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WEIGHTED CONDITIONAL EXPECTATION OPERATORS

JOHN DAVID HERRON

(Communicated by L. Rodman)

Abstract. This paper presents the fundamental operator-theoretic properties of products of con-
ditional expectation and multiplication operators. It is shown that boundedness of such a product
need not depend on the boundedness of the multiplication operator. The spectrum is described,
as is the unique polar decomposition. It is also shown that compactness implies the existence of
an atom in the underlying σ -subalgebra. An algebra containing such operators is shown to be
weakly closed and, when the underlying space is of finite measure, its commutant is an algebra
of multiplication operators with suitably measurable symbol.

1. Introduction

In this paper we study the class of bounded linear operators on the Lp spaces
having the form EMω , where E is a conditional expectation operator and Mω is a
(possibly unbounded) multiplication operator. What follows is a brief review of the
operators E and Mω , along with the notational conventions we will be using.

Let (X ,F ,μ) be a σ -finite measure space and let A be a σ -subalgebra of F
such that (X ,A ,μ) is also σ -finite. The collection of (equivalence classes modulo sets
of zero measure of) F -measurable complex-valued functions on X will be denoted
L0(F ) , with L0(A ) being likewise defined for A -measurable functions. Moreover,
we let Lp(F ) = Lp(X ,F ,μ) and Lp(A ) = Lp(X ,A ,μ) , for 1 � p � ∞ . We also
adopt the convention that all equations and set-theoretic relationships are assumed to
hold almost everywhere relative to μ .

A consequence of the Radon-Nikodym theorem is that to each nonnegative func-
tion f ∈ L0(F ) there exists a unique nonnegative E f ∈ L0(A ) such that∫

A
f dμ =

∫
A
E f dμ

for all A ∈ A . The function E f is called the conditional expectation of f with respect
to A . This can be extended to real-valued and complex-valued functions by examining
the conditional expectations of the positive and negative parts (in the case of real-valued
functions), and the real and imaginary parts (for complex-valued functions). If E f
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exists for a function f ∈ L0(F ) , then we say f is conditionable. One can show that
every Lp function is conditionable; therefore, a linear transformation E : Lp(F ) −→
Lp(A ) can be defined by f �→ E f . It is clear that E is an idempotent, and in the case
of p = 2, it is the orthogonal projection of L2(F ) onto L2(A ) . Those properties of E
used in our discussion are summarized below. In all cases f and g are conditionable
functions.

(1) Monotonicity: If f and g are real-valued with f � g , then E f � Eg .

(2) If a ∈ L0(A ) , then E(a f ) = aE f .

(3) Conditional version of the Hölder inequality: If p and q are conjugate exponents
and f ∈ Lp(F ) and g ∈ Lq(F ) , then E | f g| � (E | f |p)1/p(E |g|q)1/q .

(4) If p � 1, (E | f |)p � E | f |p .

(5) Monotone Convergence: If { fn} is an increasing sequence of nonnegative F -
measurable functions, then limn E fn = E (limn fn) .

Let ω ∈ L0(F ) . The corresponding multiplication operator Mω on Lp(F ) is
defined by f �→ ω f . It is well known that Mω is bounded if and only if ω ∈ L∞(F ) ,
and in the case of boundedness, ‖Mω‖ = ‖ω‖∞ .

Our interest in operators of the form EMω stems from the fact that such prod-
ucts (and their adjoints) tend to appear often in the study of those operators related to
conditional expectation. This observation was made in [5] within the context of the
development of Hilbert C∗ -modules and L2 multipliers. Multiplication-conditional ex-
pectation products appear in [2], where it is shown that every contractive projection
on certain L1 spaces can be decomposed into an operator of the form MψEMω and a
nilpotent operator. In [3] and [4], operators that are representable as products involving
multiplications and conditional expectations are studied (in the langauge of [3] and [4],
such operators are said to be mce-representable). In [1], the various classes of nor-
mality (e.g., normal, hyponormal, p−hyponormal) for operators on L2(F ) are studied
and multiplication-conditional expectation products are encountered there as well.

Their appearance in certain decompositions and representations, and their utility
in studying conditional expectation-related operators seem to suggest that operators
formed by conditional expectation-multiplication products warrant a closer study. Such
a study is the aim of this paper.

In Theorems 2.1 and 2.2 we have the norm and spectrum. Theorems 3.1 and 3.2
describe the unique polar decompositions of EMω and its adjoint MωE . These decom-
positions will be found to include operators that are themselves conditional expectation-
multiplication products. In Theorem 4.1 we have a link between an operator-theoretic
property of EMω and the underlying structure of A ; specifically, if EMω is compact
and E |ω |2 > 0, then the σ -subalgebra A is purely atomic.

The last section deals with the set W of all bounded operators of the form EMω +
λ I . Here, we show that W is a weakly closed operator algebra (Theorem 5.1). More-
over, in the case when μX < ∞ , we show that the commutant of W is the abelian von
Neumann algebra L ∞(A ) = {Ma : a ∈ L∞(A )} (Theorem 5.2).
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2. Weighted Conditional Expectation Operators

We now define the class of operator under investigation.

DEFINITION 2.1. Let (X ,F ,μ) be a σ -finite measure space and let A be a
σ -subalgebra of F such that (X ,A ,μ) is σ -finite. Let E be the corresponding con-
ditional expectation operator on Lp(F ) , 1 � p � ∞ , relative to A . If ω ∈ L0(F )
such that ω f is conditionable and E(ω f ) ∈ Lp(A ) for all f ∈ Lp(F ) , then the cor-
responding weighted conditional expectation operator (or WCE operator) is the linear
transformation Wω : Lp(F ) −→ Lp(A ) defined by f �→ E(ω f ) .

The function ω is called the weight function of Wω and it is not assumed to be
bounded (hence, Mω need not be a bounded operator). In the event it is bounded,
however, it is easy to show that Wω is a bounded operator; perhaps not surprisingly,
when p = 1 the converse is true.

THEOREM 2.1. Let Wω : Lp(F )−→ Lp(A ) be a WCE operator. If ω ∈ L∞(F ) ,
then Wω is bounded. If p = 1 , then the converse holds and ‖Wω‖ = ‖ω‖∞ .

Proof. Clearly, if Mω is bounded, then EMω is bounded and ‖Wω‖ � ‖Mω‖ .
Suppose, then, that f ∈ L1(F ) and Wω is a bounded operator on L1(F ) . If we

write ω f = u |ω f | , where |u| = 1, we have∫
X
|ω f |dμ =

∫
X

E |ω f |dμ =
∫

X
Wω(u f )dμ � ‖Wω‖‖ f‖1 .

From this we conclude that the multiplication operator Mω on L1(F ) is bounded and
‖ω‖∞ = ‖Mω‖ � ‖Wω‖ . �

For p > 1 the situation is more subtle. Rather than being directly dependent upon
the behavior of ω , boundedness of Wω in this more general setting depends on the
conditional expectation of the function |ω |p .

THEOREM 2.2. Let Wω : Lp(F ) −→ Lp(A ) be a WCE operator.

(1) Let 1 < p < ∞ and q be the conjugate exponent of p . Then, Wω is bounded if
and only if E |ω |q ∈ L∞(A ); if Wω is bounded, then ‖Wω‖ = ‖E |ω |q‖1/q

∞ .

(2) If p = ∞ , then Wω is bounded if and only if E |ω | ∈ L∞(A ); if Wω is bounded,
then ‖Wω‖ = ‖E |ω |‖∞ .

(3) If A �= F , then σ(Wω) = {0}∪ ess range(Eω) .

Proof. (1) Here we prove the special case when μX < ∞ . Suppose Wω is a
bounded operator on Lp(F ) and let f ∈ Lp(F ) . For each n ∈ N , define Fn = {x ∈ X :
|ω(x)| � n} . Then, each Fn is F -measurable and Fn ↑ X . Let Gn = Fn ∩ support|ω |
and let A ∈ A . Define

fn = ω |ω |q−2 χGn∩A
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for each positive integer n . Note that | fn| � nq−1 ; therefore, fn ∈ L∞(F ) for all n
(which in our special case implies fn ∈ Lp(F )). For each n ,

∫
X
|E(ω fn)|p dμ � ‖Wω‖p

∫
X
| fn|p dμ

implies ∫
A
[E(|ω |q χGn)]

pdμ � ‖Wω‖p
∫

A
E(|ω |q χGn)dμ .

Since A is an arbitrary A -measurable set and the integrands are A -measurable func-
tions, we have [E(|ω |q χGn)]

p � ‖Wω‖p E(|ω |q χGn) . That is,

[E(|ω |q χsupport|ω| · χFn)]
p � ‖Wω‖p E(|ω |q χsupport|ω| · χFn).

This inequality in turn gives

[E(|ω |q χFn)]
p−1χsupport[E(|ω|qχFn)] � ‖Wω‖p

or simply
E(|ω |q χFn)χsupport[E(|ω|qχFn )] � ‖Wω‖q .

Since Fn ↑X , the conditional expectation version of the monotone convergence theorem
implies E |ω |q � ‖Wω‖q . In other words, E |ω |q ∈ L∞(A ) and

‖E |ω |q‖1/q
∞ � ‖Wω‖ .

Suppose, now, that E |ω |q ∈ L∞(A ) . Using the conditional form of Hölder’s in-
equality we have

‖Wω f‖p �
∫

X
(E |ω f |)pdμ

�
∫

X

[
(E |ω |q)1/q (E | f |p)1/p

]p
dμ

� ‖E |ω |q‖p/q
∞ ‖ f‖p

p .

Therefore, Wω is bounded and ‖Wω‖ � ‖E |ω |q‖1/q
∞ .

As one might expect, extending this result to the case when (X ,F ,μ) is σ -finite
involves writing X as a disjoint sequence {An} of A -measurable sets of finite mea-
sure, and then carefully applying the finite-measure result to each Lp(An) . The details
are not difficult but they are lengthly and, for the sake of brevity, are omitted.

(2) Without loss of generality we assume ω is not identically zero on X , oth-
erwise the result holds trivially. Consider the case when Wω is bounded. Let A =
{x ∈ X : (E |ω |)(x) > ‖Wω‖} and

g =
ω
|ω |χA∩support|ω|.
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If A∩ support|ω | has positive measure (i.e., ‖g‖∞ �= 0), then the inequality

E |ω |χA = |Wωg| � ‖Wω‖‖g‖∞ = ‖Wω‖

produces a contradiction, since E |ω | > ‖Wω‖ on A . Therefore, the intersection of
A and support|ω | has zero measure. As a consequence, |ω |χA = 0, and this implies
E |ω |χA = 0. Therefore, μA = 0, and we have ‖E |ω |‖∞ � ‖Wω‖ .

The converse follows from the fact that |ω f | � |ω |‖ f‖∞ implies |E(ω f )| �
‖E |ω |‖∞ ‖ f‖∞ .

(3) Note that Wω cannot be surjective, since the range of Wω is contained in
Lp(A ) . Consequently, 0 ∈ σ(Wω ) .

Suppose λ �= 0. Define a linear transformation S by

S f = E

(
ω

λ (Eω−λ )
f

)
− f
λ

for any f ∈ Lp(F ) . If λ �∈ ess range(Eω) , then the function (Eω−λ )−1 is bounded
and one can show

‖S f‖p � 1
|λ |

(∥∥(Eω−λ )−1
∥∥
∞ ‖Wω‖+1

)‖ f‖p .

Conversely, suppose S is bounded. For any a ∈ Lp(A ) , Sa = a/(Eω−λ ) . By
assumption, Sa ∈ Lp(A ) for all a . Thus, the multiplication operator Mψ , with ψ =
(Eω−λ )−1 , is bounded on Lp(A ) . From this it is easy to see that λ cannot be in the
essential range of Eω .

Lastly, a calculation shows that S(Wω −λ I) = (Wω −λ I)S = I . Hence, Wω −λ I
has a bounded inverse if and only if λ �∈ ess range(Eω) and λ �= 0. �

EXAMPLE 2.1. Consider Wω on the Hilbert space L2(F ) . If A = F , then
Wω = Mω and the standard results for multiplication operators are recovered. At the
other extreme, if (X ,F ,μ) is a probability space, then A = { /0,X} is a σ -subalgebra
and A -measurable functions are constant on X . In this setting it is not hard to show
that Wω will be bounded if and only if ω is an L2 function. As a nontrivial example,
one that is in some sense between these two extremes, consider {An}n∈N

, a collection
of disjoint sets of finite measure whose union is X . Let A be the σ -algebra generated
by this partition. In this case, A -measurable functions are those assuming constant
values over each An and any WCE operator has the form

Wω f =
∞

∑
n=1

1
μAn

∫
An

ω f dμ · χAn

for f ∈ L2(F ) . It is clear from Theorem 2.2 (1) that Wω is bounded if and only if the
sequence

βn =
1

μAn

∫
An

|ω |2 dμ
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is bounded. In general the boundedness of the sequence {βn}n∈N
does not require ω

to be bounded. For instance, let X = (0,∞) , take μ to be Lebesgue measure and let
F be the Lebesgue subsets of X . Consider the sequence {an}n∈N

defined by a1 = 1
and an = an−1 +n for n > 1. For each n , define the interval An = (an−n,an] . Clearly,
μAn = n . Let A be the σ -algebra generated by the partition {An}n∈N

. For each n ,
define a function ϕn on An as follows:

ϕn(x) =

{
n2x+n(1−nan) if an−1/n < x � an

0 if an−n < x � an−1/n
.

Define the weight function ω by

ω(x) =
∞

∑
n=1

ϕ1/2
n (x)χAn(x).

Note that ω is unbounded, since ϕn(an) = n for each n . If Wω is the corresponding
WCE operator, then boundedness of Wω depends on the boundedness of the sequence
{βn} given above. Here, βn = 1/(2n) , and so Wω is a bounded operator on L2(0,∞) .

REMARK 2.1. The proof of Theorem 2.2 (3) provides a formula for the inverse
of Wω −λ I when such an inverse exists. In particular, it was found that the action of
(Wω −λ I)−1 could be described by the following equation:

(Wω −λ I)−1 f = E

(
ω

λ (Eω−λ )
· f

)
− f
λ

.

In other words, (Wω −λ I)−1 = Wψ − γI , where ψ = ω [λ (Eω−λ )]−1 and γ = λ−1 .
So, the collection W of all bounded operators of the form Wω +λ I is closed under the
formation of inverses. We shall return to the set W toward the end of the paper.

3. The Polar Decomposition

Recall that any bounded operator T on a Hilbert space can be expressed in terms
of its polar decomposition: T = VP , where V is a partial isometry and P is a positive
operator. Moreover, this representation is unique provided kerP = kerV = kerT . In
this section we show that the unique polar decompositions of Wω and W ∗

ω involve
other WCE operators and their adjoints. Before this, however, we need the following
two lemmas.

LEMMA 3.1. Suppose a∈ L∞(A ) such that aWω f = 0 for all f ∈ L2(F ) . Then,
a = 0 on the support of E |ω |2 .

Proof. If aWω f = 0 for all f ∈ L2(F ) , then Waω is the zero operator on L2(F) .
Therefore,

0 = ‖Waω‖ =
∥∥∥|a|2 E |ω |2

∥∥∥1/2

∞

which implies a = 0 on support(E |ω |2) . �
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LEMMA 3.2. Let Wω be a bounded WCE operator L2(F ) . Then, Wω is a partial
isometry if and only if E |ω |2 = χA for some A ∈ A .

Proof. Suppose Wω is a partial isometry. Then, WωW ∗
ωWω =Wω . That is, for any

f ∈ L2(F ) , E |ω |2 E(ω f ) = E(ω f ) . Therefore,

(E |ω |2−1)E(ω f ) = 0

for all f ∈ L2(F ) . By Lemma 3.1, E |ω |2−1 = 0 on support(E |ω |2) ; in other words,
E |ω |2 = χA , where A = support(E |ω |2) .

Conversely, if E |ω |2 = χA for some A ∈ A , then A = support(E |ω |2) and, for
any f ∈ L2(F ) ,

WωW ∗
ωWω f = E |ω |2 E(ω f ) = χsupport(E|ω|2)E(ω f ) = E(ω f ) = Wω f ,

where we have made use of the inequality |E(ω f )|2 � E |ω |2 E | f |2 . �
The very specific nature of partial isometries of the form Wω seems to suggest

that their applicability beyond the study of WCE operators might be limited. However,
in [2], contractive projections on L1(F ) are shown to decompose into an operator
involving a WCE operator and a nilpotent operator. The weight functions in [2] are
defined to be exactly those functions ω such that Eω = χA , where A is an element of
the underlying σ -subalgebra.

For any Wω on L2(F ) define Pω = W ∗
ωWω and Qω = WωW ∗

ω . In terms of the
conditional expectation and multiplications operators, we have Pω = MωEMω and
Qω = ME|ω|2E .

THEOREM 3.1. The unique polar decomposition of Wω is WσPα , where

σ =
ω(

E |ω |2
)1/2

χS and α =
ω(

E |ω |2
)1/4

χS

and S = support(E |ω |2) .

Proof. A calculation shows that (W ∗
ωWω )1/2 = P1/2

ω = Pα . Also,

|σ |2 =
|ω |2

E |ω |2 χS

implies E |σ |2 = χS . By Lemma 3.2, Wσ is a partial isometry. Another direct calcula-
tion shows that Wω = WσPα and all that remains is uniqueness.

Let f ∈ kerWσ . Then, E(σ f ) = 0 implies

χS(
E |ω |2

)1/2
E(ω f ) = 0.
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From this we have E(ω f ) = 0; that is, f ∈ kerWω . On the other hand, if E(ω f ) = 0,
then multiplication by χS(E |ω |2)−1/2 does not change this. Hence, kerWω = kerWσ .
Additionally, kerWω = kerPα , since Pα = (W ∗

ωWω)1/2 . �

An argument similar to that found in the proof of Theorem 3.1 underlies the
demonstration of the polar decomposition of W ∗

ω .

THEOREM 3.2. The unique polar decomposition of W ∗
ω is W ∗

σQβ , where

σ =
ω(

E |ω |2
)1/2

χS and β =
(
E |ω |2

)1/4

and S = support(E |ω |2) .

4. Compact WCE Operators

An F -measurable set G is said to be an atom if, for every measurable subset
F ⊆ G , either μF = 0 or μF = μG . A σ -algebra is said to be purely atomic if it is
generated by a set of atoms. The following lemma regarding atoms and the dimension-
ality of L2(F ) is probably not new; however, we state a proof here for convenience.

LEMMA 4.1. Suppose (X ,F ,μ) is a σ -finite measure space such that L2(X ,F ,μ)
is finite-dimensional. Then, X is a finite union of atoms.

Proof. Let d = dimL2(F ) < ∞ and let {Gn}n∈N
be a pairwise disjoint sequence

of sets of finite measure with

X =
∞⋃

n=1

Gn.

For each n define

ϕn =
1√
μGn

χGn .

It is easy to check that {ϕn} is an orthonormal set in L2(F ) . As such, the set {ϕn}
can contain no more than d vectors. Since there is a clear one-to-one correspondence
between {Gn} and {ϕn} , it must be that there is only a finite number of distinct sets
Gn , {G1, . . . ,GN} , where N � d . Thus,

X =
N⋃

n=1

Gn.

If every Gn is an atom, we are done. So, without loss of generality assume G1 is not
an atom. Let F1 ⊂ G1 with 0 < μF1 < μG1 . The collection

{F1,G1 −F1,G2, . . . ,GN}
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is a collection of disjoint sets of finite measure whose union is X . As before, consider
the functions

ϕ(1)
1 =

1√
μF1

χF1

ϕ(1)
2 =

1√
μ(G1−F1)

χG1−F1

and ϕ(1)
n+1 = ϕn for 2 � n � N . The set

{
ϕ(1)

n

}
is an orthonormal set consisting of

N +1 vectors and, consequently, N +1 � d . If both G1 and F1 are atoms, the theorem
is proved. If not, one may assume F1 is not an atom and from this develop a collection
of N + 2 disjoint sets having finite measure whose union is X . Again, one concludes
N + 2 � d . Clearly, this process cannot continue indefinitely. In fact, there cannot
exist a sequence {Fk} of measurable subsets of G1 with the property Fk ⊂ Fk−1 and
0 < μFk < μFk−1 for k > d−N ; otherwise, the set of vectors

ϕ(k)
1 =

1√
μFk

χFk

ϕ(k)
2 =

1√
μ(Fk−1−Fk)

χFk−1−Fk

...

ϕ(k)
k+1 =

1√
μ(G1 −F1)

χG1−F1

and ϕ(k)
n+k = ϕn for 2 � n � N , is an orthonormal set consisting of N +k > d elements.

Hence, X must be a finite union of atoms. �

THEOREM 4.1. Let Wω : L2(F ) −→ L2(A ) be a bounded WCE operator such
that E |ω |2 > 0 . If Wω is compact, then A is purely atomic.

Proof. If Wω is compact, then so is Qω = WωW ∗
ω . Note that L2(X ,A ) is an

invariant subspace for Qω and

Qω

∣∣∣∣
L2(A )

= ME|ω|2 .

Therefore, the essential range of E |ω |2 is finite or it consists of a countable number of
scalars whose limit is zero. Suppose ess range(E |ω |2) = {αn}n∈N

such that limnαn =
0. For each n define

An =
{

x ∈ X : E |ω |2 (x) = αn

}
.

Each An is A -measurable, Am ∩An = /0 whenever m �= n , and X =
⋃∞

n=1 An .
One can show that for each n ,

ker
(
ME|ω|2 −αn

)
= χAnL

2(X ,A ),
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where χAnL
2(X ,A ) is the subspace of all functions on X of the form aχAn with a ∈

L2(X ,A ) . For each n identify L2(An,A ) and χAnL
2(X ,A ) . Since ME|ω|2 is compact,

the eigenspaces L2(An,A ) are finite-dimensional. By Lemma 4.1, for each n we have

An =
M⋃

m=1

Amn,

where each set Amn is an atom. Since for any A ∈ A we may write

A =
∞⋃

n=1

(A∩An)

and each An is a finite union of A -measurable atoms, it follows that the σ -algebra A
is generated by a set of atoms.

If ess range(E |ω |2) = {α1, . . . ,αN} , then the same argument holds, only with the
countable collection of sets {An}n∈N

replaced by a finite collection. �

If the requirement that E |ω |2 be strictly positive is dropped, then we simply take
a nonzero element from the essential range, say αN , and observe that the corresponding
AN is a finite union of atoms by virtue of the same reasoning as above. In this way, we
have the following corollary.

COROLLARY 4.1. If Wω is compact and E |ω |2 > 0 on a set of positive measure,
then A contains an atom.

5. The Algebra of WCE Operators

Let Ω be the set of all F -measurable functions ω such that E |ω |2 is bounded.
Since Wψ +Wω = Wψ+ω and λWω = Wλω , it follows that Ω is closed under addition
and scalar multiplication. Moreover, if a ∈ L∞(A ) , then E |aω |2 = |a|2 E |ω |2 implies
aω ∈Ω for all ω ∈Ω . It is also true that although ω ∈Ω itself need not be bounded,
its conditional expectation Eω is always bounded. This follows from the fact that
|Eω |2 � E |ω |2 . These simple observations regarding Ω will prove useful in the study
of the algebra of WCE operators.

Let
W = {Wω +λ I : ω ∈Ω and λ ∈ C} .

Note that W is closed under addition and scalar multiplication. As stated in Remark
2.1, W is also invertibly closed; that is, if Wω +λ I is invertible, then (Wω +λ I)−1 ∈
W . Suppose Wψ ,Wω ∈ W . Then, WψWω = WωEψ ; that is, the product of two WCE
operators is again a WCE operator. More generally, for γ,λ ∈ C ,

(Wψ + γI)(Wω +λ I) = Wπ +αI,

where π = γω +λψ +ωEψ and α = γλ . Therefore, W is closed under products.
These observations, together with the fact that 0∈Ω , imply that W is a unital operator
algebra.
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THEOREM 5.1. The algebra W is weakly-closed.

Proof. Let Lω = W ∗
ω . We shall call Lω a left-WCE operator, since Lω = MωE .

Let {Lωn} be a sequence of left-WCE operators such that Lωn converges weakly to
some bounded operator T on L2(F ) . Let a,b ∈ L2(A )∩L∞(A ) . Then,

MaLωn

weakly−−−−−→ MaT,

that is, for any f ∈ L2(F ) ,

〈aωnEb, f 〉 −→ 〈aTb, f 〉
as n −→ ∞ . We also have

〈aωnEb, f 〉 = 〈bωnEa, f 〉 −→ 〈bTa, f 〉 .
That is, aTb = bTa for all a,b ∈ L2(A )∩L∞(A ) .

In particular, let α ∈ L2(A )∩L∞(F ) such that α > 0. Then,

Tb =
Tα
α

b.

Let ω = α−1Tα . Then, T = Lω on L2(A )∩L∞(A ) . Since L∞(A )∩L2(A ) is dense
in L2(A ) and T is bounded, T = Lω on all of L2(A ) .

Now, for any f ,g ∈ L2(F ) ,

〈ωnE f ,g〉 −→ 〈T f ,g〉
and

〈ωnE(E f ),g〉 −→ 〈TE f ,g〉 .
This implies T f = TE f . Therefore, T f = TE f = ωE f . Thus, the weak-limit of
left-WCE operators is again a left-WCE operator. �

We denote by L ∞(A ) the algebra of all bounded multiplication operators with
A -measurable symbol; that is, L ∞(A ) = {Ma : a ∈ L∞(A )} .

THEOREM 5.2. If μX < ∞ , then W ′ = L ∞(A ) .

Proof. It is clear that L ∞(A ) ⊆ W ′ . To show the reverse direction, note that
when μX < ∞ , 1 ∈ L2(F ) .

Let B ∈ W ′ and set B∗(1) = b . Since E = W1 ∈ W , we have BE = EB (and
B∗E = EB∗ ). Therefore,

b = B∗(1) = B∗E(1) = EB∗1 = Eb,

which implies b is A -measurable. Recall Lω = W ∗
ω , where Lω f = ωE f for any

f ∈ L2(F ) . Since B∗ commutes with W ∗
ω , we have

ωE(B∗ f ) = B∗(ωE f ).
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Replacing ω with ω and f with 1 gives

ωEB∗(1) = B∗(ωE(1)).

That is, ωb = B∗ω . Therefore, B∗ = Mb on Ω . Note that L∞(F ) ⊆ Ω and L∞(F ) is
dense in L2(F ) . Thus, B∗ = Mb on a dense set. Since Mb is closed, B∗ = Mb on all
of L2(F ) and Mb is bounded. Thus, B = Ma , where a = b . �
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