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ON L2 –EIGENFUNCTIONS OF TWISTED LAPLACIAN ON CURVED

SURFACES AND SUGGESTED ORTHOGONAL POLYNOMIALS

A. GHANMI

Abstract. We show in a unified manner that the factorization method describes completely the
L2 -eigenspaces associated to the discrete part of the spectrum of the twisted Laplacian on con-
stant curvature Riemann surfaces. Subclasses of two variable orthogonal polynomials are then
derived and arise by successive derivations of elementary complex valued functions depending
on the geometry of the surface.

1. Introduction and preliminaries

Let Mκ be a given simply connected Riemann surface of constant scalar curva-
ture κ ∈ R (SCRS for short). Precisely Mκ is the disc of radius 1/

√−κ for κ < 0,
the Euclidean plane for κ = 0 and the sphere in R3 of radius 1/

√
κ identified with

the extended complex plane C∪{∞} for κ > 0. The corresponding Bergman-Kähler
geometry is the one described by the Hermitian metric ds2

κ := (1 + κzz)−2dz⊗ d z ,
z = x+ iy ∈ C, whose associated volume measure is

dμκ = (1+κzz)−2dλ ,

where dλ denotes the usual Lebesgue measure on Mκ . Also let θκ be the differential
one form θκ := (1+ κzz)−1(zdz− zd z). Associated to Mκ , ds2

κ , dμκ and θκ , we
consider the Laplacian Lν

κ , ν > 0, realized as magnetic Schrödinger operator through

Lν
κ = (d + iνθκ)∗(d + iνθκ),

and acting on the Hilbert space Hκ := L2(Mκ ;dμκ) . It is an elliptic self-adjoint second
order differential operator describing a single non relativistic spineless particle con-
strained to move on the two-dimensional analytic surface Mκ in the presence of the
external constant magnetic field B = νdθκ . The explicit expression of Lν

κ in the z-
complex variable is given (up to a multiplicative constant) by

Lν
κ = −{(1+κ |z|2)2 ∂ 2

∂ z∂ z
+ν(1+κ |z|2)(z ∂

∂ z
− z

∂
∂ z

)−ν2|z|2}. (1.1)
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Its concrete spectral theory is well known in the literature, see for example [8, 1] for
κ = −1,0,+1 and [2, 4] for arbitrary κ . In particular, the discrete part of the spectrum
of Lν

κ acting on Hκ is given by the eigenvalues

Eν
κ ,m := ν(2m+1)+m(m+1)κ

with m is a positive integer such that 0 � m < (2ν+κ)/(|κ |−κ) and the conditions
2ν+κ > 0 for κ � 0 and 2ν/κ is integer for κ > 0. Moreover, we have the following
(see [3, 11, 4] for example):

PROPOSITION 1.1. An orthogonal basis of the L2 -eigenspace

A2,ν
m (Mκ) := {Φ ∈ Hκ ; Lν

κΦ = Eν
κ ,mΦ}

is given in terms of the real Jacobi Polynomials P(α ,β )
l (x) by

(1+κ |z|2)−( νκ +m)zp zqP
(p+q,−2( νκ +m)−1)
m−q (1+2κ |z|2)

with q � m and the convention that pq = 0 .

In the other hand, we know that the factorization algebraic method [13, 6, 2] allows
one to construct L2 -eigenfunctions of second order differential operator like Lν

κ . Our
goal here is to discuss the converse. Precisely, we have to show that such method
describes completely the L2 -eigenspaces associated to the discrete part of the twisted
Laplacians Lν

κ (following the terminology of [1, 9]). This will be done in a unified
manner taking into account the curvature of the considered SCRS. In particular, we
recover the case κ = +1 discussed in [2]. The suggested subclass of two variable
orthogonal polynomials Pν;κ

m,n (z, z) , i.e., such that the functions

(1+κ |z|2)−( νκ +m)Pν;κ
m,n (z, z)

are L2 -eigenfunctions of Lν
κ with Eν

κ (m) := ν(2m+1)+m(m+1)κ as corresponding
L2 -eigenvalue, are derived and satisfy the following Rodrigues type formula

Pν;κ
m,n (z, z) = (−1)m(1+κ |z|2)2 ν

κ +m[(1+κ |z|2)2 ∂
∂ z

]m(1+κ |z|2)−2( νκ +m)zn,

where the intertwining invariant operator [(1+κ |z|2)2 ∂
∂ z ]

m depends only on the geom-
etry of the considered SCRS and not on the magnetic field.

2. Main result

We begin by recalling briefly the factorization method for curved surfaces. Indeed,
one considers the first order differential operator ∇α and its formal adjoint ∇∗

α given
respectively by

∇α = −(1+κ |z|2) ∂
∂ z

+α z , ∇∗
α = (1+κ |z|2) ∂

∂ z
+(α−κ)z.
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Thus, by direct computation one gets the algebraic relationships:

∇ν+κ∇∗
ν+κ = Lν

κ −ν and ∇∗
ν+κ∇ν+κ = Lν+κ

κ +(ν+κ),

which gives rise to the following one

Lν
κ∇ν+κ = ∇ν+κLν+κ

κ +(2ν+κ)∇ν+κ .

Hence, for Ψ0 being a nonzero L2 -eigenfuncion associated to the lowest Landau level
Eν+mκ
κ ,0 = ν+mκ of Lν+mκ

κ , one can show that ∇ν+mκΨ0 is also an L2 -eigenfunction

but this time for L
ν+(m−1)κ
κ with Eν+(m−1)κ

κ ,1 as corresponding eigenvalue. Doing so, it
follows that

∇ν+κ ◦∇ν+2κ ◦ · · · ◦∇ν+mκΨ0 ∈ A2,ν
m (Mκ) (2.1)

i.e., it is an L2 -eigenfunction of Lν
κ associated to the eigenvalue ν(2m+ 1)+m(m+

1)κ =: Eν
κ ,m. Conversely, we show that every L2 -eigenfunction Φ ∈ A2,ν

m (Mκ ) can be

obtained from (2.1), that is each Φ ∈ A2,ν
m (Mκ) arises by successive derivations of an

elementary complex valued function. More precisely, we have

MAIN THEOREM 2.1. Fix ν > 0 such that 2ν+κ > 0 for κ � 0 and 2ν/κ ∈Z+

for κ > 0 , and let m be a fixed positive integer satisfying 0 � m < (2ν +κ)/(|κ |−κ) .
Then, the L2 -eigenfunctions

∇ν+κ ◦∇ν+2κ ◦ · · · ◦∇ν+mκ [(1+κ |z|2)−( νκ +m)zn], n = 0,1,2, · · · , (2.2)

constitute an orthogonal basis of the L2 -eigenspace A2,ν
m (Mκ) .

REMARK 2.2. The above result says that the factorization method determines
completely all L2 -eigenfunctions of Lν

κ , i.e., solutions of the eigenvalue problem Lν
κΨ=

Eν
κ ,mΨ associated to the discrete part of the L2 -spectrum. The planar case (κ = 0) is

classic. For κ = +1 (i.e., for the sphere S2 ∼= C∪{∞} equipped with the Fubini-Study
metric on the chart C) the result has been established by Ferapontov and Veselov [2,
Theorem 3]. While when κ =−1 the result we obtain can be considered as its analogue
for the non compact hyperbolic unit disc.

The proof of the above theorem relies essentially on Proposition 1.1 and the fol-
lowing result giving closed explicit expressions of (2.1) or also (2.2). Namely, we have

PROPOSITION 2.3. Fix ν and m as in the theorem above and define Pν;κ
m,n (z, z)

by

Pν;κ
m,n (z, z ) := (1+κ |z|2) ν

κ +m∇ν+κ ◦∇ν+2κ ◦ · · · ◦∇ν+mκ [(1+κ |z|2)−( νκ +m)zn].

Let m∧n := Min(m,n) and set

Cm,n
κ ,ν = (−1)m+nΓ(2( νκ +m)− (m+n)+1)

κnΓ(2( νκ +m)−m+1)
.
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Then, we have

Pν;κ
m,n (z, z) = (−1)m(1+κ |z|2)2 ν

κ +m[(1+κ |z|2)2 ∂
∂ z

]m
(
(1+κ |z|2)−2( νκ +m)zn

)
(2.3)

= Cm,n
κ ,ν · (1+κ |z|2)2( νκ +m)+1 ∂m+n

∂ zm∂ zn (1+κ |z|2)−2( νκ +m)+m+n−1 (2.4)

= (−1)m(m∧n)!|z||m−n|ei[(n−m)argz]P
(|m−n|,−2( νκ +m)−1)
m∧n (1+2κ |z|2).

(2.5)

Sketched proof of Proposition 2.3. The identity (2.3) holds by observing that the
first order differential operator ∇α = −(1+κ |z|2) ∂

∂ z +α z can be rewritten as

∇α f = −(1+κ |z|2) α
κ +1 ∂

∂ z
[(1+κ |z|2)− α

κ f ]

for every smooth function f on Mκ . Thus, we have

∇ν+κ ◦∇ν+2κ ◦ · · · ◦∇ν+mκ f = (−1)m(1+κzz)
ν
κ [(1+κzz)2 ∂

∂ z
]m((1+κzz)−( νκ +m) f ).

This yields (2.3) when specifying f (z) = (1+κzz)−( νκ +m)zn .
The identity (2.4) is deduced from (2.3) using

CLAIM 1. For every fixed positive integer m and every smooth complex valued
function f on Mκ , we have

[(1+κ |z|2)2 ∂
∂ z

]m f = (1+κ |z|2)m+1 ∂m

∂ zm ((1+κ |z|2)m−1 f )

combined with the fact that

zn(1+κ |z|2)α =
1

(α +1)nκn

∂ n

∂ zn ((1+κ |z|2)α+n),

keeping in mind that (−a)n = (a−n+1)n . Here (a)n = a(a+1) · · ·(a+n−1) .
The proof of (2.5) can be handled by induction together with the use of the follow-

ing result satisfied by the real Jacobi Polynomials P(a,b)
j (x) :

CLAIM 2. For arbitrary real number a,b , we have

(x2 −1)
d
dx

P(a,b)
j (x)+ [(a−b)+ (a+b)x]P(a,b)

j (x) = 2( j +1)P(a−1,b−1)
j+1 (x). �

Below, we give the proofs of Claims 1 and 2.

Proof of Claim 1. This is proved by induction, where m = 0 and m = 1 is obvious.
Next, set 
Dκ f = h2 ∂

∂ z f = (1+κzz)2 ∂
∂ z f , let 
Dm

κ stand for


Dm
κ = 
Dκ ◦ 
Dκ ◦ · · · ◦ 
Dκ︸ ︷︷ ︸

m-times
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and assume that

hm+1 ∂m

∂ zm (hm−1 f ) = (h2 ∂
∂ z

)m f = 
Dm
κ f

is satisfied for a given positive integer m . Hence, using direct computation and the fact
that 
Dm

κ (( ∂h
∂ z ) f ) = ( ∂h

∂ z )
Dm
κ f for ∂h

∂ z being an holomorphic function, we get

hm+2 ∂m+1

∂ zm+1 (hm f ) = mh
∂
∂ z

(h 
Dm
κ f )+h 
Dm

κ (h−1 
Dκ f ). (2.6)

Next, note that we have

h 
Dm
κ (h−1 
Dκ f ) = h 
Dm−1

κ (h−1 
Dκ
2 f )−h

∂h
∂ z


Dm−1
κ (
Dκ f ). (2.7)

Repeated application of (2.7) gives

h 
Dm
κ (h−1 
Dκ f ) = h 
Dm− j

κ (h−1 
Dj+1
κ f )− jh

∂h
∂ z


Dm−1
κ (
Dκ f )

for every given positive integer j such that 0 � j � m . In particular, for j = m it
follows

mh
∂h
∂ z


Dκ
m( f )+h 
Dm

κ (h−1 
Dκ f ) = 
Dm+1
κ . (2.8)

Finally, by combining (2.6) and (2.8), we get the desired result of Claim 1. �

Proof of Claim 2. The assertion of Claim 2 is an immediate consequence of the

facts that the classical Jacobi polynomial P(α ,β )
k is a solution of the second order dif-

ferential equation [7, page 214]

(1− x2)y
′′
+[(α−β )+ (α+β +2)x]y

′ − k(k+α+β +1)y = 0.

Indeed, by making the changes α = a−1,β = b−1 and k = j +1, we get

(x2 −1)
d2

dx2 P(a−1,b−1)
j+1 (x)− [(a−b)+ (a+b)x]

d
dx

P(a−1,b−1)
j+1 (x)+

+( j +1)( j +a+b)P(a−1,b−1)
j+1 (x) = 0.

Next, using the fact that [7, page 213]

d
dx

P(a−1,b−1)
j+1 (x) =

j +a+b
2

P(a,b)
j (x),

it follows

(x2 −1)
d
dx

P(a,b)
j − [(a−b)+ (a+b)x]P(a,b)

j +2( j +1)P(a−1,b−1)
j+1 = 0. �

We conclude this section by giving a sketched proof of Theorem 2.1.
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Proof of Theorem 2.1. We use the fact that the L2 -eigenspace of Lb
κ associated to

its first eigenvalue b coincides with the null space of ∇∗
b and is spanned in the Hilbert

space Hκ as follows

Span
{
(1+κ |z|2)− b

κ zn, n = 0,1,2, · · ·
}

.

Hence, for b = ν +mκ and according to (2.1) it turns out to compute

∇ν+κ ◦∇ν+2κ ◦ · · · ◦∇ν+mκ [(1+κ |z|2)−( νκ +m)zn] =: (1+κ |z|2)−( νκ +m)Pν;κ
m,n (z, z)

which is given by (2.5) in Proposition 2.3 and that we can rewrite also as follow

Pν;κ
m,n (z, z) = (−1)m(m∧n)!zp zqP

(p+q,−2( νκ +m)−1)
m−q (1+2κ |z|2)

with p = n−m and q = 0 if m � n and p = 0 and q = m− n if m � n . Next, by
applying Proposition 1.1, we obtain the desired result as asserted in Theorem 2.1. �

3. Concluding remarks

According to Proposition 2.3 above, the class of two variable orthogonal poly-
nomials Pν;κ

m,n (z, z) , suggested by the twisted Laplacians Lν
κ are obtained in a unified

manner taking into account the curvature of the considered SCRS Mκ . Indeed the
functions

(1+κ |z|2)−( νκ +m)Pν;κ
m,n (z, z)

are L2 -eigenfunctions of Lν
κ with Eν

κ ,m := ν(2m+ 1)+m(m+ 1)κ as corresponding
L2 -eigenvalue. The obtained two variable polynomials satisfy (2.3), where the involved
intertwining invariant operator

[(1+κ |z|2)2 ∂
∂ z

]m

depends only on the geometry of Mκ and not on the magnetic field. Also, they satisfy
the Rodrigues formula (2.4), up to a given multiplicative constant Cm,n

κ ,ν . Such polyno-

mials Pν;κ
m,n (z, z) are connected to the real Jacobi polynomials P(α ,β )

l (x) . Note that the
identity (2.5) above for κ 
= 0 can be rewritten in the following form

Pν;κ
m,n (z, z) = (−1)m

{
m!zn−mP

(n−m,−2( νκ +m)−1)
m (1+2κzz) if m � n

n!zm−nP
(m−n,−2( νκ +m)−1)
n (1+2κzz) if m � n

Therefore, one sees that the polynomials Pν,κ
m,n (z, z) for κ = −1 are exactly the so-

called disc polynomials [10, 14]. Here they appear, up to multiplicative functions, as
L2 -eigenfunctions of the twisted Laplacian Lν

−1 on the hyperbolic disc. While for the
limit case κ = 0, the polynomials Pν;0

m,n(z, z) are exactly the complex Hermite polyno-
mials [12, 5] defined by

Hν
m,n(z, z) :=

(−1)m+n

(2ν)n e2ν|z|2 ∂m+n

∂ zm∂ zn e−2ν|z|2 , (3.1)



ON L2 -EIGENFUNCTIONS OF TWISTED LAPLACIAN ON CURVED SURFACES 539

which form a complete orthogonal system in L2(C;e−2ν|z|2dxdy) . The associated func-
tions e−ν|z|2Hν

m,n(z, z) are L2 -eigenfunctions of the usual twisted Laplacian on the Eu-
clidean plane,

Lν
0 = −{ ∂ 2

∂ z∂ z
+ν(z

∂
∂ z

− z
∂
∂ z

)−ν2|z|2},

with ν(2m+1) as corresponding L2 -eigenvalue.
Furthermore, added to the facts that ν(2m+1) = lim

κ−→0
Eν
κ ,m and the operator Lν

0

appears also as the formal limit of the unbounded differential operators Lν
κ by letting

κ goes to 0, one gets the limiting transition of Pν;κ
m,n (z, z) to the complex Hermite

polynomials Hν
m,n(z, z) :

lim
κ−→0

Pν;κ
m,n (z, z) = Hν

m,n(z, z)

for every fixed z ∈ C . This can be checked easily from (2.4) or also from (2.5) using
some known useful transformations on special functions. But below, we give an alter-
native proof and we will see how this can be handled using the background related to
the factorization method without knowing explicit expression of Pν;κ

m,n (z, z) . Indeed, by
making formal limit, keeping in mind that

lim
κ−→0

(1+κzz)
ν
κ +m = eνzz ,

we get

lim
κ−→0

Pν;κ
m,n (z, z) = lim

κ−→0
(1+κzz)

ν
κ +m∇ν+κ ◦∇ν+2κ ◦ · · · ◦∇ν+mκ [(1+κzz)−( νκ +m)zn]

= eνzz ∇ν ◦∇ν ◦ · · · ◦∇ν︸ ︷︷ ︸
m-times

[e−νzzzn].

Next, by rewriting ∇ν in the following form ∇ν f = −eνzz ∂
∂ z (e

−νzz f ), it follows

lim
κ−→0

Pν;κ
m,n (z, z) = (−1)me2νzz ∂m

∂ zm [e−2νzzzn].

But since ∂ n

∂ zn (e−2νzz) = (−2ν)ne−2νzzzn, we conclude easily that

lim
κ−→0

Pν;κ
m,n (z, z) =

(−1)m+n

(2ν)n e2νzz ∂m+n

∂ zm∂ zn (e−2νzz)
(3.1)
= Hν

m,n(z, z).
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