
Operators
and

Matrices
Volume 5, Number 1 (2011), 97–106

A NOTE ON THE FREDHOLM PROPERTIES

OF TOEPLITZ OPERATORS ON WEIGHTED BERGMAN SPACES

WITH MATRIX–VALUED SYMBOLS

A. PERÄLÄ AND J. A. VIRTANEN

(Communicated by I. M. Spitkovsky)

Abstract. We characterize the essential spectra of Toeplitz operators Ta on weighted Bergman
spaces with matrix-valued symbols; in particular we deal with two classes of symbols, the Dou-
glas algebra C+H∞ and the Zhu class Q := L∞ ∩VMO∂ . In addition, for symbols in C+H∞ ,
we derive a formula for the index of Ta in terms of its symbol a in the scalar-valued case, while
in the matrix-valued case we indicate that the standard reduction to the scalar-valued case fails
to work analogously to the Hardy space case.

1. Introduction

Fredholm theory of Toeplitz operators Ta on the Bergman space A2 with con-
tinuous matrix-valued symbols and scalar-valued C +H∞ symbols was developed by
Coburn [4], McDonald [9], and Venugopalkrishna [14] in the 1970s. Part of the theory
has been generalized to the reflexive Bergman spaces Ap for symbols in C+H∞ of the
unit ball — see [3] and [15], of which the former characterizes the essential spectrum of
Ta : Ap → Ap when a ∈ C+H∞ . However, a formula for the Fredholm index appears
in the literature only in the Hilbert space case and only for continuous symbols.

In this note we consider similar questions in a more general setting when the un-
derlying space is a weighted reflexive Bergman space Ap

α and a is a matrix-valued
symbol in C+H∞ . In particular, we characterize the essential spectrum of Ta , and in
the scalar-valued case we also derive the usual index formula (analogous to the Hardy
space case). Regarding the index of Ta on the Hardy space Hp with a∈ (C+H∞)N×N ,
recall that Tf and Tg commute modulo finite rank operators when acting on Hardy
spaces Hp provided that f ,g are trigonometric polynomials, from which the matrix-
valued case can be easily obtained (see, e.g., [2]); however, when considering Toeplitz
operators on Bergman spaces, we cannot proceed in a similar fashion since there are no

Mathematics subject classification (2010): 47B35, 47A53, 30H20.
Keywords and phrases: Toeplitz operators, Bergman spaces, Fredholm properties, matrix-valued sym-

bols.
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nonconstant trace class Hankel operators. The other way of dealing with matrix-valued
symbols in Hardy spaces is known as factorization (see, e.g., [8]), which seems unsuit-
able here as functions in Bergman spaces need not have boundary values in Lp . We
finish the note by listing some open problems, which could stimulate further research
into questions involving matrix symbols in Bergman spaces (indeed, there is a huge
amount of literature on the Hardy space counterpart, but very few results dealing with
Toeplitz operators on Bergman spaces with matrix symbols).

We would like to thank Kehe Zhu for useful discussions.

2. Preliminaries

Let Bn denote the open unit ball in Cn with normalized volume measure dA(z) .
For 1 < p < ∞ and α > −1, the weighted Bergman space Ap

α consists of all analytic
functions in Lp(Bn,dAα) , where

dAα(w) = cα(1−|w|2)αdA(w)

with a positive normalizing constant cα . The Bergman projection Pα of Lp onto Ap
α

is the integral operator

Pα f (z) =
∫

Bn

K(α)
z (w) f (w)dAα (w) =

∫
Bn

f (w)
(1−〈w,z〉)n+1+α dAα(w) .

Recall [19, Theorem 2.11] that, for p � 1 and α,t > −1, the operator Pα is a bounded
projection of Lp(Bn,dAt) onto Ap

t if and only if p(α+1) > t +1. Let a ∈ Lp(Bn,dAt)
and define the Toeplitz operator Ta and the Hankel operator Ha by setting

Ta = PαMa and Ha = QαMa = (I−Pα)Ma,

where Ma stands for the multiplication operator; the function a is referred to as the
symbol of the given operator. It is clear that, for 1 < p < ∞ , Ta : Ap

α → Ap
α and Ha :

Ap
α → Lp(Bn,dAα) are both bounded whenever a ∈ L∞(Bn,dAα) .

Spaces of bounded mean (and vanishing) oscillation play an important role in con-
nection with the general theory of Toeplitz and Hankel operators on Bergman spaces.
However, when symbols are restricted to be continuous, one can develop Fredholm the-
ory without reference to these spaces. Despite this, we include a brief look at them
in the following as this allows us to easily refer to results on compactness of Han-
kel operators. The Bergman ball D(z,r) with center z and radius r is defined by
D(z,r) = {w ∈ Bn : β (z,w) < r}, where β (z,w) is the Bergman metric. For a locally
integrable function f : Bn → C , the averaging function f̂r is defined by

f̂r(z) =
1

|D(z,r)|
∫

D(z,r)
f (w)dA(w) (z ∈ Bn),

where |D(z,r)| is the volume of D(z,r) . The space of bounded mean oscillation BMOp
r

in the Bergman metric consists of all locally Lp integrable functions for which
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‖ f‖p
r,p := sup

z∈Bn

1
|D(z,r)|

∫
D(z,r)

| f (w)− f̂r(z)|pdA(w) < ∞

If, in addition,
1

|D(z,r)|
∫

D(z,r)
| f (w)− f̂r(z)|pdA(w) → 0

as |z| → 1, we say that f is in VMOp
r , which is a closed subspace of BMOp

r . As
pointed out by K. Zhu [17], the definition of BMOp

r depends on p (unlike in the case
of the classical BMO for the unit circle) and BMOp

r ⊂ BMOq
r properly for q < p ; note

also that the definition above is independent of r and we write BMOp
∂ for BMOp

r and
VMOp

∂ for VMOp
r .

Suppose that p � 1 and p(α + 1) > λ + 1 > 0. According to K. Zhu [17], a ∈
BMOp

∂ if and only if the Hankel operators Ha = (I−Pα)Ma and Ha are both bounded
from Ap

α into Lp(Bn,dAλ ) ; and in addition, a ∈ VMOp
∂ if and if the Hankel operators

Ha = (I −Pα)Ma and Ha acting from Ap
α into Lp(Bn,dAλ ) are both compact. Note,

however, that when α = λ = 0 (that is, we have the standard Bergman projection P
and the standard Bergman space Ap ), the two theorems above require that p > 1; the
case p = 1 with bounded scalar-valued symbols in BMO2

∂ (D) was recently considered
in [11].

3. Compact Toeplitz operators

Let 1 < p < ∞ and α > −1. Denote by τ(Ap
α) the closed subalgebra of L (Ap

α)
generated by Toeplitz operators Ta with a∈ L∞(Bn,dAα) . We define the Berezin trans-
form B(T ) of T ∈ L (Ap

α) by

B(T )(z) = (1−|z|2)1+n+α〈TK(α)
z ,K(α)

z 〉,

where 〈·, ·〉 is the integral pairing and K(α)
z is the reproducing kernel of A2

α given by

K(α)
ζ (w) =

1
(1−〈w,ζ 〉)n+1+α

for ζ ,w ∈ Bn .
Let T ∈ L (Ap) . In [10], it was recently observed that T is compact on Ap if

and only if T ∈ τ(Ap) and B(T )(z) = 0 for all z ∈ ∂Bn . There seems to be no reason
why this result would fail in the more general case of weighted Bergman spaces Ap

α .
However, we only need such a characterization for Toeplitz operators with continuous
symbols, which can be easily obtained by following Coburn’s original approach valid
for p = 2 and α = 0 (see [4]).

THEOREM 1. Let 1 < p < ∞ , α > −1 , and a ∈ C(Bn) . Then Ta is compact on
Ap
α if and only if a(z) = 0 for all z ∈ ∂Bn .
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We finish this section with a remark on commutator ideals. Denote by τ the
Toeplitz algebra generated by Ta with a ∈ C(D) . As in the Hilbert space case, the
commutator ideal I of τ coincides with the space of all compact operators on Ap

α .
Indeed, we have I ⊂ K according to the formula

TaTb = Tab−PMaHb = I−T1−ab−PMaHb , (3.1)

which holds even for symbols in L∞(Bn,dAt) ; note that the Hankel operator Hb is
compact — see Section 1. It remains to note that all rank one operators are contained
in I .

4. Fredholm properties

A bounded linear operator A on a Banach space X is said to be Fredholm if both its
kernel and cokernel are finite-dimensional; the index of a Fredholm operator is defined
to be

IndA = dimkerA−dimcokerA.

The winding number of a nonvanishing continuous function a is denoted by inda .
The essential spectrum σess(A) of A consists of all λ ∈ C for which Ta −λ I is not
Fredholm, that is,

σess(A) = σL (X)/K (X)(π(A)),

where π is the natural map.
It is well known that, for an n×n matrix-valued symbol a with entries in C(Bn) ,

the Toeplitz operator Ta : A2
n → A2

n is Fredholm if and only if deta(z) 	= 0 for any
z ∈ ∂Bn (see [4]). This can also be easily generalized to the weighted Hilbert space
case. In what follows we deal with weighted Bergman spaces that are reflexive, that is,
we consider the case 1 < p < ∞ . The next theorem follows from a more general result
on symbols in C(D)+H∞(D) (see Theorem 3 below); however, we still indicate how
one can prove it.

THEOREM 2. Let 1 < p < ∞ , α > −1 , and a ∈C(Bn) . Then Ta is Fredholm on
Ap
α if and only if a(z) 	= 0 for any z ∈ ∂Bn ; in which case IndTa = − Inda�∂B1

when
n = 1 and IndTa = 0 when n > 1 .

Proof. Sufficiency can be proved by constructing a regularizer (as in the Hardy
space case; see, e.g., [2, Theorem 2.42]) and using Theorem 1 and Zhu’s characteriza-
tion of compact Hankel operators.

For n = 1, the index formula can be proved similarly to the corresponding result
in [11]. When n > 1, we can proceed as in the proof of [14, Theorem 1.4].

When n = 1, necessity can be proved as in the Hardy space case using the index
formula. In the general case, we can apply the approach used in [4, 15]. �

Let f ∈ H∞(D) be nonzero. Then there are a Blaschke product B and a function
g ∈ GH∞(D) such that f = Bg . Suppose that there are ε > 0 and δ > 0 such that
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| f (z)| � ε for δ < |z| � 1. Proceeding as in the proof of [2, Theorem 2.64], we get

IndTf = − ind fr, (4.1)

where fr(t) = f (rt) (t ∈ T) with δ < r < 1. Note that IndTf is independent of the
choice of r since the index is constant on connected components.

THEOREM 3. Let a ∈ C(Bn) + H∞(Bn) and α > −1 . Then Ta is Fredholm on
Ap
α(Bn) if and only if a is bounded away from zero near the boundary of Bn , that is, if

there are δ > 0 and ε > 0 such that

|a(z)| > ε for δ < |z| < 1; (4.2)

if in addition n = 1 , we have the following index formula

IndTa = − indar, (4.3)

where ar(t) = a(rt) with δ < r < 1 .

Proof. For α = 0, the proof of the Fredholm criterion can be found in [3]; the
general case can be dealt with similarly.

Let us consider the index formula when n = 1. Since polynomials (in z and z ) are
dense in C(D) , it suffices to prove the formula when a = p+ g for some polynomial
p and g ∈ H∞(D) . Write p+ g = zm f + h for some f ∈ H∞(D) and h ∈ C(D) with
h = 0 on T (see the proof of [9, Theorem 3.2]). Since f is bounded away from zero,
we can apply (4.1) to conclude

IndTp+g = Ind(Tzm f +Th) = IndTzm + IndTf

= − ind zm − ind fr = − ind(zm f )r

= − ind(zm f +h)r = − Ind(p+g)r

provided that r is sufficiently close to 1. �

Next we consider the symbol class Q := L∞∩VMO∂ , introduced by K. Zhu, who
studied the properties of Toeplitz operators with these symbols in the Hilbert space
context — see [16]. In what follows we study the Fredholm properties of Toeplitz
operators Ta acting on the weighted Bergman spaces Ap

α when a ∈ Q .

REMARK 4. We have

L∞∩BMO∂ = L∞∩BMOp
∂

and
Q = L∞∩VMO∂ = L∞∩VMO2

∂ = L∞∩VMOp
∂

for 1 � p < ∞ .
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Proof. For f ∈ L∞ we clearly have f̂ ∈ L∞ and hence it is easily seen that L∞ ⊂
BMOp

∂ for each 1 � p < ∞ . For the second claim assume that f ∈ L∞∩VMO∂ . Then
for a fixed r > 0 and 1 � p < ∞ we have

1
|D(z,r)|

∫
D(z,r)

| f (w)− f̂ (z)|pdAα(w)

=
1

|D(z,r)|
∫

D(z,r)
| f (w)− f̂ (z)|p−1| f (w)− f̂ (z)|dAα (w)

� C
1

|D(z,r)|
∫

D(z,r)
| f (w)− f̂ (z)|dAα(w),

by the above remark about f̂ . Conversely, if f ∈ L∞∩VMOp
∂ , then by similar reasoning

as above and by using Hölder’s inequality we see that f ∈ L∞∩VMO∂ . �
As we are only concerned with bounded symbols, we need not deal with the gen-

eral BMOp
∂ and VMOp

∂ spaces according to the preceding remark; compare this with
the situation in [12].

It is also worth noting that there are symbols both in (L∞ ∩VMO∂ ) \ (C(D) +
H∞(D)) and in (C(D)+H∞(D))\ (L∞∩VMO∂ ) . Indeed, suppose H∞ ⊂VMO∂ ∩L∞ .
Then, given a ∈ H∞ , we have a ⊂ VMO∂ ∩L∞ (since this set is a C∗ -algebra). But
then the Hankel operator Ha is compact, which implies that a ⊂ B0 . So H∞ ⊂ B0 ,
which is a contradiction.

THEOREM 5. Let a ∈ Q := L∞ ∩VMO∂ , 1 < p < ∞ , and α > −1 . Then Ta is
Fredholm on Ap

α if and only if B(a) is bounded away from zero near the boundary ∂D ,
in which case IndTa = − indB(a)�rT for r sufficiently close to 1 .

Proof. The index formula and sufficiency both follow from [12, Theorem 2.8]
when α = 0. For the weighted case, results in [17] and [16, Theorem 7] imply that
a− ã is in Q and has vanishing Berezin symbol. Now [10, Theorem 9.5] implies
that Ta−ã = Ta −Tã is compact. But this means that Ta is Fredholm if and only if Tã

is Fredholm. Moreover, if they are Fredholm, they have the same index. Finally, the
index of Tã can be computed using [16, Remark on p. 640]. �

5. Matrix-valued symbols

In this section we generalize Theorem 2 and part of Theorems 3 and 5 to the
case of matrix-valued symbols using standard Banach algebra techniques. Let X be a
Banach space and set XN = {( f1, . . . , fN) : fk ∈ X} , which is also a Banach space when
equipped with the norm

‖( f1, . . . , fN)‖XN := ‖ f1‖X + . . .+‖ fN‖X

(or with any equivalent norm). Note that each operator A ∈ L (XN) can be expressed
as an operator matrix (Ai j)N

i, j=1 in L (XN×N) .
Recall the following results from matrix analysis; see, e.g., [7].
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THEOREM 6. (a) Let A be a bounded linear operator on a Banach space X .
Suppose that the entries Ai j of A pairwise commute modulo compact operators. Then
A is Fredholm on XN if and only if detA is Fredholm on X .

(b) Suppose that A is a subalgebra of L (X) and Ai j ∈ A . If A contains all
compact operators on X , if the commutator AB−BA is compact for all A,B ∈A , and
if Φ(X)∩A is dense in A , then Ind(Ai j) = Inddet(Ai j) whenever (Ai j) is Fredholm.

(c) Let X be a Banach space and let A be Fredholm on XN . If the entries of A
commute pairwise modulo finite-rank operators, then IndA = InddetA.

We can now give a necessary and sufficient condition for Fredholmness of Toeplitz
operators with matrix-valued symbols.

THEOREM 7. Let 1 < p < ∞ , let N � 2 be an integer, and suppose that α > −1 .
(a) For a ∈ C(Bn)N×N , Ta is Fredholm on (Ap

α)N if and only if deta(z) 	= 0 for
any z ∈ ∂Bn ; if in addition n = 1 , we have

IndTa = IndTdeta = − inddeta�∂Bn ;

(b) For a ∈ (C(Bn) + H∞(Bn))N×N , Ta is Fredholm on (Ap
α)N if and only if

deta(z) 	= 0 is bounded away from zero near the boundary ∂Bn .
(c) For a ∈ Q = L∞ ∩VMO∂ , Ta is Fredholm if and only if B(deta) is bounded

away from zero near the boundary.

Proof. We reduce the proof to the scalar case via the preceding theorem using the
representation Ta = (Tai j )

N
i, j=1 . To verify the criterion, note that the Hankel operator

Hf is compact for f in any of the classes above, and so, according to (3.1), we have
TaTb = TbTa modulo compact operators. Using (3.1) again, we get

detTa = ∑
σ∈Sn

sgn(σ)Ta1σ(1)···aNσ(N) +K′

for some compact operator K′ , where Sn is the group of N -permutations and sgn(σ)
stands for the sign of σ . Consequently, Ta is Fredholm if and only if detTa = Tdeta +K′
is Fredholm, that is, deta 	= 0 on the boundary of Bn by the corresponding result in the
scalar-valued case and Atkinson’s theorem.

The index formula for continuous symbols follows from the usual perturbation
argument used in the scalar case and Theorem 6.

The other two statements can also be reduced to the scalar-valued case via Theo-
rem 6. �

We would also like to say something about the index formula for the cases (b) and
(c) in the previous theorem.

THEOREM 8. Let 1 < p < ∞ , let N � 2 be an integer, and suppose that α > −1
and n = 1 . Let a ∈ (C(Bn)+H∞(Bn))N×N or a ∈ Q = L∞∩VMO∂ . Suppose that Ta

is Fredholm and at least one of the following conditions hold
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(i) The scalar Toeplitz operators Tai j and Takl commute modulo trace class oper-
ators, where a = (ai j);

(ii) Tak is Fredholm on (Ap
α)k for each k = 1, ..,N , where ak = (ai j)i, j�k ;

then

IndTa = IndTdeta.

Proof. This is a direct consequence of the above theorem and theorems 7.4 and
7.6 in [6]. �

Let us consider the index of Ta on the Hilbert space A2 with a∈ (C(D)+H∞)N×N

in some more detail. It is well known that if H is a Hilbert space, if T is Fredholm
on HN , and if the entries of T commute modulo trace class operators, then IndT =
InddetT (note that [5] contains a slightly more general result, which, however, seems
to offer no real advantages to the index computation here). Let a,b ∈ C(D) + H∞ ,
which can be approximated by functions of the form p+ f , where p is a polynomial
in z and z and f is in H∞ . Note that it suffices to prove the index formula for a class
of symbols that is dense in (C(D)+H∞)N×N . Now if a = p1 + f1 and b = p2 + f2 for
some polynomials pk and fk ∈ H∞ , then

TaTb = Tab−PMaHp2 .

Here Hp2 is trace class only if p2 is constant (see [1]), and so we cannot make use
of the properties of Hankel operators the same way as in the Hardy space case where
Hankel operators are finite rank (and hence trace class) for polynomial symbols. Also,
if we could show that PMa ∈ Sq for any q , then we could conclude that Ta and Tb

commute modulo trace class operators since Hp2 ∈ Sp for p > 1.
On the other hand, note that we can write

Tab−TaTb = H∗
aHb, Tab−TbTa = H∗

b
Ha.

Therefore,
TaTb−TbTa = H∗

b
Ha−H∗

aHb.

It is known that Ha and Hb are in the Schatten class Sp for any p > 1 and that neither
of the operators H∗

b
and Hb is compact. It seems that the Hankel products need not

be in the trace class. While the difference could still be of trace class, we conjecture
that there are Toeplitz operators with polynomial symbols that do not commute modulo
trace class operators.

We can give an example of symbols in a,b ∈C(D)+H∞ for which Ta and Tb do
not commute modulo trace class operators. Recall that the disk algebra A is the set of
all analytic functions continuous on D , and that the Dirichlet space D is the space of
analytic functions with derivatives in L2 . Note first that neither of the spaces A and
D is contained in the other. Indeed, the Riemann mapping theorem implies that there
is an analytic function f that takes the unit disk to a simply connected, unbounded
domain with finite area. Since the Dirichlet integral of an analytic function is the area
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of the image of the function (see, e.g., [20, Exercise 12 of Section 5.5]), it follows
that f is in the Dirichlet space; however, since f is unbounded, it is not in the disk
algebra. Consider now a function g defined by g(z) = ∑∞

n=0 anzn , where an = n−1/2

when n = k4 (k = 1,2,3..) and an = 0 otherwise. Then the partial sums of g converge
uniformly in D and hence g ∈ A . On the other hand,

(n+1)2|an+1|2 = n+1

whenever n+1 = k4 , which, by Parseval’s identity, implies that g′ does not belong to
A2 . So g ∈ A\D .

Let a ∈ A\D . Then Ta = Ma and Ta = T ∗
a = M∗

a . By the main result of [18], the
trace of the commutator [Ta,Ta] = [Ma,M∗

a ] is infinite.
While it seems to be widely assumed (or even considered well known!) that the

index of Ta on Ap
N has a similar formula as in the Hp

N case, it is quite surprising that
this has not been verified even in the Hilbert space case as far as we are aware. Because
of Theorem 3, we still conjecture that the formulas for the index in Bergman and Hardy
spaces are analogous.
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