers between L^{p} spaces, Czechoslovak Mathematical Journal, 60 (2010), 31-43.
[8] A. Lambert, L^{p} multipliers and nested sigma-algebras, Oper. Theory Adv. Appl., 104 (1998), 147153.
[9] M. M. Rao, Conditional measure and applications, Marcel Dekker, New York, 1993.
[10] H. TAKAGI, Compact weighted composition operators on L^{p}, Proc. Amer. Math. Soc., 116 (1992), 505-511.
[11] T. Yamazaki, M. Yanagida, A further generalization of paranormal operators, Sci. Math., 3 (2000), 23-31.
[12] A. C. ZaAnen, Integration, 2nd ed., North-Holland, Amsterdam, 1967.

M. R. Jabbarzadeh
Faculty of Mathematical Sciences
University of Tabriz P. O. Box: 5166615648
Tabriz, Iran
e-mail: mjabbar@tabrizu.ac.ir

[^0]: Mathematics subject classification (2010): 47B20, 46B38.
 Keywords and phrases: Conditional expectation, multiplication operators, compact operators, operator matrices, polar decomposition.

