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Abstract. In this paper we use analytical methods for boundary integral operators (more pre-
cisely, pseudodifferential operators) together with symmetry arguments in order to treat har-
monic wave diffraction problems in which the field does not depend on the third variable and
the wave incidence is perpendicular. These problems are formulated as two-dimensional, mixed
elliptic boundary value problems in a non-rectangular wedge.

We solve explicitly a number of reference problems for the Helmholtz equation regarding
particular wedge angles, boundary conditions, and space settings, which can be modified and
generalized in various ways. The solution of these problems in Sobolev spaces was open for
some fifty years.

1. Introduction

We consider a class of so-called canonical [19, 23] boundary value problems where
we look for all weak solutions of the Helmholtz equation (Δ+k2)u = 0 in a plane cone
Ω= Ω0,α , where k ∈ C , Im(k) > 0, and

Ω0,α = {x = (x1,x2) ∈ R
2 : 0 < arg(x1 + ix2) < α}, 0 < α � 2π , (1)

which satisfy Dirichlet or Neumann conditions on the two half-line parts Γ1,Γ2 of the
boundary, also admitting the mixed type (i.e., the cases DD, NN, DN). We will look
from the very beginning for solutions with “small regularity”, i.e., u ∈ H1+ε(Ω),ε ∈
[0,1/2[ , while to a certain extent we will discuss the cases with ε ∈]−1/2,0[ as well.
The boundary data will be given in the corresponding trace spaces H1/2+ε(Γ j) or
H−1/2+ε(Γ j) , respectively. However, we have to identify the proper well-posed prob-
lems, i.e., we have to make a systematic normalization of the problem when necessary.
In fact, the compatibility conditions in this paper correspond to the minimal image nor-
malization in the sense of [25].

The most important questions consist in (a) the identification of well-posed prob-
lems or at least of those which have the Fredholm property, (b) identifying the conve-
nient spaces if the problem is not well-posed in the original setting (e.g., normalization
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by inclusion of compatibility conditions for the data), (c) finding an explicit analytical
solution, possibly in closed form, and (d) a discussion of its properties, particularly the
singular behavior near the corner.

Various authors emphasized that a rigorous analytical solution of these problems
will be helpful for a general understanding of elliptic boundary value problems in con-
ical domains [12, 15, 26, 37]. This paper is aimed at solving some of them effectively
(in the above-mentioned sense). The known results are either very limited to special
situations such as the rectangular case [3, 4, 20] or rather complicated in what concerns
the analytical methods [14, 39] or not describing appropriate function spaces, see, e.g.,
[17, 36]. For the historical background (from our point of view) and for further liter-
ature we refer to [2, 37, 39]. One of the most remarkable papers is the article of A.I.
Komec [13]. In this paper general (linear) boundary value problems for second order
elliptic differential equations are considered on manifolds with edges. Key results such
as normal solvability and the construction of parametrices are obtained, in particular for
the quarter-plane, by application of the Fourier transformation (after extension-by-zero
to the full plane) and making use of the theory of analytic functions of several variables.
However, the methods are completely different, restricted to the case of s = 1+ε > 3/2
(which is crucial for stratification of 3D problems), and do not yield explicit solutions
as in the present work.

It should also be mentioned that diffraction of waves on wedges of rational angles
was treated already by more classical methods in obtaining analytic solutions for partic-
ular incoming waves, but not as a well-posed problem in Sobolev spaces constructing
resolvent operators (see, e.g., a series of papers by A.D. Rawlins in the 1980’s [29]).
There is also a tight connection with the theory of mixed boundary value problems for
the Laplacian and other elliptic equations, which need a similar operator and space rea-
soning for efficient analytical and numerical treatment, see for instance the fundamental
paper [38] and the recent book [11].

The question of solving canonical diffraction problems in Sobolev spaces appeared
with the development of pseudodifferential operators in domains with corners and,
more generally, in Lipschitz domains, in the 1960’s, see the introduction of the book
of Vasil’ev [37] with a considerable list of references. It was popularized by Meister
[18, 19, 21], Wendland [38], Ferreira dos Santos [30] and their collaborators in the
1980’s and gave an impact on the advance of areas in operator theory, such as the con-
structive factorization of non-rational matrix functions [7] and the factorization theory
for Toeplitz plus Hankel operators [6], to mention only a few.

The present method consists of a combination of our knowledge about the analyt-
ical solution of Sommerfeld and rectangular wedge diffraction problems [3, 4, 20, 23]
with new symmetry arguments that relate the present to previously solved problems and
yield the explicit analytical solution in a great number of cases. For this purpose we
introduce here so-called “Sommerfeld potentials” (explicit solutions to special Som-
merfeld problems) whose use turns out to be most efficient. It is surprising that the
case where the angle is an integer part of 2π can be solved completely whilst the
case of “rational” angles α = 2πm/n for m � 2 appears much harder and remains, in
general, unsolved at present. An exception is the rectangular exterior wedge problem
(α = 3π/2) [2, 20] where it became evident that the continuation to general rational
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angles is not an easy enterprise.
As an interesting and very direct conclusion we obtain the result that, for the angles

under consideration, the behavior of the field gradu shows the same singularity in
the corner as (more precisely, is not worse than) in the corresponding half-plane or
Sommerfeld potential case, namely we obtain that gradu behaves asymptotically like
r−1/2 in the DD and NN problems, as well as in DN problems, if n is even, and like
r−3/4 in the DN case, if n is odd.

The limiting absorption principle is not considered in this article, since it needs
rather different techniques (variational formulation, Lax-Milgram lemma etc) such as
presented in [1] which are promising, however can be carried out only in a separate
publication.

2. Notation and basic results

We start by introducing some notation that will be useful for the formulation of
our wedge diffraction problems. Let Ω± = {(x1,x2) ∈ R2 : x2 ≷ 0} , and consider the
rotation Rα about the angle α given by

y =
(

y1

y2

)
= Rα x =

(
cosα −sinα
sinα cosα

)(
x1

x2

)
.

We also think of Rα as acting on subsets of R2 . With the help of Rα we define the
half-planes (see Figure 1)

Ω±
α = RαΩ± = {Rα x : x = (x1,x2) ∈Ω±}.

�����������������������������

�������������������������

��������������� • �
α

��Ω+
α

Ω−
α

Figure 1: Rotation Rα

Γ2
����������������������� Γ1◦

Ω0,α

�
α

��

Figure 2: The cone Ω0,α

The backward rotation is given by R−1
α = R−α :Ω±

α →Ω±
0 =Ω± , and we also need a

rotation operator acting on suitable functions (or distributions) which is given by

(Jα f )(x) = f (R−1
α x), x ∈ R

2.

For convenience we also define the (rotated) half-lines

Σ= {x = (x1,x2) ∈ R
2 : x1 > 0, x2 = 0}, Σα = RαΣ. (2)
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Moreover, for given 0 <α < 2π , we put Γ j =Σ( j−1)α . Then the boundary of the wedge
Ω0,α defined in (1) can be decomposed into ∂Ω0,α = Γ1∪Γ2 = Γ1∪Γ2 ∪{(0,0)} (cf.
Figure 2).

Furthermore, in order to make the connection with notation used in previous pa-
pers [2, 3, 20], let Qj , j = 1,2,3,4, denote the four open quadrants in R

2 , and consider
the open half-planes denoted by Qjk = intclos(Qj∪Qk) , where k = j+1 for j = 1,2,3
and jk = 41 for j = 4.

The Fourier transform acting on functions (or distributions) on Rn will be written
as

û(�ξ ) = (Fu)(�ξ ) =
∫

Rn
u(�x)exp[i�x ·�ξ ]dx1 · · ·dxn, �ξ ∈ R

n.

In addition, we need the Fourier transform (in R2 ) acting only on the first variable,

Fx1 �→ξu(x1,x2) =
∫

R

u(x1,x2)exp[iξ x1]dx1, ξ ∈ R.

By Hs = Hs(Rn) ⊂ S ′ we denote the usual Sobolev spaces equipped with the
norm

‖u‖2
Hs =

∫
Rn

|û(�ξ )|2(1+ |�ξ |2)s dξ1 · · ·dξn < ∞.

For a non-empty, open subset Ω⊆ Rn , let Hs
Ω = Hs

Ω(Rn) stand for the set of all distri-
butions in Hs with support in the closure of Ω . Notice that Hs

Ω is a closed subspace of
Hs . Any distribution in the Schwartz space S ′ can be restricted to Ω , i.e., it can be
considered as a distribution in D ′(Ω) . The restriction operator will be denoted by rΩ .
We define Sobolev spaces on Ω as images of the restriction operator as follows,

Hs(Ω) = rΩ(Hs), H̃s(Ω) = rΩ(Hs
Ω).

A norm in Hs(Ω) and H̃s(Ω) , resp., which make these spaces Hilbert spaces, is natu-
rally defined as

‖u‖Hs(Ω) = inf
�
‖�u‖Hs , ‖u‖H̃s(Ω) = inf

�0
‖�0u‖Hs .

Here �u and �0u stand for any extension of a distribution on Ω to a distribution in
Hs or Hs

Ω , respectively. The infimum is taken over all such extensions. It is clear that
H̃s(Ω) is continuously embedded in Hs(Ω) .

If Ω is a strong Lipschitz domain [11] or a special Lipschitz domain [34], then
the mapping rΩ : Hs

Ω → H̃s(Ω) is injective if and only if s � −1/2. Hence in this case
(and only in this case) one can define [9] an extension-by-zero operator

�0 : H̃s(Ω) → Hs
Ω ⊆ Hs, (3)

such that �0 is the inverse of rΩ . Clearly, H̃s(Ω) can be identified with Hs
Ω , i.e.,

H̃s(Ω) = rΩHs
Ω, Hs

Ω = �0H̃
s(Ω) for s � −1/2,
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and the norm in H̃s(Ω) is given by ‖u‖H̃s(Ω) = ‖�0u‖Hs .
We shall need the above properties mainly for cones and for the half-axes Ω =

R± = {x ∈ R : ±x > 0} . In the latter case, we will write

r± = rΩ and Hs
± = Hs

Ω

for brevity, see [11, Sec. 4.1]. Note that the δ -distribution does not belong to Hs(R)
if s � −1/2. Hence, for these values of s , H̃s(R+) and Hs

+ are identified in some
publications, cf. [8, 9, 11].

The spaces H̃s(R±) and Hs(R±) coincide exactly for s ∈ ]−1/2,1/2[. Hence in
this case the extension-by-zero operator is well defined and bounded on Hs(R±) ,

�0 : Hs(R±) → Hs
±(R) ⊆ Hs(R), s ∈]−1/2,1/2[.

For s = ±1/2, i.e., for the spaces of particular interest for the Dirichlet and Neumann
problems, we have proper, dense embeddings

H̃−1/2(R±) ⊂ H−1/2(R±), H̃1/2(R±) ⊂ H1/2(R±),

while for s ∈]1/2,3/2[ the space H̃s(R±) is a closed subspace of Hs(R±) of co-
dimension one. In fact, it consists of those (continuous) functions u with u(0) = 0.

Obviously, the even and odd extension operators �e and �o from Hs(R+) into
Hs(R) can be defined via the operator �0 in the cases s ∈]−1/2,1/2[ . However, much
more is true. In fact, the even and odd extension operators are well defined and bounded
in the following cases:

�e : Hs(R+) → Hs(R), s ∈]−1/2,3/2[,
�o : Hs(R+) → Hs(R) s ∈]−3/2,1/2[,

which includes partially the cases s = ±1/2. On the other hand, u ∈ H1/2(R+) admits
an odd extension if and only if u ∈ H̃1/2(R+) , i.e., it is extendable by zero, and u ∈
H−1/2(R+) admits an even extension if and only if u ∈ H̃−1/2(R+) . We refer to [35]
or the Appendix of [33], which contains a careful description of the details needed here.

For any s ∈ R and any strong or special Lipschitz domain Ω⊆R2 , one can define
H s(Ω) to be the set of all u ∈ Hs(Ω) such that u satisfies the Helmholtz equation

(Δ+ k2)u = 0

in the distributional sense of D ′(Ω) . Of usual interest is the case s = 1+ε , ε ∈ [0,1/2[ ,
where one obtains weak solutions with small regularity [9, 11]. We will also consider
(to some extent) the case of s = 1+ ε with ε ∈]−1/2,0[ .

In the case of the slit-plane Ω = R2 \Σ , see (2), we will also use the notation
H s(Ω) , however, the definition will be different and given later on. Notice that the
slit-plane is not a Lipschitz domain.

We will also make use of convolution type operators Aφ on the real line with
φ ∈ L∞loc(R) given by

Aφg(x) = F−1
ξ �→x φ(ξ )ĝ(ξ ), x ∈ R, (4)
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which act between (possibly different) Sobolev spaces. In particular, we consider sym-
bols φ(ξ ) equal to

t(ξ ) =
√
ξ 2− k2, ξ ∈ R, (5)

or
t1/2
+ (ξ ) = (ξ + k)1/2, t1/2

− (ξ ) = (ξ − k)1/2, ξ ∈ R, (6)

where k ∈ C with Im(k) > 0. The branch cuts are chosen vertically via ∞ not crossing
the real axis, and the choice of the square-roots are such that the asymptotics of these

three functions as ξ → +∞ is t(ξ ) ∼ ξ and t1/2
± (ξ ) ∼√ξ , respectively. One of the

basic properties of the operator Aφ is that Aφ is invertible provided so is the symbol
and that in this case A−1

φ = Aφ−1 . Moreover, we have

At : Hs(R) → Hs−1(R), A
t
1/2
±

: Hs(R) → Hs−1/2(R)

and
A

t1/2
+

: Hs
+(R) → Hs−1/2

+ (R), A
t1/2
−

: Hs
−(R) → Hs−1/2

− (R)

and similar statements for the inverses.

3. The Dirichlet problem

In this section we are going to consider the wedge diffraction problem with Dirich-
let conditions on both parts of the boundary of Ω = Ω0,α . Let us start with some pre-
liminary considerations, which are for the most part known [9, 11].

Let ε ∈ [0,1/2[ . The Dirichlet problem consists of finding the (general) solution
u ∈ H1+ε(Ω) of

(Δ+ k2)u = 0 in Ω,
T0,Γ j u = g j on Γ j,

(7)

where g j ∈ H1/2+ε(Γ j) , j = 1,2, is given boundary data, and T0,Γ j stands for the trace
operators onto the corresponding parts Γ j of the boundary. As we will see below, in
this formulation the problem is not well-posed because g1 and g2 have to satisfy a
certain compatibility condition. Uniqueness is known in this case [2, 5, 11].

The above problem can also be formulated for ε ∈]−1/2,0[ . However, we are not
aware of general uniqueness results (apart from special cases, such as the half-plane).

Let us for a moment be more general and assume that ε ∈]−1/2,1/2[ . (The state-
ments we are going to make for ε � 0 will be needed in the next section, where we
consider the Neumann problem.) Then the trace operator

T0,∂Ω : H1+ε(Ω) → H1/2+ε(∂Ω) (8)

is well defined, linear, bounded, and surjective. The trace space H1/2+ε(∂Ω) can be
defined using the Slobodetski norm. Moreover, there exist natural restrictions,

r0,Γ j : H1/2+ε(∂Ω) → H1/2+ε(Γ j), j = 1,2,
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and T0,Γ j is, by definition, equal to the composition of r0,Γ j with T0,∂Ω .
Throughout the paper, we will identify Γ j with R+ , i.e., we will think of g j in (7)

as taken from H1/2+ε(R+) . Moreover, we will think of T0,Γ j and r0,Γ j as acting into

H1/2+ε(R+) .
Given g = (g1,g2) ∈ H1/2+ε(R+)2 it will be useful to define a function ιg on R

by

ιg(x) =
{

g1(x) if x > 0
g2(−x) if x < 0

, (9)

taking any value in x = 0 if ε ∈ [0,1/2[ (see Figure 3). For ε ∈]−1/2,1/2[ the formula
might be replaced by ιg = �0g1 + J �0g2 (using the reflection operator J f (x) =
f (−x) , x ∈ R), i.e., by a continuous extension of ιg to (small) negative values of ε .

Γ2
����������������������� Γ1������������ •

Ω = Ω0,α

�
α

��

g1

g2

g2

Figure 3: Identification of Dirichlet data on ∂Ω and functions on R

The following fact characterizes the space H1/2+ε(∂Ω) .

LEMMA 3.1. Let ε ∈]−1/2,1/2[ and g = (g1,g2) ∈ H1/2+ε(R+)2 . Then the fol-
lowing conditions are equivalent:

(DD-1) r0,Γ1g = g1 and r0,Γ2g = g2 for some (unique) g ∈ H1/2+ε(∂Ω) ,

(DD-2) ιg ∈ H1/2+ε(R),

(DD-3) g1−g2 ∈ H̃1/2+ε(R+) .

The last condition is the compatibility condition for the problem (7), which is
redundant if and only if ε ∈ ]−1/2,0[ . The above equivalencies suggest to define (for
ε ∈]−1/2,1/2[) the Banach space

H1/2+ε(R+)2
∼ =

{
g = (g1,g2) ∈ H1/2+ε(R+)2 with g1−g2 ∈ H̃1/2+ε(R+)

}
with the norm

‖g‖H1/2+ε(R+)2∼ = ‖ιg‖H1/2+ε(R).
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Equivalent norms are given by ‖g‖H1/2+ε(∂Ω) and by

‖g1 +g2‖H1/2+ε (R+) +‖g1−g2‖H̃1/2+ε (R+).

Let us now return to the Dirichlet problem (7) and assume that ε ∈ [0,1/2[ . The
correct formulation of the problem (or, more precisely, the minimal image normal-
ization in the sense of [25]) is to consider the trace operators restricted to the space
H 1+ε(Ω) of solutions of the Helmholtz equation, i.e., to consider the operator

T ε
D,Ω : u ∈ H 1+ε(Ω) �→ (T0,Γ1u,T0,Γ2u) ∈ H1/2+ε(R+)2

∼. (10)

Obviously, this operator is linear, bounded, and injective, while it is not a-priori clear
whether it is surjective.

Our goal is to show that this operator is surjective and to obtain an explicit repre-
sentation formula for the inverse K ε = (T ε

D,Ω)−1 in the case Ω = Ω0,α with angles
α = 2π/n . In fact, the surjectivity follows immediately form the representation for-
mula, as does the fact that T ε

D,Ω and K ε are linear homeomorphism between the
appropriate spaces.

The construction of the representation formulas will be based on the special case
of the upper-half plane Q12 = Ω+ , where the solution to the Dirichlet problem is well
known (see, e.g., [3, 23, 32]). Indeed the solution is given by

u(x) = (KD,Q12 f )(x) = F−1
ξ �→x1

e−t(ξ )x2 f̂ (ξ ), x = (x1,x2) ∈ Q12.

Similarly, the solution in the lower-half plane Q34 = Ω− is given by

u(x) = (KD,Q34 f )(x) = F−1
ξ �→x1

et(ξ )x2 f̂ (ξ ), x = (x1,x2) ∈ Q34.

By rotation we can generalize these formulas to the rotated half-planes Ω±
α , which is

precisely what we will need. Then these formulas read as follows:

(KD,Ω±
α

f )(x) (11)

=
1
2π

∫
R

exp[−iξ (x1 cosα+ x2 sinα)∓ t(ξ )(−x1 sinα + x2 cosα)] f̂ (ξ )dξ ,

where x = (x1,x2) ∈Ω±
α , α ∈ R , and f ∈ H1/2+ε(R) is given.

PROPOSITION 3.2. For ε ∈ [0,1/2[ , α ∈ R , and f ∈ H1/2+ε(R) , the functions

u+ = KD,Ω+
α

f , u− = KD,Ω−
α

f

represent the unique solutions of the Helmholtz equation in H1+ε(Ω±
α ) , respectively,

satisfying the Dirichlet boundary conditions

T0,∂Ω+
α
u+ = Jα f , T0,∂Ω−

α
u− = Jα f .

(identifying f as a function on ∂Ω±
0 ). Moreover, the mappings

KD,Ω±
α

: H1/2+ε(R) → H 1+ε(Ω±
α )

are linear homeomorphisms.
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Proof. The Helmholtz equation is invariant for linear motions (rotation, reflection,
translation). Thus we obtain the representation formulas by rotation from the solution
in Ω± ,

u+(x) = (JαKD,Q12 f )(x) = (KD,Q12 f )(R−1
α x), x ∈Ω+

α .

A similar formula holds for u− . The fact that KD,Ω±
α

are linear homeomorphisms
follows also from the known case of the upper/lower-half plane. �

We remark that Proposition 3.2 actually holds for all ε ∈]−1/2,+∞[ .
The solutions obtained by the operators KD,Ω±

α
enjoy a couple of basic properties,

which can be verified straightforwardly. These facts will be used frequently in what
follows and read as

KD,Ω+
α

f = KD,Ω−
α±π f̃ , f̃ (x) = f (−x), (12)

T0,ΣαKD,Ω±
α

f = r+ f , (13)

T0,Σγ (KD,Ω+
α
−KD,Ω−

β
) f = 0 (14)

if γ = (α + β )/2 and 0 � β −α � 2π . Recall the definition (2) and notice that the
trace operators T0,Σγ : H1+ε(Ω) → H1/2+ε(R+) , with the identification R+ ∼= Σγ , are
well defined, bounded linear operators as long as Σγ ⊆Ω .

3.1. The case α = 2π/n , n ≡ 2 mod 4

The special case n = 2 is already solved by Proposition 3.2, but it is also included
in the following theorem.

THEOREM 3.3. Let α = 2π/n with n ≡ 2 mod 4 , and let ε ∈ [0,1/2[ . The
Dirichlet problem for the Helmholtz equation in Ω = Ω0,α in weak formulation with
Dirichlet data g ∈ H1/2+ε(R+)2∼ is uniquely solved by u = K εg, where

K εg = rΩ

⎛⎝KD,Ω+
0

+

n−2
4

∑
j=1

(
KD,Ω+

−2 jα
−KD,Ω−

2 jα

)⎞⎠ ιg. (15)

Moreover, the operator K ε : H1/2+ε(R)2∼ → H 1+ε(Ω) is a linear homeomorphism.

Proof. It is obvious that given g = (g1,g2) ∈ H1/2+ε(R+)2∼ , the function u =
K εg is a solution, i.e., it belongs to H 1+ε(Ω) . Notice that Ω is a subset of all the
half-planes that appear in (15). Moreover, the operator K ε is bounded.

The boundary condition on Γ1 = Σ0 is satisfied because T0,Γ1KD,Ω+
0
ιg = g1 due

to (13), and T0,Γ1KD,Ω+
−2 jα

= T0,Γ1KD,Ω−
2 jα

due to (14). Note that 0 < 4 jα < 2π .

In order to get the corresponding result for the boundary condition on Γ2 = Σα
note that

K εg = rΩ

⎛⎝KD,Ω+
−(n−2)α/2

+

n−2
4

∑
j=1

(
KD,Ω+

2(1− j)α
−KD,Ω−

2 jα

)⎞⎠ ιg
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by a change of variables. Moreover, Ω+
−(n−2)α/2 =Ω−

α and 0 < 2(2 j−1)α < 2π . Now
the same kind of reasoning as before can be applied.

Hence we have shown that the (unique) solution of the Dirichlet problem with
boundary data g is given by u =K εg . Since the operators T ε

D,Ω and K ε are bounded,

we can directly conclude that K ε = (T ε
D,Ω)−1 is a linear homeomorphism. �

EXAMPLE 3.4. Figure 4 illustrates the situation of Theorem 3.3 for n = 6, where
the solution is composed of three terms defined in half-planes whose intersection is
Ω0,π/3 .

Ω0,π/3

�
α = π/3��

g1

g2−g1

g2

g1 −g2

Γ1

Γ2
����������������

Γ3����������������
Γ4

Γ5

��
��
��
��
��
��
��
��

Γ6

��
��

��
��

��
��

��
��

�� ��

�����
�

�����
� ��				

��				

Figure 4: Solution of the DD problem for α = π/3 by superposition of three half-plane solutions

3.2. The case α = 2π/n , n ≡ 0 mod 4

For sake of illustration, let us recall the simplest case. The Dirichlet problem for a
quarter-plane (n = 4, ε = 0) is known to be uniquely solvable [20] by

u = KD,Q1(g1,g2) = rQ1(KD,Ω+�og1−KD,Ω+
−π/2

�og2), (16)

where the last term coincides with +KD,Ω−
π/2

�og2 due to (12).

We remark that �og j ∈ H1/2(R) if and only if g j ∈ H̃1/2(R+) , which is a dense
subspace of H1/2(R) . Hence, the two parts of (16) represent (possibly) unbounded and
densely defined operators into H 1(Q12) or H 1(Q41) , respectively, and into H 1(Q1)
after restriction, which add up to a bounded operator

KD,Q1 : H1/2(R+)2
∼ → H 1(Q1).

The following result is a direct generalization.
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THEOREM 3.5. Let α = 2π/n with n ≡ 0 mod 4 , and Ω = Ω0,α . For g =
(g1,g2) ∈ H̃1/2(R+)2 define the linear operator

K̃ g = rΩ

( n
4

∑
j=1

(
KD,Ω+

2(1− j)α
�og1 +KD,Ω−

(2 j−1)α
�og2

))
. (17)

Then this operator can be extended by continuity to a linear homeomorphism

K 0 : H1/2(R+)2
∼ → H 1(Ω).

For ε ∈]0,1/2[ , the restriction of K 0 to H1/2+ε(R+)2∼ maps into H 1+ε(Ω) , and

K ε : H1/2+ε(R+)2
∼ → H 1+ε(Ω)

is also a linear homeomorphism.
Moreover, the Dirichlet problem for the Helmholtz equation in Ω in weak for-

mulation with Dirichlet data g ∈ H1/2+ε(R+)2∼ , ε ∈ [0,1/2[ , is uniquely solved by
u = K εg.

Before we proceed to the proof, let us remark that H̃1/2(R+)2 is a dense subspace
of H1/2(R+)2∼ . Hence the continuous extension K 0 of K̃ is unique (provided it ex-
ists). Notice, however, that H̃1/2+ε(R+)2 is a proper closed subspace of H1/2+ε(R+)2∼
for ε ∈]0,1/2[ . Hence K ε cannot be defined in the same way as K 0 .

The definition of K 0 and K ε via continuous continuation and restriction is
somewhat cumbersome. It arises the natural question whether each solution u = K εg
for g ∈ H1/2+ε(R+)2∼ is given by formula (17) when we think of the operators ap-
pearing in this formula as acting between appropriately modified spaces. A moment’s
thought shows that this is true. Namely, think of K̃ as a bounded linear operator from
H̃1/2−δ(R+)2 = H1/2−δ (R+)2∼ ⊃ H1/2(R+)2∼ into H1−δ (Ω) for some δ ∈]0,1/2[ .
With this re-interpretation of K̃ it is almost immediately clear that K̃ g = K εg for
all g ∈ H1/2+ε(R+)2∼ .

Proof. For ε ∈ [0,1/2[ , if we take g∈ H̃1/2+ε(R+)2 , then both �og1 and �og2 be-
long to H1/2+ε(R) . Hence K̃ is a linear operator from H̃1/2+ε(R+)2 into H1+ε(Ω) .
In fact, K̃ g is a solution of the Helmholtz equation, and thus it belongs to H 1+ε(Ω) .

Next we are going to verify that T0,Γ1K̃ g = g1 and T0,Γ2K̃ g = g2 for g ∈
H̃1/2+ε(R+)2 . Let us focus on the trace on the boundary Γ1 . The trace on the boundary
Γ2 can be computed analogously or deduced by a symmetry argument.

Notice that Γ1 = Σ0 . Using (13) the contribution of the first term of the sum in
(17) for j = 1 gives

T0,Γ1 KD,Ω+
0

�og1 = g1.

The remaining sum over the first terms can be expressed as

n
4

∑
j=2

T0,Γ1KD,Ω+
2(1− j)α

�og1 =

n
4

∑
j=2

T0,Γ1KD,Ω+
2( j−1− n

4 )α
�og1
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by making a change of variables j �→ n
4 + 2− j . Using nα

2 = π , the fact that �og1 is
odd, and (12) we see that this equals

−
n
4

∑
j=2

T0,Γ1KD,Ω−
2( j−1)α

�og1 = −
n
4

∑
j=2

T0,Γ1KD,Ω+
2(1− j)α

�og1,

where we used (14) and 0 < 2( j−1)α < π in order to derive the last identity. We thus
can conclude that the sum with which we started must be zero.

The contribution involving the functions g2 is also zero. Indeed, making a change
of variables j �→ n

4 +1− j we obtain

n
4

∑
j=1

T0,Γ1KD,Ω−
(2 j−1)α

�og2 =

n
4

∑
j=1

T0,Γ1KD,Ω−
( n
2 +1−2 j)α

�og2.

By the same kind of arguments as before this equals

−
n
4

∑
j=1

T0,Γ1KD,Ω+
(1−2 j)α

�og2 = −
n
4

∑
j=1

T0,Γ1KD,Ω−
(1−2 j)α

�og2,

where for the last equality we used (14) and 0 < (2 j−1)α < π .
So far we have shown that for ε ∈ [0,1/2[ the operator K̃ maps H̃1/2+ε(R+)2

into H 1+ε(Ω) , and that T εK̃ |H̃1/2+ε (R+)2 = IH̃1/2+ε (R+)2 , where T ε = T ε
D,Ω is the

corresponding trace operator defined by (10).
Now we want to show that T ε is surjective, i.e., that there exists a solution to

the Dirchlet problem for all data (g1,g2) ∈ H1/2+ε(R+)2∼ . We reduce the problem to
a semi-homogeneous problem by the substitution u = v+w where v is a solution of
the Helmholtz equation in the half-plane Ω+

0 , which covers Ω and whose boundary
is the union of Γ1 and −Γ1 . We require that v = g1 on Γ1 . A construction of v is
easily done by Proposition 3.2, e.g., we may require in addition that v = g1 on −Γ1

noting that �eg1 ∈ H1/2+ε(R) . In other words, v = rΩKD,Ω+
0
�eg1 . Now let φ be the

trace of v on Γ2 . Because of the compatibility conditions it follows that φ − g1 is
in H̃1/2+ε(R+) . The remaining problem is to find w such that w = 0 on Γ1 and
w = g2−φ on Γ2 . Notice that the compatibility condition for this problem is fulfilled
because g2−φ = (g2−g1)+(g1−φ) is in the tilde space. Hence using what we have
shown in the first part of the proof, we can conclude that T ε is surjective.

It follows that the inverse of T ε exists and is bounded by the inverse mapping
theorem. We obtain

K̃ |H̃1/2+ε (R+)2 = (T ε)−1|H̃1/2+ε (R+)2 ,

from which we conclude (for ε = 0) that K̃ has a unique continuous extension K 0 :
H1/2(R+)2∼ → H 1(Ω) .

Furthermore, we obtain now the identity K 0T 0 = IH 1(Ω) . Restricting it to the

space H 1+ε(Ω) it follows that K εT ε = IH 1+ε (Ω) by definition of K ε . Thus K ε
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is the left inverse of T ε . Because T ε is bounded and invertible, we conclude again
by the inverse mapping theorem that K ε is bounded and in fact a linear homeomor-
phism with inverse T ε . As a consequence the solution to the Dirichlet boundary value
problem with data in g ∈ H1/2+ε(R+)2∼ is uniquely given by u = K εg . �

3.3. The case α = 2π/n , n ≡ 1 mod 2

In order to deal with the case of odd n , we have to rely on the solutions of
the Helmholtz equation in the (rotated) slit-plane with Dirichlet boundary conditions
[3, 31]. These solutions are given by different surface potentials, and will be called
Sommerfeld potentials with Dirichlet density.

Let us first focus on the usual (non-rotated) slit-plane Ω = R2\Σ , where Σ ={
x ∈ R2 : x1 > 0,x2 = 0

}
. The weak solutions of the Helmholtz equation in Ω can be

composed of the solutions in the upper and lower half-plane Ω± , satisfying the appro-
priate compatibility (or jump) conditions on −Σ . More precisely, for ε ∈ [−1/2,1/2[
we define

H 1+ε(R2\Σ) =
{

u ∈ L2(R2) : u± = u|Ω± ∈ H 1+ε(Ω±),

u+
0 −u−0 ∈ H1/2+ε

+ (R), u+
1 +u−1 ∈ H−1/2+ε

+ (R)
}

where

u±0 = T0,Ru± ∈ H1/2+ε(R), u±1 = T1,Ru± = ±T0,R
∂u±

∂x2
∈ H−1/2+ε(R)

are the Dirichlet and Neumann data of u± on the boundary R = ∂Ω± of the upper and
lower half-plane, respectively. Recall (8) for the definition of T0,R , and see (26) and
(27) in the next section for T1,R .

It is well known that the jump conditions imply that u ∈ H 1+ε(R2\Σ) satisfies
the Helmholtz equation in the sense of a distribution in D ′(Ω) (more precisely, in any
Lipschitz subdomain of Ω),

(Δ+ k2)u = 0. (18)

Now the Dirichlet problem for the slit-plane R2\Σ consists of finding u∈H 1+ε(R2\Σ)
such that

T0,Σ+u = f1, T0,Σ−u = f2, (19)

where ( f1, f2) are the given boundary data, and the operators T0,Σ± are defined by

T0,Σ±u = r+u±0 = r+T0,Ru|Ω± ∈ H1/2+ε(R+). (20)

for any given u ∈ H 1+ε(R2\Σ) .
It follows immediately from the jump conditions that ( f1, f2) must be taken from

H1/2+ε(R+)2∼ . Hence we encounter the same compatibility conditions as for the cones
Ω0,α with 0 < α < 2π .
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As for the rotated slit-planes R2\Σα , where Σα = RαΣ , we define

H 1+ε(R2\Σα) = JαH 1+ε(R2\Σ),

and the corresponding trace operators by T0,Σ±α u = T0,Σ±J−1
α u .

Recall the definitions (3), (4) and (6), and define the bounded linear operator

Π1/2 = A
t
−1/2
−

�0r+A
t
1/2
−

: Hs(R) → Hs(R), s ∈]0,1[.

Moreover, introduce the operator matrices (thought of as “symmetrization operators”)

ϒD =
(

I −I
I I

)
, ϒ−1

D =
1
2

(
I I
−I I

)
acting on appropriate spaces. Finally, we will use �φ to denote any extension of φ ∈
Hs(R+) to Hs(R) . The symbol � will be used when the term does not depend on the
choice of the extension.

DEFINITION 3.6. For ε ∈ [0,1/2[ , α ∈ R , and f ∈ H1/2+ε(R+)2∼ the function

u(x) = (KD,R2\Σα f )(x) =
{

(KD,Ω+
α
u+

0 )(x) x ∈Ω+
α

(KD,Ω−
α
u−0 )(x) x ∈Ω−

α
(21)

with (
u+

0
u−0

)
= ϒ−1

D

(
I 0
0 Π1/2

)(
�0 0
0 �

)
ϒD f (22)

is called a Sommerfeld potential with Dirichlet density f .

PROPOSITION 3.7. Let ε ∈ [0,1/2[ , α ∈ R , and f = ( f1, f2) ∈ H1/2+ε(R+)2∼ .
The Dirichlet problem for the Helmholtz equation in R2\Σα is uniquely solved by the
Sommerfeld potential u = KD,R2\Σα f . Moreover, the operator

KD,R2\Σα : H1/2+ε(R+)2
∼ → H 1+ε(R2\Σα)

is a linear homeomorphism.

Proof. This is mainly a modification of formers results [23, 31]. Without loss of
generality we can assume that α = 0. The uniqueness of the Dirichlet problem in the
slit-plane is well-known [31].

Suppose that u is given by (21) and (22). First let us rewrite (22) as

u+
0 −u−0 = �0( f1 − f2)

and
u+

0 +u−0 = A
t−1/2
−

�0r+A
t1/2
−

�( f1 + f2).
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Keeping track of the intermediated spaces between which the operators in the above
expression act and using the fact that ε ∈ [0,1/2[ , one can conclude that the map from
f ∈ H1/2+ε(R+)2∼ to (u+

0 ,u−0 ) ∈ H1/2+ε(R)2 is well defined, linear, and bounded.
Moreover, r−(u+

0 −u−0 ) = 0 and

r−At(u+
0 +u−0 ) = r−A

t
1/2
+

�0r+A
t
1/2
−

�( f1 + f2) = 0

because A
t
1/2
+

�0 acts from Hε(R+) = H̃ε(R+) into H−1/2+ε
+ (R) .

If we put u± = u|Ω± , then u± ∈ H 1+ε(Ω±) , and the Dirichlet and Neumann
boundary data of u+ and u− (on R = ∂Ω± ) are just given by

T0,Ru± = u±0 , T1,Ru± = −Atu
±
0 = u±1 .

These facts follow from the representation formula (21) and the definition of KD,Ω± .
From the statements made in the previous paragraph we obtain

u+
0 −u−0 = T0,Ru+−T0,Ru− ∈ H1/2+ε

+ (R),

u+
1 +u−1 = T1,Ru+ +T1,Ru− ∈ H−1/2+ε

+ (R),

and conclude that u ∈ H 1+ε(R2\Σ) . Because all mappings encountered are bounded,
we infer that KD,R2\Σ is bounded from H1/2+ε(R+)2∼ into H 1+ε(R2\Σ) .

Finally, let us verify that u satisfies the correct boundary conditions on the two
banks of Σ . We clearly have r+(u+

0 −u−0 ) = f1 − f2 , and moreover

r+(u+
0 +u−0 ) = r+A

t−1/2
−

�0r+A
t1/2
−

�( f1 + f2) = r+A
t−1/2
−

A
t1/2
−

�( f1 + f2)

= r+�( f1 + f2) = f1 + f2.

Here we used the fact that the image of I− �0r+ in Hε(R) is Hε−(R) , which is sent by

A
t
−1/2
−

into H1/2+ε
− (R) . Consequently we obtain r+u+

0 = f1 and r+u−0 = f2 , which are

the correct Dirichlet boundary conditions.
Thus we have proved that KD,R2\Σ has as its left inverse the trace operator, which

acts from H 1+ε(R2\Σ) into H1/2+ε(R+)2∼ and is bounded and injective. From this
we can conclude that both operators are inverse to each other and are linear homeomor-
phisms. �

Next we are going to study the superposition of Sommerfeld potentials with sym-
metry properties. For f ∈ H1/2+ε(R+)2∼ consider the involution

f # =
(

f1
f2

)#

=
(

f2
f1

)
(23)

(which corresponds to the flip operator when making the identification (9)). For conve-
nience let

f # j =
{

f # if j is odd
f if j is even.

We proceed with an auxiliary result similar to formula (14).
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LEMMA 3.8. Let α,β ∈ R be such that 0 < |β −α| < 2π , let ε ∈ [0,1/2[ , and
f ∈ H1/2+ε(R+)2∼ . Then(

KD,R2\Σα f −KD,R2\Σβ f #
)

(x) = 0

for x ∈ Σα+β
2

∪Σα+β
2 +π in the sense of the trace theorem, i.e.,

T0,Σγ

(
KD,R2\Σα f −KD,R2\Σβ f #

)
= 0

for γ = α+β
2 + jπ , j ∈ {0,1} .

Proof. The main observation is that if the operator (22) sends f = ( f1, f2) to u0 =
(u+

0 ,u−0 ) , then it sends f # = ( f2, f1) to u#
0 = (u−0 ,u+

0 ) . From that point on, one only
needs to apply formula (14). We leave the details to the reader. �

THEOREM 3.9. Let α = 2π/n with n ≡ 1 mod 2 , n � 3 , and let ε ∈ [0,1/2[ .
The Dirichlet problem for the Helmholtz equation in Ω = Ω0,α in weak formulation
with Dirichlet data g ∈ H1/2+ε(R+)2∼ is uniquely solved by u = K εg, where

K εg = rΩ

(
n

∑
j=1

(−1) j+1KD,R2\Σ jα
g#( j+1)

)
. (24)

Moreover, the operator K ε : H1/2+ε(R+)2∼ →H 1+ε(Ω) is a linear homeomorphism.

Proof. We first observe that u = K εg is a solution of the Helmholtz equation
in H 1+ε(Ω) . In order to verify that the Dirichlet conditions are satisfied we split the
formula into

K εg = rΩ

(
KD,R2\Σ0

g+
n−1

∑
j=1

(−1) j+1KD,R2\Σ jα
g#( j+1)

)
.

If we take the trace on Γ1 = Σ0 we see that the first term gives g1 , while the term
that consists of the sum from j = 1 to n− 1 gives zero. This can be seen by similar
cancelation arguments as in the proof of Theorem 3.5 and by using Lemma 3.8. As for
the trace on Γ2 = Σα , we split the expression into

K εg = rΩ

(
KD,R2\Σα g+

n

∑
j=2

(−1) j+1KD,R2\Σ jα
g#( j+1)

)
and proceed analogously. We conclude that u = K εg is the (unique) solution of the
Dirichlet problem. Because K ε is bounded, it follows that the operator is a linear
homeomorphism. �

REMARK. The operators K ε defined in Theorem 3.3, Theorem 3.5, and Theo-
rem 3.9 can be defined also for values ε ∈]−1/2,0[ . In fact, they represent bounded
linear operators

K ε : H1/2+ε(R+)2
∼ → H 1+ε(Ω),
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and u = K εg with g ∈ H1/2+ε(R+)2∼ represents a solution of the Helmholtz equation
in H1+ε(Ω) with trace given by g = (g1,g2) .

The crucial point here is that Proposition 3.2 and Proposition 3.7 also hold for
ε ∈]−1/2,0[ without any changes. The statements corresponding to Theorem 3.3 and
Theorem 3.9 can be proved in the very same way. The analogue of Theorem 3.5
and its proof is even easier because we do not have compatibility conditions, i.e.,
H1/2+ε(R+)2∼ = H1/2+ε(R+)2 = H̃1/2+ε(R+)2 . In particular, one can directly define
K ε by (17) without the detour of continuous extension. This is because the odd-
extension operators �o are continuous on the appropriate spaces. Moreover, the bound-
edness of the various operators K ε follows from the boundedness of the operators
KD,Ω±

α
and KD,R2\Σα .

An issue which we do not want to take up to discuss is the uniqueness of the
Dirichlet problem in the case ε ∈]−1/2,0[ , or, equivalently, the injectiveness of T ε

D,Ω
and the surjectiveness of the operators K ε . In case of the half-plane and the slit-plane
the Dirichlet problem is known to be unique also for ε ∈]−1/2,0[ .

4. The Neumann problem

Let us now consider the Neumann problem for the Helmholtz equation [11, 20]
on the wedge Ω=Ω0,α . Given data g j ∈ H−1/2+ε(Γ j) and ε ∈ [0,1/2[, the Neumann
problem consists of finding all u ∈ H1+ε(Ω) such that

(Δ+ k2)u = 0 in Ω,
T1,Γ j u = g j on Γ j,

(25)

where formally T1,Γ j = T0,Γ j
∂
∂n j

and the normal derivative n j on Γ j is directed into the

interior of Ω . Note that T1,Γ j u does not exist for arbitrary u ∈ H1+ε(Ω) , but it exists
for each weak solution of the Helmholtz equation u ∈ H 1+ε(Ω) in a strong or special
Lipschitz domain [11].

More precisely, we can define

T1,∂Ω : H 1+ε(Ω) → H−1/2+ε(∂Ω) (26)

by

〈T1,∂Ωu |T0,∂Ωv〉 =
∫
Ω
(k2u(x)v(x)−∇u(x) ·∇v(x))dx, v ∈ H1−ε(Ω). (27)

This definition is motivated by Green’s formula and makes sense for ε ∈]−1/2,1/2[ .
Here the trace space is defined as a dual space,

H−s(∂Ω) = (Hs(∂Ω))′, s > 0.

There exist natural “restrictions” ( j = 1,2)

r1,Γ j : g ∈ H−1/2+ε(∂Ω) → g j ∈ H−1/2+ε(Γ j) = (H̃1/2−ε(Γ j))′



18 T. EHRHARDT, A. P. NOLASCO AND F.-O. SPECK

defined by
〈g j |φ 〉 = 〈g |�0,Γ jφ 〉, φ ∈ H̃1/2−ε(Γ j),

with �0,Γ j : H̃
1/2−ε(Γ j)→H1/2−ε(∂Ω) denoting the extension-by-zerooperator, whose

definition is justified by the equivalencies (DD-1)–(DD-3) of Lemma 3.1. The operator
T1,Γ j is, by definition, the composition of r1,Γ j with T1,∂Ω .

The analogue of the mapping ι defined by (9) is now (as we are dealing with
distributions) slightly more tedious to define. For

g = (g1,g2) ∈ H−1/2+ε(R+)2 ∼= (H̃1/2−ε(R+))′ � (H̃1/2−ε(R+))′,

we put
〈 ιg |φ 〉 = 〈g1 |φ+ 〉+ 〈g2 |φ− 〉,

where
φ = �0φ+ + �0φ− ∈ H1/2−ε

+ (R)+H1/2−ε
− (R) ⊆ H1/2−ε(R).

The functional ιg may or may not extend by continuity to a distribution in H−1/2+ε(R)
= (H1/2−ε(R))′ . However, due to density of the last inclusion, the extension is unique
for ε ∈ [0,1/2[ if it exists. Notice that this fact is no longer true for ε ∈]−1/2,0[ .
Hence for this and some other reasons, which will occasionally be mentioned, we will
mostly restrict ourselves to the case ε ∈ [0,1/2[ .

LEMMA 4.1. For ε ∈ [0,1/2[ and g = (g1,g2) ∈ H−1/2+ε(R+)2 , the following
three statements are equivalent:

(NN-1) r1,Γ1g = g1 and r1,Γ2g = g2 for some (unique) g ∈ H−1/2+ε(∂Ω) ,

(NN-2) ιg ∈ H−1/2+ε(R) ,

(NN-3) g1 +g2 ∈ H̃−1/2+ε(R+) .

The last condition is redundant for ε ∈ ]0,1/2[ . Thus we have only a compatibility
condition in the case ε = 0. For ε ∈]−1/2,0[ the above characterization fails. We
define the Banach space

H−1/2+ε(R+)2
∼ =

{
g = (g1,g2) ∈ H−1/2+ε(R+)2 with g1 +g2 ∈ H̃−1/2+ε(R+)

}
,

with the norm ‖g‖H−1/2+ε(R+)2∼ = ‖ιg‖H−1/2+ε(R) . Equivalent norms are given by
‖g‖H−1/2+ε(∂Ω) and ‖g1−g2‖H−1/2+ε (R+) +‖g1 +g2‖H̃1/2+ε (R+) .

The natural formulation for the Neumann problem (25), assuming ε ∈ [0,1/2[ , is
to consider the trace operator onto both parts of the boundary, analogous to (10),

T ε
N,Ω : u ∈ H 1+ε(Ω) �→ (T1,Γ1u,T1,Γ2u) ∈ H−1/2+ε(R+)2

∼. (28)

This operator is linear, bounded and injective, whereas its surjectiveness is not a-priori
clear.
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For ε ∈]−1/2,0[ , however, this operator is not injective. In fact, the function

u(x1,x2) = H(1)
0 (kr), r =

√
x2
1 + x2

2,

where H(1)
0 (z) is a Hankel function (Bessel function of the third kind) with parameter

zero, lies in the kernel of T ε
N,Ω for any wedge Ω = Ω0,α , 0 < α < 2π , or even the

slit-plane.
The goal of this section is to construct explicitly the inverses of the operators

T ε
N,Ω , which will again be denoted by K ε , for wedges Ω = Ω0,α and ε ∈ [0,1/2[ .

As in the Dirichlet case, it will follow that the mappings T ε
N,Ω and K ε are linear

homeomorphism and that K ε = (T ε
N,Ω)−1 .

PROPOSITION 4.2. For ε ∈ [0,1/2[ , α ∈ R , and f ∈ H−1/2+ε(R) , the functions

u+ = KN,Ω+
α

f = −KD,Ω+
α
At−1 f , u− = KN,Ω−

α
f = −KD,Ω−

α
At−1 f , (29)

represent the unique solutions of the Helmholtz equation in H1+ε(Ω±
α ) , respectively,

satisfying the Neumann boundary conditions

T1,∂Ω+
α
u+ = Jα f , T1,∂Ω−

α
u− = Jα f .

Moreover, the mappings

KN,Ω±
α

: H−1/2+ε(R) → H 1+ε(Ω±
α )

are linear homeomorphisms.

Proof. Again the result can be derived from the upper and lower half-plane case
by rotation. Note that in the upper half-plane case we have the normal derivative ∂

∂x2

whereas in the lower half-plane case we have − ∂
∂x2

. �

The previous proposition can be generalized to the case ε ∈]−1/2,0[ , and with
appropriate modifications regarding the definition of the operators T1,∂Ω±

α
even to the

case ε ∈]−1/2,+∞[ .
By analogy with the formulas (12)–(14) we have the following equalities in the

Neumann case:

KN,Ω+
α

f = KN,Ω−
α±π

f̃ , f̃ (x) = f (−x), (30)

T1,ΣαKN,Ω±
α

f = r+ f , (31)

T1,Σ±γ (KN,Ω+
α
−KN,Ω−

β
) f = 0 (32)

if γ = (α +β )/2 and 0 < β −α < 2π . Unlike the Dirichlet problem, there is a minor
ambiguity in choosing the direction of the normal derivative for the operators T1,Σγ .
Therefore we use the notation T1,Σ±γ to indicate that the normal derivative should be
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taken into positive (+ ) or negative (− ) direction when considering the ray Σγ = RγΣ .
The ambiguity will cause no trouble. The definition of the operators T1,Σα and T1,Σ±γ is
analogous to the definition of T1,Γ j .

In order to deal with the case of odd n , we need to define the analogue of the
Sommerfeld potentials in the Neumann case, and prove a corresponding result about
the operator KN,R2\Σα (to be defined below). In this case we need the operator

Π−1/2 = A
t
1/2
−

�0r+A
t
−1/2
−

: Hs(R) → Hs(R),

with s ∈]−1,0[ (or, actually only s ∈]−1/2,0] when assuming ε ∈ [0,1/2[), and the
operator matrices

ϒN =
(

I I
I −I

)
, ϒ−1

N =
1
2

(
I I
I −I

)
.

DEFINITION 4.3. For ε ∈ [0,1/2[ , α ∈ R , and f ∈ H−1/2+ε(R+)2∼ , define

u(x) = (KN,R2\Σα f )(x) =
{

(KN,Ω+
α
u+

1 )(x) x ∈Ω+
α

(KN,Ω−
α
u−1 )(x) x ∈Ω−

α
(33)

with (
u+

1
u−1

)
= ϒ−1

N

(
I 0
0 Π−1/2

)(
�0 0
0 �

)
ϒN f . (34)

The function u is called the Sommerfeld potential with Neumann density f .

PROPOSITION 4.4. Let ε ∈ [0,1/2[ , α ∈ R , and f = ( f1, f2) ∈ H−1/2+ε(R+)2∼ .
The Neumann problem for the Helmholtz equation in R2\Σα is uniquely solved by
u = KN,R2\Σα f . Moreover, the operator

KN,R2\Σα : H−1/2+ε(R+)2
∼ → H 1+ε(R2\Σα)

is a linear homeomorphism.

Proof. The proof is very similar to the Dirichlet case. Again assume α = 0 and
note the uniqueness of the Neumann problem in the slit-plane.

Let u be given by (33) and (34). Rewrite (34) as

u+
1 +u−1 = �0( f1 + f2) (35)

and
u+

1 −u−1 = A
t1/2
−

�0r+A
t−1/2
−

�( f1 − f2).

Because ε ∈ [0,1/2[ , the map from f ∈H−1/2+ε(R+)2∼ to (u+
1 ,u−1 ) ∈H−1/2+ε(R)2 is

well defined and bounded. Clearly, r−(u+
1 +u−1 ) = 0 and

r−At−1(u+
1 −u−1 ) = r−A

t
−1/2
+

�0r+A
t
−1/2
−

�( f1− f2) = 0.
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Let u± = u|Ω± . Then u± ∈H 1+ε(Ω±) , and the Dirichlet and Neumann boundary
data of u+ and u− are

T0,Ru± = −At−1u±1 = u±0 , T1,Ru± = u±1 .

From the above conclusions we obtain

u+
0 −u−0 = T0,Ru+−T0,Ru− ∈ H1/2+ε

+ (R),

u+
1 +u−1 = T1,Ru+ +T1,Ru− ∈ H−1/2+ε

+ (R),

and thus u ∈ H 1+ε(R2\Σ) . The operator KN,R2\Σ is bounded.

Let us check the Neumann boundary conditions. Obviously, r+(u+
1 +u−1 ) = f1 +

f2 . Furthermore,

r+(u+
1 −u−1 ) = r+A

t
1/2
−

�0r+A
t
−1/2
−

�( f1− f2) = r+A
t
1/2
−

A
t
−1/2
−

�( f1 − f2)

= r+�( f1 − f2) = f1 − f2.

It follows that r+u+
1 = f1 and r+u−1 = f2 , as desired. As in the Dirichlet case, it follows

immediately that KN,R2\Σ is a homeomorphism. �

If one tries to generalize this proposition to the case ε ∈]−1/2,0[ , one encoun-
ters the difficulty that the operator �0 in (34) (see also (35)) is not well defined from

H̃−1/2+ε(R+) into H−1/2+ε
+ (R) . In fact, one could arbitrarily add a δ -distribution at

the point zero. This is related to the fact that the operator T ε
N,Ω is not injective for

ε ∈]−1/2,0[ .
The analogue of Lemma 3.8 is the following formula

T1,Σγ

(
KN,R2\Σα f −KN,R2\Σβ f #

)
= 0 (36)

which holds under the assumptions 0 < |β−α|< 2π , ε ∈ [0,1/2[ , f ∈H−1/2+ε(R+)2∼
and γ = (α +β )/2+ jπ , j ∈ {0,1} .

Our complete results for the Neumann case are now summarized in the following
theorem. For the most part, the solution of the Neumann problems is analogous to what
we got for the Dirichlet problems in Section 3.

THEOREM 4.5. Let ε ∈ [0,1/2[ , α = 2π/n. Then the weak Neumann problem
for the Helmholtz equation in Ω= Ω0,α for given data g = (g1,g2) ∈ H−1/2+ε(R+)2∼ ,
is uniquely solved by the following functions:

(i) case n ≡ 2 mod 4

u = K εg = rΩ

⎛⎝KN,Ω+
0

+

n−2
4

∑
j=1

(
KN,Ω+

−2 jα
+KN,Ω−

2 jα

)⎞⎠ ιg
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(ii) case n ≡ 0 mod 4

u = K εg = rΩ

( n
4

∑
j=1

(
KN,Ω+

2(1− j)α
�eg1 +KN,Ω−

(2 j−1)α
�eg2

))

Here, for ε = 0 , the operator is defined on the dense subspace H̃−1/2(R+) and
can be extended by continuity to all of H−1/2(R+)2∼ .

(iii) case n ≡ 1 mod 2

u = K εg = rΩ

(
n

∑
j=1

KN,R2\Σ jα
g#( j+1)

)

Moreover, in all cases, the operators

K ε : H−1/2+ε(R+)2
∼ → H 1+ε(Ω)

are linear homeomorphisms.

The proof of these facts is essentially the same as in the Dirichlet case. All the
necessary auxiliary results have been provided above, and therefore we will leave the
details to the reader. It amounts essentially to verifying that all the Neumann boundary
conditions are satisfied.

The boundedness of K ε is also immediately clear except for the case (ii) with
ε = 0, where a similar argumentation as in the proof of Theorem 3.5 has to be applied.
In case (ii) with ε ∈]0,1/2[ the operator K ε can be defined directly since the even-
extensions �e are bounded from H̃1/2+ε(R+) = H1/2+ε(R+) into H1/2+ε(R) .

For ε ∈ [0,1/2[ the injectiveness of T ε
N,Ω is standard (see (28) and Lemma 4.1),

and the formulas for K ε show its surjectiveness. It follows that both K ε and T ε
N,Ω

are linear homeomorphism and that K ε = (T ε
N,Ω)−1 .

Since the case ε ∈]−1/2,0[ causes some not completely trivial problems, we will
refrain from discussing it in this paper.

5. The mixed Dirichlet/Neumann problem

The mixed problem (see Figure 5) can be solved completely by a somewhat modi-
fied reasoning. As we shall see, no compatibility conditions appear (if ε ∈ [0,1/2[), as
it was observed already in the cases n = 2 and n = 4 [3, 31].

The representation formulas need a bit more effort in the first and in the third
case, while uniqueness is always guaranteed by a little modified, but basically the same
reasoning [5] provided ε � 0.
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Γ2
��������������������������� Γ1◦

Ω

�
α

��

T0,Γ1u = g1

T1,Γ2u = g2

Figure 5: The DN problem in Ω

5.1. The case α = 2π/n , n ≡ 2 mod 4

Let us start with the case n = 2 solved by the method of [32]. Here we have
Γ1 = {(x1,0) : x1 > 0} and Γ2 = {(x1,0) : x1 < 0} . As before we will identify Γ1

and Γ2 with R+ . In what follows, let J be the reflection operator on R given by
J f (x) = f̃ (x) = f (−x) , x ∈ R .

PROPOSITION 5.1. The mixed Dirichlet/Neumann boundary value problem for
the Helmholtz equation in the upper half-plane

(Δ+ k2)u = 0 where u ∈ H1+ε(Ω+)

T0,Γ1u = g1 ∈ H1/2+ε(R+) (37)

T1,Γ2u = g2 ∈ H−1/2+ε(R+)

is well-posed for ε ∈ ]−1/2,1/2[ and uniquely solved by u = KDN,Ω+g, where

KDN,Ω+g = KD,Ω+A
t
−1/2
−

v = KN,Ω+A
t
1/2
+

v = F−1
ξ �→x1

e−t(ξ )x2 t−1/2
− (ξ )v̂(ξ ) (38)

with
v = �0r+A

t
1/2
−

�g1− �0r−A
t
−1/2
+

J �g2, g = (g1,g2).

Herein, �0 : Hε(R±) → Hε(R) stand for the extension-by-zero operators, and � for
any extension to a distribution in H±1/2+ε(R) . Moreover, the potential operator

KDN,Ω+ : H1/2+ε(R+)×H−1/2+ε(R+) → H 1+ε(Ω+)

is a linear homeomorphism.

Proof. By Propositions 3.2 and 4.2 each solution u ∈ H 1+ε(Ω+) can be de-
scribed by either the Dirichlet data u0 = T0,∂Ω+u or Neumann data u1 = T1,∂Ω+u . Both
are connected by the formula u1 = −Atu0 . Conversely, given u0 ∈ H1/2+ε(R) and
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u1 ∈ H−1/2+ε(R) satisfying u1 = −Atu0 , we can find a unique solution u having these
boundary data on the whole axis.

The mixed boundary conditions now read

r+u0 = g1, r+u1 = g2.

We can rewrite this, equivalently, as

r+u0 = r+�g1, r+u1 = r−J �g2.

Using the fact that r+w = 0 is equivalent to r+A
t1/2
−

w = 0, and a similar fact involving

r− and A
t−1/2
+

, the above can be expressed as

r+A
t1/2
−

u0 = r+A
t1/2
−

�g1, r+A
t−1/2
+

u1 = r−A
t−1/2
+

J �g2.

As v = A
t
1/2
−

u0 = −A
t
−1/2
+

u1 ∈ Hε(R) and ε ∈ [0,1/2[ we see that

v = �0r+A
t1/2
−

�g1− �0r−A
t−1/2
+

J �g2.

Conversely, any v given by the above formula yields, when eliminating for u0 and u1 ,
a solution to the mixed boundary valued problem. �

We remark that formula (38) can be equivalently written as

(KDN,Ω+g)(x) = F−1
ξ→x1

e−t(ξ )x2t−1/2
− (ξ )

(
P+t1/2

− (ξ )�̂g1(ξ )−P−t−1/2
+ (ξ )�̂g2(ξ )

)
where P± = F �0r±F−1 are projections on Hε(R) related with the Hilbert transform
(P± = 1

2 (I±HR) , see [24]).

COROLLARY 5.2. The mixed Dirichlet/Neumann boundary value problem for the
Helmholtz equation in the lower half-plane is well-posed for ε ∈]−1/2,1/2[ and uniquely
solved by u = KDN,Ω−g, g = (g1,g2) , where

KDN,Ω−g = KD,Ω−A
t−1/2
−

v = KN,Ω−A
t1/2
+

v = F−1
ξ �→x1

et(ξ )x2 t−1/2
− (ξ )v̂(ξ ) (39)

with

v = �0r+A
t
1/2
−

�g1− �0r−A
t
−1/2
+

J �g2, g = (g1,g2).

Moreover, the potential operator

KDN,Ω− : H1/2+ε(R+)×H−1/2+ε(R+) → H 1+ε(Ω−)

is a linear homeomorphism.
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We remark that formula (39) can be equivalently written as

(KDN,Ω+g)(x) = F−1
ξ→x1

et(ξ )x2t−1/2
− (ξ )

(
P+t1/2

− (ξ )�̂g1(ξ )−P−t−1/2
+ (ξ )J �̂g2(ξ )

)
.

Finally we define the operators

KDN,Ω±
α

= JαKDN,Ω±

and remark that these operators applied to the corresponding boundary data yield the
solution in the rotated half-planes Ω+

α and Ω−
α .

Now, quite similarly to Theorem 3.3, we obtain the solution for the Helmholtz
equation for the cases n ≡ 2 mod 4. The proof is also similar and therefore left to the
reader. It amounts to check the boundary conditions on Γ1 and Γ2 .

THEOREM 5.3. Let α = 2π/n with n = 2 mod 4 and ε ∈ [0,1/2[ . Then the
Dirichlet/Neumann problem for the Helmholtz equation in Ω = Ω0,α for given data
(g1,g2) ∈ H1/2+ε(R+)×H−1/2+ε(R+) is well-posed and uniquely solved by

u = K ε h = rΩ

⎛⎝KDN,Ω+
0

+

n−2
4

∑
j=1

(−1) j
(
KDN,Ω+

−2 jα
−KDN,Ω−

2 jα

)⎞⎠h

where

(i) h = (g1(x),g2(−x)) if n ≡ 2 mod 8 ,

(ii) h = (g1(x),−g2(−x)) if n ≡ 6 mod 8 .

Moreover, the operator

K ε : H1/2+ε(R+)×H−1/2+ε(R+) → H 1+ε(Ω)

is a linear homeomorphism.

The previous result can be extended to the case ε ∈]−1/2,0[ apart from the state-
ment about the uniqueness of the solution. The operator K ε is well defined, linear,
bounded, and (clearly) injective. We leave open the question of the surjectiveness of
K ε .

EXAMPLE 5.4. Figures 6 and 7 illustrate the two different cases of Theorem 5.3
where the solution is composed of several terms defined in half-planes whose intersec-
tion is Ω . The letters D and N stand for Dirichlet conditions T0,Γ j u = g j and Neumann
conditions T1,Γ j u = g j , respectively.
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Figure 6: Case n ≡ 2 mod 8
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Figure 7: Case n ≡ 6 mod 8

5.2. The case α = 2π/n , n ≡ 0 mod 4

In this case we can state our result immediately. We have to make use of the half-
plane solutions of the pure Dirichlet and the pure Neumann problem. Notice that the
formulas involve the even and odd extension operators �e and �o .

THEOREM 5.5. Let α = 2π/n with n = 0 mod 4 and ε ∈ [0,1/2[ . Then the
Dirichlet/Neumann problem for the Helmholtz equation in Ω = Ω0,α for given data
g = (g1,g2) ∈ H1/2+ε(R+)×H−1/2+ε(R+) is well-posed and uniquely solved by the
following formulas,

(i) if n ≡ 0 mod 8 ,

u = K εg = rΩ

( n
4

∑
j=1

(−1) j+1
(

KD,Ω+
2(1− j)α

�og1 +KN,Ω−
(2 j−1)α

�eg2

))
,

(ii) if n ≡ 4 mod 8 ,

u = K εg = rΩ

( n
4

∑
j=1

(−1) j+1
(

KD,Ω+
2(1− j)α

�eg1 +KN,Ω−
(2 j−1)α

�og2

))
.

Moreover, the operator

K ε : H1/2+ε(R+)×H−1/2+ε(R+) → H 1+ε(Ω)

is a linear homeomorphism.
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In case (i) the definition of K ε has to be understood similarly as in Theorem
3.5 and Theorem 4.5(ii). To be more specific, the operator K 0 is defined by the
above formula on the dense subspace H̃1/2(R+)× H̃−1/2(R+) and extends by conti-
nuity to a bounded linear operator acting on H1/2(R+)×H−1/2(R+) . For ε ∈]0,1/2[ ,
the operator K ε is defined as the restriction of K 0 to the subspace H1/2+ε(R+)×
H−1/2+ε(R+) . On the other hand, for ε ∈]0,1/2[ the operator K ε can also be defined
directly by the above formulas with a slight reinterpretation. Indeed, we can just con-
sider g2 ∈ H−1/2+ε(R+) �→ �eg2 ∈ H−1/2+ε(R) without any modification, while we
consider g1 ∈ H1/2+ε(R+) ⊂ H1/2−δ(R+) �→ �og1 ∈ H1/2−δ(R+) , where δ ∈]0,1/2[ .

In case (ii) the direct definition works because the even and odd extension opera-
tors �e and �o are bounded on the appropriate spaces.

Proof. (i): Let us consider first the case n ≡ 0 mod 8. Assume first that ε ∈
[0,1/2[ and g = (g1,g2) ∈ H̃1/2(R+)× H̃−1/2(R+) , and notice that u = K εg is well-
defined and in H1+ε(Ω) . Clearly, u satisfies the Helmholtz equation. The contributions
to the trace on Γ1 read as follows. As seen before in Subsection 3.1, we have

T0,Γ1 KD,Ω+�og1 = g1,

T0,Γ1

( n
4

∑
j=2

(−1) j+1KD,Ω+
2(1− j)α

�og1

)
= 0.

The terms containing g2 do not contribute to the trace on Γ1 . For j = 1, . . . , n
4 and

considering β = (2 j−1)α , it holds that

T0,Γ1

(
KN,Ω−

(2 j−1)α
−KN,Ω−

( n
2−2 j+1)α

)
�eg2 = T0,Γ1

(
KN,Ω−

β
−KN,Ω−

π−β

)
�eg2 = 0

since
KN,Ω−

π−β
�eg2 = −KN,Ω+

−β
�eg2,

T0,Γ1

(
KN,Ω−

β
+KN,Ω+

−β

)
= 0.

Therefore, it follows that T0,Γ1u = g1 .
In what concerns the contributions to the trace of the normal derivative on Γ2 , we

have T1,Γ2KN,Ω−
α

�eg2 = g2 . Rewriting the second part of the sum as

n
4

∑
j=1

(−1) j+1KN,Ω−
(2 j−1)α

�eg2

=

(
KN,Ω−

α
−KN,Ω−

3α
+ · · ·−KN,Ω−

( n
2−3)α

+KN,Ω−
( n

2−1)α

)
�eg2 (40)

one obtains

T1,Γ2

(
KN,Ω−

−3α
+KN,Ω−

−( n
2−1)α

)
�eg2 = 0.
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Further terms of (40) can be dealt with by the same arguments. There remains a “mid-
dle” term whose trace on Γ2 is equal to zero:

T1,Γ2KN,Ω−
π
2 +α

�eg2 = 0.

The terms containing g1 result similarly to vanishing contributions on Γ2 (consider the
first plus the last term, etc). Consequently, T1,Γ2u = g2 .

Hence for g taken from the subspace

X̃ ε = H̃1/2+ε(R+)× H̃−1/2+ε(R+),

we have that u = K εg belongs to H 1+ε(Ω) and satisfies the correct boundary condi-
tions. Introducing the operator

T ε : u ∈ H 1+ε(Ω) �→ (T0,Γ1u,T1,Γ2u) ∈ H1/2+ε(R+)×H−1/2+ε(R+),

this means that K ε : X̃ ε → H 1+ε(Ω) is well defined and that T εK ε |X̃ε = IX̃ε . No-
tice that T ε is linear bounded and injective.

We claim that T ε is surjective. Here we split the problem into two problems
and resort to previous results. First, there exists u ∈ H 1+ε(Ω) such that T0,Γ1u = g1

and T1,Γ2u = 0. This solution can be obtained from a solution defined in Ω0,2α with
Dirichlet data on both boundaries (Γ1 and Γ3 ; see (2)) given by g1 . The existence
of such a solution is guaranteed by Theorem 3.5. Because the Dirichlet data on both
parts of the boundary is the same, the solution has some symmetry, which implies
that the Neumann data on Γ2 is zero, as desired. Secondly, one can find a solution
u ∈ H 1+ε(Ω) such that T0,Γ1u = 0 and T1,Γ2u = g2 . This solution can be obtained
from a solution in Ω−α ,α = R−1

α Ω0,2α with Neumann conditions −g2 and g2 on the
boundaries Γ0 and Γ2 (see Theorem 4.5(ii)). Again a symmetry argument implies that
the Dirichlet data on Γ1 is zero. Thus we can conclude that T ε is surjective.

It follows that T ε is a linear homeomorphism from H 1+ε(Ω) to H1/2+ε(R+)×
H−1/2+ε(R+) for ε ∈ [0,1/2[ . Now the argumentation is similar as in Theorem 3.5.
First consider ε = 0, to conclude that K 0|X̃0 = (T 0)−1|X̃0 allows a continuous exten-
sion (denoted by K 0 ). It follows that K 0T 0 = I and now we restrict this identity
to the appropriate space to obtain that K εT ε = I . Hence K ε is a linear homeomor-
phism and this concludes the proof of part (i).

(ii) The case n ≡ 4 mod 8 runs analogously concerning the verification of the
boundary conditions. It is also evident with respect to the definition of K ε and the
fact that it is a linear homeomorphism. �

Case (ii) of the previous theorem can be generalized for ε ∈]−1/2,0[ in as far as
that the operator K ε is still well-defined, linear, and bounded. In case (i) again some
not completely trivial problems occur and we refrain from discussing it here.

5.3. The case α = 2π/n , n ≡ 1 mod 2

The solution of the general case is based on the solution of a famous and non-trivial
Sommerfeld problem [27] and [10, 18, 28].
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This problem consists of finding the solution of the Helmholtz equation in the slit-
plane Ω = R2\Σ with mixed DN boundary conditions on Σ+ and Σ− , as shown in
Figure 8. More precisely, we are looking for u ∈ H 1+ε(Ω) (see Sec. 3.3) such that

T0,Σ+u = g1 ∈ H1/2+ε(R+),
T1,Σ−u = g2 ∈ H−1/2+ε(R+).

(41)

Here we identify Σ± with R+ . For the underlying definitions of T0,Σ+ and T1,Σ− see
Sections 3.3 and 4.

Σ◦
Du = g1 on Σ+

Nu = g2 on Σ−

Figure 8: The Sommerfeld DN problem

The above Sommerfeld problem is known to be well-posed and uniquely solvable
for ε = 0. As far as we are aware of, for ε �= 0, this problem has not yet been ex-
amined explicitly, although one just needs to modify the original arguments. It should
be mentioned that it turns out, perhaps somewhat surprisingly, that the problem is only
well-posed for ε ∈]−1/4,1/4[ . Before we are going to show this positive result, let us
show that the problem is either not uniquely solvable or requires a compatibility condi-
tion in the cases where ε ∈]−1/2,−1/4[∪]1/4,1/2[ . For the cases ε = ±1/4 see the
remark made after Proposition 5.7.

As before, let H(1)
1/4(z) stand for the Hankel function (Bessel function of the third

kind) with parameter 1/4. Recall that k ∈ C , Im(k) > 0.

PROPOSITION 5.6. Let Ω= R
2\Σ .

(i) If ε ∈]−1/2,−1/4[ , then the function

v(x) = H(1)
1/4(kr)sin(φ/4), x = (rcos(φ),r sin(φ)), 0 < φ < 2π , r > 0,

is a non-trivial solution to the homogeneous problem (41), i.e.,

v ∈ H 1+ε(Ω), T0,Σ+v = 0, T1,Σ−v = 0.

(ii) If ε ∈]1/4,1/2[ and if (g1,g2) are the boundary data of a solution of the problem
(41), then

∫ ∞

0
H(1)

1/4(kt)g2(t)dt =
∫ ∞

0

H(1)
1/4(kt)

4t

(
g1(t)−g1(0)

)
dt +g1(0)

1+ i+ i
√

2
k2 .

Proof. (i) By passing to polar coordinates it can be checked easily that v satisfies
the Helmholtz equation in Ω . In fact, this solution can be obtained via the ansatz
v(x) = f (r)cos(φ/4) , where f (r) is seen to satisfy

r2 f ′′ + r f ′ +(r2k2− (1/4)2) f = 0, (42)
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which is (up to the factor k2 ) Bessel’s equation. One of its solutions, f (r) = H(1)
1/4(kr) ,

is exponentially decaying as r → ∞ since Im(k) > 0. The behavior as r → 0 is given
by f (r) ∼ r−1/4 . From this it follows (see, e.g., [9]) that v ∈ Hs(Ω) if and only if
1/4 < 1− s , i.e., if and only if ε < −1/4 in our setting where s = 1+ ε . It is also not
hard to see that

lim
x2→+0

v(x) = 0 and lim
x2→−0

∂v(x)
∂x2

= 0 for x1 > 0.

Hence v is a (non-trivial) solution of the homogeneous DN Sommerfeld problem in the
slit-plane, T0,Σ+v = 0, T1,Σ−v = 0.

(ii) Let v be defined as in (i) and let u∈H 1+ε(Ω) be a solution of the Sommerfeld
problem with boundary data g1 ∈ H1/2+ε(R+) and g2 ∈ H−1/2+ε(R+) . As we have
just shown, v ∈ H 1−ε(Ω) , and this implies that the following considerations make
sense. We will not go through all the technical details and point out only the main
steps.

For δ > 0, let Σ(δ ) = {x ∈ R2 : x1 � δ , x2 = 0} and use the same symbolic
notation Σ±(δ ) as for Σ± to distinguish between the limit values on Σ(δ ) from above and

below. Moreover, put Dδ = {x ∈ R
2 : |x| < δ} and Ωδ =Ω\Dδ . Then using Green’s

formula and referring to n as the normal vector pointing inwards, we obtain (because
both u and v satisfy the Helmholtz equation)

0 = lim
δ→0

∫
Ωδ

(Δv(x)u(x)− v(x)Δu(x))dx

= lim
δ→0

∫
∂Ωδ

(
−∂v(x)

∂n
u(x)+ v(x)

∂u(x)
∂n

)
dσ(x)

= − lim
δ→0

∫
Σ+

(δ )∪Σ−(δ )∪∂Dδ

∂v(x)
∂n

u(x)dσ(x)+
∫
Σ+∪Σ−

v(x)
∂u(x)
∂n

dσ(x)

= − lim
δ→0

(∫
Σ+

(δ )

∂v(x)
∂x2

u(x)dσ(x)+
∫
∂Dδ

∂v(x)
∂ r

u(x)dσ(x)

)

+
∫
Σ−

v(x)
∂u(x)
∂n

dσ(x).

The first integral in the last expression evaluates to∫
Σ+

(δ )

∂v(x)
∂x2

u(x)dσ(x) =
∫ ∞

δ

f (t)
4t

g1(t)dt,

where v(x) = f (r)cos(φ/4) , f (r) = H(1)
1/4(kr) , as in (i). The second integral equals

∫
∂Dδ

∂v(x)
∂ r

u(x)dσ(x) = δ
∫ 2π

0
f ′(δ )sin(φ/4)u(δ cosφ ,δ sinφ)dφ

= 4δ f ′(δ )g1(0)+o(1) as δ → 0.
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Here we used the fact that u(x) is Lipschitz continuous with an exponent greater than
1/4 (since ε > 1/4). Finally, the third integral equals∫

Σ−
v(x)

∂u(x)
∂n

dσ(x) =
∫ ∞

0
f (t)g2(t)dt.

Now we deduce from (42) by integration that∫ ∞

δ

f (t)
4t

dt =
∫ ∞

δ
(4t f ′(t))′ dt +

∫ ∞

δ
4t f (t)dt

= −4δ f ′(δ )+
∫ ∞

0
4t f (t)dt +o(1).

Combining the foregoing results we obtain the condition∫ ∞

0
f (t)g2(t)dt = lim

δ→0

(∫ ∞

δ

f (t)
4t

g1(t)dt +g1(0)
∫ ∞

0
4t f (t)dt−g1(0)

∫ ∞

δ

f (t)
4t

dt

)
=
∫ ∞

0

f (t)
4t

(
g1(t)−g1(0)

)
dt +g1(0)

1+ i+ i
√

2
k2 ,

which is the desired statement. �

Let us proceed with establishing the positive results. Assume that ε ∈]−1/2,1/2[ ,
let A stand for the block operator (defined even for ε ∈ R)

A =
1
2

(
I −At−1

At I

)
: H1/2+ε(R)×H−1/2+ε(R) → H1/2+ε(R)×H−1/2+ε(R),

and let WDN stand for the Wiener-Hopf type operator

WDN = r+A : H1/2+ε
+ (R)×H−1/2+ε

+ (R) → H1/2+ε(R+)×H−1/2+ε(R+).

PROPOSITION 5.7. For ε ∈]−1/4,1/4[ , the operator WDN is invertible and the
mixed DN problem (41) in the slit-plane Ω= R2\Σ with boundary data g = (g1,g2) is
well-posed and uniquely solvable. Its solution is given by

u(x) = (KDN,R2\Σ g)(x) =
{

(KD,Ω+u+
0 )(x) x ∈Ω+

(KN,Ω−u−1 )(x) x ∈Ω− (43)

where (
u+

0
u−1

)
= A W−1

DN

(
g1

g2

)
. (44)

Moreover, the Sommerfeld potential operator

KDN,R2\Σ : H1/2+ε(R+)×H−1/2+ε(R+) → H 1+ε(Ω)

is a linear homeomorphism.
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Proof. Each solution of the Helmholtz equation in the slit-plane Ω can be de-
scribed by the Dirichlet or Neumann boundary values u±0 and u±1 , where we have the
relation u±1 = −Atu

±
0 . The jump condition on −Σ and the boundary conditions on Σ

can be described by

u+
0 −u−0 ∈ H1/2+ε

+ (R), r+u+
0 = g1,

u+
1 +u−1 ∈ H−1/2+ε

+ (R), r+u−1 = g2.

It is convenient (and possible) to eliminate u−0 and u+
1 , and then the conditions read

u+
0 +At−1u−1 =: f0 ∈ H1/2+ε

+ (R), r+u+
0 = g1,

−Atu
+
0 +u−1 =: f1 ∈ H−1/2+ε

+ (R), r+u−1 = g2.

Here we introduced the functions f0 and f1 , and it is possible to express also u+
0 and

u−1 in terms of them,(
I At−1

−At I

)(
u+

0
u−1

)
=
(

f0
f1

)
⇔ 1

2

(
I −At−1

At I

)(
f0
f1

)
=
(

u+
0

u−1

)
.

Here the block operator A occurs. A moment’s though shows that the Helmholtz
equation in the slit-plane is uniquely solvable if and only if so is the Wiener-Hopf
system

WDN

(
f0
f1

)
=
(

g1

g2

)
.

Indeed, combining the previous two equations just gives (44) and from there (43) fol-
lows.

Thus our concern is the invertibility of the operator WDN . Its symbol (up to the
factor 1/2) is given by

Φ(ξ ) =
(

1 −t−1(ξ )
t(ξ ) 1

)
, ξ ∈ R.

However, in order to facilitate the analysis of WDN we pass to another operator which
acts on the spaces H0

+(R)2 ∼= H0(R+)2 = L2(R+)2 . We introduce the symbols

tμ+(ξ ) = (ξ + k)μ , tμ−(ξ ) = (ξ − k)μ , ξ ∈ R,

where the principle values are chosen (due to vertical branch cuts from ∓k to ∞ not
crossing the real line), and conclude that the operators

D− = r+

(
A

t
1/2+ε
−

0

0 A
t−1/2+ε
−

)
� : H1/2+ε(R+)×H−1/2+ε(R+) → H0(R+)2

D+ =

(
A

t−1/2−ε
+

0

0 A
t
1/2−ε
+

)
: H0

+(R)2 → H1/2+ε
+ (R)×H−1/2+ε

+ (R)
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are well defined linear homeomorphisms. Now define an operator equivalent to WDN

by
W̃DN = D−WDND+

and observe that
W̃DN = r+AΨ : H0

+(R)2 → H0(R+)2,

where AΨ is the block version of (4) and Ψ is the block symbol

Ψ(ξ ) =

(
t1/2+ε
− (ξ ) 0

0 t−1/2+ε
− (ξ )

)(
1 −t−1(ξ )

t(ξ ) 1

)(
t−1/2−ε
+ (ξ ) 0

0 t1/2−ε
+ (ξ )

)

=
(
ξ−k
ξ+k

)ε⎛⎜⎝
(
ξ−k
ξ+k

)1/2 −1

1
(
ξ+k
ξ−k

)1/2

⎞⎟⎠ .

The operator W̃DN is a block Wiener-Hopf operator on L2(R+) with piecewise contin-
uous matrix symbol. More specifically, the symbol Ψ(ξ ) is continuous on R and has
limits as ξ →±∞ given by

Ψ(+∞) =
(

1 −1
1 1

)
, Ψ(−∞) = e−2π iε

(−1 −1
1 −1

)
.

Moreover, all values of Φ(ξ ) are invertible matrices. Applying the basic theory for
Wiener-Hopf operators with such symbols, we can conclude that W̃DN is a Fredholm
operator if and only if the matrix

Ψ(−∞)Ψ(+∞)−1 = e−2π iε
(

0 −1
1 0

)
(45)

has no real negative eigenvalues. As the eigenvalues are e−2π i(ε±1/4) , this is the case if
ε ∈]−1/4,1/4[ .

Hence it follows that W̃DN (and thus also WDN ) is a Fredholm operator. Given
this, the invertibility of W̃DN follows from the existence of a weak generalized canon-
ical factorization of Ψ is L2 . Recall that Ψ(ξ ) = Ψ−(ξ )Ψ(ξ ) is a weak generalized
canonical factorization in L2 if

(ξ − i)−1/2Ψ−(ξ )±1 ∈ (L2
−(R))2×2, (ξ + i)−1/2Ψ+(ξ )±1 ∈ (L2

+(R))2×2

where L2±(R) stands for the set of all functions in L2(R) which admit an analytic
continuation in the upper or lower, resp., complex half-plane. We refer to [16] for
details.

This factorization of Ψ can be derived from that of Φ , for which the factorization
is known [10, 18, 28]:

Φ(ξ ) =
1√
4k
Φ−(ξ )Φ+(ξ ), ξ ∈ R, (46)
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where

Φ−(ξ ) =
(

t+−(ξ ) −t−1(ξ )t−−(ξ )
t(ξ )t−−(ξ ) t+−(ξ )

)
Φ+(ξ ) =

(
t++(ξ ) −t−1(ξ )t−+(ξ )

t(ξ )t−+(ξ ) t++(ξ )

)
where t(ξ ) = −i

√
k+ ξ

√
k− ξ , which is consistent with (5), and t±±(ξ ) =

(√
2k±√

k± ξ
)1/2

with the first/second index corresponding to the first/second sign. We also

allow complex values for ξ , and, as to the choice of the square-roots, we stipulate that
we always choose the principal values (i.e., the branch cut is on the set of negative real
numbers). We remark that

t−−(ξ )t+−(ξ ) =
√

k+ ξ , t−+(ξ )t++(ξ ) =
√

k− ξ .

Using this and a couple of straightforward computations one can show the validity of
(46) as well as the following facts:

(i) The matrix function Φ−(ξ ) is analytic for ξ ∈ C , Im(ξ ) < Im(k) .

(ii) The matrix function Φ+(ξ ) is analytic for ξ ∈ C , Im(ξ ) > −Im(k) .

(iii) The determinants detΦ±(ξ ) = 2
√

2k are constant functions.

(iv) The asymptotics as ξ → ∞ of the factors can be estimated as follows:

Φ±(ξ ) =
(

O(|ξ |1/4) O(|ξ |−3/4)
O(|ξ |5/4) O(|ξ |1/4)

)
It follows that the factorization of Ψ(ξ ) is now given by Ψ(ξ ) = 1√

4k
Ψ−(ξ )Ψ+(ξ )

with

Ψ−(ξ ) =

(
t1/2+ε
− (ξ ) 0

0 t−1/2+ε
− (ξ )

)
Φ−(ξ ),

Ψ+(ξ ) = Φ+(ξ )

(
t−1/2−ε
+ (ξ ) 0

0 t1/2−ε
+ (ξ )

)
.

Using these fact it is easily seen that the above factorization is indeed a weak general-
ized factorization in L2 if ε ∈]−1/4,1/4[ .

Thus we can conclude the invertibility of W̃DN and of WDN . �
In connection with (45) it should be noticed that the Fredholm condition is not

fulfilled if ε = ±1/4. Hence for those values, the mixed Sommerfeld problem in the
slit-plane is not well-posed.

For the purpose of defining the operators KDN,R2\Σα , which give the solution in
the rotated slit-plane we state the following obvious corollary. We also define the opera-
tors KND,R2\Σα , where the location of the Dirichlet and Neumann data is interchanged.
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COROLLARY 5.8. Let ε ∈]−1/4,1/4[ . The solution of the Sommerfeld DN prob-
lem in R2\Σα is given by

u = Jα KDN,R2\Σ g, g ∈ H1/2(R+)×H−1/2(R+).

Additionally, for the same g, we obtain by reflection the solution of the Rawlins ND
problem in R2\Σ

u = KND,R2\Σ g# = RKDN,R2\Σ g

where the two conditions on Σ± are exchanged, g# is defined as in (23), and R is the
reflection operator given by R f (x1,x2) = f (x1,−x2) , (x1,x2) ∈ R2 .

In combination, the solution of the Sommerfeld ND problem in R2\Σα is given by

u = KND,R2\Σα g# = RKDN,R2\Σ−α g.

In order to state the solution of the Dirichlet/Neumann problem for the Helmholtz
equation in Ω0,α , let us first state some symmetry properties concerned with the super-
position of the Sommerfeld potentials KDN,R2\Σα and KND,R2\Σβ (α,β ∈ R).

LEMMA 5.9. Let 0 < β −α < 2π , g = (g1,g2) ∈ H1/2(R+)×H−1/2(R+) , then

T0,Σ±γ

(
KDN,R2\Σα g−KND,R2\Σβ g#

)
= 0

T1,Σ±γ

(
KDN,R2\Σα g+KND,R2\Σβ g#

)
= 0

for γ = α+β
2 + jπ , j ∈ Z .

Proof. Both formulas result from the symmetry properties of the formulas given
in Corollary 5.8. �

THEOREM 5.10. Let ε ∈ [0,1/4[ , Ω = Ω0,α with α = 2π/n, n = 1,3,5, . . . .
Then the Dirichlet/Neumann problem for the Helmholtz equation in Ω with given data
g = (g1,g2) ∈ H1/2+ε(R+)×H−1/2+ε(R+) is well-posed and uniquely solved by the
following formulas:
(i) if n ≡ 1 mod 4 ,

u = K εg = rΩ

⎛⎝ n+1
2

∑
j=1

(−1) j−1KDN,R2\Σ(2 j−1)α
g+

n−1
2

∑
j=1

(−1) j−1KND,R2\Σ2 jα
g#

⎞⎠ ,

(ii) if n ≡ 3 mod 4 , and h = (g1,−g2) ,

u = K εg = rΩ

⎛⎝ n+1
2

∑
j=1

(−1) jKDN,R2\Σ(2 j−1)α
h+

n−1
2

∑
j=1

(−1) j−1KND,R2\Σ2 jα
h#

⎞⎠ .

In both cases, the operator

K ε : H1/2(R+)×H−1/2(R+) → H 1+ε(Ω)

is a linear homeomorphism.
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Proof. This follows directly from Proposition 5.7, Corollary 5.8, and Lemma
5.9. �

Let us remark that the previous formulas can be extended to the case ε ∈]−1/4,0[
and that the corresponding operator K ε is bounded. We will not discuss the unique-
ness of the Helmholtz problem in this case.

EXAMPLE 5.11. Figures 9 and 10 illustrate the two different cases of Theorem 5.10.
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Figure 9: Case n ≡ 1 mod 4
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Figure 10: Case n ≡ 3 mod 4

6. Summary and asymptotic behavior of the solution

After having discussed the various problems, by distinguishing them into several
cases, let us finally present some kind of summary. We will indicate on which types of
operators the corresponding constructions were based, and for which values of ε we
have obtained positive results.

We first consider the Dirichlet problem and the Neumann problem in Ω0,α with
α = 2π/n .
Case Dirichlet problem Neumann problem

n ≡ 0 mod 4 D-half-plane operator and �o N-half-plane operator and �e

ε ∈]−1/2,1/2[ ε ∈ [0,1/2[
n ≡ 2 mod 4 D-half-plane operator and ι N-half-plane operator and ι

ε ∈]−1/2,1/2[ ε ∈ [0,1/2[
n ≡ 1 mod 2 D-slit-plane operator N-slit-plane operator

ε ∈]−1/2,1/2[ ε ∈ [0,1/2[
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For the mixed DN problem in Ω0,α with α = 2π/n the situation is as follows.

Case mixed Dirichlet/Neumann problem

n ≡ 0 mod 8 D-half-plane operator and �o, N-half-plane operator and �e

ε ∈ [0,1/2[
n ≡ 4 mod 8 D-half-plane operator and �e, N-half-plane operator and �o

ε ∈]−1/2,1/2[
n ≡ 2 mod 4 mixed DN-half-plane operator

ε ∈]−1/2,1/2[
n ≡ 1 mod 2 mixed DN-slit-plane operator

ε ∈]−1/4,1/4[

It is known that the half-plane and Sommerfeld potentials u = K g studied before
are bounded near the critical point x = 0 provided the data are sufficiently smooth,
which is assumed in physically relevant situations. However gradu behaves asymp-
totically in a different way, see [18, 23, 31], namely for the DD and NN problems,
like

gradu = O(r−1/2) if r → 0.

The same is true for the solution of the DN problem in a half-plane, see Lemma 5.1 and
Corollary 5.2, but not for the solution in the slit-plane (see Lemma 5.7) where

gradu = O(r−3/4) if r → 0.

Since we have presented all solutions of Dirichlet, Neumann and mixed problems in
rational angles by finite sums of half-plane and Sommerfeld potentials, we obtain the
following conclusion:

COROLLARY 6.1. Suppose that Ω= Ω0,α , α = 2π/n , n ∈ N .
I. If g = (g1,g2) ∈ H1/2(R+)2∼ ∩C∞(R+)2 , then the solution of the DD problem in Ω
satisfies

gradu = O(r−1/2) if r → 0.

II. If g = (g1,g2) ∈H−1/2(R+)2∼∩C∞(R+)2 , then the solution of the NN problem in Ω
satisfies

gradu = O(r−1/2) if r → 0.

III. If g = (g1,g2) ∈ (H1/2(R+)×H−1/2(R+))∩C∞(R+)2 , then the solution of the DN
problem in Ω satisfies

gradu = O(r−1/2) if r → 0 and n = 0 mod2,

gradu = O(r−3/4) if r → 0 and n = 1 mod2.
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