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Abstract. An acute look at basic facts concerning unbounded subnormal operators is taken here.
These operators have the richest structure and are the most exciting among the whole family of
beneficiaries of the normal ones. Therefore, the latter must necessarily be taken into account
as the reference point for any exposition of subnormality. So as to make the presentation more
appealing a kind of comparative survey of the bounded and unbounded case has been set forth.

This piece of writing serves rather as a practical guide to this largely impenetrable territory
than an exhausting report.

We begin with bounded operators pointing out those well known properties of nor-
mal and subnormal operators, which in unbounded case become much more complex.
Then we are going to show how the situation looks like for their unbounded counter-
parts. The distinguished example of the creation operator coming from the quantum
harmonic oscillator crowns the theory. Finally we discuss an open question, one of
those which seem to be pretty much intriguing and hopefully inspiring.

By an unbounded operator we mean a not necessarily bounded one, nevertheless
it is always considered to be densely defined, always in a complex Hilbert space. If
we want to emphasis an operator to be everywhere defined we say it is on, otherwise
we say it is in. Unconventionally though suggestively, BBBB(H) denotes all the bounded
operators on H . If A is an operator, then D(A) , N(A) and R(A) stands for its domain,
kernel (null space) and range respectively; if A is closable, its closure is denoted by A .

Let us mention some books where unbounded normal operators are treated: they
are [4], [12, Chapter XV, Section 12], [56] and [59]. To bounded subnormal operators
the book [11] is totally devoted.

Despite the ambitious plan the topics presented here are a rather selective. Also
some of the arguments used in the proofs have to be extended. The material, though
still developing, is sizeable enough to cover a large monograph; this is the project [41]
already in progress.
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The haven of tranquility of bounded operators

Foremost topics of normality

Normal operators: around the definition. An operator N ∈ BBBB(H) is said to be
normal if it commutes with its Hilbert space adjoint, that is if

NN∗ = N∗N. (1)

This purely algebraic definition can be made spatial through a standard argument: N is
normal if and only if

‖N f‖ = ‖N∗ f‖, f ∈H. (2)

Let us notify the following.

TRIVIALITY 1. N is normal if and only if (2) holds for f ’s from a dense linear
space 1 D only.

Spectral representation. The most powerful tool for normal operators is its spec-
tral representation. Though different people may have different understanding of it,
everyone agrees that the most appealing is its spatial version below.

THEOREM 2. (Spectral Theorem) An operator N is normal if and only if it is a
spectral integral of the identity function on C with respect to a spectral measure E on
C . Such a spectral measure E is uniquely determined and its closed support coincides
with the spectrum of N .

From spectral representation to L2 –model. What is sometimes meant by spectral
theorem, tailored to the simplest possible situation and as such pretty often satisfactory
in use, is the following.

COROLLARY 3. If an operator N is normal and ∗–cyclic, then there is positive
measure μ on sp(N) such that N is unitarily equivalent to the operator MZ of multi-
plication by the independent variable on L2(μ) .

N is ∗–cyclic means 2 here that there is a vector e ∈H (called a ∗–cyclic vector
of N ) such that the linear space

{p(N∗,N)e : p ∈ C[Z,Z]} (3)

is dense in H ; this notion appears as one of the very sensitive when passing to un-
bounded operators.

The converse to Corollary 3 is trivial. We state it here because of the further role
it is going to play.

1 If we want to have a linear space closed we always make it clear.
2 This definition makes sense for any operator as long as the involved monomials are kept to be ordered

like N∗kNl .
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FACT 4. Suppose μ is compactly supported positive measure 3 on C . Then the
operator MZ of multiplication by the independent variable is normal and ∗ -cyclic with
the cyclic vector e = 1 .

Some supplementary information is in what follows.

COROLLARY 5. Let N and μ be as in Corollary 3. Then

〈Nme,Nne〉 =
∫

C

zmznμ(dz), m,n = 0,1, . . .

The spectrum. For the spectrum of a normal operator N we have

sp(N) = spap(N)

where the right hand side stands for the approximate point spectrum. As the adjoint
N∗ is normal as well the same refers to it; the apparent equality sp(N) = sp(N∗) is
applicable here.

The finest points of subnormal operators

Here we would like to itemize the topics, which are well known in the theory of
bounded subnormal operators (cf. [11]), and which we are going to juxtapose with
those for unbounded operators.

Normal dilations and subnormality. Given A ∈ BBBB(H) , a normal operator N ∈
BBBB(K) , K contains isometrically H , is said to be a (power) dilation of A if

An f = PNn f , f ∈H, n = 0,1, . . . (4)

with P being the orthogonal projection of K onto H ; if N is a dilation of A then so is
N∗ for A∗ .

If for S ∈ BBBB(H) there is N normal in K such that instead of (4) we have

S f = N f , f ∈H, (5)

then we say that S is subnormal. If S is subnormal and N is its normal extension then
N∗ is a normal dilation of S∗ . In addition to this we have, cf. [57, §5]

PROPOSITION 6. The following conditions are equivalent:

(a) B is an extension of A;

(b) B is a dilation of A and B∗B is a dilation of A∗A;

(c) B∗iB j is a dilation of A∗iA j for any i, j = 0,1, . . . .

3 We call a measure positive if it takes non-negative values.
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Another way of writing (5), both illustrative and precise, is

S ⊂ N; (6)

use of ⊂ suggests the graph connotation.

Halmos’ positive definiteness and Bram’s characterization of subnormality. It is
an immediate consequence of normality of N in (5) that a subnormal operator S∈BBBB(H)
must necessarily satisfy a kind of positive definiteness condition introduced by Halmos
in [18]:

∑
m,n

〈Sm fn,S
n fm〉 � 0, for any finite sequence ( fk)k ⊂H .

THEOREM 7. S ∈ BBBB(H) is subnormal if and only if it satisfies the positive defi-
niteness condition and

∑
m,n

〈Sm+1 fn,S
n+1 fm〉 � C∑

m,n
〈Sm fn,S

n fm〉, for any finite sequence ( fk)k ⊂H (7)

with some C � 0 .

Bram’s result 4 [6] says the boundedness condition (7) in Halmos’ Theorem 7 5

is superfluous. It turns out that the boundedness condition (7) comes back in the un-
bounded case under some forms of growth conditions.

Another characterization is in [1]; it is interesting because it provides with a ma-
tricial construction of the extension space independent of S . In principal it does lead to
minimal extensions, cf. Proposition 8.

Minimality and uniqueness of extensions. For S subnormal and its normal exten-
sion N let us take into consideration the following three situations.

(M1 ) If H⊂K1 ⊂K and N�K1 turns out to be normal then either K1 =H or K1 =K .

For E being the spectral measure of N and D a linear subspace of H set

SD
def= clolin{E(σ) f : σ Borel subset of C, f ∈ D} (8)

CD def= lin{N∗mNn f : f ∈ D, m,n = 0,1, . . .}. (9)

(M2 ) SH is K .

(M3 ) The closure of CH is K .

The standard fact of the theory says the conditions (M1 ), (M2 ) and (M3 ) are equivalent.
If this happens we speak of minimality of N . Notice minimal normal extensions always
exist, both (M2 ) and (M3 ) provide with an algorithm to determine them. Moreover,

PROPOSITION 8. Two minimal normal extensions of a subnormal S are H–equivalent,
that is there is a unitary similarity between them which remains identity on the space
H .

4 A short replacement for Bram’s main argument concerning redundancy of (7) can be found in [42]. The
argument from [42] is present in [58, p. 509]

5 For another proof of Halmos’ theorem look at [57]
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The hazardous terrain of unbounded operators

All the operators from now on are densely defined; if A is such, D(A) always
stands for its domain. The closure of A , if it is closable, is denoted by A . If D is a
linear subspace of D(A) then A|D stands for the restriction of A to D , if D is invariant
for A we consider A|D as an operator in the Hilbert space D .

Normal operators and their spectral representation again

The definition of normality in unbounded case is much the same, more precisely,
a closed operator is said to be normal if (1) holds 6. However, it turns out that a version
of (2) is more easy-to-use: N is normal if and only if

D(N) = D(N∗),
‖N f‖ = ‖N∗ f‖, f ∈ D(N).

(10)

Now closeness of N is implicit in (10).

The plain version of spectral theorem. As in the bounded case all the versions of
spectral representation are available. The spectral theorem, Theorem 2, is true as stated
due to the vast flexibility of the spectral integral. We are going to state it here with
more particulars enhancing some of them which are pertinent to unbounded operators;
of course, they are present in the bounded case as well.

THEOREM 9. (Spectral Theorem, the extras included) An operator N is normal if
and only if it is a spectral integral of the identity function on C with respect to a spectral
measure E on C , that is

1o 〈N f ,g〉 =
∫
C

z〈E(dz) f ,g〉 for all f ∈ D(N) and g ∈H .

Moreover, if this happens then

2o D(N) = { f ∈H :
∫
C
|z|2〈E(dz) f , f 〉 < +∞} ;

3o for every Borel measurable non-negative function φ on C and f ∈ D(N)∫
C

φ(x)〈E(dz)N f ,N f 〉 =
∫

C

φ(x) |z|2〈E(dz) f , f 〉,

in particular,

‖N f‖2 =
∫

X
|z|2〈E(dz) f , f 〉, f ∈ D(N) (11)

and
E(σ)N ⊂ NE(σ) for all Borel sets σ ; (12)

4o the spectral measure E is uniquely determined and its closed support coincides
with the spectrum of N .

6 It is always tacitly understood that the domain of a composition of two operators is the maximal possible
one. One has to notice that the adventure with domains of unbounded operators already starts here.



490 F.H. SZAFRANIEC

This is more or less all what survives from surroundings of the spectral theorem
when passing from the bounded case to the unbounded one.

Invariant and reducing subspaces. A closed subspace L of H is invariant for A

if A(L∩D(A)) ⊂ L ; then the restriction A�L def=A|L∩D(A) is a operator in L becomes
clear. If A is a closable (closed) operator in H then so is A�L ; this is so because the
notions are topological, with topology in the graph space. The closed subspace L is
invariant for A if and only if PAP = AP , where P is the orthogonal projection of H
onto L .

On the other hand, a linear subspace D ⊂ D(A) is said to be invariant for an
operator A in H if AD⊂D . If this happens and D is not dense in H we consider the
restriction A|D as a densely defined operator in D . However, if D is a dense in H then
A|D is still a densely defined operator in H .

The above two concepts of invariance and restriction look much alike. If a linear
subspace D is invariant for A then A|D ⊂ A�D whereas A|D = A�D provided A is
closable 7. This makes the difference more transparent.

A step further, a closed subspace L reduces an operator A if both L and L⊥ are
invariant for A as well as PD(A) ⊂ D(A) ; all this is the same as to require PA ⊂ AP .
The restriction A�L is called a part of A in L .

C∞–vectors. For an operator A set

D∞(A) def=
∞⋂

n=0

D(An),

D∞(A,A∗) def=
⋂

A1,...An∈{A∗,A}
any finite choice

D(A1 · · ·An).

It is customary to refer to vectors in any of these two classes as to C∞ –ones.
One has to notify that

D∞(A∗,A) = D∞(A,A∗) ⊂D∞(A∗)∩D∞(A).

If f ∈ D∞(A) then p(A) f ∈ D∞(A) for any p ∈ C[Z] as well, if f ∈ D∞(A∗,A) then
p(A∗,A) f ∈ D∞(A∗,A) for any p ∈ C[Z,Z] ; the latter regardless any commutativity
property between A and A∗ , cf. footnote 2.

A vector f ∈D∞(A) may belong to one of the following classes: B(A) (bounded),
A(A) (analytic) or Q(A) (quasianalytic). While the last two are rather pretty well
known we give here the definition of bounded vectors, they are those f ’s in D∞(A) for
which there are a,b such that ‖An f‖ � abn , n = 0,1, . . . It is clear that

B(A) ⊂A(A) ⊂Q(A).

The first two are linear subspaces whereas the third is not 8.

7 Identifying operators with their graphs we can write A|D = A∩ (D×D) and A�D= A∩ (D×D) .
Hence the equality follows.

8 There are two more notions: seminanalytic and Stieltjes vectors, they are rather less popular, cf. [41]
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A core. This is an important invention for unbounded operators when a need not to
consider them closed becomes strong. Let us call here that this appear more often than
someone may imagine, take an operator with invariant domain, if it is closed, then in
the vast majority of cases it turns out to be necessarily bounded, see [28]. If someone
does deal with a closed operator and in spite of this wants to consider an invariant
domain a core comes to rescue. Thus D⊂D(A) is a core of a closable 9 operator A if
A|D = A . Trivially, a domain D(A) is always a core of A and, on the other hand, a core
must necessarily be dense. The essence of the notion of core is in offering additional
‘domains’ for an operator. On this occasion we recall a practical notion: a closable N
is called essentially normal if N is normal.

A handy necessary and sufficient condition for D to be a core of A is the following
implication to hold

for f ∈ D(A) such that 〈 f ,g〉+ 〈A f ,Ag〉 = 0 for all g ∈ D implies f = 0. (13)

The observation which follows fits within the character of this section and makes
intrinsic use of the notion of core.

PROPOSITION 10. Bounded vectors of a normal operator form a core of it. There-
fore, a normal operator decomposes as an orthogonal sum of a sequence of bounded
normal operators.

Proof. Due to 2o in Spectral Theorem 9 for any bounded set σ ⊂ C and f ∈ the
vector E(σ) f is in D(N) and, by (12), E(σ)NE(σ) f = NE(σ) f . This means that the

linear space B(σ) def={E(σ) f : f ∈H} is invariant for N . Because ∪σB(σ) is dense
every Nn is normal as well. Therefore, by (11), for any f ∈H and any bounded set σ
E(σ) f is a bounded vector. To check that they all together constitute a core proceed as
follows. Due to (12), E(σ)N∗N f = N∗E(σ)N f = N∗NE(σ) f and therefore condition
(13) gives

E(σ) f +E(σ)N∗N f = 0

Because σ is an arbitrary bounded Borel set we infer that f +N∗N f = 0, hence f = 0.
Decomposing C as a disjoint sum of bounded Borel sets we get the orthogonal

decomposition in question. More precisely, if {σn}n is such a partition of C then
the subspaces E(σn)H are mutually orthogonal and reduce N ; this is due to (12).
Notice that because the parts N�E(σn)N are bounded a graph argument guarantees the
orthogonal sum of the parts is a closed operator. Now because bounded vectors form a
core of N the final conclusion comes out. �

COROLLARY 11. Any D ∈ {B(N),A(N), linQ(N)} is a core of a normal opera-
tor N .

9 A core may be defined even for non-closable operators because in fact the graph topology is behind the
notion.
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Resemblance of normality: formal normality. The first and very serious surprise
comes when one asks what happens now to Triviality 1. In the unbounded case one gets
nothing but D⊂D((N|D)∗) . If D is a core of N then (2) can be stated as

D(N) ⊂D(N∗),
‖N f‖ = ‖N∗ f‖, f ∈ D(N).

(14)

and nothing more. Therefore, we have to call those N ’s somehow. Because (14) and
(2) look much alike, the name in use for operators satisfying (14) is: formally normal.
Though there is a tiny difference in definitions of normality and formal normality, ‘= ’
is replaced by ‘⊂ ’, the consequences are rather significant as we are going to realize
later.

Notice that if N is formally normal then it must necessarily be closable. Moreover,
its closure N is formally normal as

D(N) ⊂D(N∗). (15)

Moreover, if N is formally normal and D(N) is a core of N∗ then N is essentially
normal.

PROPOSITION 12. Suppose N is formally normal in H . If N1 is a normal oper-
ator N1 in H such that N1 ⊂ N then N is normal too and N1 = N .

Proof. Because N1 ⊂ N , N∗ ⊂ N∗
1 and consequently

D(N∗) ⊂D(N∗
1 ) = D(N1) ⊂D(N),

which makes N normal and equal to N1 . �

The operator of multiplication by independent variable. Let μ be a positive mea-
sure on C of finite moments 10. Denote by P(μ) the polynomials in C[Z,Z] regarded
as members of L2(μ) . Define the operator MZ of multiplication by the independent
variable in L2(μ) as

D(MZ) def={ f ∈ L2(μ) :
∫

C

|z f (z)|2μ(dz) < ∞},

(MZ f )(z) def= z f (z), z ∈ suppμ , MZ : f → MZ f .

Notice that the characteristic (indicator) functions 1σ of Borel subsets of C are in
D(MZ) . Therefore MZ is densely defined, and because (MZ)∗ =MZ as well as (MZ)∗ =
MZ , the operator MZ is closed and, consequently, it is normal.

Suppose P(μ) is dense L2(μ) . Then MZ|P(μ) is a densely defined operator. Is it
essentially normal? In general not because

10 We say μ has finite moments if
∫
C
|z|2nμ(dz) < ∞ for all n = 0,1, . . . . This is what we are taking for

granted in this paper once and for all.
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FACT 13. MZ|P(μ) is essentially normal if and only if P(μ) is a core of MZ . This

happens if and only if P(μ) is dense in L2((1+ |Z|2)μ) 11.

The second conclusion of the above follows immediately from the fact that the
space L2((1+ |Z|2)μ) bears the graph norm with respect to the operator MZ .

Remark 14. The operator MZ |P(μ) is formally normal in the closure P(μ) of

P(μ) in L2(μ)–norm regardless P(μ) is dense in L2(μ) or not and has a normal
extension MZ in L2(μ) . In other words, MZ |P(μ) is always formally normal, has a

normal extension in L2(μ) though it may act within a smaller space P(μ) .

Repairing ∗–cyclicity. The notion ∗–cyclicity, as defined in the greyish area
around (3) for bounded operators, for unbounded ones requires (3) to hold for f ∈
D∞(N,N∗) . The above considerations show that this definition is not satisfactory in the
unbounded case for quite a number of reasons: neither Corollary 3 nor Fact 4 holds true
in particular. Therefore, call now N ∗ -cyclic 12 with a cyclic vector e ∈ D∞(N∗,N) if
the set 13 (3) is a core of N . Under this modification both Corollary 3 and Fact 4 revive.

A word about spectral properties. An example of an ultradeterminate measure
is the Gaussian one, that is e−|x|2 dx . The polynomials in P(μ) constitute a core of
MZ and all the oddities are left apart. However, here sp(N) = C which excludes any
resolvent tool to be used; this is what someone ought to take into account when trying
to approach the theory.

Assorted topics on unbounded subnormals

Subnormality and its characterization. The defining formula (6) remains working
also in the unbounded case; more precisely an operator S densely defined in a Hilbert
space is called subnormal if there exists a normal operator N is a Hilbert space K
containing isometrically H such that (6) holds true. Another way of expressing this is
that H is invariant for N and S ⊂ N�H .

The only characterization of subnormality which does not impose any constrain
on behaviour of domains of the operator is that via semispectral measures 14 (see, [5]
or [14]) or its versions (like in [44] and [55]).

11 Such measures are called in [16] ultradeterminate. By the way, a measure is ultradeterminate if the
polynomials in P(μ) are dense in some Lp(μ) , p > 2 (see [16], p. 61).

12 It is tempting to call it rather graph ∗–cyclic as graph topology is behind this. Regrettably, we have to
abandon this appeal; also because present term includes trivially that for bounded operators.

13 The remark made in footnote 2 applies here as well.
14 A semispectral measure differs from a spectral one by dropping the assumption its values are orthogonal

projections; it is also known under the name ‘positive operator valued measure’.
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THEOREM 15. An operator S is subnormal if and only if there is a semispectral
measure F on Borel sets of C such that 15 , 16

〈Sm f ,Sn f 〉 =
∫

C

zmzn〈F(dz) f ,g〉, m,n = 0,1, f ,g ∈ D(S). (16)

Notice that semispectral measures related to a subnormal operator may not be
uniquely determined, see [43] for an explicit example. As spectral measures of normal
extensions come via dilating semispectral measure, according Naimark’s dilation theo-
rem, cf. [24], we may have quit a number of them as well. This foretells somehow the
problem with uniqueness (and minimality) we are going to expose a little bit later. So
far we turn Theorem 15 into an equivalent form involving scalar spectral measures, cf.
[55].

Call a family {μ f } f∈H of positive measures on C , a family of elementary spectral
measures of S such that for f ,g ∈H

μλ f (σ) = |λ |2μ f (σ) for λ ∈ C, μ f (X) = ‖ f‖2 (17)

μ f+g(σ)+ μ f−g(σ) = 2(μ f (σ)+ μg(σ)) (18)

and
〈Sm f ,Sn f 〉 =

∫
C

zmznμ f (dz), m,n = 0,1, f ∈ D(S).

THEOREM 16. (A version of Theorem 15) An operator S is subnormal if and only
if it has a family of elementary spectral measures.

As an immediate consequence of Theorem 15 we get a slight extension (no domain
invariance required) of Proposition 18 in [54]. Though this very much wanted observa-
tion looks trivially no direct way of getting it from the definition of subnormality seems
to be available. This is so because, unlike normality, the definition of subnormality
‘exceeds the underlying Hilbert space’. Here a kind of exception is Ando’s construc-
tion of the universal extension space in which the unitary equivalence can be placed in.
However, in the unbounded case this construction does not look it to work at the full,
cf. [36].

COROLLARY 17. Let S be an operator H let V : H→H1 be a bounded operator
such that V ∗VS = S . If S is subnormal in H , then so is VSV ∗ in H1 provided it is
densely defined. More exactly, if F is a semispectral measure of S then VF( ·)V ∗ is
such for VSV ∗ .

Minimality and uniqueness. Minimality in the unbounded case becomes a very
sensitive issue. Let us start with a definition: call N minimal of spectral type if (M1 ) on
page 488 is satisfied. It turns out that, cf. Proposition 1 in [36], it is equivalent to (M2 )

15 Condition (16) corresponds to those in Proposition 6.
16 If (16) holds only for m = 1 and n = 1 (m = n = 0 is a triviality) then S has a normal dilation

exclusively and vice versa. In that case the fourth condition encoded in (16) downgrades to the inequality
〈S f ,Sg〉 �

∫
C
|z|2〈F(dz) f ,g〉 , f ,g ∈D(S) .
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in the sense that SD(S) =K . The sad news is that minimal normal extensions of spectral
type may not be H–equivalent 17, see Example 1 in [36] much further developed in [8];
therefore no uniqueness can expected at this stage. The good news is the welcomed
spectral inclusion

sp(N) ⊂ sp(S) (19)

is preserved; as a consequence of (19) notify sp(S) �= ∅ . A list of further spectral
properties is in Theorem 1 of [36].

The third kind of minimality appearing in (M3 ) though well defined cannot be
well developed in this general setting. It does when S has an invariant domain; we
come to this latter on.

Tightness of normal extensions. Assume for a little while A in H and B in K are
arbitrary operators, K contains isometrically H . If A ⊂ B then

D(A) ⊂D(B)∩H and PD(B∗) ⊂D(A∗) with A∗Px = PB∗x for x ∈ D(B∗) (20)

with P being apparently the orthogonal projection of K onto H . If N is formally
normal extension of S then both inclusions in (20) merge in one

D(S) ⊂D(N)∩H⊂D(N∗)∩H⊂ PD(N∗) ⊂D(S∗). (21)

This implies immediately that

D(S) ⊂D(S∗) and ‖S∗ f‖ � ‖S f‖ for f ∈D(S) .

Hence S is closable and D(S) ⊂D(S∗) ; the latter has to be compared with (15).
Call the extension N tight if D(S) = D(N)∩H and ∗ -tight if PD(N∗) = D(S∗) ,

cf. [49], the topic was taken up in [19]. Notice that tight extendibility was one of the
condition involved in the definition of subnormal operators given in [27]. It was proved
in [38] that symmetric and analytic Toeplitz operator have tight extension. The question
in [38] asks if this is always the case, which would give subnormality of [27] the same
meaning as ours. It turns out they two different notions according to the example in
[29]. Therefore the preference is the present one.

Cartesian decomposition. If A has D(A)∩D(A∗) dense then

ReA
def=

1
2
(A+A∗), ImA

def=
1
2i

(A−A∗), D(ReA) = D(ImA) = D(A)∩D(A∗)

leads to the Cartesian decomposition of A

A = ReA+ iImA

with ReA and ImA symmetric on D(A)∩D(A∗) .

17 It is right time to give the definition: two extensions B1 and B2 in spaces K1 and K2 of A in H are
called H–equivalent if there is a unitary operator U : K1 →K2 such that UK1 =K2U and U�H= IH .
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PROPOSITION 18. A formally normal operator N is essentially normal if and
only if the operators ReN and ImN are essentially selfadjoint and spectrally com-
mute, that is there spectral measures commute. An operator S is subnormal if an only
if it has such a formally normal extension.

Proof. If N is formally normal and ReN and ImN commute spectrally then
ReN + iImN is normal. Furthermore, N ⊂ ReN + iImN ⊂ ReN + iImN = N and
Proposition 18 concludes with N to be essentially normal. The rest follows easily. �

This is a parallel to Theorem 15. It show that famous Nelson’s example from [25]
can be adopted as an alternative one to Coddington’s [9].

Polar decomposition and quasinormal operators. For a closed densely defined
operator A :H⊃D(A)−→K there exists a unique partial isometry U ∈ BBBB(H,K) such

that N(U) = N(A) and A = U |A| , where |A| def=(A∗A)1/2 ; U |A| is called the polar
decomposition of A (cf. [59, p. 197] ). If U |A| is the polar decomposition of A , then
R(|A|) = R(A∗) is the initial space of U and R(A) is the final space of U .

One of the equivalent definitions of quasinormal operators says they are those for
which in their polar decomposition U |A| = |A|U . These operators are subnormal (cf.
[35, Theorem 2]), even more, they have a kind of Wold-von Neumann decomposition,
see [7] for bounded operators and its version adapted to the unbounded case [41]. In
a sense they become an intermediate step between subnormal and normal operators.
Normal operators are those quasinormals for which N(A∗) ⊂N(A) .

Because N(N) = N(N∗) for a normal N , both factor in its polar decomposition
can be extended properly so as to get the following result.

PROPOSITION 19. N is normal if and only if N = UP with U unitary and P a
positive operator, U and P commuting. This decomposition is not unique.

Old friends in the new environment. Because selfadjoint operators are apparently
normal, symmetric operators are both formally normal and subnormal. The following
draft shows how all the notions interplay; all the inclusions may 18 become proper.
Notice the formally normal are somehow apart, formally normal operators may not be
normal, see [9] for an explicit example.

selfadjoint ⊂ symmetric ⊂ formally normal
∩ ∩

normal ⊂ subnormal
∩

formally normal

Let us mention that Coddington characterizes in [3, 10] those formally normal
operators which are subnormal.

18 In the finite dimensional case subnormals, formally normals and normals coincide.
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Subnormality of operators with invariant domain

From now onwards we declare

SD(S) ⊂D(S).

This means we have to resign the temptation to consider an operator S to be closed
unless we want deliberately exclude operators which not bounded.

Under these circumstances we have supplementing results to Theorems 15 and 16
at once.

THEOREM 20. If S is subnormal and F is a semispectral measure such that (16)
holds then (16) holds for all m,n, that is

〈Sm f ,Sn f 〉 =
∫

C

zmzn〈F(dz) f , f 〉, m,n = 0,1, . . . f ∈ D(S).

Alternatively, the elementary spectral measures of S satisfy

〈Sm f ,Sn f 〉 =
∫

C

zmznμ f (dz), m,n = 0,1, . . . f ∈ D(S). (22)

Back to Halmos’ positive definiteness or what has survived from Bram’s theorem.
Under the current circumstances Halmos’ positive definiteness takes the form

∑
m,n

〈Sm fn,S
n fm〉 � 0, for any finite sequence ( fk)k ⊂D(S) . (PD)

What we still have in the flavour of Bram’s characterization is in the following, see [35]
or [45] for another techniques of building the proof up.

THEOREM 21. An operator S in H satisfies (PD) if and only if there is a Hilbert
space K containing H isometrically, and a formally normal operator N in K such
that S ⊂ N as well as

ND(N) ⊂D(N) and N∗D(N) ⊂D(N) (23)

If this happens, N can be chosen to satisfy

D(N) = lin{N∗k f : k = 0,1, . . . , f ∈ D(S)}. (24)

Remark 22. Suppose S and N are as in Theorem 21. If S is cyclic with a cyclic
vector e then N is ∗–cyclic with the same vector e . Indeed, if S is cyclic with a cyclic
vector e then, by (24),

D(N) = lin{N∗kNle : k, l = 0,1, . . .}

and the first conclusion follows.
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COROLLARY 23. If S is subnormal then it satisfies (PD).

COROLLARY 24. N in Theorem 21 is essentially normal if and only if

x ∈D(N∗) & 〈x,y〉+ 〈x,N∗Ny〉 = 0 ∀ y ∈ D(N) =⇒ x = 0.

Proof. Notice first that N is essentially normal if and only if D(N) is a core of
N∗ . Now use (13) and (23). �

We separate the uniqueness result because of its importance.

THEOREM 25. If two pairs (N1,K1) and (N2,K2) satisfy the conclusion of The-
orem 21 then they are H -equivalent, that is there is a unitary operator between K1 and
K2 such that U�H= IH and UN1 = N2U .

Proof. For ( fk)k ⊂D(S) we have, due to (24),

‖∑
n

N∗
1

n fn‖2
1 =∑

k,l

〈Nk
1 fl ,N

l
1 fk〉1 =∑

k,l

〈Sk fl ,S
l fk〉

=∑
k,l

〈Nk
2 fl ,N

l
2 fk〉2 = ‖∑

n
N∗

2
n fn‖2

2

which establishes the unitary operator between two dense subspaces. The next step is
standard as well. �

COROLLARY 26. Suppose S is subnormal in H . If Ñ is any normal extension of
S and N is a formally normal extension of S as in Theorem 21, for which (24) holds,
then there is a formally normal operator N1 which is H-equivalent to N and such that
S ⊂ N1 ⊂ Ñ .

Proof. If Ñ is normal in K̃ say, then the subspace

D def= lin{Ñ∗n f : n = 0,1, . . . , f ∈ D(S)} (25)

of D(Ñ) is invariant for Ñ and Ñ∗ . The operator N1
def= Ñ|D is formally normal. Indeed,

because, due to (20), Ñ∗|D ⊂ (Ñ�D)∗ ⊂ (Ñ|D)∗ we can write for x ∈ D
‖N1x‖ = ‖Ñx‖ = ‖Ñ∗x‖ = ‖(Ñ|D)∗x‖ = ‖N∗

1 x‖.
Comparing (25) with (24) suggests the definition of the required unitary H-equivalence. �

COROLLARY 27. If S is a cyclic and subnormal operator then the formally nor-
mal operator determined by Theorem 21 can be realized as the operator MZ|P(μ) in

the L2(μ)–closure of the polynomials P(μ) , where μ def=〈F( ·)1,1〉 and F is an arbi-
trary semispectral measure of S . According to Theorem 25 any two such models are
H–equivalent. Finally, N itself is subnormal 19.

19 Look at Corollary 17.
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In general, Theorem 21 is nothing but an intermediate step toward subnormality.
Because N is just formally normal the uncertainty is still ahead. The only known result
which reminds that of Bram is as follows, cf. [35].

THEOREM 28. Suppose S is a weighted shift 20. Then S is subnormal if and only
if it satisfies the positive definiteness condition (PD).

Cyclicity and related matters. Getting experienced already with ∗–cyclicity we
can say that a closable operator A with invariant domain is cyclic with a cyclic vector
e if

{p(A)e : p ∈ C[Z]}
is a core of A . On the other hand, given a vector f ∈ D(A) set

D f
def={p(A) f : p ∈ C[Z]}, H f

def=D f , Af
def=A|D f .

The definition of Af is in accordance with what is on p. 489 and means an operator
acting in the Hilbert space H f ; call Af the cyclic portion of A at f . Therefore A is
cyclic if and only if A = Af for some f ∈ D(A) .

Notice that if g ∈ D f then Dg ⊂ D f . However, if f �= g we can not say anything
reasonable about dislocation of the spaces D f and Dg unless they both are reducing.

The complex moment problem. Given a bisequence (cm,n)∞m,n=0 , call it a complex
moment sequence it there exists a positive Borel measure μ on C such that

cm,n =
∫

C

zmzn dμ , m,n = 0,1, . . . (26)

The complex moment problem related to a bisequence (cm,n)∞m,n=0 consists in finding

a measure representing the bisequence via (26) 21. The measure μ , thus the moment
sequence (cm,n)∞m,n=0 , is called determinate it there is no other measure representing the
sequence by (26). Another, stronger concept, introduced in [16], calls the measure μ ,
as well as the related bisequence 22, ultradeterminate, cf. footnote 23, if the operator
MZ|P(μ) of multiplication by the independent variable is essentially normal. If this

happens, MZ is normal in L2(μ) , cf. Fact 13.
The moment problem version of Corollary 23 determines a kind of positive defi-

niteness that a complex moment bisequence (cm,n)∞m,n=0 has necessarily to satisfy.

PROPOSITION 29. If (cm,n)∞m,n=0 is a complex moment bisequence then

∑
m,n

cm+q,n+pλm,nλ p,q for all finite bisequences (λk,l)k,l ⊂ C . (MPD)

20 S in H is a weighted shift if there is an orthonormal basis (en)n in H such that Sen = σnen+1 with
some positive weights (σn)n .

21 It happens people carelessly mix up those concepts.
22 The definition in [16] is stated for a bisequence, that for a measure comes from searching through the

paper.
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In the other direction again we stop halfway.

THEOREM 30. A bisequence (cm,n)∞m,n=0 satisfies (MPD) if and only if there is a
Hilbert space K containing the 1–dimensional Hilbert space C isometrically, and a
formally normal operator N in K such that D(N) = lin{N∗mNn1: m,n = 0,1, . . .}
and

cm,n = 〈Nm1,Nn1〉, m,n = 0,1, . . .

Now everything depends on if the formally normal operator N has a normal ex-
tension or not.

The explicitly defined bisequence in [46], p.259, which in turn is an adapted to
the present circumstances version of that in [15], satisfies (MPD) and is not a complex
moment one.

Subnormality and the complex moment problem. Here we have the fundamental
result which continues Theorem 30 and goes towards our open problem.

THEOREM 31. (a) If S is subnormal then (〈Sm f ,Sn f 〉)∞m,n=0 is a complex moment
bisequence for every f ∈D(S);

(b) If S is cyclic with a cyclic vector e and (〈Sme,Sne〉)∞m,n=0 is a complex mo-
ment bisequence then S is subnormal. Moreover, if μ is a measure which represents
(〈Sme,Sne〉)∞m,n=0 by (26) and f ∈ D(S) is of the form p(S)e for some p ∈ C[Z] then

(〈Sm f ,Sn f 〉)∞m,n=0 is a moment bisequence and |p|2μ is its representing measure.

Referring to Theorem 30 and Fuglede’s classification of determinacy we have two
relevant notions: call a vector f ∈ D(S) a vector of determinacy of S if the moment
bisequence (〈Sm f ,Sn f 〉)∞m,n=0 is determinate; if this bisequence is ultradeterminate call

f the vector of ultradeterminacy of S 23. It is clear these two kinds of determinacy
require the operator S f to be already subnormal.

ADVICE. In the discussion which follows there are two alternating situations: they
concern either a cyclic operator or a cyclic portion of an operator. A reader may chose
to think of any of these two without any side effect.

THEOREM 32. Suppose S is cyclic and e is its cyclic vector. Then the following
two conclusions hold.

(α) If e is the vector of determinacy then the formally normal operator determined
by Theorem 21 can be realized as the operator MZ |P(μ) in the L2(μ)–closure of
polynomials P(μ) , where μ is the unique measure representing (〈Sme,Sne〉)∞m,n=0 .

(β ) If e is a vector of ultradeterminacy of S then the formally normal operator N
constructed as in Theorem 21 is essentially normal. N can be realized as the
normal operator MZ in L2(μ) with μ as in (α) .

23 The term ‘vector of uniqueness’ as in [26], which is more appropriate for symmetric operators and
real one dimensional moment problems, splits here in two. Notice that in [55] we use the term ‘vector of
uniqueness with a slightly different meaning.
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Proof. Apply Corollary 27 to get (α) . Now use (α) and the fact that e is the
vector of ultradeterminacy of S to come to (β ). �

Notice (β ) says that if e is a vector of ultradeterminacy for S then it is so for the
formally normal operator N constructed as in Theorem 21. In other words, the property
of a vector to be that of ultradeterminacy can be lifted to the extending space; this is a
rough comment rather then a precise statements.

The next two results can be viewed as a global version of Theorem 32; the latter
to be though of as a local one.

THEOREM 33. The two following two conclusions hold.

(α ′) If every f ∈ D(S) is a vector of determinacy of S and for the (unique) family
(μ f ) f∈D(S) of measures representing the complex moment bisequence 〈Sm f ,Sn f 〉 ,
f ∈ D(S) , one has

μ f+g + μ f−g−2μg � 0, f ,g ∈ D(S), (27)

then S is subnormal and has a unique normal extension which is minimal of
spectral type, and conversely.

Therefore, a formally normal operator N can be constructed as in Theorem 21
and it is subnormal as well.

(β ′) If the set U(S) of vectors of ultradeterminacy of S is total in H then the formally
normal operator N constructed as in Theorem 21 is essentially normal.

Proof. Proof of (α ′) . It is clear there a unique family of measures μ f , f ∈ D(S)
such that (22) and (17) holds. The only condition missing so far to end up with the
conclusion is (18).

Take f ,g ∈ D(S) and with m,n = 0,1, . . . write

∫
C

zmzn d
( 1

2 (μ f+g− μ f−g)− μ f
)

= 1
2 〈Sm( f +g), f +g〉+ 1

2〈Sm( f −g), f −g〉

− 〈Sm f , f 〉 = 〈Smg,g〉 =
∫

C

zmzn dμg.

Now (27) and determinacy at g makes (18) hold. Therefore, S is subnormal due to
Theorem 16. Corollary 26 establishes the final conclusion in (α ′) concerning N .

Proof of (β ′) . Let N be the formally normal operator constructed as Theorem 21.
Set

D f (N) def= lin{p(N∗,N) f : p ∈ C[Z,Z]}, Nf
def=N�De(N) (28)

and denote by Pf the orthogonal projection on De(N) . Notice that for f ∈ U(S) the
operator N is normal. According to Lemma 2 of [37] the subspace H f reduces N .
Because U(S) is total,

lin{D f : f ∈ U(S)} = D(N).
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Adapting arguments used in the proof of Theorem of [37] we can check that N is
essentially normal. �

Minimality and uniqueness again. Now is a right time to come back the minimality
problem of extensions of S . An extension N of S minimal of cyclic type if CD(S) is a
core of N ; this definition works regardless what class of operators the extensions belong
to, the only requirement is (9) to have sense. Theorem 21 provides us with formally
normal extensions of cyclic type of an operator satisfying (PD).

Minimal normal extensions of cyclic type may not exist – see [36] and [8], the
latter is for further, much broader development of the former; an example of another
type is in [43]. In this matter quote Theorem 3 and Corollary 3, both in [36], in one.

THEOREM 34. Let S be a subnormal operator. Suppose that it has at least one
minimal normal extension of cyclic type. Then an arbitrary normal extension of S is
minimal of spectral type if and only if it is minimal of cyclic type.

If S has at least one minimal normal extension of cyclic type, then all its minimal
normal extensions of spectral type (hence those of cyclic type too) are H–equivalent.

This settles the question of uniqueness. Let us say carefully that a subnormal
operator S has the uniqueness extension property if the circumstances of Theorem 34
happen 24. Part (β ′ ) of Theorem 33 implies at once

COROLLARY 35. S has the uniqueness extension property if its domain is com-
posed of vectors of ultradeterminacy.

Remark 36. It is clear that for a cyclic subnormal operator S with a cyclic vector
e the following statements are equivalent:

···· e is a vector of ultradeterminacy of S ,

···· the formally normal extension N of S constructed via Theorem 30 is essentially
normal, hence it is minimal of cyclic type.

The other way around, it seems to be worthy to realize how minimality of cyclic type
can be inherited by cyclic subspaces. More precisely, If N is a minimal normal ex-
tension of S acting in K then for e ∈ D(S) the closure De(N) of De(N) defined in
(28) reduces N (indeed, because De(N) is invariant for both N and N∗ we get it,
cf. footnote ). Therefore, Ne is a minimal normal extension of Se of cyclic type and,
consequently, e is a vector of ultradeterminacy of S .

Subnormality trough C∞–vectors. The following can be regarded as what cor-
responds to Halmos’ characterization of subnormality. Notice that his boundedness
condition (7) takes now a more subtle form of a growth condition.

24 Uniqueness extension property (and subnormality itself) has been characterized in [45], Theorems 4,
4’,5 and 5’. When specialized to the complex moment problem it matters ultradeterminacy resembling the
characterization of Hamburger of determinacy in the real case, cf. [31] p. 70.
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THEOREM 37. If S satisfies (PD) and D(S) ∈ {B(S),A(S), linQ(S)} then it is
subnormal and has the uniqueness extension property.

We refer to [34], [35] and also to [41] for proofs. They consist in showing the
vectors in D(S) are in fact vectors of ultradeterminacy of S , cf. Corollary 35.

This result is a sort of standard if one restricts an interest to essential selfadjoint-
ness of symmetric operators.

Complete characterization of subnormality by positive definiteness. What differs
Theorem 37 from Bram’s result is some oversupply, the presence of an additional con-
clusion. The characterization we give below does not have this defect. In [39] one can
find actually two kinds of characterizations: the first makes use of extending the posi-
tive definiteness condition (PD) so as to get a spatial extension, the second is just a test,
rather complicated to state it in this paper. Here we describe the first approach. Instead
of stating it formally we explain the idea behind the result by a sequence of three draw-
ings, they refer to the cyclic case when (PD) can be though of as (MPD). Only Picture 2
needs some comment. It refers to the situation of positive definiteness (MPD) defined on
Z×Z . In this case we get a solution and the extra conclusion that the measure involved
does not have 0 in its support.
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Figure 1. Halmos positive definiteness: too little
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Figure 2. Very extended positive definiteness: too much
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Figure 3. ‘Half plane’ extended positive definiteness: that’s it!

The example

The most spectacular example of the theory is the creation operator of the quantum
harmonic oscillator; this was notified explicitly for the first time in [20]. This operator
has many faces. Before we describe them here let us mention that from the abstract
point of view they are indistinguishable: precisely any of them is the weighted shift
with the weights σn =

√
n+1 in a particular Hilbert space and with respect to particular

orthonormal basis; the adjoint acts as a backward shift according the usual rule. The
creation operator is not only so prominent example but also belongs to the family of
the best behaving subnormal operators. Among the pleasant features of the creation
operator S we mention:

1o D(S) = D(S∗) , this rounds up (21);

2o S has ‘enough’ analytic vectors;

3o S enjoys the uniqueness property;

4o S has a ‘full’ analytic model;

5o it is determined by its selfcommutator.

The collection of models we are going to present in brief below shows on how
many diverse and concrete ways this abstractly defined operator can be realized, look
also at [53].

L2(R) model. The oldest model of the quantum harmonic oscillator couple, the
creation and the annihilation operator, is

S =
1√
2
(x− d

dx
), S× =

1√
2
(x+

d
dx

)

considered in L2(R) with D(S) = D(S×) = lin(hn)∞n=0 where hn is the n -th Hermite
function

hn = 2−n/2(n!)−1/2π−1/4 e−x2/2 Hn
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with Hn , the n -Hermite polynomial, defined as

Hn(x) = (−1)n ex2 dn

dxn e−x2
. (29)

Analytic model: multiplication in the Segal–Bargmann space. An analytic model
of the quantum oscillator is in A2(exp(−|z|2 dxdy) , called the Bargmann-Segal space
– cf. [30, 2], which is composed of all entire functions in L2(exp(−|z|2 dxdy)) and
is, in fact, a reproducing kernel Hilbert space with the kernel (z,w) �→ exp(zw) . The
standard orthonormal basis {en}∞n=0 in the space A2(exp(−|z|2)dxdy) is composed of
monomials

en =
zn
√

n!
, z ∈ C, n = 0,1, . . .

Set D0 = lin(en)∞n=0 . Then the operators S and S× defined as

S f (z) = z f (z),z ∈ C, S×f =
d
dz

f , f ∈D(S) = D(S×) = D0

are the creation and the annihilation operators.
Notice that L2(exp(−|z|2 dxdy) is the natural extension of A2(exp(−|z|2)dxdy)

and the creation operator S , which is the operator of multiplication by the indepen-
dent variable, extends to the operator which acts in the same way in the larger space.
Because the latter operator is normal, the creation operator is a subnormal operator.
The annihilation operator, is the projection of the operator of multiplication by z in
L2(exp(−|z|2 dxdy) to the Segal-Bargmann space.

The unitary equivalence between L2(R) and A2(exp(−|z|2 dxdy) and its inverse
can be implemented by integral transforms, called Bargmann transform, whose kernels
comes from the generating function of the Hermite polynomials, see [17] for more
details on this and for a little piece of history. The Bargmann transform can be used
also, via Corollary 17, to argue that the creation in L2(R) is subnormal, this is parallel
to other arguments.

Analytic model: not very classical. The Hermite polynomials, defined as in (29),
are now considered as those in a complex variable. Let 0 < A < 1. Then∫

R2
Hm(x+ iy)Hn(x− iy)exp

[− (1−A)x2− ( 1
A
−1

)
y2]dxdy = bn(A)δm,n

where

bn(A) =
π
√

A
1−A

(
2
1+A
1−A

)n
n! .

Introducing the Hilbert space XA of entire functions f such that∫
R2

| f (x+ iy)|2 exp
[
Ax2− 1

A
y2]dxdy < ∞

and defining

hA
n (z) = bn(A)−1/2 e−z2/2 Hn(z), z ∈ C
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it was shown in [13] that {hA
n}∞n=0 is an orthonormal basis in XA . From the algebraic

relation Hn+1 = 2zHn−H ′
n we get directly

√
n+1hA

n+1 =

√
1−A

2(1+A)
[zhA

n − (hA
n )′].

Set DA = lin(hA
n )∞n=0 . The operators SA and S×A defined as

SA f (z) =

√
1−A

2(1+A)
[z f (z)− f ′(z)], S×A f (z) =

√
1+A

2(1−A)
[z f (z)+ f ′(z)],

z ∈ C, f ∈DA

are the creation and the annihilation operator in XA , cf. [48].
It is interesting to notice that this model realizes a kind of ‘homotopy’ for the quan-

tum harmonic oscillator between the L2(B) model and that in the space A2(exp(−|z|2)dxdy)
which are both achieved as 0 < A < 1 tends to its two extremities, cf. [48].

Discrete model. The Charlier polynomials {C(a)
n }∞n=0 , a > 0, are determined by

e−az(1+ z)x =
∞

∑
n=0

C(a)
n (x)

zn

n!
.

They are orthogonal with respect to a nonnegative integer supported measure according
to

∞

∑
x=0

C(a)
m (x)C(a)

n (x)
e−aax

x!
= δmna

nn!, m,n = 0,1, . . . .

Define the Charlier functions (or, rather, the Charlier sequences) c(a)
n , n = 0,1, . . . in

discrete variable x as

c(a)
n (x) = a−

n
2 (n!)−

1
2C(a)

n (x)e−
a
2 a

x
2 (x!)−

1
2 , for x � 0 .

As we know from [47] so defined Charlier sequences satisfy

√
n+1c(a)

n+1(x) =

{√
xc(a)

n (x−1)−√
ac(a)

n (x) x � 1

−√
ac(a)

n (x) x = 0

Therefore, the operator Sa defined as

(Sa f )(x) def=

{√
x f (x−1)−√

a f (x) x � 1

−√
a f (x) x = 0

with domain D(Sa)
def= lin{c(a)

n : n = 0,1, . . .} is the creation. The annihilation operator
is defined again as a finite difference operator

(S×a f )(x) =
√

x+1 f (x+1)−√
a f (x), x = 0,1, . . .
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In [47] one can find an analog of Bargmann transform for this model as well.

Plays with the commutation relation. Remark at 5o , p. 504, has to be developed
a little bit more. It suggests the creation operator is in sense exceptional. It is clear
the creation operator S and its formal adjoint S× , the annihilation operator, satisfy the
canonical commutation relation of the quantum harmonic oscillator

S×S−SS× = I. (30)

This relation has a rather formal appearance but after giving it a proper meaning makes
the way back possible, cf. [49]. Roughly, an operator S in a separable Hilbert space
is a creation operator if (and only if) it satisfies (30) properly understood, is subnormal
and has the uniqueness extension property.

Another unprecedented feature the creation operator may be proud of is that it is
uniquely determined as the only operator within the class of weighted shifts for which
its translate(s) is still there, cf. [40] and also [51] where the role of the discrete model
in �2 is fully explained.

The question

It is clear that a ‘suboperator’ of a subnormal operator is by definition subnormal
too. The problem is to what extend the converse holds true. More specifically,

if every S f , for f ∈ D(S) , is subnormal, is so S? (♣)

It is so in (♣ ) for bounded operators, see [21, 60]. In the unbounded case this is true if
D(S) =A(S) , the analytic vectors of S , see [33]. Replacing analytic vectors by vectors
of determinacy, as in part (α ′ ) of Theorem 33 leads to the positive answer provided
(27) holds; here extra conclusion appears. However, condition (27) itself is sufficient
for (♣ ) to be true, see [44] and Theorem 4 in [55]. It is also answered in positive when
cyclic portions S f are replace by, so to speak, 2–cyclic ones, see [39] and [55]. Our
believe is the problem is a kind of selection one, see [55] for more discussion in this
matter. All this supports the conjecture that it is ‘yes’ at large. Who knows?

The end

Missing topics

As always happens when one wants to write a survey of moderate length and the
material is of considerable size the problem of selection becomes unavoidable. This
has happened here as well. Among the topics which are absent we mention two.

Lifting commutant. The only thing we can do right now is to direct to [32], [23]
and [22] where further references can be found.

Analytic models. Analytic models for unbounded operators are exhaustively pre-
sented in [36]; their relation to subnormality is also there. Analytic models are in-
timately associated with reproducing kernel Hilbert spaces, cf. [50] and [52]. Let
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us mention that from this point of view the question of subnormality can be roughly
rephrased as the problem of integrability of those space. More precisely, when a re-
producing kernel Hilbert space composed of analytic functions can be isometrically
imbedded in an L2 space. It is clear that the Dirichlet space is not such.

Some final words

This is a story of unbounded subnormality as it has been more or less developed
until now. This is also an open invitation to take part in its continuation.

Impressionism as understood in painting 25 and music at the turn of the 19th and
20th century does not happen too often in mathematical writing. My venture here is to
make it happen somewhat.
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