POLYNOMIAL INVERSE IMAGES AND POLYNOMIAL NUMERICAL HULLS OF NORMAL MATRICES

Hamid Reza Afshin, Mohammad Ali Mehrjoofard
and Abbas Salemi

(Communicated by C.-K. Li)

Abstract

Let $A \in M_{n}$ be a normal matrix and let $k \in \mathbb{N}$. In this note we introduce the notion "Polynomial inverse image of order k ". The polynomial numerical hull of order k, denoted by $V^{k}(A)$ are characterized by the intersection of polynomial inverse images of order k. Also, the locus of $V^{n-1}(A)$ in the complex plane are determined.

1. Introduction

Let M_{n} be the set of $n \times n$ complex matrices. Motivated by the study of convergence of iterative methods in solving linear systems (e.g., see [4, 5, 7]), researchers studied the polynomial numerical hull of order k of a matrix $A \in M_{n}$, which is defined and denoted by

$$
V^{k}(A)=\left\{\xi \in \mathbb{C}:|p(\xi)| \leqslant\|p(A)\| \text { for all } p(z) \in \mathscr{P}_{k}[\mathbb{C}]\right\}
$$

where $\mathscr{P}_{k}[\mathbb{C}]$ is the set of complex polynomials with degree at most k. The joint numerical range of $\left(A_{1}, A_{2}, \ldots, A_{m}\right) \in M_{n} \times \cdots \times M_{n}$ is denoted by

$$
W\left(A_{1}, A_{2}, \ldots, A_{m}\right)=\left\{\left(x^{*} A_{1} x, x^{*} A_{2} x, \ldots, x^{*} A_{m} x\right): x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

By the result in [4] (see also [5])

$$
V^{k}(A)=\left\{\zeta \in \mathbb{C}:(0, \ldots, 0) \in \operatorname{convW}\left((A-\zeta I),(A-\zeta I)^{2}, \ldots,(A-\zeta I)^{k}\right)\right\}
$$

where conv X denotes the convex hull of $X \subseteq \mathbb{C}^{k}$.
In Section 2, we introduce a new concept "polynomial inverse image of order k". Also, we study the relationship between polynomial inverse image of order k and polynomial numerical hull of order k for a normal matrices. In section 3, by using the polynomial inverse images of $[0, \infty)$, the locus of the polynomial numerical hulls of order $n-1$ are characterized. Additional results are given in Section 4.

Mathematics subject classification (2010): 15A60, 15A18, 14H45, 30C15, 52A10.
Keywords and phrases: Polynomial numerical hull, polynomial inverse image, joint numerical range, normal matrices.

2. Polynomial inverse image of order k

In this section we are introducing the notion polynomial inverse image of order k to study the polynomial numerical hulls of order k. We are using $\operatorname{Re}(w)$ and $\operatorname{Im}(w)$ to denote the real and the imaginary parts of $w \in \mathbb{C}$, respectively.

It was shown in [3, Theorem 3.1] that if $A \in M_{n}(\mathbb{C})$ is normal with $\sigma(A)$ lying on a rectangular hyperbola \mathscr{R} in the complex plane, then $V^{2}(A)$ is a subset of \mathscr{R} as well. It is readily seen that, if L is a straight line in the complex plane then the set $L^{1 / 2}=$ $\left\{z: z^{2} \in L\right\}$ is a rectangular hyperbola. In [1, Theorem 4.3], we obtained that, if A is a normal matrix and S is an arbitrary convex set with $\sigma(A) \subset S^{\frac{1}{k}}$, then $V^{k}(A) \subset S^{\frac{1}{k}}$. By using the following definition, we are going to extend the above results.

DEFINITION 2.1. Let q be a polynomial of degree k and let $S \subseteq \mathbb{C}$. The set $\{z \in \mathbb{C}: \operatorname{Im}(q(z)) \in S\}$ is called a polynomial inverse image of order k of S and is abbreviated by $\mathrm{PII}_{k}(S)$.

PROPOSITION 2.2. Every rectangular hyperbola is a $\mathrm{PII}_{2}(\{0\})$ and vice versa.
Proof. Let $\mathscr{R}=\left\{(x, y) \in \mathbb{R}^{2}: r_{1}\left(x^{2}-y^{2}\right)+r_{2} x y+r_{3} x+r_{4} y+r_{5}=0\right\}$ be a rectangular hyperbola, where $r_{1}, \cdots, r_{5} \in \mathbb{R},\left(r_{1}, r_{2}\right) \neq(0,0)$. Define $p(z)=\left(\frac{1}{2} r_{2}+i r_{1}\right) z^{2}$ $+\left(r_{4}+i r_{3}\right) z+i r_{5}$. It is readily seen that $\mathscr{R}=\{z \in \mathbb{C}: \operatorname{Im}(p(z))=0\}$ is a $\mathrm{PII}_{2}(\{0\})$. By the same method the converse is trivial.

We know that $\operatorname{Im}(i p(z))=\operatorname{Re}(p(z))$, then $\{z \in \mathbb{C}: \operatorname{Re}(p(z))=0\}$ is also a $\mathrm{PII}_{k}(\{0\})$.

THEOREM 2.3. Suppose p is a complex polynomial of degree k and $A \in M_{n}$ is a normal matrix. Let $S \subset \mathbb{C}$ be a convex set and let $\ell: \mathbb{C} \rightarrow \mathbb{C}$ be a real linear transformation such that $\sigma(A) \subset(\ell \circ p)^{-1}(S)$. Then $V^{k}(A) \subset(\ell \circ p)^{-1}(S)$.

Proof. Without loss of generality we assume that $A=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Let $\mu \in V^{k}(A)$. By [4], we know that, the joint numerical range $W\left(A, A^{2}, \ldots, A^{k}\right)$ is convex. So there exists a unit vector $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{t}$ such that $\mu^{i}=X^{*} A^{i} X=$ $\Sigma_{j=1}^{n}\left|x_{j}\right|^{2} a_{j}^{i}, i=1, \ldots, n$. Hence $p(\mu)=X^{*} p(A) X=\Sigma_{j=1}^{n}\left|x_{j}\right|^{2} p\left(a_{j}\right)$. Therefore, $\ell \circ$ $p(\mu)=\Sigma_{j=1}^{n}\left|x_{j}\right|^{2} \ell\left(p\left(a_{j}\right)\right)$. Since $\ell\left(p\left(a_{j}\right)\right) \in S, j=1, \ldots, n$ and S is convex, we obtain that $\ell \circ p(\mu) \in S$ and hence $\mu \in(\ell \circ p)^{-1}(S)$.

In Theorem 2.3, we consider the linear transformation $\ell: \mathbb{C} \rightarrow \mathbb{C}$ by $\ell(z)=$ $\operatorname{Im}(z), \forall z \in \mathbb{C}$ and $S=\{0\}$. Hence, the following holds.

COROLLARY 2.4. Let $A \in M_{n}$ be a normal matrix. If $\sigma(A)$ is a subset of a $\operatorname{PII}_{k}(\{0\})$, then $V^{k}(A) \subseteq \operatorname{PII}_{k}(\{0\})$.

Also, if we consider the linear transformation $\ell: \mathbb{C} \rightarrow \mathbb{C}$ in Theorem 2.3 by $\ell(z)=$ $z, \forall z \in \mathbb{C}$ and $p(z)=z^{k}$, we obtain the following:

Corollary 2.5. [1, Theorem 4.3] Let $A \in M_{n}$ be a normal matrix and let $S \subset \mathbb{C}$ be a convex set. If $\sigma(A) \subseteq(S)^{\frac{1}{k}}$, then $V^{k}(A) \subseteq(S)^{\frac{1}{k}}$.

If we have 4 points in the complex plane, then there exists a rectangular hyperbola $\left(\mathrm{PII}_{2}(\{0\})\right)$ passing through these four points. Now, we attempt to extend this result to $\mathrm{PII}_{k}(\{0\})$.

THEOREM 2.6. Let $\left\{a_{1}, \ldots, a_{2 k}\right\}$ be a set of complex numbers. Then there exists $a \mathrm{PII}_{\ell}(\{0\}),(1 \leqslant \ell \leqslant k)$, passing through these $2 k$ points in the complex plane \mathbb{C}.

Proof. We are looking to find a non-constant complex polynomial $p(z)=\alpha_{k} z^{k}+$ $\cdots+\alpha_{1} z+\alpha_{0}$, where $\operatorname{Im} p\left(a_{i}\right)=0, i=1, \ldots, 2 k$. We consider the $2 k \times(2 k+1)$ matrix A such that it's $i^{\text {th }}$ row $\mathbf{A}_{i}=\left(1, \operatorname{Re}\left(a_{i}\right), \operatorname{Im}\left(a_{i}\right), \ldots, \operatorname{Re}\left(a_{i}^{k}\right), \operatorname{Im}\left(a_{i}^{k}\right)\right)$. We know that the homogeneous system $\mathbf{A} X=0$ has a nontrivial solution $X=\left(x_{0}, x_{1}, \ldots, x_{2 k}\right)^{t} \in \mathbb{R}^{2 k+1}$. Define $\alpha_{0}=i x_{0}$ and $\alpha_{j}=x_{2 j}+i x_{2 j-1}, j=1, \ldots, k$. Hence $p(z)=\left(x_{2 k}+i x_{2 k-1}\right) z^{k}+$ $\cdots+\left(x_{2}+i x_{1}\right) z+x_{0} i$. Let $\ell:=\operatorname{deg}(p)$. Then $1 \leqslant \ell \leqslant k$. Direct computation shows that $\operatorname{Im} p\left(\left(a_{i}\right)\right)=0, i=1, \ldots, 2 k$. Therefore, $\left\{a_{1}, \cdots, a_{2 k}\right\} \subseteq[\operatorname{Im} p]^{-1}(\{0\})$.

The following example shows that in general it is not possible to find a $\mathrm{PII}_{k}(\{0\})$ passing through any $2 k$ points in the complex plane.

Example 2.7. Let $\mathscr{R}=\mathrm{PII}_{2}(\{0\})=\left\{z: \operatorname{Im}\left(z^{2}\right)=2\right\}$ and suppose that $z_{k}=$ $k+\frac{i}{k}, k=1,2, \ldots, 6$ be complex numbers. It is easy to see that \mathscr{R} passing through these 6 points. We will show that there is no $\mathrm{PII}_{3}(\{0\})$ passing through these 6 points. Assume, if possible that, there exists a polynomial $q(z)=\left(a_{1}+i a_{2}\right) z^{3}+\left(b_{1}+i b_{2}\right) z^{2}+$ $\left(c_{1}+i c_{2}\right) z+\left(d_{1}+i d_{2}\right)$ such that $\operatorname{Im} q\left(z_{k}\right)=0, k=1, \ldots, 6$ and $\left(a_{1}, a_{2}\right) \neq(0,0)$. Therefore,
$a_{2} k^{6}+b_{2} k^{5}+\left(3 a_{1}+c_{2}\right) k^{4}+\left(2 b_{1}+d_{2}\right) k^{3}+\left(c_{1}-3 a_{2}\right) k^{2}-b_{2} k-a_{1}=0, k=1,2, \ldots, 6$.

Define $h(z):=a_{2} z^{6}+b_{2} z^{5}+\left(3 a_{1}+c_{2}\right) z^{4}+\left(2 b_{1}+d_{2}\right) z^{3}+\left(c_{1}-3 a_{2}\right) z^{2}-b_{2} z-a_{1}$. By (1), we know that $h(1)=h(2)=\cdots=h(6)=0$. Then $a_{2} \neq 0$. Since, the coefficients of z^{5} and $-z$ in the polynomial $h(z)$ are the same, we obtain that $1+2+\cdots+6=$ $\frac{b_{2}}{a_{2}}=-(1 \times 2 \times \cdots \times 6)\left(1+\frac{1}{2}+\cdots+\frac{1}{6}\right)$, a contradiction.

3. Polynomial inverse image of $[0, \infty)$

Let $A \in M_{n}$ be a normal matrix. By Corollary 2.4, if $\sigma(A)$ is a subset of a $\mathrm{PII}_{k}(\{0\})$, then so does $V^{k}(A)$. But exactly which part of $\mathrm{PII}_{k}(\{0\})$ belongs to $V^{k}(A)$ was not determined. In the following we characterize these parts. First, we need the following (see [3, Section 3]).

Lemma 3.1. Let $A \in M_{n}$ be a normal matrix such that $\sigma(A)$ is a subset of a polynomial inverse image of $\{0\}$,

$$
\begin{equation*}
\operatorname{PII}_{k}(\{0\})=\left\{z: r_{2 k} \operatorname{Re}\left(z^{k}\right)+r_{2 k-1} \operatorname{Im}\left(z^{k}\right)+\cdots+r_{2} \operatorname{Re}(z)+r_{1} \operatorname{Im}(z)+r_{0}=0\right\} \tag{2}
\end{equation*}
$$

where $r_{0}, \ldots, r_{2 k}$ are real numbers and $\left(r_{2 k-1}, r_{2 k}\right) \neq(0,0)$. Then
(a) If $r_{2 k-1} \neq 0$, then

$$
V^{k}(A)=\operatorname{PII}_{k}(\{0\}) \cap\left\{\begin{array}{l}
z \in \mathbb{C}:\left(\operatorname{Re}(z), \operatorname{Im}(z), \cdots, \operatorname{Re}\left(z^{k-1}\right), \operatorname{Im}\left(z^{k-1}\right), \operatorname{Re}\left(z^{k}\right)\right) \\
\in W\left(\operatorname{Re}(A), \operatorname{Im}(A), \cdots, \operatorname{Re}\left(A^{k-1}\right), \operatorname{Im}\left(A^{k-1}\right), \operatorname{Re}\left(A^{k}\right)\right)
\end{array}\right\}
$$

(b) if $r_{2 k} \neq 0$, then

$$
V^{k}(A)=\operatorname{PII}_{k}(\{0\}) \cap\left\{\begin{array}{l}
z \in \mathbb{C}:\left(\operatorname{Re}(z), \operatorname{Im}(z), \cdots, \operatorname{Re}\left(z^{k-1}\right), \operatorname{Im}\left(z^{k-1}\right), \operatorname{Im}\left(z^{k}\right)\right) \\
\in W\left(\operatorname{Re}(A), \operatorname{Im}(A), \cdots, \operatorname{Re}\left(A^{k-1}\right), \operatorname{Im}\left(A^{k-1}\right), \operatorname{Im}\left(A^{k}\right)\right)
\end{array}\right\}
$$

Let $A=\operatorname{diag}\left(a_{1}, \ldots, a_{4}\right)$. By [2, Theorem 2.2] we can write $V^{2}(A)$ as the intersection of $4 \mathrm{PII}_{2}([0, \infty))$ sets and the rectangular hyperbola passing through $\sigma(A)$. In the following theorem we extend this result.

THEOREM 3.2. Let $A=\operatorname{diag}\left(a_{1}, \ldots, a_{2 k}\right) \in M_{2 k}(\mathbb{C})$. Let $\operatorname{PII}_{k}(\{0\})$ as in (2) be the unique polynomial inverse image of order k of $\{0\}$ passing through $\sigma(A)$. Then for any $1 \leqslant i \leqslant 2 k$, there exist a polynomial inverse image of $[0, \infty)$ of order $1 \leqslant \ell_{i} \leqslant k$ such that $V^{k}(A)=\bigcap_{i=1}^{2 k} \mathrm{PII}_{\ell_{i}}([0, \infty)) \cap \mathrm{PII}_{k}(\{0\})$.

Proof. By Lemma 3.1, without loss of generality we assume that

$$
V^{k}(A)=\operatorname{PII}_{k}(\{0\}) \cap\left\{\begin{array}{l}
\mu \in \mathbb{C}:\left(\operatorname{Re}(\mu), \operatorname{Im}(\mu), \cdots, \operatorname{Re}\left(\mu^{k-1}\right), \operatorname{Im}\left(\mu^{k-1}\right), \operatorname{Re}\left(\mu^{k}\right)\right) \tag{3}\\
\in W\left(\operatorname{Re}(A), \operatorname{Im}(A), \cdots, \operatorname{Re}\left(A^{k-1}\right), \operatorname{Im}\left(A^{k-1}\right), \operatorname{Re}\left(A^{k}\right)\right)
\end{array}\right\}
$$

By [4, Theorem 2.11], we know that $W\left(\operatorname{Re}(A), \operatorname{Im}(A), \cdots, \operatorname{Re}\left(A^{k-1}\right), \operatorname{Im}\left(A^{k-1}\right)\right.$, $\left.\operatorname{Re}\left(A^{k}\right)\right)$ is convex. Then by (3), $\mu \in V^{k}(A)$ if and only if $\mu \in \operatorname{PII}_{k}(\{0\})$ and there exist $\lambda_{1}, \ldots, \lambda_{2 k} \geqslant 0$ such that

$$
\underbrace{\left[\begin{array}{llll}
1 & 1 & \cdots & 1 \\
\operatorname{Re}\left(a_{1}\right) & \operatorname{Re}\left(a_{2}\right) & \cdots & \operatorname{Re}\left(a_{2 k}\right) \\
\operatorname{Im}\left(a_{1}\right) & \operatorname{Im}\left(a_{2}\right) & \cdots & \operatorname{Im}\left(a_{2 k}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Re}\left(a_{1}^{k}\right) & \operatorname{Re}\left(a_{2}^{k}\right) & \cdots & \operatorname{Re}\left(a_{2 k}^{k}\right)
\end{array}\right]}_{B}\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2} \\
\vdots \\
\lambda_{2 k}
\end{array}\right]=\left[\begin{array}{l}
1 \\
\operatorname{Re}(\mu) \\
\operatorname{Im}(\mu) \\
\vdots \\
\operatorname{Re}\left(\mu^{k}\right)
\end{array}\right] .
$$

Since $\mathrm{PII}_{k}(\{0\})$ is the unique polynomial inverse image of order k of $\{0\}$ passing through $\sigma(A)$, we obtain that B is invertible. Let $B_{1}, \ldots, B_{2 k}$ be the rows of the matrix B^{-1}. Thus $\mu \in V^{k}(A) \quad$ if and only if $\mu \in \operatorname{PII}_{k}(\{0\})$ and $B_{i}[1, \operatorname{Re}(\mu), \operatorname{Im}(\mu), \ldots$, $\left.\operatorname{Re}\left(\mu^{k}\right)\right]^{t} \geqslant 0,1 \leqslant i \leqslant 2 k$. Define polynomial inverse image of order $1 \leqslant \ell_{i} \leqslant k$ as follows:

$$
\mathrm{PII}_{\ell_{i}}([0, \infty))=\left\{\mu \in \mathbb{C}: B_{i}\left[1, \operatorname{Re}(\mu), \operatorname{Im}(\mu), \ldots, \operatorname{Re}\left(\mu^{k}\right)\right]^{t} \geqslant 0\right\}, i=1, \ldots, 2 k
$$

Therefore, $V^{k}(A)=\bigcap_{i=1}^{2 k} \operatorname{PII}_{\ell_{i}}([0, \infty)) \cap \mathrm{PII}_{k}(\{0\})$.
REMARK 3.3. Let $A=\operatorname{diag}\left(a_{1}, \cdots, a_{n}\right) \in M_{n}$. We know that if there exist $1 \leqslant$ $i<j \leqslant n$ such that $a_{i}=a_{j}$, then $V^{n-1}(A)=\sigma(A)$ [3, Lemma 1.2]. Thus, without loss of generality, we assume that a_{1}, \ldots, a_{n} are distinct complex numbers. We are looking to find the locus of the set $V^{n-1}(A) \backslash \sigma(A)$. Note that by [2, Theorem 5.1] and its proof, for a normal matrix A with distinct eigenvalues a_{1}, \ldots, a_{n}, we have $\mu \in V^{n-1}(A) \backslash \sigma(A)$ if and only if μ is the unique element not in $\sigma(A)$ such that the system

$$
\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \tag{4}\\
a_{1} & a_{2} & \cdots & a_{n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1}^{n-1} & a_{2}^{n-1} & \cdots & a_{n}^{n-1}
\end{array}\right) X=\left(\begin{array}{c}
1 \\
\mu \\
\vdots \\
\mu^{n-1}
\end{array}\right)
$$

has a nonnegative solution $X=\left(x_{1}, \ldots, x_{n}\right)^{t}$. By Cramer's rule, $x_{k}=p_{k}(\mu) \geqslant 0$, where $p_{k}(z)=\frac{\prod_{i \neq k}\left(z-a_{i}\right)}{\prod_{i \neq k}\left(a_{k}-a_{i}\right)}, k=1, \ldots, n$ are the Lagrange polynomials for a_{1}, \ldots, a_{n}, respectively.

By Remark 3.3, we have the following:
THEOREM 3.4. Let $A \in M_{n}, n \geqslant 3$ be a normal matrix with distinct eigenvalues and let the Lagrange polynomials $p_{k}, k=1, \ldots, n$ be as above. Then $V^{n-1}(A)=$ $\bigcap_{j=1}^{n} p_{j}^{-1}([0, \infty))$.

Theorem 3.4 characterize the locus of the set $V^{n-1}(A)$ as the intersection of some $\mathrm{PII}_{k}([0, \infty))$. In the following examples we are using the Matlab programs to draw the figures (see [1, Theorem 2.5]).

Example 3.5. Let $A=\operatorname{diag}(1,-1, i,-i)$. The Lagrange polynomials for $\{1,-1, i$, $-i\}$ are $p_{1}(z)=\frac{z^{3}+z^{2}+z+1}{4}, p_{2}(z)=\frac{-z^{3}+z^{2}-z+1}{4}, p_{3}(z)=\frac{i z^{3}-z^{2}-i z+1}{4}, p_{4}(z)=\frac{-i z^{3}-z^{2}+i z+1}{4}$ respectively. Then $V^{3}(A)=\bigcap_{j=1}^{4} p_{j}^{-1}([0, \infty))=\{1,-1,0, i,-i\}$, (see Figure (i)).

Figure (i)

Figure (ii)

EXAMPLE 3.6. Let $B=\operatorname{diag}(1,-1,2 i,-i)$. The Lagrange polynomials for $\{1,-1$, $2 i,-i\}$ are $q_{1}(z)=\frac{z^{3}+(1-i) z^{2}+(2-i) z+2}{6-2 i}, q_{2}(z)=\frac{z^{3}-(1+i) z^{2}+(2+i) z-2}{-6-2 i}, q_{3}(z)=\frac{z^{3}+i z^{2}-z-i}{-15 i}$, $q_{4}(z)=\frac{z^{3}-2 i z^{2}-z+2 i}{6 i}$, respectively. Then $V^{3}(B)=\bigcap_{j=1}^{4} q_{j}^{-1}([0, \infty))=\{1,-1,-i / 3,2 i$, $-i\}$, (see Figure (ii)).

Remark 3.7. Let $A \in M_{n}$ be a normal matrix. By [4, Theorem 2.11] we know that
$P=W\left(\operatorname{Re}(A), \operatorname{Im}(A), \cdots, \operatorname{Re}\left(A^{k}\right), \operatorname{Im}\left(A^{k}\right)\right)$ is a polytope and by Minkowski-Weyl theorem [6], every polytope is a bounded polyhedron. Then there exists an $m \times 2 k$ real matrix D and $b \in \mathbb{R}^{2 k}$ such that $P=\left\{X \in \mathbb{R}^{2 k}: D X \geqslant b\right\}$. Also, we know that $\mu \in V^{k}(A)$ if and only if $\left(\operatorname{Re}(\mu), \operatorname{Im}(\mu), \cdots, \operatorname{Re}\left(\mu^{k}\right), \operatorname{Im}\left(\mu^{k}\right)\right)^{t} \in P$. Therefore, $V^{k}(A)$ is the intersection of at most m sets $\mathrm{PII}_{\ell_{i}}([0, \infty))\left(1 \leqslant \ell_{i} \leqslant k\right)$.

Question. Let $A \in M_{n}$ be a normal matrix. It would be nice to find the smallest integer m such that $V^{k}(A)$ is the intersection of m polynomial inverse images of $[0, \infty)$ of orders $\ell_{i},\left(1 \leqslant \ell_{i} \leqslant k\right)$.

4. Additional Results

In this section, we shall characterize the polynomial numerical hulls of order $2 k$ for normal matrices such that their spectrum belong to a $\mathrm{PII}_{k}(\{0\})$.

THEOREM 4.1. Suppose that $A \in M_{n}$ is a normal matrix and $\sigma(A)$ is contained in a $\operatorname{PII}_{k}(\{0\})$. Then $V^{2 k}(A)=\sigma(A)$.

Proof. Assume, if possible that, $\mu \in V^{2 k}(A) \backslash \sigma(A)$. Without loss of generality, we assume that $\sigma(A)$ contains n distinct complex numbers and $2 k<n$. Let p be a complex polynomial of degree k such that

$$
\mathscr{R}_{k}=\operatorname{PII}_{k}(\{0\})=\{z \in \mathbb{C}: \operatorname{Im}(p(z))=0\} .
$$

Whereas $\sigma(A) \subseteq \mathscr{R}_{k}$, then $p(\lambda) \in \mathbb{R}$, for all $\lambda \in \sigma(A)$. This means that $p(A)$ is Hermitian. Since $\mu \in V^{2 k}(A)$, and $\operatorname{deg}(p)=k$, we obtain that $p(\mu) \in V^{2}(p(A))=$ $\sigma(p(A))=p(\sigma(A))$. Therefore, there exists $\lambda_{1} \in \sigma(A)$ such that $p(\mu)=p\left(\lambda_{1}\right)$. Without loss of generality we assume that $A=\left[\lambda_{1}\right] \oplus A_{1}, \lambda_{1} \notin \sigma\left(A_{1}\right)$. Therefore, there exist $x=\left(x_{1}, x_{2}\right)^{t} \in \mathbb{C}^{n}$ such that $x_{1} \in \mathbb{C}$ and $\mu^{i}=\lambda_{1}^{i}\left|x_{1}\right|^{2}+x_{2}^{*} A_{1}^{i} x_{2}, i=1,2, \ldots, 2 k$. Thus, $p(\mu)^{i}=p\left(\lambda_{1}\right)^{i}\left|x_{1}\right|^{2}+x_{2}^{*} p\left(A_{1}\right)^{i} x_{2}, i=1,2$. Since $\mu \neq \lambda_{1}$, we obtain that $x_{2} \neq 0$ and hence $p(\mu)^{i}=\frac{x_{2}^{*}}{\left\|x_{2}\right\|} p\left(A_{1}\right)^{i} \frac{x_{2}}{\left\|x_{2}\right\|}, i=1,2$. Therefore, $p(\mu) \in V^{2}\left(p\left(A_{1}\right)\right)=\sigma\left(p\left(A_{1}\right)\right)=$ $p\left(\sigma\left(A_{1}\right)\right)$. Thus, there exists $\lambda_{2} \in \sigma\left(A_{1}\right)$ such that $p(\mu)=p\left(\lambda_{2}\right)$. After $k+1$ steps we obtain that $A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k+1}\right) \oplus A_{k+1}$, where $\left\{\lambda_{1}, \ldots, \lambda_{k+1}\right\} \cap \sigma\left(A_{k+1}\right)=\emptyset$. Define $q(z)=p(z)-p(\mu)$. Then $q\left(\lambda_{1}\right)=\cdots=q\left(\lambda_{k+1}\right)=0$. Therefore, the polynomial $q(z)$ of degree k has $k+1$ roots, a contradiction.

Corollary 4.2. Suppose that $A \in M_{n}$ be a normal matrix such that A^{k} is Hermitian. Then $V^{2 k}(A)=\sigma(A)$.

Acknowledgement. This research has been supported by Mahani Mathematical Research Center, Kerman, Iran. Research of the first author was supported by Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran. Also, the authors are very grateful to anonymous referees for their comments and suggestions.

REFERENCES

[1] H. R. Afshin, M. A. Mehrjoofard and A. Salemi, Polynomial numerical hulls of order 3, Electronic Journal of Linear Algebra, 18 (2009), 253-263.
[2] Ch. Davis, C. K. Li and A. Salemi, Polynomial numerical hulls of matrices, Linear Algebra and its Applications, 428 (2008), 137-153.
[3] Ch. Davis and A. Salemi, On polynomial numerical hulls of normal matrices, Linear Algebra and its Applications, 383 (2004), 151-161.
[4] V. Faber, W. Joubert, M. Knill and T. Manteuffel, Minimal residual method stronger than polynomial preconditioning, SIAM Journal on Matrix Analysis and Applications, 17 (1996), 707-729.
[5] A. Greenbaum, Generalizations of the field of values useful in the study of polynomial functions of a matrix, Linear Algebra and Its Applications, 347 (2002), 233-249.
[6] B. Grünbaum, Convex Polytopes, John Wiley and Sons, New York, 1967.
[7] O. Nevanlinna, Convergence of Iterations for Linear Equations, Birkhäuser, Basel, 1993.
[8] O. Nevanlinna, Hessenberg matrices in Krylov subspaces and the computation of the spectrum, Numerical Functional Analysis and Optimization, 16 (1995), 443-473.

Hamid Reza Afshin
Department of Mathematics
Vali-E-Asr University of Rafsanjan
Rafsanjan Iran
e-mail: afshin@mail.vru.ac.ir
Mohammad Ali Mehrjoofard Department of Mathematics Vali-E-Asr University of Rafsanjan Rafsanjan Iran
e-mail: aahaay@gmail.com
Abbas Salemi
Department of Mathematics Shahid Bahonar University of Kerman

Kerman

The SBUK Center of Excellence in
Linear Algebra and Optimization

e-mail: salemi@mail.uk.ac.ir

