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NON–COMMUTATIVE INDEPENDENCE OF

ALGEBRAS AND APPLICATIONS TO PROBABILITY

JANUSZ WYSOCZAŃSKI

Abstract. We present the notions of independence, which appear in non-commutative probabil-
ity. The basic ones are free, boolean and monotonic independences, formulated for families of al-
gebras indexed by totally ordered set. A generalization of the latter two is the bm-independence,
defined for partially ordered index sets. For each independence there is an analogue of the clas-
sical central limit theorem. In the case of bm-independence this depends also on the index set.
Examples of such partially ordered index sets are discrete lattices in symmetric positive cones.

1. Introduction

The non-commutative generalizations of the classical probability depend on re-
placing the classical objects, such as the probability space, the notion of probability,
the expectation, the distribution of a random variable and the independence of random
variables, with non-commutative objects and versions of these notions.

The non-commutative probability space is a unital *-algebra A with a given state
(positive, normalized functional) ϕ on it. The non-commutative random variables are
the self-adjoint elements a = a∗ ∈A , the role of expectation is played by the state ϕ in
the sence that the distribution of a random variable a is a probability measure μ which
is defined by the moments

ϕ((a)n) =
∫ +∞

−∞
tnμ(dt).

The existence of the measure μ is guaranteed by the positive definitness of the sequence
(ϕ(an))∞n=0 , via the Hamburger’s theorem.

In classical probability the notion of independence is a tool to compute “mixed
moments”, i.e. expressions of the form

E( f1(X)g1(Y ) . . . fn(X)gn(Y )) = E

(
n

∏
i=1

fi(X)

)
·E
(

n

∏
i=1

gi(Y )

)

if X ,Y are independent random variables, and fi,gi are Borel functions. Here one uses
the fact that fi(X) commutes with g j(Y ) for every 1 � i, j � n .
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In the non-commutative setting there is a need to find another property, which
can be used to compute such mixed moments, instead of commutativity. Several such
properties have been invented and used succesfully, and these are: free, boolean and
monotonic independences. They give different procedures for the computation of mixed
moments, i.e. expressions of the form

ϕ(a1 . . .an)

for “independent” random variables a1, . . . ,an in a non-commutative probability space
(A ,ϕ) . For such random variables one can consider analogues of the classical central
limit theorem, and it turns out that the limit measures are different from the classical
gaussian one.

Another notion of independence arises when one replaces the index set N (which
numerates the random variables) with a partially ordered set I . There are several pos-
sible generalizations of the four notions of independence mentioned above, and in this
note we present one which combines the monotonic and the boolean independences.
This notion we call the bm-independence.

The paper is organized as follows. In Sections 2–4 we present the definitions, basic
properties and constructions related to the free, boolean and monotonic independences.
Section 5 presents the applications of these independences to probability, in particular
we show what are the related Central Limit Theorems. Section 6 presents natural ex-
amples of partial orders, which come from positive cones in Euclidian spaces. Then,
in Section 7, we define the bm-independence and explain its properties. In particular,
we show the construction of operators (algebras) which are bm-independent. Finally,
in Section 8, we present the bm-Central Limit Theorems for each positive symmetric
cone (according to their classification given by Faraut and Koranyi in [3]). The limits
we get are sequences of moments of probability measures, which satisfy various gener-
alizations of the recurence for the Catalan numbers. In most cases finding the explicit
formula for the associated measure is an open problem.

2. Free independence

As far as the notions of independence is concerned, there have been several re-
lated constructions in the non-commutative setting. Firstly, D. Avitzour in [1] and D.
Voiculescu in [8] (1983) introduced the free independence, which is a generaliza-
tion of the following property of the free groups.

Let A = C(FN) be the group algebra of the free group FN on N free generators
S := {s1, . . . ,sN} . Let ϕ : A → C be defined as ϕ( f ) := f (e) , the value of f ∈ A on
the neutral element e ∈ FN . Then the condition ϕ( f ) = 0 is equivalent to supp( f ) ⊂
FN \ {e} . Let � denote the convolution in A defined as

( f � g)(x) =∑
y

f (xy−1)g(y).

For j = 1, . . . ,N let us consider a function f j supported on the abelian subgroup Gj

generated by {s j,s−1
j } . Then

e /∈ supp( f1)∪ . . .∪ supp( fN) ⇒ e /∈ supp( f1 � . . . � fN)
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This can be generalized as follows. For an arbitrary sequence i1 �= i2 �= . . . �= im let us
assume that f j is supported on Gij . Then

ϕ( f1) = . . . = ϕ( fm) = 0 ⇒ ϕ( f1 � . . . � fm) = 0.

This expresses the fact that the subgroups G1, . . . ,GN are free in the sense that there is
no relations between elements of different subgroups. On the level of group algebras
it says that the algebras A j := C(Gj) , for 1 � j � N are independent in the following
sense.

DEFINITION 2.1. For a given unital algebra A and a linear functional ϕ on it,
we say that subalgebras A1, . . . ,Ar ⊂ A are freely independentwith respect to ϕ ,
if for arbitrary elements a1 ∈ Aj1 , . . . ,an ∈ Ajn , such that j1 �= . . . �= jn , the following
holds:

ϕ(a1 · . . . ·an) = 0 if ϕ(a1) = . . . = ϕ(an) = 0 (2.1)

The construction of freely independent algebras follows the idea of free product
of groups. In general, it is the free product of algebras with given functionals (Aj,ϕ j) ,
j = 1, . . . ,N , described in [8]. Here we shall show it for this instructional case of free
product of groups.

Let us assume that G1, . . . ,GN are given discrete groups and that ϕ( f j) = f j(e j) is
the functional on the group algebra C[Gj] , given by the evaluation on the unit element
e j ∈ Gj . Let

G := ∗N
j=1Gj

be the free product of the groups. The unit e ∈ G is obtained by the identification
of all the units e j , and the other elements are words, i.e. the products of the form
g1 · . . . ·gm , where gk ∈ Gjk \{e} , k = 1, . . .m , and j1 �= . . . �= jm . Thus in such a word
the neighbours are from different groups, and the letters are different from the unit.

Now the group algebra C[G] is the free product of the algebras C[Gj] .

3. Boolean independence

Another notion of non-commutative independence was invented by M. Bożejko
[2], and later got the name boolean independence. It is a multiplicativity property
of a functional on a product of elements.

DEFINITION 3.1. A family of subalgebras {Aj} of a given algebra A , is called
boolean independent with respect to a given functional ϕ on A , if it satisfies the
following condition: for any a1 ∈ Aj1 , . . . ,an ∈ Ajn , if j1 �= . . . �= jn , then

ϕ(a1 · . . . ·an) = ϕ(a1) · . . . ·ϕ(an). (3.2)

The standard example of such independence is given by the following construction
by M. Bożejko in [2]. We consider a pair H1 , H2 of Hilbert spaces with a common
one-dimensional subspace (the intersection), spanned by a unit vector Ω . These spaces
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have then the direct sum decomposition H0
j = Hj 	CΩ with j = 1,2. Let H =

H0
1 ⊕CΩ⊕H0

2 be the direct sum, and let us consider algebras Aj ⊂ B(Hj) , j = 1,2,
of bounded operators. The extension a j of an operator a j ∈ Aj onto H is defined as:

a1 : H0
1 ⊕CΩ⊕H0

2 � h1⊕ cΩ⊕h2 �→ h1⊕ cΩ ∈ H0
1 ⊕CΩ⊕H0

2 ,

a2 : H0
1 ⊕CΩ⊕H0

2 � h1⊕ cΩ⊕h2 �→ cΩ⊕h2 ∈ H0
1 ⊕CΩ⊕H0

2 .

The functional we consider is given by Ω :

ϕ(a) = 〈aΩ|Ω〉.

Let A j ⊂ B(H ) be the algebra of extensions of elements from Aj , for j = 1,2, onto
H . Then the following holds:

THEOREM 3.2. The extension algebras A1 and A2 are boolean independent with
respect to the state ϕ on B(H ) .

Proof. Since the role of both algebras can be treated symmetrically, it suffices to
show that for all x1, . . . ,xm ∈ A1 and y1, . . . ,ym ∈ A2 , m ∈ N , it holds

ϕ(x1y1 . . .xmym) =
m

∏
j=1

ϕ(x j)
m

∏
j=1

ϕ(y j).

This can be written as

〈x1y1 . . .xmymΩ|Ω〉 =
m

∏
j=1

〈x jΩ,Ω〉 ·
m

∏
j=1

〈y jΩ,Ω〉.

Let us observe that for x ∈ A1 and y ∈ A2 , if yΩ = c2Ω+ h2 ∈ CΩ⊕H0
2 and xΩ =

h1 + c1Ω ∈ H0
1 ⊕CΩ , then

xyΩ= c2xΩ= ϕ(y) · xΩ and yxΩ= c1yΩ= ϕ(x) · yΩ

Therefore, by induction, we get

〈x1y1 . . .xmymΩ|Ω〉 =
m

∏
j=2

ϕ(x j)
m

∏
j=1

ϕ(y j) · 〈x1Ω|Ω〉 =
m

∏
j=1

ϕ(x j)
m

∏
j=1

ϕ(y j).

This finishes the proof. �

4. Monotonic independence

Third most important notion of independence in non-commutative probability was
invented by N. Muraki [7].
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DEFINITION 4.1. A family of subalgebras {Ai : i ∈ N} of a given algebra A ,
indexed by the set of positive integers N , is called monotonically independent with
respect to a given functional ϕ on A , if the following two conditions are satisfied:

(M1) aia jak = ϕ(a j) ·aiak ,

if ai ∈ Ai, a j ∈ Aj, ak ∈ Ak , and i < j > k ,

(M2) ϕ(air . . .ai1a jak1 . . .aks) = ∏r
p=1ϕ(aip) ·ϕ(a j) ·∏s

t=1ϕ(akt ) ,

if ir > .. . > i1 > j < k1 < .. . < ks and aip ∈ Aip , 1 � p � r , akt ∈ Akt , 1 � t � s ,
a j ∈ Aj .

The definition works as follows: for the computation of the expression of the form
ϕ(a1 . . .am) , where neighbouring elements are from different algebras: a j ∈ Aij with
i1 �= . . . �= im , one first looks for the “local maxima” – the triples j− 1, j, j + 1 which
satisfy i j−1 < i j > i j+1 (the i j is such a local maximum) and apply the (M1) condition
to get ai j−1ai j ai j+1 = ϕ(ai j) ·ai j−1ai j+1 . After finite number of such steps one gets sev-
eral scalar factors of this form, multiplied by expression of the form ϕ(b1 . . .bt) with
b j ∈ Akj , k1 �= . . . �= kt , with the indexes satisfying k1 > .. . > ks < .. . < kt (for some
1 � s � t ). To such expression one applies the condition (M2) to get the final factor-
ization ϕ(b1 . . .bt) = ϕ(b1) . . .ϕ(bt) . In this way one can reduce computation of the
mixed moments ϕ(a1 . . .am) to the marginals ϕ�Ai . An example of the monotonically
independent operators (algebras) is realized on the monotonic Fock space (cf. [9]).

Example: The monotonic Fock space.

Let {Hj : j∈N} be a given family of Hilbert spaces, with a common unit (vacuum)
vector Ω ∈ Hj . We have the natural direct sum decomposition H0

j := Hj 	CΩ . Let
H be the associated full Fock space:

H := CΩ⊕
⊕
n�1

⊕
j1,..., jn∈N

H0
j1 ⊗ . . .⊗H0

jn

We define the subspace Hm ⊂ H as spanned by Ω and tensors of the form:

h jn ⊗ . . .⊗h j1 ∈ H0
jn ⊗ . . .⊗H0

j1 with jn > .. . > j1.

If Aj ∈ B(Hj) is a bounded operator, then we define its monotonic extension a j onto
Hm as follows: a jΩ = AjΩ and

a j(h jn ⊗ . . .⊗h j1) =

⎧⎨⎩
(AjΩ)⊗h jn ⊗ . . .⊗h j1 if j > jn
(Ajh jn)⊗ . . .⊗h j1 if j = jn
0 if j < jn

.

In this definition the first case ( j > jn ) should be understood as follows. If AjΩ =
ϕ(Aj)Ω+h j then a j(h jn ⊗ . . .⊗h j1) = ϕ(Aj) ·h jn ⊗ . . .⊗h j1 +h j ⊗h jn ⊗ . . .⊗h j1 . In
the second case j = jn we use the notation: if v = h jn−1 ⊗ . . .⊗h j1 with jn−1 < j and
if Aj(h j) = β jΩ+g j , then a j(h j ⊗ v) = β j · v+g j⊗ v .
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THEOREM 4.2. The monotonic extension operators a j ∈B(Hm) , with j = 1,2, . . . ,
are monotonically independent with respect to the vacuum state ϕ(a) = 〈aΩ|Ω〉 .

Proof. For the proof let us observe that for each k ∈ N the range ak(Hm) is con-

tained in the subspace H
(�k)

m , spanned by Ω and the simple tensors h jn ⊗ . . .⊗ h j1
with j1 < .. . < jn � k .

To prove (M1) it suffices to check that the equality

aia jakv = ϕ(a j)aiakv (4.3)

holds for all v ∈ Hm of the form v = Ω or v = h jn ⊗ . . .⊗ h j1 with jn < k or v =
hk ⊗ h jn ⊗ . . .⊗ h j1 with jn < k . We shall use the notation ϕ(as) = βs = ϕ(As) and
AsΩ= βsΩ+hs for s ∈ {i, j,k} .

• Case: v =Ω . We have

aia jakΩ = βiβ jβkΩ+β jβkhi +β jaihk

and
aiakΩ = βk(βiΩ+hi)+aihk,

so the equality in (4.3) holds.

• Case: v = h jn ⊗ . . .⊗h j1 with jn < k . In this case we have

aia jakv = βkβ j(aiv)+β j ·ai(hk ⊗ v)

and
aiakv = βk(aiv)+ai(hk ⊗ v),

which gives (4.3).

• Case: v = hk ⊗ h jn ⊗ . . .⊗ h j1 with jn < k . Here we need additional notation:
Akhk = γkΩ+gk and h jn ⊗ . . .⊗h j1 = w . Then

aia jak(hk ⊗w) = γkβ j(aiw)+β j ·ai(gk ⊗w)

and
aiak(hk ⊗w) = ai(γkw+gk⊗w),

so (4.3) also holds.

For the proof of (M2) let us observe that

apaqΩ= ϕ(aq)apΩ= βqapΩ, (4.4)

if p < q . Therefore, for j < i1 < .. . < im and j < k1 < .. . < kn , by induction, we
obtain

a jak1 . . .aknΩ= βkm . . .βk1 ·a jΩ, a∗i1 . . .a∗imΩ= βim . . .βi2 ·a∗i1Ω.

Since
ϕ(aim . . .ai1a jak1 . . .akn) = 〈a jak1 . . .aknΩ|a∗i1 . . .a∗imΩ〉,

it follows that

ϕ(aim . . .ai1a jak1 . . .akn) = βkm . . .βk1 ·βin . . .βi2 · 〈Ω|a∗ja∗i1Ω〉,
from which the (M2) follows. �
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5. Applications to probability: classical and non-commutative
Central Limit Theorems

In classical probability we consider a probability space (X,F,P) consisting of a
topological space X , a σ -field F and the probability function P . We say that random
variables (F-measurable functions X ,Y : X → R) are independent if for every Borel
subsets A,B ⊂ R the condition

P(X ∈ A∧Y ∈ B) = P(X ∈ A) ·P(Y ∈ B)

holds. For the classical Central Limit Theorem (CLT) one considers a sequence {Xi :
X → R|i ∈ N} of independent, identically distributed random variables, which satisfy:
E(Xi) = 0 and E(X2

i ) = 1. Here E is the expectation:

E(X) :=
∫

X
X(ω)P(dω).

Then, for the normalized partial sums:

SN :=
1√
N

N

∑
i=1

Xi,

there exists the gaussian limit (in the sense of moments, but also in probability, distri-
bution etc.)

E((SN)n) → 1√
2π

∫ +∞

−∞
tne

−t2
2 dt.

5.1. Non-commutative Central Limit Theorems

The formulation of non-commutative CLT is as follows. Let bi = b∗i , for i ∈ N , be
self-adjoint elements of a unital ∗ -algebra B , which satisfy ϕ(bi) = 0, and ϕ(b2

i ) = 1
for a given state ϕ . Moreover, we assume that the elements {bi : i∈N} are independent
(in a non-commutative sense), with respect to ϕ . Let

SN :=
1√
N

N

∑
i=1

bi (5.5)

be the partial sums. Then there exists a limit measure μ such that for all n ∈ N :

lim
N→∞

ϕ ((SN)n) =
∫ +∞

−∞
xndμ(x).

The limits are the moments of a symmetric probability measure on the real line R . Here
we list the exampes of these measures.

(1) free CLT: semi-circle law μ(dx) :=
1
2π

√
4− x2dx ,

(2) boolean CLT: Bernoulli law μ =
1
2

(δ−1 + δ1) ,

(3) monotonic CLT: arcsine law μ(dx) :=
1
π

dx√
1− x2

.
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6. Partial orders

The notion of bm-independence is a generalization of the monotonic independence
for an index set I which is partially ordered by a relation � . The monotonic indepen-
dence was defined for totally ordered sets (like positive integers N), so the difference
is in possible existence of incomparable pairs of elements. We shall write ξ � η if
elements ξ ,η ∈ I are incomparable.

The most natural examples of partial orders arise in vector spaces, and are related
to positive cones. If V is a real (or complex) vector space, then a subset Π ⊂ V is a
positive cone if it contains the zero vector and if it is closed under addition of vectors
and multiplication by positive scalars. A positive cone defines partial order � on V as
follows. For u,v ∈V we write u � v if v−u ∈Π . Examples of such partially ordered
sets, which are of main interests for us, are the following.

1. V = Rd , Π = (R+ ∪{0})d = {(a1, . . . ,ad) ∈ Rd : a1, . . . ,ad � 0} . The partial
order defined here is as follows. If ξ = (a1, . . . ,ad),η = (b1, . . . ,bd) ∈ V , then
ξ � η if a j � b j for every 1 � j � d . In this example, if a1 > b1 and a2 < b2

then the elements ξ and η are incomparable.

2. V = R×Rd , Π =
{

(x;a1, . . . ,ad) ∈ R+×R
d : x �

√
a2

1 + . . .+a2
d

}
is the Lo-

rentz light cone in the Minkowski spacetime. The partial order is defined by the
future cone of a vector: if ξ = (x;a1, . . . ,ad),η = (y;b1, . . . ,bd)∈V , then ξ � η
if

y− x �
√

(b1−a1)2 + . . .+(bd −ad)2

In this example if, x = y then ξ � η are incomparable (unless ξ = η ).

3. V = Symmd(R) is the real space of symmetric d×d matrices with real entries
and Π is the cone of positive definite matrices in V . Explicitely,

ξ = (a jk)d
j,k=1 ∈Π if

d

∑
j,k=1

a jkx jxk � 0

for every (x1, . . . ,xd)∈Rd , (equivalently, every minor of ξ is non-negative). For
such ξ ∈ Π the diagonal entries must be non-negative: a j j � 0 for 1 � j � d .
In particular, if ξ ,η ∈V have the same diagonals, then they are incomparable.

4. V = Hermd(C) is the complex vector space of hermitian d × d matrices with
complex entries, and Π⊂V is the subset of all positive definite matrices in V .

7. bm-independence

The definition of bm-independence is this.
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DEFINITION 7.1. A family of subalgebras {Bξ : ξ ∈ I} of a given algebra B ,
indexed by a partially ordered set I , is called bm-independentwith respect to a given
functional ϕ on B , if:

BM1. If ξ ≺ ρ � η or ξ � ρ � η or ξ ≺ ρ � η , then

bξbρbη = ϕ(bρ) ·bξbη ∀bη ∈ Bη ,bξ ∈ Bξ ,bρ ∈ Bρ .

BM2. If ξ1 � . . . � ξm � . . . � ξk ≺ . . . ≺ ξn for 1 � m � k � n , then

ϕ(bξ1
. . .bξm . . .bξk

. . .bξn) =
n

∏
j=1

ϕ(bξ j
)

This definition generalizes the monotonic and boolean independences in the fol-
lowing way.

• If the index set I is totally ordered, i.e. if every two elements are comparable,
then BM1 and BM2 are exactly the Muraki’s conditions for the monotonic inde-
pendence.

• If the index set I is totally disordered, i.e. every two elements are incomparable,
then the condition BM1 is void, and the condition BM2 simplifies to the boolean
independence condition.

The definition does not say that such objects exists, but we shall give examples in
what follows. The first is a general construction of bm-independent algebras – the bm-
product of algebras, with given functionals.

DEFINITION 7.2. Let (Bξ ,ϕξ )ξ∈I be a family of algebras, indexed by a partially
ordered set I , with given functional ϕξ on each algebra. The bm-product BI :=(∗ξ∈IBξ

)
/J1 is the quotient of the free product algebra ∗ξ∈IBξ , generated by this

family, by the left ideal J1 generated by the set

{bξbρbη −ϕρ(bρ)bξbη | ξ ≺ ρ � η or ξ � ρ � η or ξ ≺ ρ � η}.
We define the functional ϕ on BI by putting

ϕ
(
b̃ξ1

. . . b̃ξn

)
:=

n

∏
j=1

ϕξi j
(bξ j

)

for elements b̃ξ j
:= bξ j

+J1 with bξ j
∈ Bξi j

for every 1 � j � n , with i1 �= . . . �= in
and with ξ1 � . . . � ξm � . . . � ξk ≺ . . . ≺ ξn for some 1 � m � k � n .

REMARK 7.3. The relation defining the ideal is taken from the BM1.

REMARK 7.4. The functional ϕ is well defined, and the algebras Bξ are bm-
independent in BI with respect to ϕ . This functional, restricted to Bξ , equals ϕξ .
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This definition gives a general procedure for obtaining the bm-independent alge-
bras. A more concrete example is given by the following construction of operators on a
Hilbert space, called the bm-extension operators on the bm-product of Hilbert spaces.

Let {Hξ : ξ ∈ I} be a family of Hilbert spaces, indexed by a partially ordered set
I . We shall assume that these spaces have a common unit vector Ω ∈ Hξ .

DEFINITION 7.5. By
H = �ξ∈IHξ

we shall denote the bm-product Hilbert space, i.e. the subspace of the full Fock space,
spanned by Ω and simple tensors hρ j ⊗ . . .⊗hρ1 with ρ j � . . .� ρ1 and hρ ∈Hρ ,hρ ⊥
Ω .

On the bm-product Hilbert space we define the bm-extension operators. Such bm-
extension is an extension of an operator Aξ , bounded on Hξ , onto H .

DEFINITION 7.6. For ξ ,ρ1, . . . ,ρ j ∈ I , Hρ � hρ ⊥Ω we define the bm-extension
Aξ ∈ B(H ) of Aξ ∈ B(Hξ ) by the following formulas:

Aξ
(
hρ j ⊗ . . .⊗hρ1

)
=

⎧⎨⎩
0 if ξ ≺ ρ j or ξ � ρ j

(Aξhξ )⊗hρ j−1 ⊗ . . .⊗hρ1 if ρ j = ξ
(AξΩ)⊗hρ j ⊗ . . .⊗hρ1 if ρ j ≺ ξ

(7.6)

The second case is understood as follows. If ξ = ρ j and Aξhξ = αΩ+gξ then

Aξ
(
hρ j ⊗ . . .⊗hρ1

)
= α ·hρ j−1 ⊗ . . .⊗hρ1 +gξ ⊗hρ j−1 ⊗ . . .⊗hρ1

Similarly, if ρ ≺ ξ and AξΩ= βΩ+hξ then

Aξ
(
hρ j ⊗ . . .⊗hρ1

)
= β ·hρ j ⊗ . . .⊗hρ1 +hξ ⊗hρ j ⊗ . . .⊗hρ1

This construction provides an example of bm-independent operators (or algebras, in
general). Let us notice that, since the “vacuum vector” Ω is in H , we can consider
the vacuum state ϕ(X) := 〈XΩ|Ω〉 on the algebra B(H ) of all bounded operators on
H .

THEOREM 7.7. Let I be a partially ordered set and for each ξ ∈ I let Bξ ⊂
B(Hξ ) be an algebra of operators bounded on a given Hilbert spaces Hξ . Let Bξ ⊂
B(H ) be the bm-extension algebra, which consists of the bm-extensions of the op-
erators from Bξ onto the bm-product Hilbert space H = �ξ∈IHξ . Then the family
{Bξ : ξ ∈ I} is bm-independent (with respect to the vacuum state ϕ ).

The proof of the Theorem can be found in [10]. It is based on the same considera-
tions as the proof of the Theorem 4.2.



NON-COMMUTATIVE INDEPENDENCE OF ALGEBRAS AND APPLICATIONS TO PROBABILITY 529

8. bm-Central Limit Theorems

For the bm-independence we can also consider the analogues of the CLT. The
general setup is similar. We consider a partially ordered sets I , which will be of special
form (roughly speaking: discrete lattices in positive symmetric cones). Moreover, let us
assume that we are given a family {Bξ : ξ ∈ I} of unital ∗ -algebras, bm-independent
in B with respect to a state ϕ . For a family of non-commutative random variables
bξ = b∗ξ ∈ Bξ , with ϕ(bξ ) = 0 and ϕ(b2

ξ ) = 1 we consider the partial sums

SN :=
1√|JN| ∑ξ∈JN

bξ (8.7)

Here an important difference appears (comparing to the classical or the previously men-
tioned non-commutative cases): the summation intervals {1,2, . . . ,N}⊂N are replaced
by appropriate finite subsets JN ⊂ I . These sets will have the properties: JN ⊂ JN′ if
N � N′ and

⋃
N JN = I . Here the index N will be either an integer or a d-tuple of

integers. If N = (n1, . . . ,nd) and N′ = (n′1, . . . ,n
′
d) (for d ∈ N with d � 2) then

N � N′ ⇔ n1 � n′1, . . . ,nd � n′d .

The bm-Central Limit Theorems have the same formulation, but we shall see that the
limit measure depends on the choice of the positive cone, and the set I in it.

THEOREM 8.1. For each non-negative integer n ∈ N there exist the limits

gn = lim
N→∞

ϕ
(
(SN)2n) (8.8)

The sequence (gn)
∞
n=0 is a moment sequence of a (symmetric) probability measure

μ = μI (depending on I ) on the real line:

gn =
∫ +∞

−∞
t2nμ(dt), 0 =

∫ +∞

−∞
t2n+1μ(dt)

Moreover, the sequence satisfies a generalization of the Catalan numbers’ recurrence:

g0 = g1 = 1, gn =
n

∑
m=1

γ(m) ·gm−1 ·gn−m (8.9)

The coefficients γ(m) (and hence the numbers gn ) depend on the index set I and can
be computed from the following combinatorial formula:

γ(m) = lim
N→∞ ∑k�N

|Ik|
|JN|

( |JN−k|
|JN|

)m−1

Here
⋃

k�N Ik = JN is a special disjoint decomposition of the summation sets JN .
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We shall present now the list of examples of this theorem, for various positive
symmetric cones. We shall use the classification of these cones, given in [3]. This
classification says that, in general, a positive symmetric cone is a set of positive definite
symmetric matrices over a Jordan-Hurwitz algebra. A Jordan-Hurwitz algebras are also
calssified, and it turns out that there are only 4 possible cases: real numbers R , complex
numbers C , Hamilton’s quaternions H , and Cayley’s octonions O . In the classification
of positive symmetric cones the octonions appear only in the case of 3×3 matrices. In
our study we shall not consider this case, so the algebra O is not going to appear here.

The first two examples below are related to the symmetric cones which are not of
the above form. In most cases the limit measure in unknown.

EXAMPLE 1. Let V := R
d be the d -dimensional real Euclidian space, and let

Π := {(x1, . . . ,xd) ∈ Rd : x1, . . . ,xd � 0} be the positive cone of vectors with non-
negative coordinates. The index set in this case is Id = Nd and the summation sets are
of the form JN = {(k1, . . . ,kd) ∈ I : k1 � N1, . . . ,kd � Nd} , where N = (N1, . . . ,Nd) . In
this case the bm-CLT gives the recurence

γ(m) = m−d , gn =
n

∑
m=1

1
md gm−1gn−m,

particular cases of which are the following.

case d= 0. The CLT measures is the semi-circle law, since in the limit (8.8) we get the
Catalan numbers gn = 1

n+1

(2n
n

)
.

case d= 1. In this case the measure is the arcsine law, since the recurrence gives gn =
1
2n

(2n
n

)
.

case d= 2. Numbers hn := gn ·(n!)2 are positive integers and describe number of heap
ordered labeled rooted trees (the measure with the moments gn is not
known).

EXAMPLE 2. In the second example we consider the Minkowski spacetime V :=
{(x;y1, . . . ,yd) ∈ R×Rd} with the positive Lorentz light cone Πd := {(x;y1, . . . ,yd) ∈
V : x �

(
y2
1 + . . .y2

d

) 1
2 } . The index set is Id := {(k;m1, . . . ,md) ∈ N×Zd : k2 � m2

1 +
. . .+m2

d} and the summation sets are JN := {(k;m1, . . . ,md) ∈ Id : k � N} for N ∈ N .
Then the recurence is

γ(m) =
(

m(d +1)
d +1

)−1

, gn =
n

∑
m=1

1(m(d+1)
d+1

)gm−1gn−m.

Particular cases here are:

case d= 0. Arcsine law, since γ(m) = 1
m

case d= 1. γ(m) = 1
m(2m−1) , gn ’s are Taylor expansion coefficients of the inverse error

function.
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The next examples are related to the cones of positive definite symmetric matrices.

EXAMPLE 3. Let us consider the real vector space V := Symmd(R) of real sym-
metric d×d matrices, and the positive cone Πd of all real symmetric positive definite

d × d matrices. Then for the index set Id :=
{

(ai j)d
i, j=1 ∈Πd : ai j ∈ Z

}
and for the

summation sets JN :=
{
(ai j) ∈ Id : 1 � a11 < N1, . . . ,1 � add < Nd

}
we get

γ(m) =
[
d +1

2
B

(
d +1

2
;
(m−1)(d +1)

2

)]d

.

Here B(a + 1;b + 1) :=
∫ 1

0
xa(1− x)bdx is the Euler β -function of the first kind. A

particular case here is d = 1 for which the limit measure is the arcsine law.

EXAMPLE 4. (Arbitrary symmetric cone.) Let V := Hermd(F) be the algebra of
all hermitian d × d matrices with d � 3; over a Jordan-Hurwitz algebra F ∈ {C,H} ,
with p := dimR F ∈ {2,4} (see [3]). Let Z(F) := {ξ = a+bi+cj+dk∈ F , a,b,c,d ∈
Z} be the set of “integers” in F . Here the quaternionic units i, j,k satisfy i2 = j2 =
k2 = −1 and ij = k, jk = i,ki = j . In particular, ξ ∈ C iff c = d = 0. In V we
consider the positive cone Πd(F) of all hermitian positive definite d×d matrices over

F and the index set Id :=
{
(ai j)d

i, j=1 ∈Πd : ai j ∈ Z(F)
}

. The summation sets JN :={
(ai j) ∈ Id : 1 � a11 < N1, . . . ,1 � add < Nd

}
have the asymptotical behaviour |JN| ≈

cd · (N1 . . .Nd)1+ (d−1)p
2 , which allows to show that in these cases

γ(m) =
[
α +1

2
B

(
α+1

2
;
(m−1)(α+1)

2

)]d

, with α :=
(d−1)p

2
.
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