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INTEGRAL ESTIMATES FOR THE FAMILY OF B–OPERATORS

W. M. SHAH AND A. LIMAN

(Communicated by L. Rodman)

Abstract. Let Pn be the class of polynomials of degree at most n. In 1969, Rahman introduced
a class Bn of operators B that map Pn into itself and proved that

‖B[P(R ·)]‖∞ � |B[En(R ·)]|‖P‖∞, R � 1,

for every B ∈ Bn, where En(z) := zn.
In this paper, we show that this inequality holds analogously for the norm ‖·‖q with q � 1

and for some of its refinements as well.

1. Introduction

Let Pn be the class of polynomials P(z) :=
n
∑
j=0

a jz j of degree at most n with

complex coefficients. For P ∈ Pn, define

‖P‖q :=
{

1
2π

∫ 2π

0

∣∣∣P(eiθ )
∣∣∣q dθ

}1/q

and ‖P‖∞ := max
|z|=1

|P(z)|.

It is known that if P ∈ Pn, then

‖P′‖∞ � n‖P‖∞ (1)

‖P(R ·)‖∞ � Rn‖P‖∞, R > 1. (2)

Inequality (1) is an immediate consequence of a famous result due to Bernstein on
the derivative of a trignometric polynomial (for reference see[4]), whereas inequality
(2) is a simple deduction from the maximum modulus principle (see [15, p.346], [11,
p.158 problem 269]).

Inequalities (1) and (2) can be obtained by letting q → ∞ in

‖P′‖q � n‖P‖q, q > 0 (3)

and
‖P(R ·)‖q � Rn‖P‖q, R > 1 and q > 0. (4)
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Inequality (3) for q � 1 is due to Zygmund [17], where as inequality (4) is a sim-
ple consequence of a result due to Hardy [8]. Arestov [2] proved that (3) remains true
for 0 < q < 1 as well.

For the class of polynomials P ∈ Pn such that P(z) �= 0 in |z| < 1, inequalities
(1) and (2) can be replaced by

‖P′‖∞ � n
2
‖P‖∞ (5)

and

‖P(R ·)‖∞ � Rn +1
2

‖P‖∞, R > 1. (6)

Inequality (5) was conjectured by Erdös and later verified by lax [9], whereas
Ankeny and Rivilin [1] used (5) to prove (6).

Inequalities (5) and (6) can be obtained by letting q → ∞ in

‖P′‖q � n
‖1+En‖q

‖P‖q, for q > 0, (7)

and

‖P(R ·)‖q � ‖En(R ·)+1‖q

‖1+En‖q
‖P‖q for R > 1 and q > 0. (8)

Inequality (7) was found out by de Brujin [6] for q � 1, whereas inequality (8) for
q � 1 was proved by Boas and Rahman [5]. Rahman and Schmeisser [13] have shown
that inequalities (7) and (8) remain true for 0 < q < 1 as well.

Rahman [12] (see also Rahman and Schmeisser [14, p.538]) introduced a class Bn

of operators B that map P ∈ Pn into itself. That is, the operator B carries P ∈ Pn

into

B [P] (z) := λ0P(z)+λ1

(nz
2

) P′(z)
1!

+λ2

(nz
2

)2 P′′(z)
2!

, (9)

where λ0, λ1 and λ2 are real or complex numbers such that all the zeros of

U (z) := λ0 +C(n,1)λ1z+C(n,2)λ2z
2, C(n,r) =

n!
r!(n− r)!

, (10)

lie in the half plane

|z| �
∣∣∣z− n

2

∣∣∣ (11)

and observed:

THEOREM A. If P(z) is a polynomial of degree n, then

|P(z)| � M, |z| = 1

implies
|B [P] (z)| � M |B [zn]| , |z| � 1. (12)

As an improvement of (12), recently authors [16] proved the following:
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THEOREM B. If P ∈ Pn and P(z) �= 0 in |z| < 1, then

|B [P] (z)| � 1
2

{ |B [zn]|+ |λ0|
}

max
|z|=1

|P(z)|, |z| � 1. (13)

The result is sharp and equality holds for a polynomial whose all zeros lie on the
unit disk.

For suitable choices of λ0,λ1 and λ2 (see [16]) Theorem A yields inequalities (1)
and (2), whereas Theorem B yields inequalities (5) and (6).

A natural question arises. Does there exist similar integral estimates which yield
the compact generalizations of inequalities (3), (4) and (7), (8) respectively such that
for q → ∞, these inequalities reduce to Theorem A and Theorem B as well? As an
answer to this question, we have been able to prove the following:

THEOREM 1. If P ∈ Pn, then for every R � 1, q � 1 and |z| = 1,

‖B[P(R ·)]‖q � |B[En(R ·)]|‖P‖q, (14)

where B ∈ Bn and En(z) := zn. Or, equivalently for 0 � θ < 2π ,

{
1
2π

∫ 2π

0

∣∣∣∣∣λ0P(Reiθ )+λ1

(
nReiθ

2

)
P′(Reiθ )+λ2

(
nReiθ

2

)2
P′′(Reiθ )

2!

∣∣∣∣∣
q

dθ

}1/q

� Rn

∣∣∣∣λ0 +λ1
n2

2
+λ2

n3(n−1)
8

∣∣∣∣
{

1
2π

∫ 2π

0

∣∣∣P(eiθ )
∣∣∣q dθ

}1/q

, (15)

where λ0, λ1, λ2 are defined above.
The result is best possible and equality holds for P(z) = αzn, α �= 0.

Theorem A immediately follows from Theorem 1, if we let q → ∞ in inequality
(14).

REMARK 1. If we choose λ0 = 0 = λ2 in (15), which is possible, as it can be
easily verified that in this case all the zeros of U (z) defined by (10) lie in (11), we get
inequality (3) for every q � 1.

THEOREM 2. Let P ∈ Pn be such that P(z) �= 0 in |z| < 1, then for every R �
1, q � 1 and |z| = 1,

‖B [P(R ·)]‖q � |B[En(R ·)]|+ |λ0|
‖1+En‖q

‖P‖q, (16)

where B ∈ Bn and En(z) := zn.
Or, equivalently for 0 � θ < 2π ,

{
1
2π

∫ 2π

0

∣∣∣∣∣λ0P(Reiθ )+λ1

(
nReiθ

2

)
P′(Reiθ )+λ2

(
nReiθ

2

)2
P′′(Reiθ )

2!

∣∣∣∣∣
q

dθ

}1/q
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�

∣∣∣λ0 +λ1
n2

2 +λ2
n3(n−1)

8

∣∣∣Rn + |λ0|
{ 1

2π
∫ 2π
0 |1+ einθ |q dθ}1/q

{
1
2π

∫ 2π

0

∣∣∣P(eiθ )
∣∣∣q dθ

}1/q

. (17)

The result is best possible and equality holds for the polynomial P(z) =αzn +β , where
|α| = |β |.

Theorem B easily follows from Theorem 2, if we make q → ∞ in inequality (16).
Further, if we choose λ0 = 0 = λ2, R = 1 in (17) which is possible, we get inequality
(7) for every q � 1. On the otherhand, for λ1 = λ2 = 0, we have the following:

COROLLARY 1. If P ∈ Pn be such that P(z) �= 0 in |z| < 1, then for every R �
1, q � 1 and |z| = 1,

‖P(R ·)‖q � Rn +1
‖1+En‖q

‖P‖q.

REMARK 2. Since inequalities (3), (4) and (7), (8) hold for every q � 0, we have
a feeling that Theorem 1 and Theorem 2 hold true for q ∈ (0,1) as well.

A polynomial P(z) is said to be self-inversive if P(z) = uQ(z), |u| = 1, where
Q(z) = znP(1/z). It is known [7] that if P ∈ Pn is a self inversive polynomial, then
for every q � 1,

‖P′‖q � n
‖1+En‖q

‖P‖q. (18)

We next present the following more general result concerning self inversive poly-
nomials, which includes inequality (18) as a special case. We prove.

THEOREM 3. If P∈Pn is self inversive, then for every q � 1, R � 1 and |z|= 1,

‖B [P(R ·)]‖q � |B[En(R ·)]|+ |λ0|
‖1+En‖q

‖P‖q, (19)

where B ∈ Bn and En(z) := zn.
Or, equivalently for 0 � θ < 2π ,{

1
2π

∫ 2π

0

∣∣∣∣∣λ0P(Reiθ )+λ1

(
nReiθ

2

)
P′(Reiθ )+λ2

(
nReiθ

2

)2
P′′(Reiθ )

2!

∣∣∣∣∣
q

dθ

}1/q

�

∣∣∣λ0 +λ1
n2

2 +λ2
n3(n−1)

8

∣∣∣+ |λ0|
{ 1

2π
∫ 2π
0 |1+ einθ |q dθ}1/q

{
1
2π

∫ 2π

0

∣∣∣P(eiθ )
∣∣∣q dθ

}1/q

. (20)

The result is sharp and equality holds for P(z) = zn +1.

Theorem 4 of [16] is a special case of this theorem, if we let q → ∞.
For λ0 = 0 = λ2, R = 1 inequality (20) yields inequality (18) and for λ1 = 0 = λ2,

we also have the following:

COROLLARY 2. If P ∈ Pn is self inversive, then for every q � 1, R � 1,

‖P(R ·)‖q � Rn +1
‖1+En‖q

‖P‖q f or |z| = 1. (21)

The result is sharp and equality holds for P(z) = zn +1.
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2. Lemmas

For the proofs of these theorems, we need the following lemmas.

LEMMA 1. Let Pn denote the linear space of polynomials

P(z) = a0 + · · ·+anz
n

of degree n with complex coefficients, normed by ‖P‖ = max |P(eiθ )|, 0 < θ � 2π .
Define the linear functional L on Pn as

L : P → l0a0 + l1a1 + · · ·+ lnan,

where l j ’s are complex numbers. If the norm of the functional is N then

∫ 2π

0
Θ

(∣∣∑n
k=0 lkakeikθ

∣∣
N

)
dθ �

∫ 2π

0
Θ

(∣∣∣∣∣
n

∑
k=0

ake
ikθ

∣∣∣∣∣
)

dθ , (22)

where Θ(t) is a non-decreasing convex function of t.
The above lemma is due to Rahman [12].

The next lemma which we need follows from [10, Corollary 18.3], (see also [12]).

LEMMA 2. If all the zeros of a polynomial P(z) of degree n lie in a circle |z|� 1,
then all the zeros of the polynomial B[P](z) also lie in the circle |z| � 1.

LEMMA 3. If P ∈ Pn and P(z) �= 0 in |z| < 1, then for |z| � 1,

|B[P](z)| � |B[Q](z)| , (23)

where Q(z) = znP
(

1
z

)
.

The proof of Lemma 3 is implicit in [12, Section 5].

LEMMA 4. If P ∈ Pn, then for every R � 1, q � 1, 0 � θ < 2π
∫ 2π

0

∫ 2π

0

∣∣∣∣B[P(Reiθ )]+ einαB[RnP(eiθ/R)]
∣∣∣∣
q

dθdα

� 2π
[∣∣∣B[Rneinθ ]

∣∣∣+ |λ0|
]q ∫ 2π

0

∣∣∣P(eiθ )
∣∣∣q dθ . (24)

Proof of Lemma 4. Let M = max|z|=1 |P(z)| , so that |P(z)| � M for |z| � 1. If
λ is any real or complex number with |λ | > 1, then by Rouchés theorem P(z)−λM

does not vanish in |z| � 1. Hence, if Q(z) = znP
(

1
z

)
, then by Lemma 3 and the fact

that B[1] = λ0, we have

|B[P](z)−λλ0M| � |B[Q](z)−λMB[zn]| for |z| � 1. (25)
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Since |Q(z)| = |P(z)| � M for |z| = 1, therefore by inequality (12), it is possible to
choose argument of λ such that

|B[Q](z)−λMB[zn]| = M|λ ||B[zn]|− |B[Q](z)|.
Hence choosing the argument of λ in the right hand side of inequality (25) suitably, we
get

|B[P](z)|− |λ ||λ0|M � M|λ ||B[zn]|− |B[Q](z)|.
This gives after making |λ | → 1

|B[P](z)|+ |B[Q](z)| � {|B[zn]|+ |λ0|}M for |z| � 1. (26)

In particular for every θ , 0 � θ < 2π and R � 1, we have∣∣∣B[P(Reiθ )]
∣∣∣+ ∣∣∣B[RnP(eiθ/R)]

∣∣∣� {∣∣∣B[Rneinθ ]
∣∣∣+ |λ0|

}
M.

Thus for every α with 0 � α < 2π , we have∣∣∣B[P(Reiθ )]+ einαB[RnP(eiθ/R)]
∣∣∣�{∣∣∣∣λ0 +

n2

2
λ1 +

n3(n−1)
8

λ2

∣∣∣∣Rn + |λ0|
}

M.

(27)
This shows that

Λ := B[P(Reiθ )]+ einαB[RnP(eiθ/R)]
is a bounded linear operator on Pn and in view of (27), the norm of the bounded linear
functional

L : P →
{

B[P(Reiθ )]+ einαB[RnP(eiθ/R)]
}
θ=0

is ∣∣∣∣λ0 +
n2

2
λ1 +

n3(n−1)
8

λ2

∣∣∣∣Rn + |λ0|.
Therefore, by Lemma 1 for Θ(t) = tq, q � 1, it follows that∫ 2π

0

∣∣∣B[P(Reiθ )]+ einαB[RnP(eiθ/R)]
∣∣∣q dθ

�
[∣∣∣∣λ0 +

n2

2
λ1 +

n3(n−1)
8

λ2

∣∣∣∣Rn + |λ0|
]q ∫ 2π

0

∣∣∣P(eiθ )
∣∣∣q dθ . (28)

Integrating the two sides of (28) with respect to α, we get∫ 2π

0

∫ 2π

0

∣∣∣B[P(Reiθ )]+ einαB[RnP(eiθ/R)]
∣∣∣q dθdα

�
∫ 2π

0

[∣∣∣∣λ0 +
n2

2
λ1 +

n3(n−1)
8

λ2

∣∣∣∣Rn + |λ0|
]q

dα
∫ 2π

0

∣∣∣P(eiθ )
∣∣∣q dθ

= 2π
[∣∣∣∣λ0 +

n2

2
λ1 +

n3(n−1)
8

λ2

∣∣∣∣Rn + |λ0|
]q ∫ 2π

0

∣∣∣P(eiθ )
∣∣∣q dθ

= 2π
[
B[Rneinθ ]+ |λ0|

]q ∫ 2π

0

∣∣∣P(eiθ )
∣∣∣q dθ .

This completes the proof of Lemma 4. �
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3. Proofs of the Theorems

Proof of Theorem 1. If M = max|z|=1 |P(z)| , then by inequality (12)

|B[P](z)| � M|B[zn]| f or |z| � 1.

This in particular gives for every θ , 0 � θ < 2π and R � 1,

|B[P(Reiθ )]| � M|B[Rneinθ ]|,

or ∣∣∣B[P(Reiθ )]
∣∣∣� M

∣∣∣∣λ0 +
n2

2
λ1 +

n3(n−1)
8

λ2

∣∣∣∣Rn. (29)

Since B is linear operator (see [12, sec. 5]), therefore Λ = B[P(Reiθ )] is a bounded
linear operator on Pn . Thus in view of (29), the norm of the bounded linear functional

L : P →
{

B[P(Reiθ )]
}
θ=0

is ∣∣∣∣λ0 +
n2

2
λ1 +

n3(n−1)
8

λ2

∣∣∣∣Rn.

Hence by Lemma 1 for every q � 1, we have

∫ 2π

0

∣∣∣B[P(Reiθ )]
∣∣∣q dθ �

∣∣∣∣
{
λ0 +

n2

2
λ1 +

n3(n−1)
8

λ2

}
Rn

∣∣∣∣
q ∫ 2π

0

∣∣∣P(eiθ )
∣∣∣q dθ .

From this inequality (14) follows immediately and this completes the proof of Theorem
1. �

Proof of Theorem 2. Since P(z) �= 0 in |z|< 1, by Lemma 3, we have for each θ ,
0 � θ < 2π and R � 1, ∣∣∣B[P(Reiθ )]

∣∣∣� ∣∣∣B[RnP(eiθ/R)]
∣∣∣ .

Also for every real θ and t � 1, it can be easily verified that |1+ teiθ | � |1+ eiθ | and
therefore for every q � 1,

∫ 2π

0
|1+ teiθ |qdθ �

∫ 2π

0
|1+ eiθ |qdθ . (30)

Now, taking t =
∣∣B[RnP(eiθ/R)]

∣∣∣∣B[P(Reiθ )]
∣∣ � 1 and using inequality (30), we have
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∫ 2π

0

∫ 2π

0

∣∣∣B[P(Reiθ )]+ einαB[RnP(eiθ/R)]
∣∣∣q dθdα

=
∫ 2π

0

∫ 2π

0
|B[P(Reiθ )]|q

∣∣∣∣1+ einα B[RnP(eiθ/R)]
B[P(Reiθ )]

∣∣∣∣
q

dαdθ

=
∫ 2π

0

{∣∣∣∣B[P(Reiθ )]
∣∣∣∣
q ∫ 2π

0

∣∣∣∣1+ einα
∣∣∣∣B[RnP(eiθ/R)]

B[P(Reiθ )]

∣∣∣∣
∣∣∣∣
q

dα

}
dθ

�
∫ 2π

0

{∣∣∣∣B[P(Reiθ )]
∣∣∣∣
q ∫ 2π

0

∣∣1+ einα∣∣q dα
}

dθ

=
∫ 2π

0

∣∣∣∣B[P(Reiθ )]
∣∣∣∣
q

dθ
∫ 2π

0

∣∣1+ einα∣∣q dα. (31)

Inequality (31) in conjuction with Lemma 4, gives

∫ 2π

0

∣∣∣B[P(Reiθ )]
∣∣∣q dθ �

2π
[∣∣∣∣B[Rneinθ ]

∣∣∣∣+ |λ0|
]q

∫ 2π
0 |1+ einα |q dα

∫ 2π

0

∣∣∣P(eiθ )
∣∣∣q dθ .

Equivalently

‖B [P(R ·)]‖q � |B[En(R ·)]|+ |λ0|
‖1+En‖q

‖P‖q.

This completes proof of Theorem 2. �

Proof of Theorem 3. Since P(z) is a self inversive polynomial, we have

P(z) = uQ(z), where Q(z) = znP(1/z) and |u| = 1.

This in particular gives

|B[P](z)| = |B[Q](z)| f or |z| � 1.

That is ∣∣∣B[P(Reiθ )]
∣∣∣= ∣∣∣B[RnP(eiθ/R)]

∣∣∣ , for 0 � θ < 2π . (32)

Inequality (32) in conjuction with Lemma 4, gives

∫ 2π

0

∣∣∣B[P(Reiθ )]
∣∣∣q dθ �

2π
[
|B[Rneinθ ]|+ |λ0|

]q

∫ 2π
0 |1+ einα |q dα

∫ 2π

0

∣∣∣P(eiθ )
∣∣∣q dθ .

Equivalently for R � 1 and q � 1,

‖B [P(R ·)]‖q �

∣∣∣∣B[En(R ·)]
∣∣∣∣+ |λ0|

‖1+En‖q
‖P‖q.
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This completes proof of Theorem 3. �
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