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MULTIPLICITIES, BOUNDARY POINTS,

AND JOINT NUMERICAL RANGES

WAI-SHUN CHEUNG, XUHUA LIU AND TIN-YAU TAM

(Communicated by C.-K. Li)

Abstract. The multiplicity of a point in the joint numerical range W (A1,A2,A3) ⊆ R3 is studied
for n× n Hermitian matrices A1,A2,A3 . The relative interior points of W (A1,A2,A3) have
multiplicity greater than or equal to n− 2 . The lower bound n− 2 is best possible. Extreme
points and sharp points are studied. Similar study is given to the convex set V (A) := {xT Ax : x ∈
R

n,xT x = 1} ⊆ C , where A ∈ Cn×n is symmetric. Examples are given.

1. Introduction

Let Cn×n be the set of n× n complex matrices. The classical numerical rang of
A ∈ Cn×n is

W (A) := {x∗Ax : x ∈ C
n,x∗x = 1}.

It is the image of the unit sphere

S
n−1 = {x ∈ C

n : x∗x = 1}

under the quadratic map x �→ x∗Ax . Toeplitz-Hausdorff theorem asserts that W (A) is a
compact convex set [9]. When n = 2, W (A) is an elliptical disk (possibly degenerate)
[9], known as the elliptical range theorem.

A point ξ ∈W (A) is called an extreme point if ξ is not in any open line segment
that is contained in W (A) . A point ξ ∈ W (A) is a sharp point if ξ is the intersec-
tion point of two distinct supporting lines of W (A) [9, p. 50]. We have the following
inclusions for W (A) , which are proper in general:

{sharp points} ⊆ {extreme points} ⊆ {boundary points}. (1.1)

Donoghue [7] showed that sharp points of W (A) are eigenvalues of A . Indeed the
following is a characterization of the sharp points.

THEOREM 1.1. ([9, p. 50–51]) Let A ∈ Cn×n and ξ ∈W (A) . Then ξ is a sharp
point if and only if A is unitarily similar to ξ I⊕B with ξ �∈W (B) .
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Given ξ ∈W (A) , Embry [8] introduced

Mξ = Mξ (A) := {x ∈ C
n : x∗Ax = ξ x∗x}.

In general Mξ is not a subspace but it is homogeneous. Thus the span of Mξ , denoted
by 〈Mξ 〉 , satisfies 〈Mξ 〉 = Mξ + Mξ := {x + y : x,y ∈ Mξ}. Stampfli [14, Lemma 2]
showed that Mξ is a subspace of Cn if ξ is an extreme point. Embry [8] established
the converse and some related results.

THEOREM 1.2. (Embry) Let A ∈ Cn×n and ξ ∈W (A) . Then

1. ξ is an extreme point if and only if Mξ is a subspace of C
n .

2. if ξ is a non-extreme boundary point, then

〈Mξ 〉 = ∪w∈L∩W (A)Mw,

where L is the supporting line of W (A) , passing through ξ . In this case 〈Mξ 〉 =
Cn if and only if W (A) ⊆ L.

3. if W (A) is nondegenerate, then ξ is an interior point if and only if 〈Mξ 〉 = Cn .

We remark that the results of Dongonhue, Stampfli, and Embry are for any bounded
linear operator on a complex Hilbert space.

Now consider for each ξ ∈W (A)

wA(ξ ) := dim〈Mξ 〉,

i.e., wA(ξ ) is the maximal number of linearly independent vectors x ∈ Sn−1 such that
x∗Ax = ξ . We call wA(ξ ) the multiplicity of ξ . It is well known that W (A) is a line
segment [α,β ] if and only if A is essentially Hermitian, in which case wA(ξ ) = n for
any ξ ∈ (α,β ) . With this fact, one can deduce from Theorem 1.2 that wA(ξ ) = n for
any relative interior point ξ ∈W (A) , thus provides an affirmative answer to a question
of Uhlig in [15, p. 18].

We will study multiplicities of relative interior points and some characterizations
of extreme points and sharp points of two variations of the classical numerical range.

2. Joint numerical range of three Hermitian matrices

Let Hn be the set of n×n Hermitian matrices. Let A = A1 + iA2 be the Hermitian
decomposition of A ∈ Cn×n , where A1,A2 ∈ Hn . Since

x∗Ax = x∗A1x+ ix∗A2x

and x∗A1x,x∗A2x ∈ R , one may identify W (A) as the set

W (A1,A2) := {(x∗A1x,x
∗A2x) : x ∈ C

n,x∗x = 1} ⊆ R
2.
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Given A1, . . . ,Ak ∈ Hn , Au-Yeung and Poon [1] and other authors, for example, Bind-
ing and Li [4], Au-Yeung and Tsing [3], Li and Poon [10], considered the following
generalization of W (A) :

W (A1, . . . ,Ak) := {(x∗A1x, . . . ,x
∗Akx) : x ∈ C

n,x∗x = 1},
which is a joint numerical range of A1, . . . ,Ak . We remark that W (A) can be viewed
as W (A1,A2,0) . Au-Yeung and Tsing [2] proved that W (A1,A2,A3) is convex when
n � 3. Moreover W (A1,A2,A3) is an ellipsoid (possibly degenerate) when n = 2 (see
[6] for a conceptual reason).

DEFINITION 2.1. For ξ ∈W (A1,A2,A3) , where A1,A2,A3 ∈Hn , the multiplicity,
denoted by wA1,A2,A3(ξ ) , is the maximal number of linearly independent vectors x ∈
Sn−1 such that (x∗A1x,x∗A2x,x∗A3x) = ξ .

To simplify notation, given A1,A2,A3 ∈ Hn , we let f : Sn−1 → R3 be the map
defined by

f (x) := (x∗A1x,x
∗A2x,x

∗A3x), x ∈ S
n−1.

We denote by IntRS the relative interior of S ⊂ Rk .

THEOREM 2.2. Let A1,A2,A3 ∈ Hn and ξ ∈W (A1,A2,A3) .

1. When n = 2 ,

(a) if W (A1,A2,A3) is a nondegenerate ellipsoid, then wA1,A2,A3(ξ ) = 1 .

(b) if W (A1,A2,A3) is a nondegenerate elliptical disk or a nondegenerate line
segment, then
(i) wA1,A2,A3(ξ ) = 2 if ξ ∈ IntRW (A1,A2,A3) ,
(ii) wA1,A2,A3(ξ ) = 1 if ξ �∈ IntRW (A1,A2,A3) .

(c) if W (A1,A2,A3) = {ξ} (in this case A1,A2,A3 are scalar multiples of iden-
tity), then wA1,A2,A3(ξ ) = 2 .

2. When n � 3 , if ξ ∈ IntRW (A1,A2,A3) , then

wA1,A2,A3(ξ ) � n−2

and may not be a constant. The lower bound n−2 is best possible.

Proof. (1) Suppose n = 2. Notice that (c) is trivial.

(a) Suppose that W (A1,A2,A3) is a nondegenerate ellipsoid and ξ ∈W (A1,A2,A3) .
Then orthogonally project W (A1,A2,A3) onto the hyperplane P⊆R3 with orthonormal
basis {p := (p1, p2, p3),q := (q1,q2,q3)} ⊆ R3 so that the image is a nondegenerate
elliptical disk E and the projection ξ ′ of ξ is on the (relative) boundary of E . With
respect to the basis {p,q} ,

E = {(pT (x∗A1x,x
∗A2x,x

∗A3x),qT (x∗A1x,x
∗A2x,x

∗A3x)) : x ∈ S1}
= {(x∗(p1A1 + p2A2 + p3A3)x,x∗(q1A1 +q2A2 +q3A3)x : x ∈ S1}
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which is naturally identified as W (A) , where A = (p1A1 + p2A2 + p3A3)+ i(q1A1 +
q2A2 +q3A3) . By Theorem 1.2, wA(ξ ′) = 1 and thus wA1,A2,A3(ξ ) = 1.

The proof of (b) is similar to that of (a).

(2) The statement is trivial for n=3. Suppose that n � 4 and let ξ∈IntRW (A1,A2,A3).
Suppose on the contrary that wA1,A2,A3(ξ ) = k < n− 2. Let {x1, . . . ,xk} ⊆ Sn−1 be a
(maximal) linearly independent set such that ξ = f (xi) , i = 1, . . . ,k. Since k < n−2,
there is u∈ Sn−1 such that x1, . . . ,xk,u are linearly independent and thus ξ �= f (u) . Be-
cause ξ ∈ IntRW (A1,A2,A3) and W (A1,A2,A3) is convex in R3 [2], there is v ∈ Sn−1

such that
(a) f (v) �= ξ and f (v) �= f (u) ,
(b) the line segment L := [ f (u), f (v)] ⊆W (A1,A2,A3) , and
(c) ξ ∈ L .
In other words, ξ ∈ ( f (u), f (v)) ⊆W (A1,A2,A3) , where ( f (u), f (v)) denotes the

open line segment. Since f (u) �= f (v) , u,v are linearly independent. Since k < n−2,
there would exist a unit vector w �∈ 〈u,v,x1, . . . ,xk〉 . Let Âi , i = 1,2,3, denote the
compression of Ai onto the 3-dimensional subspace 〈u,v,w〉 . So ξ ∈ W (Â1, Â2, Â3)
and hence there would exist a unit vector y ∈ 〈u,v,w〉 and f (y) = ξ . Write y = αu+
βv+ γw for α,β ,γ ∈ C . Notice that α and γ cannot be both zero, otherwise f (y) =
f (v) �= ξ . Then y,x1, . . . ,xk would be linearly independent, a contradiction.

The following example shows that the bound n−2 is best possible. �

EXAMPLE 2.3. Let n � 3 and

A1 =
(

1 0
0 −1

)
⊕0n−2, A2 =

(
0 1
1 0

)
⊕0n−2, A3 =

(
0 i
−i 0

)
⊕0n−2.

It is known that W (A1,A2,A3)⊆R3 is the convex hull of W (B1,B2,B3) and the origin,

where B1 =
(

1 0
0 −1

)
, B2 =

(
0 1
1 0

)
and B3 =

(
0 i
−i 0

)
. Since W (B1,B2,B3) is the

unit sphere [1, 10], W (A1,A2,A3) is the unit ball in R
3 and it is not hard to deduce (a)

and (b), and (c) can be obtained by direct computation:

(a) wA1,A2,A3(0) = n−2,

(b) wA1,A2,A3(ξ ) = 1 for |ξ | = 1,

(c) wA1,A2,A3(ξ ) = n−1 for 0 < |ξ | < 1.

DEFINITION 2.4. Let A1,A2,A3 ∈ Hn . A point ξ ∈W (A1,A2,A3) is called

1. an extreme point if ξ is not in an open line segment that is contained in W (A1,A2,A3).

2. a sharp point if ξ is the intersection point of three distinct supporting planes of
W (A1,A2,A3) .
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Evidently an extreme point ξ ∈ W (A1,A2,A3) is a boundary point. However, a
boundary point is not necessarily an extreme point. For example, W (B1,B2,B3) =
conv{(2,0,0),W(A1,A2,A3)} if B1 = A1⊕2 and B2 = A2⊕0 and B3 = A3⊕0, where

A1 =
(

1 0
0 −1

)
, A2 =

(
0 1
1 0

)
, A3 =

(
0 i
−i 0

)
.

An extreme point may not be a sharp point (see the boundary points in Example 2.3).
Binding and Li [4, Definition 2.4] introduced conical point of any subset Σ⊆ Rk .

Since W (A1,A2,A3) is convex when n � 3, sharp points are conical points and the
following result is an analog to Theorem 1.1 and can be deduced from [4, Proposition
2.5 or Theorem 2.7].

THEOREM 2.5. (Binding and Li) Let A1,A2,A3 ∈ Hn with n � 3 and ξ ∈
W (A1,A2,A3) . Then ξ is a sharp point if and only if there is a unitary matrix U ∈Cn×n

such that
U∗AiU = ξiIm ⊕Bi, i = 1,2,3 (2.1)

with ξ = (ξ1,ξ2,ξ3) �∈ convW (B1,B2,B3).

Similar to the W (A) case, for each ξ ∈W (A1,A2,A3) we define

Wξ = Wξ (A1,A2,A3) := {x ∈ C
n : (x∗A1x,x

∗A2x,x
∗A3x) = ξ x∗x}.

Notice that Wξ is homogenous so that 〈Wξ 〉 = Wξ +Wξ . It is natural to ask whether
Theorem 1.2 (1) can be extended to W (A1,A2,A3) . Unfortunately, for Example 2.3
with n = 3, W0 is a 1-dimensional subspace, but 0 is clearly not an extreme point of
the unit ball W (A1,A2,A3) . But the problem can be resolved in the following theorem.
It generalizes the first two parts of Theorem 1.2.

THEOREM 2.6. Let A1,A2,A3 ∈ Hn with n � 3 and ξ ∈W (A1,A2,A3) . Then

1. ξ is an extreme point if and only if ξ is a boundary point and Wξ is a subspace
of Cn . In particular, if W (A1,A2,A3) is degenerate, then ξ is an extreme point
if and only if Wξ is a subspace of Cn .

2. if ξ is a non-extreme boundary point and if P is a supporting plane of W (A1,A2,A3)
at ξ , then

〈Wξ 〉 ⊆ ∪z∈P∩W(A1,A2,A3)Wz. (2.2)

In addition, if P∩W (A1,A2,A3) is
(i) a flat convex set containing ξ as a relative interior point, or
(ii) a line segment,
then

〈Wξ 〉 = ∪z∈P∩W(A1,A2,A3)Wz; (2.3)

(iii) a flat convex set S in which ξ is not a relative interior point of S , then

〈Wξ 〉 = ∪z∈LWz,

where L is the longest line segment in W (A1,A2,A3) that contains ξ .
In case of (i) or (ii), 〈Wξ 〉 = C

n if and only if W (A1,A2,A3) ⊆ P.
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Proof. (1) Evidently all extreme points of W (A1,A2,A3) are boundary points.
Suppose that ξ is a boundary point of W (A1,A2,A3) . Since W (A1,A2,A3) is con-
vex [2], there is a supporting plane P of W (A1,A2,A3) at ξ . Let p = (p1, p2, p3) be
a unit vector perpendicular to P . Project W (A1,A2,A3) onto 〈p〉 . So η := pTξ =
p1ξ1 + p2ξ2 + p3ξ3 is an extreme point of the classical numerical range W (Â) (a line
segment), where Â := p1A1 + p2A2 + p3A3 . So η must be a maximal or minimal eigen-
value of the Hermitian matrix Â . Thus Mη(Â) is an eigenspace of Â . In addition if ξ
is an extreme point of W (A1,A2,A3) , we have Wξ (A1,A2,A3) = Mη(Â) .

Suppose that ξ is a boundary point and Wξ is a subspace of Cn . If ξ were
not an extreme point, there would exist distinct α,β ∈ W (A1,A2,A3) such that ξ ∈
(α,β ) . Let u,v ∈ Sn−1 such that α = f (u) , β = f (v) and let Âi ( i = 1,2,3) de-
note the compression of Ai onto the 2-dimensional subspace 〈u,v〉 . So f (u), f (v) ∈
W (Â1, Â2, Â3) ⊆ W (A1,A2,A3) and ξ would be contained in the convex hull of the
ellipsoid W (Â1, Â2, Â3) . Since ξ is a boundary point of W (A1,A2,A3) , this forces
W (Â1, Â2, Â3) to be an elliptical disk (possibly degenerate but not a point since α �= β ).
Hence ξ ∈W (Â1, Â2, Â3) and by Theorem 2.2(1), there would exist two linearly inde-
pendent unit vectors x,y ∈ 〈u,v〉 such that f (x) = f (y) = ξ . But Wξ is a subspace and
clearly x,y ∈Wξ . So u∈ 〈u,v〉= 〈x,y〉 ⊆Wξ and we would have α = f (u) = ξ which
is absurd.

(2) Suppose that ξ is a non-extreme boundary point. Let P be a supporting plane
of W (A1,A2,A3) at ξ . Referring to the first paragraph of the proof of (1), Mη(Â) is an
eigenspace of Â and

Mη(Â) = ∪z∈P∩W(A1,A2,A3)Wz.

Since ξ ∈ P , Wξ ⊆ ∪z∈P∩W (A1,A2,A3)Wz we have (2.2)

〈Wξ 〉 ⊆ ∪z∈P∩W (A1,A2,A3)Wz.

On the other hand, pick arbitrary z ∈ P∩W (A1,A2,A3) with z �= ξ .
(i) If P∩W (A1,A2,A3) is a flat convex set in which ξ is an interior point, then there
exists z′ �= z and ξ ∈ (z,z′) ⊆ P∩W (A1,A2,A3) . Pick x ∈ Wz and x′ ∈Wz′ . Clearly
x,x′ are linearly independent since z �= z′ . Let Â1, Â2, Â3 be the compressions of
A1,A2,A3 onto 〈x,x′〉 respectively. As an ellipsoid containing z,z′ , W (Â1, Â2, Â3) ⊆
W (A1,A2,A3) must be degenerate. Thus by Theorem 2.2(1b), there are two linearly
independently vectors u,v ∈ 〈x,x′〉∩Sn−1 such that f (u) = f (v) = ξ . But x ∈ 〈x,x′〉=
〈u,v〉 ⊆Wξ +Wξ = 〈Wξ 〉 . So Wz ⊆ 〈Wξ 〉 for all z ∈ P∩W (A1,A2,A3) . So we have the
other inclusion

〈Wξ 〉 ⊇ ∪z∈P∩W (A1,A2,A3)Wz.

(ii) If P∩W (A1,A2,A3) is a line segment, then there exists z′ �= z and ξ is in the open
segment (z,z′) . Similar to (i), W (Â1, Â2, Â3) ⊆ W (A1,A2,A3) is a line segment and
apply Theorem 2.2(1b).
(iii) Project W (A1,A2,A3) onto the hyperplane H (spanned by p = (p1, p2, p3) and
(q1,q2,q3)) that is orthogonal to the line L . So L is projected into a point η ∈ H .
Hence η is an extreme point of W (Â1 + iÂ2) where Â1 = p1A1 + p2A2 + p3A3 and
Â2 = q1A1 + q2A2 + q3A3 . So Mη is a subspace by Theorem 1.2(1). Moreover Wξ ⊆
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∪z∈LWz = Mη so that 〈Wξ 〉 ⊆ ∪z∈LWz . Then use the argument in (ii) to have 〈Wξ 〉 ⊇
∪z∈LWz since ξ ∈ L . �

COROLLARY 2.7. Let A1,A2,A3 ∈ Hn with n � 4 and ξ ∈ W (A1,A2,A3) . If
wA1,A2,A3(ξ ) = 1 , then ξ is an extreme point.

EXAMPLE 2.8. With respect to Theorem 2.6(2)(iii) it is possible that there is only
one supporting plane P at ξ such that S := P∩W (A1,A2,A3) is a flat convex set and
ξ is not in the relative interior of S ⊆ R3 . For example, if

A1 =
(

1 1
1 1

)
⊕0⊕

(
1 1
1 1

)
⊕0 = B⊕0⊕B⊕0,

A2 =
(

1 −i
i 1

)
⊕0⊕

(
1 −i
i 1

)
⊕0 = C⊕0⊕C⊕0,

A3 = I3⊕ (−I3),

then W (A1,A2,A3) = conv{W(B,C, I2),W (B,C,−I2),L} , where L is the line segment
joining (0,0,1) and (0,0,−1) . Notice that W (B,C,±I2) is the circular disk

{(x,y,±1) : (x−1)2 +(y−1)2 = 1}
so that W (A1,A2,A3) is the convex hull of the cylinder

K := {(x,y,z) : −1 � z � 1,(x−1)2 +(y−1)2 = 1}
and L . The point ξ := (1,0,0) ∈ K lies on the edge of the flat portion

S := {(x,0,z) : 0 � x � 1,−1 � z � 1} ⊆W (A1,A2,A3)

but is not an extreme point. The vector x ∈ S5 such that ξ = (x∗A1x,x∗A2x,x∗A3x)
must be of the form x = 1

2(u,v) , u,v ∈ S2 in view of the zero third coordinate. So
u = ρ1(1, i,0) and v = ρ2(1, i,0) , |ρ1|= |ρ2|= 1. Thus x = 1

2 (ρ1, iρ2,0,ρ2, iρ2,0) . So

Wξ = 〈Wξ 〉 = span {(1, i,0,0,0,0),(0,0,0,1, i,0)}.
For any point η := (t,0,0) for 0 < t < 1, Wη is not contained in Wξ . So (2.3) does
not hold though (2.2) is true.

3. Joint numerical range of two real symmetric matrices

Brickman [5] (also see [12]) studied the real analog of the numerical range of
A ∈ Cn×n :

V (A) = {xT Ax : x ∈ R
n,xT x = 1}

and proved that V (A) is convex when n � 3. In addition V (A) is an ellipse (possibly
degenerate) when n = 2. Indeed [12]

W (A) = V (Â)
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where

Â =
(

A iA
−iA A

)
.

So convexity of W (A) follows from the convexity of V (Â) when n � 2. Clearly

V (A) = V (
A+AT

2
)

so that we can restrict our study to symmetric A . Moreover if A = AT , then W (A) =
convV (A) [12] and in particular, if n � 3, then W (A) = V (A) .

See [13] for an interesting unified treatment for W (A) , W (A1,A2,A3) and V (A) ;
[11] for more general notions in the context of semisimple Lie algebras; and [10] for
related results.

The following is a list of some basic properties of V (A) , similar to those of W (A) .

LEMMA 3.1. Let A ∈ Cn×n be symmetric.

1. V (αA+β In) = αV (A)+β , α,β ∈ C .

2. V (OT AO) = V (A) for any orthogonal matrix O ∈ O(n) .

3. V (A) = {λ} if and only if A = λ In .

4. If B ∈ Cm×m is a principal submatrix of A, then V (B) ⊆V (A) .

5. (McIntosh [12]) convV (A) = W (A) .

DEFINITION 3.2. Let A ∈ Cn×n be symmetric and ξ ∈ V (A) . The multiplicity
of ξ , denoted by vA(ξ ) , is the maximal number of linearly independent vectors x ∈
S

n−1
R

:= Sn−1∩Rn such that xT Ax = ξ .

The following result and its proof are similar to Theorem 2.2.

THEOREM 3.3. Let A ∈ Cn×n be symmetric.

1. Suppose n = 2 and write A =
(

a11 a12

a21 a22

)
with a12 = a21 .

(a) V (A) = {α} if and only if A = αI2 for some α ∈ C . In this case, vA(α) =
2 .

(b) V (A) is a nondegenerate line segment [α,β ] if and only if either a11 = a22

or a12 = 0 , but not both. Moreover vA(α) = vA(β ) = 1 and vA(ξ ) = 2 if
ξ ∈ (α,β ) .

(c) V (A) is a nondegenerate ellipse if and only if both a11 �= a22 and a12 �= 0 .
In this case, vA(ξ ) = 1 for all ξ ∈V (A) .

2. When n � 3 , if ξ ∈ IntRV (A) , then vA(ξ ) � n− 2 and may not be a constant.
The lower bound n−2 is best possible.
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Proof. (1) When n = 2,

V (A) = {a11 cos2 θ +(a12 +a21)cosθ sinθ +a22 sin2 θ : 0 � θ < 2π}
= { (a11−a22)

2
cos2θ +

(a12 +a21)
2

sin2θ +
(a11 +a22)

2
: 0 � θ < 2π}

which is an ellipse with center (tr A)/2. We only need to consider the multiplicities for
the following cases since the rest is straightforward computation.

(b) V (A) is a nondegenerate line segment [α,β ] . If ξ is one of the endpoints, it
corresponds to two values of θ ∈ [0,2π) of difference π . So the corresponding x are
negative to each other. Hence vA(ξ ) = 1. If ξ ∈ (α,β ) , there are four desired values
of θ which yield two linearly independent vectors, and hence vA(ξ ) = 2.

(c) V (A) is a nondegenerate ellipse. Each ξ ∈V (A) corresponds to two values of
θ ∈ [0,2π) of difference π . Hence vA(ξ ) = 1.

(2) The statement is trivial for n = 3. Suppose n � 4 and ξ ∈ IntRV (A) . Suppose
on the contrary that vA(ξ ) = k < n−2. Let g : S

n−1
R

→ C be the map defined by

g(x) := xT Ax, x ∈ S
n−1
R

.

Let {x1, . . . ,xk} ⊆ S
n−1
R

be a (maximal) linearly independent set such that ξ = g(xi) ,
i = 1, . . . ,k . Choose u∈S

n−1
R

such that x1, . . . ,xk,u are linearly independent and clearly
ξ �= g(u) . Because ξ ∈ IntRV (A) and V (A) is convex [12], there is v ∈ S

n−1
R

such that
(a) g(v) �= ξ and g(v) �= g(u) ,
(b) the line segment L = [g(u),g(v)] ⊆V (A) , and
(c) ξ ∈ L .
Since g(u) �= g(v) , u,v are linearly independent. Since k < n− 2, there is w ∈

S
n−1
R

and w �∈ 〈u,v,x1, . . . ,xk〉 . Let Â denote the compression of A onto the three
dimensional subspace 〈u,v,w〉 . Since V (Â) is convex, there would exist a unit vector
y ∈ 〈u,v,w〉 and g(y) = ξ . Write y = αu + βv + γw for α,β ,γ ∈ R . Notice that α
and γ cannot be both zero, otherwise g(y) = g(v) �= ξ . But then y,x1, . . . ,xk would be
linearly independent, a contradiction.

The following example shows that the lower bound n− 2 is best possible and
vA(ξ ) may not be a constant. �

EXAMPLE 3.4. Let A =
(

1 i
i −1

)
⊕ 0 ∈ Cn×n , where n � 3. Then V (A) is the

unit disk since it is the direct sum of V (B) and the origin where B =
(

1 i
i −1

)
. Then (a)

and (b) of the following can be deduced immediately and (c) can be computed directly:

(a) vA(0) = n−2,

(b) vA(ξ ) = n−1 if 0 < |ξ | < 1, and

(c) vA(ξ ) = 1 if |ξ | = 1.
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DEFINITION 3.5. Let A ∈ Cn×n be symmetric and ξ ∈V (A) . We define

Vξ = Vξ (A) := {x ∈ R
n : xT Ax = ξ xT x}.

The ideas of conical points in [4] can be applied to V (A) since V (A) can be
identified as the joint numerical range of A1 and A2 :

{(xT A1x,x
T A2x) : xT x = 1,x ∈ R

n} ⊆ R
2,

where A = A1+ iA2 and A1 and A2 are real symmetric matrices. Adapting the approach
in [4] yields the following result. We now provide a different proof and remark that the
approach applies to Theorem 2.5.

THEOREM 3.6. (Binding and Li) Let A ∈ Cn×n be symmetric and ξ ∈ V (A) .
Then ξ is a sharp point if and only if there is an orthogonal matrix O ∈O(n) such that
OT AO = ξ Im⊕B, with ξ �∈ convV (B) .

Proof. Suppose that there is an orthogonal matrix O ∈ O(n) such that OT AO =
ξ Im⊕B, with ξ �∈ convV (B) and B ∈ C(n−m)×(n−m) is symmetric. By Lemma 3.1

V (A) = V (OT AO) = conv{ξ ,V(B)}.
Since ξ is not contained in the compact convex set convV (B) , ξ is a sharp point of
V (A) .

Conversely suppose that ξ is a sharp point of V (A) . Without loss of generality,
we may assume that ξ = a11 otherwise we perform an orthogonal similarity on A .

For each i = 2, . . . ,n , the 2× 2 principal submatrix Ai :=
(

a11 a1i

ai1 aii

)
of A satisfies

V (Ai) ⊆V (A) . Since ξ = a11 is a sharp point, V (Ai) must be a line segment (possibly
degenerate). By Lemma 3.3, a1i = ai1 must be zero. Thus A = ξ ⊕ Â , where Â ∈
C(n−1)×(n−1) is symmetric, and in particular ξ is an eigenvalue of A . So V (A) =
conv{ξ ,V(Â)} . Since ξ is a sharp point, ξ is not contained in the relative interior of
convV (Â) . So ξ is either in V (Â) or not (even when Â ∈ C2×2 with V (Â) an ellipse).
If ξ �∈ V (Â) , it forces that ξ �∈ convV (Â) since ξ is a sharp point and we are done.
Otherwise, repeat the argument on Â to arrive at the desired conclusion. �

Similar to W (A1,A2,A3) , Theorem 1.2(1) cannot be extended to V (A) by observ-
ing Example 3.4 with n = 3: V0 is a 1-dimensional subspace, but 0 is not an extreme
point of the unit disk V (A) .

THEOREM 3.7. Let A ∈ Cn×n be symmetric with n � 3 and ξ ∈V (A) . Then

1. ξ is an extreme point if and only if ξ is a boundary point and Vξ is a subspace
of Rn .

2. if ξ is a non-extreme boundary point, then

〈Vξ 〉 = ∪z∈LVz,

where L is the supporting plane of V (A) , passing through ξ . In this case 〈Vξ 〉=
R

n if and only if V (A) ⊆ L.
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Proof. (1) All extreme points of V (A) are boundary points. Suppose that ξ =
ξ1 + iξ2 (ξ1,ξ2 ∈ R) is an extreme point of V (A) . Since V (A) is convex [5, 12], there
is a supporting line L of V (A) at ξ . Let p := p1 + ip2 ∈ C ( p1, p2 ∈ R) be a unit
vector perpendicular to L . Project V (A) onto 〈p〉 . If A = A1 + iA2 is the Hermitian
decomposition, then η := p1ξ1 + p2ξ2 is an extreme point of V (p1A1 + p2A2) (a line
segment), where p1A1 + p2A2 is clearly real symmetric. By the spectral theorem for
real symmetric matrices, Vη(p1A1 + p2A2) is the eigenspace of p1A1 + p2A2 . Since ξ
is an extreme point of V (A) , Vξ (A) = Vη(p1A1 + p2A2) and is a subspace of Rn .

Suppose that ξ ∈V (A) is a boundary point and Vξ is a subspace of Rn . If ξ were
not an extreme point, there would exist distinct α,β ∈ V (A) such that ξ ∈ (α,β ) .
Let u,v ∈ S

n−1
R

such that α = g(u) , β = g(v) and let Â denote the compression of A
onto the 2-dimensional subspace 〈u,v〉 . So g(u),g(v)∈V (Â)⊆V (A) and ξ would be
contained in the convex hull of the ellipse V (Â) . Since ξ is a boundary point of V (A) ,
this forces V (Â) to be a line segment (but not a point since α �= β ). Hence ξ ∈ V (Â)
and thus there would exist two linearly independent unit vectors x,y ∈ 〈u,v〉 such that
g(x) = g(y) = ξ . Thus 〈u,v〉 = 〈x,y〉 . But Vξ is a subspace and clearly x,y ∈ Vξ . So
u ∈ 〈x,y〉 ⊆Vξ and we would have α = g(u) = ξ which is absurd.

(2) Suppose that ξ is a non-extreme boundary point of V (A) . Let L be the
supporting line of V (A) at ξ . Referring to the first paragraph of the proof of (1),
Vη(p1A1+ p2A2) is the eigenspace of p1A1+ p2A2 and Vη(p1A1+ p2A2)=∪z∈L∩V (A)Vz .
Since ξ ∈ L , clearly Vξ ⊆ ∪z∈P∩V (A)Vz and we have

〈Vξ 〉 ⊆ ∪z∈P∩V (A)Vz.

On the other hand, suppose z ∈ L∩V (A) and z �= ξ . Then there exists z′ �= z and
ξ is in the open segment (z,z′) . Pick x ∈Vz and x′ ∈Vz′ . Clearly x,x′ are linearly in-
dependent since z �= z′ . Let Â be the compressions of A onto 〈x,x′〉 respectively. Then
the ellipse V (Â) ⊆ V (A) must degenerate since ξ ∈ [z,z′] ⊆ W (Â) and is a bound-
ary point of V (A) . Thus by Theorem 3.3(1b), there are two linearly independently
vectors u,v ∈ 〈x,x′〉 ∩ S

n−1
R

such that f (u) = f (v) = ξ . But x ∈ 〈x,x′〉 = 〈u,v〉 =
Vξ +Vξ = 〈Vξ 〉 . So Vz ⊆ 〈Vξ 〉 for all z ∈ L∩V (A) . So we have the other inclusion
〈Wξ 〉 ⊇ ∪z∈L∩V (A)Vz. �

We remark that the above technique can be used to prove Theorem 1.2 and is
different from the approach of Embry in [8].

COROLLARY 3.8. Let V ∈ Cn×n with n � 4 and ξ ∈V (A) . If vA(ξ ) = 1 , then ξ
is an extreme point.

Acknowledgement. Thanks are given to C.-K. Li for helpful comments and refer-
ences.

In section 3, W (A) = W ( 1
2 (Â + ÂT )) for any A ∈ Cn×n . The referee asked the

following question: Let A ∈ Cn×n with n � 3. Does there exist a symmetric complex
matrix S ∈ Cn×n satisfying W (A) = W (S)?



52 W.S. CHEUNG, XUHUA LIU AND T.Y. TAM

RE F ER EN C ES

[1] Y. H. AU-YEUNG AND Y. T. POON, A remark on the convexity and positive definiteness concerning
Hermitian matrices, Southeast Asian Bull. Math., 3 (1979), 85–92.

[2] Y. H. AU-YEUNG AND N. K. TSING, An extension of the Hausdorff-Toeplitz theorem, Proc. Amer.
Math. Soc., 89 (1983), 215–218.

[3] Y. H. AU-YEUNG AND N. K. TSING, Some theorems on the numerical range, Linear and Multilinear
Algebra, 15 (1984), 215–218.

[4] P. L. BINDING AND C. K. LI, Joint ranges of Hermitian matrices and simultaneous diagonalization,
Linear Algebra Appl., 151 (1991), 157–168.

[5] L. BRICKMAN, On the field of values of a matrix, Proc. Amer. Math. Soc., 12 (1961), 61–66.
[6] C. DAVIS, The Toeplitz-Hausdorff theorem explained, Canad. Math. Bull., 14 (1971), 245–246.
[7] W. F. DONOGHUE, JR., On the numerical range of a bounded operator, Michigan Math. J., 4 (1957),

261–263.
[8] M. R. EMBRY, The numerical range of an operator, Pacific J. Math., 32 (1970), 647–650.
[9] R. A. HORN AND C. R. JOHNSON, Topics in Matrix Analysis, Cambridge University Press, 1991.

[10] C. K. LI AND Y. T. POON, Convexity of the joint numerical range, SIAM J. Matrix Anal. Appl., 21
(1999), 668–678.

[11] C. K. LI AND T. Y. TAM, Numerical ranges arising from simple Lie algebras, J. Canad. Math. Soc.,
52 (2000), 141–171.

[12] A. MCINTOSH, The Toeplitz-Hausdorff theorem and ellipticity conditions, Amer. Math. Monthly, 85
(1978), 475–477.

[13] Y. T. POON, Generalized numerical ranges, joint positive definiteness and multiple eigenvalues, Proc.
Amer. Math. Soc., 125 (1997), 1625–1634.

[14] J. G. STAMPFLI, Extreme points of the numerical range of hyponormal operators, Michigan Math. J.,
13 (1966), 87–89.

[15] F. UHLIG, An inverse field of values problem, Inverse Problems, 24 (2008), 055019, 19 pages.

(Received November 20, 2009) Wai-Shun Cheung
Department of Mathematics

University of Hong Kong
Hong Kong

e-mail: cheungwaishun@gmail.com

Xuhua Liu
Department of Mathematics and Statistics

Auburn University
AL 36849–5310, USA

e-mail: xzl0002@auburn.edu

Tin-Yau Tam
Department of Mathematics and Statistics

Auburn University
AL 36849–5310, USA

e-mail: tamtiny@auburn.edu

Operators and Matrices
www.ele-math.com
oam@ele-math.com


