INTEGRAL ESTIMATES FOR THE FAMILY OF B-OPERATORS

W. M. Shah and A. Liman
(Communicated by L. Rodman)

Abstract. Let \mathscr{P}_{n} be the class of polynomials of degree at most n. In 1969, Rahman introduced a class \mathscr{B}_{n} of operators B that map \mathscr{P}_{n} into itself and proved that

$$
\|B[P(R \cdot)]\|_{\infty} \leqslant\left|B\left[E_{n}(R \cdot)\right]\right|\|P\|_{\infty}, \quad R \geqslant 1,
$$

for every $B \in \mathscr{B}_{n}$, where $E_{n}(z):=z^{n}$.
In this paper, we show that this inequality holds analogously for the norm $\|\cdot\|_{q}$ with $q \geqslant 1$ and for some of its refinements as well.

1. Introduction

Let \mathscr{P}_{n} be the class of polynomials $P(z):=\sum_{j=0}^{n} a_{j} z^{j}$ of degree at most n with complex coefficients. For $P \in \mathscr{P}_{n}$, define

$$
\|P\|_{q}:=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \text { and }\|P\|_{\infty}:=\max _{|z|=1}|P(z)|
$$

It is known that if $P \in \mathscr{P}_{n}$, then

$$
\begin{gather*}
\left\|P^{\prime}\right\|_{\infty} \leqslant n\|P\|_{\infty} \tag{1}\\
\|P(R \cdot)\|_{\infty} \leqslant R^{n}\|P\|_{\infty}, \quad R>1 . \tag{2}
\end{gather*}
$$

Inequality (1) is an immediate consequence of a famous result due to Bernstein on the derivative of a trignometric polynomial (for reference see[4]), whereas inequality (2) is a simple deduction from the maximum modulus principle (see [15, p.346], [11, p. 158 problem 269]).

Inequalities (1) and (2) can be obtained by letting $q \rightarrow \infty$ in

$$
\begin{equation*}
\left\|P^{\prime}\right\|_{q} \leqslant n\|P\|_{q}, \quad q>0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\|P(R \cdot)\|_{q} \leqslant R^{n}\|P\|_{q}, R>1 \text { and } q>0 . \tag{4}
\end{equation*}
$$

Mathematics subject classification (2010): 30A06, 30A64.
Keywords and phrases: Polynomials, B-operator, Integral inequalities in the complex domain. The work is supported by University Grants Commission, India, under grant F.No. 34-142/2008(SR).

Inequality (3) for $q \geqslant 1$ is due to Zygmund [17], where as inequality (4) is a simple consequence of a result due to Hardy [8]. Arestov [2] proved that (3) remains true for $0<q<1$ as well.

For the class of polynomials $P \in \mathscr{P}_{n}$ such that $P(z) \neq 0$ in $|z|<1$, inequalities (1) and (2) can be replaced by

$$
\begin{equation*}
\left\|P^{\prime}\right\|_{\infty} \leqslant \frac{n}{2}\|P\|_{\infty} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\|P(R \cdot)\|_{\infty} \leqslant \frac{R^{n}+1}{2}\|P\|_{\infty}, \quad R>1 \tag{6}
\end{equation*}
$$

Inequality (5) was conjectured by Erdös and later verified by lax [9], whereas Ankeny and Rivilin [1] used (5) to prove (6).

Inequalities (5) and (6) can be obtained by letting $q \rightarrow \infty$ in

$$
\begin{equation*}
\left\|P^{\prime}\right\|_{q} \leqslant \frac{n}{\left\|1+E_{n}\right\|_{q}}\|P\|_{q}, \quad \text { for } q>0 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\|P(R \cdot)\|_{q} \leqslant \frac{\left\|E_{n}(R \cdot)+1\right\|_{q}}{\left\|1+E_{n}\right\|_{q}}\|P\|_{q} \quad \text { for } R>1 \text { and } q>0 \tag{8}
\end{equation*}
$$

Inequality (7) was found out by de Brujin [6] for $q \geqslant 1$, whereas inequality (8) for $q \geqslant 1$ was proved by Boas and Rahman [5]. Rahman and Schmeisser [13] have shown that inequalities (7) and (8) remain true for $0<q<1$ as well.

Rahman [12] (see also Rahman and Schmeisser [14, p.538]) introduced a class \mathscr{B}_{n} of operators B that map $P \in \mathscr{P}_{n}$ into itself. That is, the operator B carries $P \in \mathscr{P}_{n}$ into

$$
\begin{equation*}
B[P](z):=\lambda_{0} P(z)+\lambda_{1}\left(\frac{n z}{2}\right) \frac{P^{\prime}(z)}{1!}+\lambda_{2}\left(\frac{n z}{2}\right)^{2} \frac{P^{\prime \prime}(z)}{2!} \tag{9}
\end{equation*}
$$

where λ_{0}, λ_{1} and λ_{2} are real or complex numbers such that all the zeros of

$$
\begin{equation*}
\mathscr{U}(z):=\lambda_{0}+C(n, 1) \lambda_{1} z+C(n, 2) \lambda_{2} z^{2}, \quad C(n, r)=\frac{n!}{r!(n-r)!} \tag{10}
\end{equation*}
$$

lie in the half plane

$$
\begin{equation*}
|z| \leqslant\left|z-\frac{n}{2}\right| \tag{11}
\end{equation*}
$$

and observed:
THEOREM A. If $P(z)$ is a polynomial of degree n, then

$$
|P(z)| \leqslant M, \quad|z|=1
$$

implies

$$
\begin{equation*}
|B[P](z)| \leqslant M\left|B\left[z^{n}\right]\right|, \quad|z| \geqslant 1 \tag{12}
\end{equation*}
$$

As an improvement of (12), recently authors [16] proved the following:

THEOREM B. If $P \in \mathscr{P}_{n}$ and $P(z) \neq 0$ in $|z|<1$, then

$$
\begin{equation*}
|B[P](z)| \leqslant \frac{1}{2}\left\{\left|B\left[z^{n}\right]\right|+\left|\lambda_{0}\right|\right\} \max _{|z|=1}|P(z)|, \quad|z| \geqslant 1 \tag{13}
\end{equation*}
$$

The result is sharp and equality holds for a polynomial whose all zeros lie on the unit disk.

For suitable choices of λ_{0}, λ_{1} and λ_{2} (see [16]) Theorem A yields inequalities (1) and (2), whereas Theorem B yields inequalities (5) and (6).

A natural question arises. Does there exist similar integral estimates which yield the compact generalizations of inequalities (3), (4) and (7), (8) respectively such that for $q \rightarrow \infty$, these inequalities reduce to Theorem A and Theorem B as well? As an answer to this question, we have been able to prove the following:

THEOREM 1. If $P \in \mathscr{P}_{n}$, then for every $R \geqslant 1, q \geqslant 1$ and $|z|=1$,

$$
\begin{equation*}
\|B[P(R \cdot)]\|_{q} \leqslant\left|B\left[E_{n}(R \cdot)\right]\right|\|P\|_{q} \tag{14}
\end{equation*}
$$

where $B \in \mathscr{B}_{n}$ and $E_{n}(z):=z^{n}$. Or, equivalently for $0 \leqslant \theta<2 \pi$,

$$
\begin{gather*}
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\lambda_{0} P\left(R e^{i \theta}\right)+\lambda_{1}\left(\frac{n R e^{i \theta}}{2}\right) P^{\prime}\left(R e^{i \theta}\right)+\lambda_{2}\left(\frac{n R e^{i \theta}}{2}\right)^{2} \frac{P^{\prime \prime}\left(R e^{i \theta}\right)}{2!}\right|^{q} d \theta\right\}^{1 / q} \\
\leqslant R^{n}\left|\lambda_{0}+\lambda_{1} \frac{n^{2}}{2}+\lambda_{2} \frac{n^{3}(n-1)}{8}\right| \quad\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \tag{15}
\end{gather*}
$$

where $\lambda_{0}, \lambda_{1}, \lambda_{2}$ are defined above.
The result is best possible and equality holds for $P(z)=\alpha z^{n}, \alpha \neq 0$.
Theorem A immediately follows from Theorem 1, if we let $q \rightarrow \infty$ in inequality (14).

REMARK 1. If we choose $\lambda_{0}=0=\lambda_{2}$ in (15), which is possible, as it can be easily verified that in this case all the zeros of $\mathscr{U}(z)$ defined by (10) lie in (11), we get inequality (3) for every $q \geqslant 1$.

ThEOREM 2. Let $P \in \mathscr{P}_{n}$ be such that $P(z) \neq 0$ in $|z|<1$, then for every $R \geqslant$ $1, q \geqslant 1$ and $|z|=1$,

$$
\begin{equation*}
\|B[P(R \cdot)]\|_{q} \leqslant \frac{\left|B\left[E_{n}(R \cdot)\right]\right|+\left|\lambda_{0}\right|}{\left\|1+E_{n}\right\|_{q}} \quad\|P\|_{q} \tag{16}
\end{equation*}
$$

where $B \in \mathscr{B}_{n}$ and $E_{n}(z):=z^{n}$.
Or, equivalently for $0 \leqslant \theta<2 \pi$,

$$
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\lambda_{0} P\left(R e^{i \theta}\right)+\lambda_{1}\left(\frac{n R e^{i \theta}}{2}\right) P^{\prime}\left(R e^{i \theta}\right)+\lambda_{2}\left(\frac{n R e^{i \theta}}{2}\right)^{2} \frac{P^{\prime \prime}\left(R e^{i \theta}\right)}{2!}\right|^{q} d \theta\right\}^{1 / q}
$$

$$
\begin{equation*}
\leqslant \frac{\left|\lambda_{0}+\lambda_{1} \frac{n^{2}}{2}+\lambda_{2} \frac{n^{3}(n-1)}{8}\right| R^{n}+\left|\lambda_{0}\right|}{\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+e^{i n \theta}\right|^{q} d \theta\right\}^{1 / q}} \quad\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \tag{17}
\end{equation*}
$$

The result is best possible and equality holds for the polynomial $P(z)=\alpha z^{n}+\beta$, where $|\alpha|=|\beta|$.

Theorem B easily follows from Theorem 2, if we make $q \rightarrow \infty$ in inequality (16). Further, if we choose $\lambda_{0}=0=\lambda_{2}, R=1 \mathrm{in}(17)$ which is possible, we get inequality (7) for every $q \geqslant 1$. On the otherhand, for $\lambda_{1}=\lambda_{2}=0$, we have the following:

Corollary 1. If $P \in \mathscr{P}_{n}$ be such that $P(z) \neq 0$ in $|z|<1$, then for every $R \geqslant$ $1, q \geqslant 1$ and $|z|=1$,

$$
\|P(R \cdot)\|_{q} \leqslant \frac{R^{n}+1}{\left\|1+E_{n}\right\|_{q}}\|P\|_{q} .
$$

REMARK 2. Since inequalities (3), (4) and (7), (8) hold for every $q \geqslant 0$, we have a feeling that Theorem 1 and Theorem 2 hold true for $q \in(0,1)$ as well.

A polynomial $P(z)$ is said to be self-inversive if $P(z)=u Q(z), \quad|u|=1$, where $Q(z)=z^{n} \overline{P(1 / \bar{z})}$. It is known [7] that if $P \in \mathscr{P}_{n}$ is a self inversive polynomial, then for every $q \geqslant 1$,

$$
\begin{equation*}
\left\|P^{\prime}\right\|_{q} \leqslant \frac{n}{\left\|1+E_{n}\right\|_{q}}\|P\|_{q} \tag{18}
\end{equation*}
$$

We next present the following more general result concerning self inversive polynomials, which includes inequality (18) as a special case. We prove.

THEOREM 3. If $P \in \mathscr{P}_{n}$ is self inversive, then for every $q \geqslant 1, R \geqslant 1$ and $|z|=1$,

$$
\begin{equation*}
\|B[P(R \cdot)]\|_{q} \leqslant \frac{\left|B\left[E_{n}(R \cdot)\right]\right|+\left|\lambda_{0}\right|}{\left\|1+E_{n}\right\|_{q}} \quad\|P\|_{q} \tag{19}
\end{equation*}
$$

where $B \in \mathscr{B}_{n}$ and $E_{n}(z):=z^{n}$.
Or, equivalently for $0 \leqslant \theta<2 \pi$,

$$
\begin{gather*}
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\lambda_{0} P\left(R e^{i \theta}\right)+\lambda_{1}\left(\frac{n R e^{i \theta}}{2}\right) P^{\prime}\left(R e^{i \theta}\right)+\lambda_{2}\left(\frac{n R e^{i \theta}}{2}\right)^{2} \frac{P^{\prime \prime}\left(R e^{i \theta}\right)}{2!}\right|^{q} d \theta\right\}^{1 / q} \\
\leqslant \frac{\left|\lambda_{0}+\lambda_{1} \frac{n^{2}}{2}+\lambda_{2} \frac{n^{3}(n-1)}{8}\right|+\left|\lambda_{0}\right|}{\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+e^{i n \theta}\right|^{q} d \theta\right\}^{1 / q}}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \tag{20}
\end{gather*}
$$

The result is sharp and equality holds for $P(z)=z^{n}+1$.
Theorem 4 of [16] is a special case of this theorem, if we let $q \rightarrow \infty$.
For $\lambda_{0}=0=\lambda_{2}, R=1$ inequality (20) yields inequality (18) and for $\lambda_{1}=0=\lambda_{2}$, we also have the following:

Corollary 2. If $P \in \mathscr{P}_{n}$ is self inversive, then for every $q \geqslant 1, R \geqslant 1$,

$$
\begin{equation*}
\|P(R \cdot)\|_{q} \leqslant \frac{R^{n}+1}{\left\|1+E_{n}\right\|_{q}}\|P\|_{q} \text { for }|z|=1 \tag{21}
\end{equation*}
$$

The result is sharp and equality holds for $P(z)=z^{n}+1$.

2. Lemmas

For the proofs of these theorems, we need the following lemmas.
Lemma 1. Let \mathscr{P}_{n} denote the linear space of polynomials

$$
P(z)=a_{0}+\cdots+a_{n} z^{n}
$$

of degree n with complex coefficients, normed by $\|P\|=\max \left|P\left(e^{i \theta}\right)\right|, \quad 0<\theta \leqslant 2 \pi$. Define the linear functional \mathscr{L} on \mathscr{P}_{n} as

$$
\mathscr{L}: P \rightarrow l_{0} a_{0}+l_{1} a_{1}+\cdots+l_{n} a_{n}
$$

where l_{j} 's are complex numbers. If the norm of the functional is \mathscr{N} then

$$
\begin{equation*}
\int_{0}^{2 \pi} \Theta\left(\frac{\left|\sum_{k=0}^{n} l_{k} a_{k} e^{i k \theta}\right|}{\mathscr{N}}\right) d \theta \leqslant \int_{0}^{2 \pi} \Theta\left(\left|\sum_{k=0}^{n} a_{k} e^{i k \theta}\right|\right) d \theta \tag{22}
\end{equation*}
$$

where $\Theta(t)$ is a non-decreasing convex function of t. The above lemma is due to Rahman [12].

The next lemma which we need follows from [10, Corollary 18.3], (see also [12]).
LEMMA 2. If all the zeros of a polynomial $P(z)$ of degree n lie in a circle $|z| \leqslant 1$, then all the zeros of the polynomial $B[P](z)$ also lie in the circle $|z| \leqslant 1$.

Lemma 3. If $P \in \mathscr{P}_{n}$ and $P(z) \neq 0$ in $|z|<1$, then for $|z| \geqslant 1$,

$$
\begin{equation*}
|B[P](z)| \leqslant|B[Q](z)|, \tag{23}
\end{equation*}
$$

where $Q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}$.
The proof of Lemma 3 is implicit in [12, Section 5].
Lemma 4. If $P \in \mathscr{P}_{n}$, then for every $R \geqslant 1, q \geqslant 1,0 \leqslant \theta<2 \pi$

$$
\begin{align*}
& \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|B\left[P\left(R e^{i \theta}\right)\right]+e^{i n \alpha} B\left[R^{n} P\left(e^{i \theta} / R\right)\right]\right|^{q} d \theta d \alpha \\
& \leqslant 2 \pi\left[\left|B\left[R^{n} e^{i n \theta}\right]\right|+\left|\lambda_{0}\right|\right]^{q} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta \tag{24}
\end{align*}
$$

Proof of Lemma 4. Let $M=\max _{|z|=1}|P(z)|$, so that $|P(z)| \leqslant M$ for $|z| \leqslant 1$. If λ is any real or complex number with $|\lambda|>1$, then by Rouchés theorem $P(z)-\lambda M$ does not vanish in $|z| \leqslant 1$. Hence, if $Q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}$, then by Lemma 3 and the fact that $B[1]=\lambda_{0}$, we have

$$
\begin{equation*}
\left|B[P](z)-\lambda \lambda_{0} M\right| \leqslant\left|B[Q](z)-\lambda M B\left[z^{n}\right]\right| \text { for }|z| \geqslant 1 \tag{25}
\end{equation*}
$$

Since $|Q(z)|=|P(z)| \leqslant M$ for $|z|=1$, therefore by inequality (12), it is possible to choose argument of λ such that

$$
\left|B[Q](z)-\lambda M B\left[z^{n}\right]\right|=M|\lambda|\left|B\left[z^{n}\right]\right|-|B[Q](z)|
$$

Hence choosing the argument of λ in the right hand side of inequality (25) suitably, we get

$$
|B[P](z)|-|\lambda|\left|\lambda_{0}\right| M \leqslant M|\lambda|\left|B\left[z^{n}\right]\right|-|B[Q](z)| .
$$

This gives after making $|\lambda| \rightarrow 1$

$$
\begin{equation*}
|B[P](z)|+|B[Q](z)| \leqslant\left\{\left|B\left[z^{n}\right]\right|+\left|\lambda_{0}\right|\right\} M \text { for }|z| \geqslant 1 \tag{26}
\end{equation*}
$$

In particular for every $\theta, 0 \leqslant \theta<2 \pi$ and $R \geqslant 1$, we have

$$
\left|B\left[P\left(R e^{i \theta}\right)\right]\right|+\left|B\left[R^{n} P\left(e^{i \theta} / R\right)\right]\right| \leqslant\left\{\left|B\left[R^{n} e^{i n \theta}\right]\right|+\left|\lambda_{0}\right|\right\} M
$$

Thus for every α with $0 \leqslant \alpha<2 \pi$, we have

$$
\begin{equation*}
\left|B\left[P\left(R e^{i \theta}\right)\right]+e^{i n \alpha} B\left[R^{n} P\left(e^{i \theta} / R\right)\right]\right| \leqslant\left\{\left|\lambda_{0}+\frac{n^{2}}{2} \lambda_{1}+\frac{n^{3}(n-1)}{8} \lambda_{2}\right| R^{n}+\left|\lambda_{0}\right|\right\} M \tag{27}
\end{equation*}
$$

This shows that

$$
\Lambda:=B\left[P\left(R e^{i \theta}\right)\right]+e^{i n \alpha} B\left[R^{n} P\left(e^{i \theta} / R\right)\right]
$$

is a bounded linear operator on \mathscr{P}_{n} and in view of (27), the norm of the bounded linear functional

$$
\mathscr{L}: P \rightarrow\left\{B\left[P\left(R e^{i \theta}\right)\right]+e^{i n \alpha} B\left[R^{n} P\left(e^{i \theta} / R\right)\right]\right\}_{\theta=0}
$$

is

$$
\left|\lambda_{0}+\frac{n^{2}}{2} \lambda_{1}+\frac{n^{3}(n-1)}{8} \lambda_{2}\right| R^{n}+\left|\lambda_{0}\right|
$$

Therefore, by Lemma 1 for $\Theta(t)=t^{q}, q \geqslant 1$, it follows that

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|B\left[P\left(R e^{i \theta}\right)\right]+e^{i n \alpha} B\left[R^{n} P\left(e^{i \theta} / R\right)\right]\right|^{q} d \theta \\
& \qquad \leqslant\left[\left|\lambda_{0}+\frac{n^{2}}{2} \lambda_{1}+\frac{n^{3}(n-1)}{8} \lambda_{2}\right| R^{n}+\left|\lambda_{0}\right|\right]^{q} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta \tag{28}
\end{align*}
$$

Integrating the two sides of (28) with respect to α, we get

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|B\left[P\left(R^{i \theta}\right)\right]+e^{i n \alpha} B\left[R^{n} P\left(e^{i \theta} / R\right)\right]\right|^{q} d \theta d \alpha \\
& \leqslant \int_{0}^{2 \pi}\left[\left|\lambda_{0}+\frac{n^{2}}{2} \lambda_{1}+\frac{n^{3}(n-1)}{8} \lambda_{2}\right| R^{n}+\left|\lambda_{0}\right|\right]^{q} d \alpha \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta \\
&=2 \pi\left[\left|\lambda_{0}+\frac{n^{2}}{2} \lambda_{1}+\frac{n^{3}(n-1)}{8} \lambda_{2}\right| R^{n}+\left|\lambda_{0}\right|\right]^{q} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta \\
&=2 \pi\left[B\left[R^{n} e^{i n \theta}\right]+\left|\lambda_{0}\right|\right]^{q} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta
\end{aligned}
$$

This completes the proof of Lemma 4.

3. Proofs of the Theorems

Proof of Theorem 1. If $M=\max _{|z|=1}|P(z)|$, then by inequality (12)

$$
|B[P](z)| \leqslant M\left|B\left[z^{n}\right]\right| \text { for }|z| \geqslant 1
$$

This in particular gives for every $\theta, 0 \leqslant \theta<2 \pi$ and $R \geqslant 1$,

$$
\left|B\left[P\left(R^{i \theta}\right)\right]\right| \leqslant M\left|B\left[R^{n} e^{i n \theta}\right]\right|,
$$

or

$$
\begin{equation*}
\left|B\left[P\left(R e^{i \theta}\right)\right]\right| \leqslant M\left|\lambda_{0}+\frac{n^{2}}{2} \lambda_{1}+\frac{n^{3}(n-1)}{8} \lambda_{2}\right| R^{n} \tag{29}
\end{equation*}
$$

Since B is linear operator (see [12, sec. 5]), therefore $\Lambda=B\left[P\left(R e^{i \theta}\right)\right]$ is a bounded linear operator on \mathscr{P}_{n}. Thus in view of (29), the norm of the bounded linear functional

$$
\mathscr{L}: P \rightarrow\left\{B\left[P\left(R e^{i \theta}\right)\right]\right\}_{\theta=0}
$$

is

$$
\left|\lambda_{0}+\frac{n^{2}}{2} \lambda_{1}+\frac{n^{3}(n-1)}{8} \lambda_{2}\right| R^{n}
$$

Hence by Lemma 1 for every $q \geqslant 1$, we have

$$
\int_{0}^{2 \pi}\left|B\left[P\left(R e^{i \theta}\right)\right]\right|^{q} d \theta \leqslant\left|\left\{\lambda_{0}+\frac{n^{2}}{2} \lambda_{1}+\frac{n^{3}(n-1)}{8} \lambda_{2}\right\} R^{n}\right|^{q} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta
$$

From this inequality (14) follows immediately and this completes the proof of Theorem 1.

Proof of Theorem 2. Since $P(z) \neq 0$ in $|z|<1$, by Lemma 3, we have for each θ, $0 \leqslant \theta<2 \pi$ and $R \geqslant 1$,

$$
\left|B\left[P\left(R e^{i \theta}\right)\right]\right| \leqslant\left|B\left[R^{n} P\left(e^{i \theta} / R\right)\right]\right|
$$

Also for every real θ and $t \geqslant 1$, it can be easily verified that $\left|1+t e^{i \theta}\right| \geqslant\left|1+e^{i \theta}\right|$ and therefore for every $q \geqslant 1$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|1+t e^{i \theta}\right|^{q} d \theta \geqslant \int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta \tag{30}
\end{equation*}
$$

Now, taking $t=\frac{\mid B\left[R^{n} P\left(e^{i \theta} / R\right)\right]}{\left|B\left[P\left(R e^{i \theta}\right)\right]\right|} \geqslant 1$ and using inequality (30), we have

$$
\begin{align*}
\int_{0}^{2 \pi} \int_{0}^{2 \pi} \mid & \left|B\left[P\left(R e^{i \theta}\right)\right]+e^{i n \alpha} B\left[R^{n} P\left(e^{i \theta} / R\right)\right]\right|^{q} d \theta d \alpha \\
& =\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|B\left[P\left(R e^{i \theta}\right)\right]\right|^{q}\left|1+e^{i n \alpha} \frac{B\left[R^{n} P\left(e^{i \theta} / R\right)\right]}{B\left[P\left(R e^{i \theta}\right)\right]}\right|^{q} d \alpha d \theta \\
& =\int_{0}^{2 \pi}\left\{\left.\left|B\left[P\left(R e^{i \theta}\right)\right]\right|^{q} \int_{0}^{2 \pi}\left|1+e^{i n \alpha}\right| \frac{B\left[R^{n} P\left(e^{i \theta} / R\right)\right]}{B\left[P\left(R e^{i \theta}\right)\right]}\right|^{q} d \alpha\right\} d \theta \\
& \geqslant \int_{0}^{2 \pi}\left\{\left|B\left[P\left(R e^{i \theta}\right)\right]\right|^{q} \int_{0}^{2 \pi}\left|1+e^{i n \alpha}\right|^{q} d \alpha\right\} d \theta \\
& =\int_{0}^{2 \pi}\left|B\left[P\left(R e^{i \theta}\right)\right]\right|^{q} d \theta \int_{0}^{2 \pi}\left|1+e^{i n \alpha}\right|^{q} d \alpha \tag{31}
\end{align*}
$$

Inequality (31) in conjuction with Lemma 4, gives

$$
\int_{0}^{2 \pi}\left|B\left[P\left(R e^{i \theta}\right)\right]\right|^{q} d \theta \leqslant \frac{2 \pi\left[\left|B\left[R^{n} e^{i n \theta}\right]\right|+\left|\lambda_{0}\right|\right]^{q}}{\int_{0}^{2 \pi}\left|1+e^{i n \alpha}\right|^{q} d \alpha} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta
$$

Equivalently

$$
\|B[P(R \cdot)]\|_{q} \leqslant \frac{\left|B\left[E_{n}(R \cdot)\right]\right|+\left|\lambda_{0}\right|}{\left\|1+E_{n}\right\|_{q}} \quad\|P\|_{q} .
$$

This completes proof of Theorem 2.
Proof of Theorem 3. Since $P(z)$ is a self inversive polynomial, we have

$$
P(z)=u Q(z), \text { where } Q(z)=z^{n} \overline{P(1 / \bar{z})} \text { and }|u|=1
$$

This in particular gives

$$
|B[P](z)|=|B[Q](z)| \text { for }|z| \geqslant 1
$$

That is

$$
\begin{equation*}
\left|B\left[P\left(R e^{i \theta}\right)\right]\right|=\left|B\left[R^{n} P\left(e^{i \theta} / R\right)\right]\right|, \text { for } 0 \leqslant \theta<2 \pi . \tag{32}
\end{equation*}
$$

Inequality (32) in conjuction with Lemma 4, gives

$$
\int_{0}^{2 \pi}\left|B\left[P\left(R e^{i \theta}\right)\right]\right|^{q} d \theta \leqslant \frac{2 \pi\left[\left|B\left[R^{n} e^{i n \theta}\right]\right|+\left|\lambda_{0}\right|\right]^{q}}{\int_{0}^{2 \pi}\left|1+e^{i n \alpha}\right|^{q} d \alpha} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta
$$

Equivalently for $R \geqslant 1$ and $q \geqslant 1$,

$$
\|B[P(R \cdot)]\|_{q} \leqslant \frac{\left|B\left[E_{n}(R \cdot)\right]\right|+\left|\lambda_{0}\right|}{\left\|1+E_{n}\right\|_{q}} \quad\|P\|_{q}
$$

This completes proof of Theorem 3.

Acknowledgement. Authors are highly thankful to the referee for his commendable suggestions/comments and also to Prof. Leiba Rodman for the valuable remarks.

REFERENCES

[1] N. C. Ankeny and T. J. Rivilin, On a Theorem of S. Bernstein, Pacific J. Math., 5 (1955), 849852.
[2] V. V. Arestov, On inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR Ser. Mat., 45 (1981), 3-22.
[3] A. AZIZ AND W. M. Shah, Inequalities for a polynomial and its derivatives, Math. Inequal. Appl., 7, 3 (2004), 391-397.
[4] S. Bernstein, Sur ĺ ordre de la meilleure approximation des fonctions continues par des polynomes de degré donné, Memoires dé Í Académie Royale de Belgique, 4 (1912), 1-103.
[5] R. P. Boas Jr. and Q. I. Rahman, L_{p} inequalities for polynomials and entire functions, Arch Rational Mech. Anal., II (1962), 34-39.
[6] N. G. DE Bruijn, Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetensch. Proc. Ser. A, 50 (1947), 1265-1272; indag. Math., 9 (1947), 591-598.
[7] K. K. Dewan and N. K. Govil, An inequality for self-inversive polynomials, J. Math. Anal. Appl., 95 (1998), 490.
[8] G. H. Hardy, The mean value of the modulus of an analytic function, Proc. London Math. Soc., 14 (1915), 269-277.
[9] P. D. LAX, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. (N.S), 50 (1944), 509-513.
[10] M. Marden, Geometry of polynomials, 2nd ed., Mathematical Survey's No. 3, Amer. Math. Soc., Providence, RI, 1966.
[11] G. Polya and G. Szegö, Problems and Theorems in Analysis, vol.1, Springer Verlag, New York, 1972.
[12] Q. I. Rahman, Functions of exponential type, Trans. Amer. Math. Soc., 135 (1969), 295-309.
[13] Q. I. RAhman And G. Schmeisser, L_{p} inequalities for polynomials, J. Approx. Theory, $\mathbf{5 3}$ (1998), 26-32.
[14] Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, New York, 2002.
[15] M. Riesz, Über einen satz des Herrn Serge Bernstein, Acta Math., 40 (1916), 337-347.
[16] W. M. Shah and A. Liman, An operator preserving inequalities between polynomials, J. Inequal. Pure Appl. Math., 9 (2008), 1-16.
[17] A. Zygmund, A remark on conjugate series, Proc. London Math. Soc., 34, 2 (1932), 392-400.

A. Liman

Department of Mathematics
National Institute of Technology
Kashmir, India-190006
e-mail: abliman22@yahoo.com

[^0]
[^0]: Operators and Matrices
 www.ele-math.com
 oam@ele-math.com

