POLYNOMIAL INVERSE IMAGES AND POLYNOMIAL NUMERICAL HULLS OF NORMAL MATRICES

Hamid Reza Afshin, Mohammad Ali Mehrjoofard and Abbas Salemi

(Communicated by C.-K. Li)

Abstract. Let $A \in M_n$ be a normal matrix and let $k \in \mathbb{N}$. In this note we introduce the notion "Polynomial inverse image of order k". The polynomial numerical hull of order k, denoted by $V^k(A)$ are characterized by the intersection of polynomial inverse images of order k. Also, the locus of $V^{n-1}(A)$ in the complex plane are determined.

1. Introduction

Let M_n be the set of $n \times n$ complex matrices. Motivated by the study of convergence of iterative methods in solving linear systems (e.g., see [4, 5, 7]), researchers studied the *polynomial numerical hull of order k* of a matrix $A \in M_n$, which is defined and denoted by

 $V^{k}(A) = \{ \xi \in \mathbb{C} : |p(\xi)| \leq ||p(A)|| \text{ for all } p(z) \in \mathscr{P}_{k}[\mathbb{C}] \},\$

where $\mathscr{P}_k[\mathbb{C}]$ is the set of complex polynomials with degree at most k. The *joint* numerical range of $(A_1, A_2, \ldots, A_m) \in M_n \times \cdots \times M_n$ is denoted by

$$W(A_1, A_2, \dots, A_m) = \{ (x^*A_1x, x^*A_2x, \dots, x^*A_mx) : x \in \mathbb{C}^n, x^*x = 1 \}.$$

By the result in [4] (see also [5])

$$V^{k}(A) = \{\zeta \in \mathbb{C} : (0, \dots, 0) \in \operatorname{conv} W((A - \zeta I), (A - \zeta I)^{2}, \dots, (A - \zeta I)^{k})\},\$$

where conv*X* denotes the convex hull of $X \subseteq \mathbb{C}^k$.

In Section 2, we introduce a new concept "polynomial inverse image of order k". Also, we study the relationship between polynomial inverse image of order k and polynomial numerical hull of order k for a normal matrices. In section 3, by using the polynomial inverse images of $[0,\infty)$, the locus of the polynomial numerical hulls of order n-1 are characterized. Additional results are given in Section 4.

Keywords and phrases: Polynomial numerical hull, polynomial inverse image, joint numerical range, normal matrices.

Mathematics subject classification (2010): 15A60, 15A18, 14H45, 30C15, 52A10.

2. Polynomial inverse image of order k

In this section we are introducing the notion polynomial inverse image of order k to study the polynomial numerical hulls of order k. We are using Re(w) and Im(w) to denote the real and the imaginary parts of $w \in \mathbb{C}$, respectively.

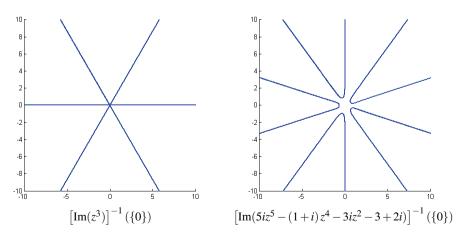
It was shown in [3, Theorem 3.1] that if $A \in M_n(\mathbb{C})$ is normal with $\sigma(A)$ lying on a rectangular hyperbola \mathscr{R} in the complex plane, then $V^2(A)$ is a subset of \mathscr{R} as well. It is readily seen that, if L is a straight line in the complex plane then the set $L^{1/2} = \{z : z^2 \in L\}$ is a rectangular hyperbola. In [1, Theorem 4.3], we obtained that, if A is a normal matrix and S is an arbitrary convex set with $\sigma(A) \subset S^{\frac{1}{k}}$, then $V^k(A) \subset S^{\frac{1}{k}}$. By using the following definition, we are going to extend the above results.

DEFINITION 2.1. Let q be a polynomial of degree k and let $S \subseteq \mathbb{C}$. The set $\{z \in \mathbb{C} : \text{Im}(q(z)) \in S\}$ is called a *polynomial inverse image of order k of S* and is abbreviated by $\text{PII}_k(S)$.

PROPOSITION 2.2. Every rectangular hyperbola is a $PII_2(\{0\})$ and vice versa.

Proof. Let $\mathscr{R} = \{(x,y) \in \mathbb{R}^2 : r_1(x^2 - y^2) + r_2xy + r_3x + r_4y + r_5 = 0\}$ be a rectangular hyperbola, where $r_1, \dots, r_5 \in \mathbb{R}$, $(r_1, r_2) \neq (0, 0)$. Define $p(z) = (\frac{1}{2}r_2 + ir_1)z^2 + (r_4 + ir_3)z + ir_5$. It is readily seen that $\mathscr{R} = \{z \in \mathbb{C} : \operatorname{Im}(p(z)) = 0\}$ is a $\operatorname{PII}_2(\{0\})$. By the same method the converse is trivial. \Box

We know that $\operatorname{Im}(ip(z)) = \operatorname{Re}(p(z))$, then $\{z \in \mathbb{C} : \operatorname{Re}(p(z)) = 0\}$ is also a $\operatorname{PII}_k(\{0\})$.



THEOREM 2.3. Suppose p is a complex polynomial of degree k and $A \in M_n$ is a normal matrix. Let $S \subset \mathbb{C}$ be a convex set and let $\ell : \mathbb{C} \to \mathbb{C}$ be a real linear transformation such that $\sigma(A) \subset (\ell \circ p)^{-1}(S)$. Then $V^k(A) \subset (\ell \circ p)^{-1}(S)$.

Proof. Without loss of generality we assume that $A = \text{diag}(a_1, a_2, \dots, a_n)$. Let $\mu \in V^k(A)$. By [4], we know that, the joint numerical range $W(A, A^2, \dots, A^k)$ is convex. So there exists a unit vector $X = (x_1, x_2, \dots, x_n)^t$ such that $\mu^i = X^* A^i X = \sum_{j=1}^n |x_j|^2 a_j^i$, $i = 1, \dots, n$. Hence $p(\mu) = X^* p(A)X = \sum_{j=1}^n |x_j|^2 p(a_j)$. Therefore, $\ell \circ p(\mu) = \sum_{j=1}^n |x_j|^2 \ell(p(a_j))$. Since $\ell(p(a_j)) \in S$, $j = 1, \dots, n$ and S is convex, we obtain that $\ell \circ p(\mu) \in S$ and hence $\mu \in (\ell \circ p)^{-1}(S)$. \Box

In Theorem 2.3, we consider the linear transformation $\ell : \mathbb{C} \to \mathbb{C}$ by $\ell(z) = \text{Im}(z), \forall z \in \mathbb{C} \text{ and } S = \{0\}$. Hence, the following holds.

COROLLARY 2.4. Let $A \in M_n$ be a normal matrix. If $\sigma(A)$ is a subset of a $\operatorname{PII}_k(\{0\})$, then $V^k(A) \subseteq \operatorname{PII}_k(\{0\})$.

Also, if we consider the linear transformation $\ell : \mathbb{C} \to \mathbb{C}$ in Theorem 2.3 by $\ell(z) = z$, $\forall z \in \mathbb{C}$ and $p(z) = z^k$, we obtain the following:

COROLLARY 2.5. [1, Theorem 4.3] Let $A \in M_n$ be a normal matrix and let $S \subset \mathbb{C}$ be a convex set. If $\sigma(A) \subseteq (S)^{\frac{1}{k}}$, then $V^k(A) \subseteq (S)^{\frac{1}{k}}$.

If we have 4 points in the complex plane, then there exists a rectangular hyperbola $(PII_2(\{0\}))$ passing through these four points. Now, we attempt to extend this result to $PII_k(\{0\})$.

THEOREM 2.6. Let $\{a_1, \ldots, a_{2k}\}$ be a set of complex numbers. Then there exists a PII_{ℓ} ($\{0\}$), ($1 \leq \ell \leq k$), passing through these 2k points in the complex plane \mathbb{C} .

Proof. We are looking to find a non-constant complex polynomial $p(z) = \alpha_k z^k + \cdots + \alpha_1 z + \alpha_0$, where Im $p(a_i) = 0$, i = 1, ..., 2k. We consider the $2k \times (2k+1)$ matrix **A** such that it's i^{th} row $\mathbf{A}_i = (1, \operatorname{Re}(a_i), \operatorname{Im}(a_i), \ldots, \operatorname{Re}(a_i^k), \operatorname{Im}(a_i^k))$. We know that the homogeneous system $\mathbf{A}X = 0$ has a nontrivial solution $X = (x_0, x_1, \ldots, x_{2k})^t \in \mathbb{R}^{2k+1}$. Define $\alpha_0 = ix_0$ and $\alpha_j = x_{2j} + ix_{2j-1}$, $j = 1, \ldots, k$. Hence $p(z) = (x_{2k} + ix_{2k-1})z^k + \cdots + (x_2 + ix_1)z + x_0i$. Let $\ell := \operatorname{deg}(p)$. Then $1 \leq \ell \leq k$. Direct computation shows that $\operatorname{Im}p((a_i)) = 0$, $i = 1, \ldots, 2k$. Therefore, $\{a_1, \cdots, a_{2k}\} \subseteq [\operatorname{Im}p]^{-1}(\{0\})$.

The following example shows that in general it is not possible to find a $\text{PII}_k(\{0\})$ passing through any 2k points in the complex plane.

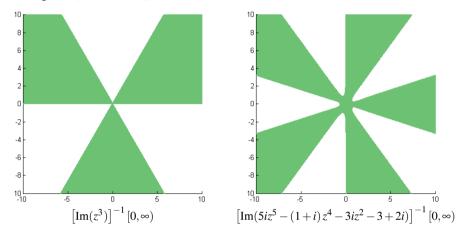
EXAMPLE 2.7. Let $\mathscr{R} = \operatorname{PII}_2(\{0\}) = \{z : \operatorname{Im}(z^2) = 2\}$ and suppose that $z_k = k + \frac{i}{k}, k = 1, 2, \dots, 6$ be complex numbers. It is easy to see that \mathscr{R} passing through these 6 points. We will show that there is no $\operatorname{PII}_3(\{0\})$ passing through these 6 points. Assume, if possible that, there exists a polynomial $q(z) = (a_1 + ia_2)z^3 + (b_1 + ib_2)z^2 + (c_1 + ic_2)z + (d_1 + id_2)$ such that $\operatorname{Im}q(z_k) = 0, k = 1, \dots, 6$ and $(a_1, a_2) \neq (0, 0)$. Therefore,

$$a_{2}k^{6} + b_{2}k^{5} + (3a_{1} + c_{2})k^{4} + (2b_{1} + d_{2})k^{3} + (c_{1} - 3a_{2})k^{2} - b_{2}k - a_{1} = 0, \ k = 1, 2, \dots, 6.$$
(1)

Define $h(z) := a_2 z^6 + b_2 z^5 + (3a_1 + c_2) z^4 + (2b_1 + d_2) z^3 + (c_1 - 3a_2) z^2 - b_2 z - a_1$. By (1), we know that $h(1) = h(2) = \dots = h(6) = 0$. Then $a_2 \neq 0$. Since, the coefficients of z^5 and -z in the polynomial h(z) are the same, we obtain that $1 + 2 + \dots + 6 = \frac{b_2}{a_2} = -(1 \times 2 \times \dots \times 6) (1 + \frac{1}{2} + \dots + \frac{1}{6})$, a contradiction.

3. Polynomial inverse image of $[0,\infty)$

Let $A \in M_n$ be a normal matrix. By Corollary 2.4, if $\sigma(A)$ is a subset of a $\operatorname{PII}_k(\{0\})$, then so does $V^k(A)$. But exactly which part of $\operatorname{PII}_k(\{0\})$ belongs to $V^k(A)$ was not determined. In the following we characterize these parts. First, we need the following (see [3, Section 3]).



LEMMA 3.1. Let $A \in M_n$ be a normal matrix such that $\sigma(A)$ is a subset of a polynomial inverse image of $\{0\}$,

$$\operatorname{PII}_{k}(\{0\}) = \left\{ z : r_{2k} \operatorname{Re}\left(z^{k}\right) + r_{2k-1} \operatorname{Im}\left(z^{k}\right) + \dots + r_{2} \operatorname{Re}\left(z\right) + r_{1} \operatorname{Im}\left(z\right) + r_{0} = 0 \right\},$$
(2)

where $r_0, ..., r_{2k}$ are real numbers and $(r_{2k-1}, r_{2k}) \neq (0,0)$. Then (a) If $r_{2k-1} \neq 0$, then

$$V^{k}(A) = \operatorname{PII}_{k}(\{0\}) \cap \left\{ z \in \mathbb{C} : \left(\operatorname{Re}(z), \operatorname{Im}(z), \cdots, \operatorname{Re}(z^{k-1}), \operatorname{Im}(z^{k-1}), \operatorname{Re}(z^{k})\right) \\ \in W\left(\operatorname{Re}(A), \operatorname{Im}(A), \cdots, \operatorname{Re}(A^{k-1}), \operatorname{Im}(A^{k-1}), \operatorname{Re}(A^{k})\right) \right\}$$

(b) if
$$r_{2k} \neq 0$$
, then

$$V^{k}(A) = \operatorname{PII}_{k}(\{0\}) \cap \left\{ z \in \mathbb{C} : \left(\operatorname{Re}(z), \operatorname{Im}(z), \cdots, \operatorname{Re}(z^{k-1}), \operatorname{Im}(z^{k-1}), \operatorname{Im}(z^{k})\right) \\ \in W\left(\operatorname{Re}(A), \operatorname{Im}(A), \cdots, \operatorname{Re}(A^{k-1}), \operatorname{Im}(A^{k-1}), \operatorname{Im}(A^{k})\right) \right\}$$

Let $A = \text{diag}(a_1, \dots, a_4)$. By [2, Theorem 2.2] we can write $V^2(A)$ as the intersection of 4 PII₂($[0,\infty)$) sets and the rectangular hyperbola passing through $\sigma(A)$. In the following theorem we extend this result.

THEOREM 3.2. Let $A = \text{diag}(a_1, \ldots, a_{2k}) \in M_{2k}(\mathbb{C})$. Let $\text{PII}_k(\{0\})$ as in (2) be the unique polynomial inverse image of order k of $\{0\}$ passing through $\sigma(A)$. Then for any $1 \leq i \leq 2k$, there exist a polynomial inverse image of $[0, \infty)$ of order $1 \leq \ell_i \leq k$ such that $V^k(A) = \bigcap_{i=1}^{2k} \text{PII}_{\ell_i}([0, \infty)) \cap \text{PII}_k(\{0\})$.

Proof. By Lemma 3.1, without loss of generality we assume that

$$V^{k}(A) = \operatorname{PII}_{k}(\{0\}) \cap \left\{ \begin{array}{l} \mu \in \mathbb{C} : \left(\operatorname{Re}(\mu), \operatorname{Im}(\mu), \cdots, \operatorname{Re}\left(\mu^{k-1}\right), \operatorname{Im}\left(\mu^{k-1}\right), \operatorname{Re}\left(\mu^{k}\right)\right) \\ \in W\left(\operatorname{Re}(A), \operatorname{Im}(A), \cdots, \operatorname{Re}\left(A^{k-1}\right), \operatorname{Im}\left(A^{k-1}\right), \operatorname{Re}\left(A^{k}\right)\right) \end{array} \right\}$$
(3)

By [4, Theorem 2.11], we know that $W(\operatorname{Re}(A), \operatorname{Im}(A), \dots, \operatorname{Re}(A^{k-1}), \operatorname{Im}(A^{k-1}))$, Re (A^k) is convex. Then by (3), $\mu \in V^k(A)$ if and only if $\mu \in \operatorname{PII}_k(\{0\})$ and there exist $\lambda_1, \dots, \lambda_{2k} \ge 0$ such that

:	÷		$\begin{bmatrix} 1 \\ \operatorname{Re}(\mu) \\ \operatorname{Im}(\mu) \\ \vdots \\ \operatorname{Re}(\mu^k) \end{bmatrix}$
	B		

Since $\text{PII}_k(\{0\})$ is the unique polynomial inverse image of order k of $\{0\}$ passing through $\sigma(A)$, we obtain that B is invertible. Let B_1, \ldots, B_{2k} be the rows of the matrix B^{-1} . Thus $\mu \in V^k(A)$ if and only if $\mu \in \text{PII}_k(\{0\})$ and $B_i[1, \text{Re}(\mu), \text{Im}(\mu), \ldots, \text{Re}(\mu^k)]^t \ge 0, \ 1 \le i \le 2k$. Define polynomial inverse image of order $1 \le \ell_i \le k$ as follows:

$$\operatorname{PII}_{\ell_i}([0,\infty)) = \left\{ \mu \in \mathbb{C} : B_i \left[1, \operatorname{Re}(\mu), \operatorname{Im}(\mu), \dots, \operatorname{Re}(\mu^k) \right]^t \ge 0 \right\}, \ i = 1, \dots, 2k.$$

Therefore, $V^k(A) = \bigcap_{i=1}^{2k} \operatorname{PII}_{\ell_i}([0,\infty)) \cap \operatorname{PII}_k(\{0\}).$

REMARK 3.3. Let $A = \text{diag}(a_1, \dots, a_n) \in M_n$. We know that if there exist $1 \leq i < j \leq n$ such that $a_i = a_j$, then $V^{n-1}(A) = \sigma(A)$ [3, Lemma 1.2]. Thus, without loss of generality, we assume that a_1, \dots, a_n are distinct complex numbers. We are looking to find the locus of the set $V^{n-1}(A) \setminus \sigma(A)$. Note that by [2, Theorem 5.1] and its proof, for a normal matrix A with distinct eigenvalues a_1, \dots, a_n , we have $\mu \in V^{n-1}(A) \setminus \sigma(A)$ if and only if μ is the unique element not in $\sigma(A)$ such that the system

$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_1^{n-1} & a_2^{n-1} & \cdots & a_n^{n-1} \end{pmatrix} X = \begin{pmatrix} 1 \\ \mu \\ \vdots \\ \mu^{n-1} \end{pmatrix}$$
(4)

has a nonnegative solution $X = (x_1, ..., x_n)^t$. By Cramer's rule, $x_k = p_k(\mu) \ge 0$, where $p_k(z) = \frac{\prod_{i \neq k} (z-a_i)}{\prod_{i \neq k} (a_k - a_i)}$, k = 1, ..., n are the Lagrange polynomials for $a_1, ..., a_n$, respectively.

By Remark 3.3, we have the following:

THEOREM 3.4. Let $A \in M_n$, $n \ge 3$ be a normal matrix with distinct eigenvalues and let the Lagrange polynomials p_k , k = 1,...,n be as above. Then $V^{n-1}(A) = \bigcap_{i=1}^{n} p_i^{-1}([0,\infty))$.

Theorem 3.4 characterize the locus of the set $V^{n-1}(A)$ as the intersection of some $\text{PII}_k([0,\infty))$. In the following examples we are using the Matlab programs to draw the figures (see [1, Theorem 2.5]).

EXAMPLE 3.5. Let A = diag(1, -1, i, -i). The Lagrange polynomials for $\{1, -1, i, -i\}$ are $p_1(z) = \frac{z^3 + z^2 + z + 1}{4}$, $p_2(z) = \frac{-z^3 + z^2 - z + 1}{4}$, $p_3(z) = \frac{iz^3 - z^2 - iz + 1}{4}$, $p_4(z) = \frac{-iz^3 - z^2 + iz + 1}{4}$ respectively. Then $V^3(A) = \bigcap_{j=1}^4 p_j^{-1}([0,\infty)) = \{1, -1, 0, i, -i\}$, (see Figure (i)).

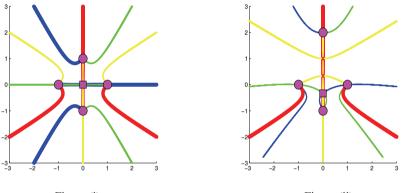


Figure (i)

Figure (ii)

EXAMPLE 3.6. Let B = diag(1, -1, 2i, -i). The Lagrange polynomials for $\{1, -1, 2i, -i\}$ are $q_1(z) = \frac{z^3 + (1-i)z^2 + (2-i)z + 2}{6-2i}$, $q_2(z) = \frac{z^3 - (1+i)z^2 + (2+i)z - 2}{-6-2i}$, $q_3(z) = \frac{z^3 + iz^2 - z - i}{-15i}$, $q_4(z) = \frac{z^3 - 2iz^2 - z + 2i}{6i}$, respectively. Then $V^3(B) = \bigcap_{j=1}^4 q_j^{-1}([0,\infty)) = \{1, -1, -i/3, 2i, -i\}$, (see Figure (ii)).

REMARK 3.7. Let $A \in M_n$ be a normal matrix. By [4, Theorem 2.11] we know that $P = W(\operatorname{Re}(A), \operatorname{Im}(A), \dots, \operatorname{Re}(A^k), \operatorname{Im}(A^k))$ is a polytope and by Minkowski-Weyl theorem [6], every polytope is a bounded polyhedron. Then there exists an $m \times 2k$ real matrix D and $b \in \mathbb{R}^{2k}$ such that $P = \{X \in \mathbb{R}^{2k} : DX \ge b\}$. Also, we know that $\mu \in V^k(A)$ if and only if $(\operatorname{Re}(\mu), \operatorname{Im}(\mu), \dots, \operatorname{Re}(\mu^k), \operatorname{Im}(\mu^k))^t \in P$. Therefore, $V^k(A)$ is the intersection of at most m sets $\operatorname{PII}_{\ell_i}([0,\infty))$ $(1 \le \ell_i \le k)$.

QUESTION. Let $A \in M_n$ be a normal matrix. It would be nice to find the smallest integer *m* such that $V^k(A)$ is the intersection of *m* polynomial inverse images of $[0,\infty)$ of orders ℓ_i , $(1 \leq \ell_i \leq k)$.

4. Additional Results

In this section, we shall characterize the polynomial numerical hulls of order 2k for normal matrices such that their spectrum belong to a $\text{PII}_k(\{0\})$.

THEOREM 4.1. Suppose that $A \in M_n$ is a normal matrix and $\sigma(A)$ is contained in a PII_k({0}). Then $V^{2k}(A) = \sigma(A)$.

Proof. Assume, if possible that, $\mu \in V^{2k}(A) \setminus \sigma(A)$. Without loss of generality, we assume that $\sigma(A)$ contains *n* distinct complex numbers and 2k < n. Let *p* be a complex polynomial of degree *k* such that

$$\mathscr{R}_k = \operatorname{PII}_k(\{0\}) = \{z \in \mathbb{C} : \operatorname{Im}(p(z)) = 0\}.$$

Whereas $\sigma(A) \subseteq \mathscr{R}_k$, then $p(\lambda) \in \mathbb{R}$, for all $\lambda \in \sigma(A)$. This means that p(A) is Hermitian. Since $\mu \in V^{2k}(A)$, and $\deg(p) = k$, we obtain that $p(\mu) \in V^2(p(A)) = \sigma(p(A)) = p(\sigma(A))$. Therefore, there exists $\lambda_1 \in \sigma(A)$ such that $p(\mu) = p(\lambda_1)$. Without loss of generality we assume that $A = [\lambda_1] \oplus A_1$, $\lambda_1 \notin \sigma(A_1)$. Therefore, there exist $x = (x_1, x_2)^t \in \mathbb{C}^n$ such that $x_1 \in \mathbb{C}$ and $\mu^i = \lambda_1^i |x_1|^2 + x_2^* A_1^i x_2, i = 1, 2, ..., 2k$. Thus, $p(\mu)^i = p(\lambda_1)^i |x_1|^2 + x_2^* p(A_1)^i x_2, i = 1, 2$. Since $\mu \neq \lambda_1$, we obtain that $x_2 \neq 0$ and hence $p(\mu)^i = \frac{x_2^*}{\|x_2\|} p(A_1)^i \frac{x_2}{\|x_2\|}$, i = 1, 2. Therefore, $p(\mu) \in V^2(p(A_1)) = \sigma(p(A_1)) = p(\sigma(A_1))$. Thus, there exists $\lambda_2 \in \sigma(A_1)$ such that $p(\mu) = p(\lambda_2)$. After k + 1 steps we obtain that $A = \operatorname{diag}(\lambda_1, \ldots, \lambda_{k+1}) \oplus A_{k+1}$, where $\{\lambda_1, \ldots, \lambda_{k+1}\} \cap \sigma(A_{k+1}) = \emptyset$. Define $q(z) = p(z) - p(\mu)$. Then $q(\lambda_1) = \cdots = q(\lambda_{k+1}) = 0$. Therefore, the polynomial q(z) of degree k has k + 1 roots, a contradiction. \Box

COROLLARY 4.2. Suppose that $A \in M_n$ be a normal matrix such that A^k is Hermitian. Then $V^{2k}(A) = \sigma(A)$.

Acknowledgement. This research has been supported by Mahani Mathematical Research Center, Kerman, Iran. Research of the first author was supported by Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran. Also, the authors are very grateful to anonymous referees for their comments and suggestions.

REFERENCES

- H. R. AFSHIN, M. A. MEHRJOOFARD AND A. SALEMI, *Polynomial numerical hulls of order 3*, Electronic Journal of Linear Algebra, 18 (2009), 253–263.
- [2] CH. DAVIS, C. K. LI AND A. SALEMI, Polynomial numerical hulls of matrices, Linear Algebra and its Applications, 428 (2008), 137–153.
- [3] CH. DAVIS AND A. SALEMI, On polynomial numerical hulls of normal matrices, Linear Algebra and its Applications, 383 (2004), 151–161.
- [4] V. FABER, W. JOUBERT, M. KNILL AND T. MANTEUFFEL, Minimal residual method stronger than polynomial preconditioning, SIAM Journal on Matrix Analysis and Applications, 17 (1996), 707–729.

- [5] A. GREENBAUM, Generalizations of the field of values useful in the study of polynomial functions of a matrix, Linear Algebra and Its Applications, 347 (2002), 233–249.
- [6] B. GRÜNBAUM, Convex Polytopes, John Wiley and Sons, New York, 1967.
- [7] O. NEVANLINNA, Convergence of Iterations for Linear Equations, Birkhäuser, Basel, 1993.
- [8] O. NEVANLINNA, Hessenberg matrices in Krylov subspaces and the computation of the spectrum, Numerical Functional Analysis and Optimization, 16 (1995), 443–473.

(Received November 10, 2009)

Hamid Reza Afshin Department of Mathematics Vali-E-Asr University of Rafsanjan Rafsanjan Iran e-mail: afshin@mail.vru.ac.ir

Mohammad Ali Mehrjoofard Department of Mathematics Vali-E-Asr University of Rafsanjan Rafsanjan Iran e-mail: aahaay@gmai1.com

Abbas Salemi Department of Mathematics Shahid Bahonar University of Kerman Kerman Iran The SBUK Center of Excellence in Linear Algebra and Optimization Iran e-mail: salemi@mail.uk.ac.ir

96

Operators and Matrices www.ele-math.com oam@ele-math.com