RELATIVELY SPECTRAL HOMOMORPHISMS AND K-INJECTIVITY

YIFENG XUE

(Communicated by S. McCullough)

Abstract. Let \mathscr{A} and \mathscr{B} be unital Banach algebras and $\phi: \mathscr{A} \to \mathscr{B}$ be a unital continuous homomorphism. We prove that if ϕ is relatively spectral (i.e., there is a dense subalgebra X of \mathscr{A} such that $\operatorname{sp}_{\mathscr{B}}(\phi(a)) = \operatorname{sp}_{\mathscr{A}}(a)$ for every $a \in X$) and has dense range, then ϕ induces monomorphisms from $K_i(\mathscr{A})$ to $K_i(\mathscr{B})$, i = 0, 1.

1. Introduction and Preliminaries

Let \mathscr{A}, \mathscr{B} be unital Banach algebras and $\phi : \mathscr{A} \to \mathscr{B}$ be a unital homomorphism (i.e., $\phi(1) = 1$). If $\operatorname{sp}_{\mathscr{B}}(\phi(a)) = \operatorname{sp}_{\mathscr{A}}(a)$ for all $a \in \mathscr{A}$, we say that ϕ is spectral, here $\operatorname{sp}_{\mathscr{A}}(a)$ denotes the spectrum of a in \mathscr{A} . Recall from [3, Definition 10] that ϕ is said to be relatively spectral (to X) if there is a dense subalgebra X of \mathscr{A} such that $\operatorname{sp}_{\mathscr{B}}(\phi(x)) = \operatorname{sp}_{\mathscr{A}}(x)$ for all $x \in X$. Furthermore, ϕ is said to be completely relatively spectral if $\phi_n \colon \operatorname{M}_n(\mathscr{A}) \to \operatorname{M}_n(\mathscr{B})$ is relatively spectral (to $\operatorname{M}_n(X)$) for each n, where $\phi_n((a_{ij})_{n \times n}) = (\phi(a_{ij}))_{n \times n}, (a_{ij})_{n \times n} \in \operatorname{M}_n(\mathscr{A})$.

It is known that if ϕ is spectral and has dense range, then ϕ induces an isomorphism $K_*(\mathscr{A}) \cong K_*(\mathscr{B})$ (cf. [2]). Recently, B. Nica shows that if ϕ is completely relatively spectral and Ran (ϕ) = $\phi(\mathscr{A})$ is dense in \mathscr{B} , then ϕ also induces an isomorphism $K_*(\mathscr{A}) \cong K_*(\mathscr{B})$ (cf. [3, Theorem 2]).

Since we do not know if a relatively spectral homomorphism is completely relatively spectral in general, except some special cases listed in [3], it is significant to investigate if the relatively spectral homomorphism ϕ with dense range could induce an isomorphism between $K_*(\mathscr{A})$ and $K_*(\mathscr{B})$.

In this short note, we prove following result which partially generalizes [3, Theorem 2].

THEOREM 1.1. Let \mathscr{A}, \mathscr{B} be two unital Banach algebras and ϕ be a unital continuous homomorphism from \mathscr{A} to \mathscr{B} with dense range. If ϕ is relatively spectral, then ϕ induces a monomorphism $K_*(\mathscr{A}) \to K_*(\mathscr{B})$.

Keywords and phrases: Banach algebras, K-theory, relatively spectral homomorphism, dense range.

Project supported by Natural Science Foundation of China (no. 10771069) and Shanghai Leading Academic Discipline Project (no. B407).

© CENN, Zagreb Paper OaM-05-09

Mathematics subject classification (2010): 46H99, 19K99.

We will prove this theorem in §2. Now we introduce some notations used in next section. For a Banach algebra \mathscr{A} with unit 1, let $GL(\mathscr{A})$ (resp. $GL_0(\mathscr{A})$) denote the group of invertible elements in \mathscr{A} (resp. the connected component of 1 in $GL(\mathscr{A})$). For a Banach algebra \mathscr{A} , we view \mathscr{A}^n and $M_n(\mathscr{A})$ as the set of all $n \times 1$ and $n \times n$ matrices over \mathscr{A} respectively. The norm on \mathscr{A}^n (resp. $M_n(\mathscr{A})$) is given by $||(a_1, \dots, a_n)^T|| = \sum_{i=1}^n ||a_i||$ (resp. $||(a_{ij})_{n \times n}|| = \sum_{i,j=1}^n ||a_{ij}||$). Set $GL_n(\mathscr{A}) =$ $GL(M_n(\mathscr{A})), GL_n^0(\mathscr{A}) = GL_0(M_n(\mathscr{A}))$.

Suppose \mathscr{A} is unital and let $x \in GL(\mathscr{A})$. Denote by [x] the equivalence class of x in $GL(\mathscr{A})/GL_0(\mathscr{A})$. The K_1 -group of \mathscr{A} , denoted $K_1(\mathscr{A})$ is defined as $K_1(\mathscr{A}) = \bigcup_{n=1}^{\infty} GL_n(\mathscr{A})/GL_n^0(\mathscr{A})$, where $GL_n(\mathscr{A})/GL_n^0(\mathscr{A}) \subset GL_{n+1}(\mathscr{A})/GL_{n+1}^0(\mathscr{A})$ in the sense that $[x] \mapsto [\operatorname{diag}(x,1)], \forall x \in GL_n(\mathscr{A})/GL_n^0(\mathscr{A}), n = 1, 2, \cdots$. We can define the K_0 -group of \mathscr{A} by $K_0(\mathscr{A}) = K_1((S\mathscr{A})^+)$, where

$$(S\mathscr{A})^+ = \{ f \in C([0,1],\mathscr{A}) | f(0) = f(1) = \text{constant} \}.$$

More detailed information about $K_0(\mathscr{A})$ and $K_1(\mathscr{A})$ can be found in [1].

2. Proof of main theorem

In this section, we assume that \mathscr{A} and \mathscr{B} are unital Banach algebras and ϕ is a unital continuous homomorphism from \mathscr{A} to \mathscr{B} .

Let *M* be a compact Hausdorff space and let $C(M, \mathscr{A})$ denote the Banach algebra consisting of all continuous maps $f: M \to \mathscr{A}$ with the norm $||f|| = \sup_{t \in M} ||f(t)||$. When $M = \mathbf{S}^1$, we set $\Omega(\mathscr{A}) = C(\mathbf{S}^1, \mathscr{A})$. Let *X* be a dense subalgebra of \mathscr{A} and put $M(X) = \{f: M \to X \text{ continuous}\}$. Define a homomorphism $\phi_M: C(M, \mathscr{A}) \to C(M, \mathscr{B})$ by $\phi_M(f)(t) = \phi(f(t)), \forall f \in C(M, \mathscr{A}) \text{ and } t \in M$.

LEMMA 2.1. Let ϕ be a relatively spectral (to X) homomorphism with $\operatorname{Ran}(\phi)$ dense in \mathcal{B} . Then ϕ_M is a relatively spectral (to M(X)) homomorphism with $\operatorname{Ran}(\phi_M)$ dense in $C(M, \mathcal{B})$.

Proof. Given $g \in C(M, \mathscr{B})$ and $\varepsilon > 0$. Since g is continuous and M is compact, it follows that g(M) is also compact in \mathscr{B} . Thus, there are $y_1, \dots, y_n \in g(M)$ such that $g(M) \subset \bigcup_{i=1}^n O(y_i, \varepsilon)$, where $O(y_i, \varepsilon) = \{y \in \mathscr{B} | ||y - y_i|| < \varepsilon\}$. Set $U_i = g^{-1}(O(y_i, \varepsilon))$, $i = 1, \dots, n$. Then $\{U_1, \dots, U_n\}$ is an open cover of M. Choose a partition of unity $\{f_1, \dots, f_n\}$ subordinate to this cover, so that each f_i is a continuous function from M to [0, 1] with support contained in U_i and $\sum_{i=1}^n f_i(t) = 1$, $\forall t \in M$.

From $\overline{\phi(X)} = \mathscr{B}$, we can find $a_1, \dots, a_n \in X$ such that $\|\phi(a_i) - y_i\| < \varepsilon$, i =

1,...,n. Set
$$f_{\varepsilon}(t) = \sum_{i=1}^{n} a_i f_i(t), \forall t \in M$$
. Then $f \in M(X)$ and

$$\|\phi(f_{\varepsilon}(t)) - g(t)\| \leq \sum_{i=1}^{n} \|\phi(a_{i}) - y_{i}\|f_{i}(t) + \sum_{i=1}^{n} \|y_{i}f_{i}(t) - g(t)f_{i}(t)\| < 2\varepsilon,$$

 $\forall t \in M$. Thus, $\phi_M(M(X))$ is dense in $C(M, \mathscr{B})$.

If we set $\mathscr{B} = \mathscr{A}$ and $\phi = id$ in above argument, then we have $\overline{M(X)} = C(M, \mathscr{A})$.

Now we show that ϕ_M is relatively spectral. But it is enough to prove that $\phi_M(f)$ is invertible in $C(M, \mathscr{B})$ for $f \in M(X)$ implies that f is invertible in $C(M, \mathscr{A})$. Since $\phi_M(f)$ is invertible in $C(M, \mathscr{B})$, it follows that $\phi(f(t))$ is invertible in \mathscr{B} , $\forall t \in M$. Thus, from the relatively spectral property of ϕ , we have $f(t) \in GL(\mathscr{A})$, $\forall t \in M$. This means that $f \in GL(C(M, \mathscr{A}))$. \Box

COROLLARY 2.2. Let ϕ be a relatively spectral (to X) homomorphism with dense range. Suppose there is $a \in X$ such that $||1 - \phi(a)|| < 1$. Then $a \in GL_0(\mathscr{A})$.

Proof. Choose $x \in X$ such that $||1-x|| \leq \frac{1}{1+||\phi||}$. Then $x \in GL_0(\mathscr{A})$ and $||1-\phi(x)|| < 1$. Put f(t) = (1-t)x+ta, $\forall t \in I = [0,1]$. Then $f \in I(X)$ and $||1-\phi_I(f)|| < 1$. So $f \in GL(C(I,\mathscr{A}))$ with $f_0 = x$ and $f_1 = a$ by Lemma 2.1, which means that $a \in GL_0(\mathscr{A})$. \Box

LEMMA 2.3. Let ϕ be a relatively spectral (to X) homomorphism with dense range and let $z \in M_n(X)$ with $||1_n - \phi_n(z)|| < \frac{1}{3}$, where 1_n is the unit of $M_n(\mathscr{A})$. Then for any $\varepsilon > 0$, there is $z' \in M_n(X) \cap GL_n^0(\mathscr{A})$ such that $||z - z'|| < \varepsilon$.

Proof. When n = 1, the statement is true by Corollary 2.2. We assume that the statement is true for $1 \le n \le m$. We now prove the argument is also true for n = m + 1.

Let $y = \phi_{m+1}(z) \in \phi_{m+1}(\mathbf{M}_{m+1}(X))$ with $||\mathbf{1}_{m+1} - y|| < \frac{1}{3}$. Write $z = (z_{ij})_{m+1 \times m+1}$ (resp. $y = (y_{ij})_{m+1 \times m+1}$) as $z = \begin{pmatrix} z_1 & z_2 \\ z_3 & z_4 \end{pmatrix}$ (resp. $y = \begin{pmatrix} y_1 & y_2 \\ y_3 & y_4 \end{pmatrix}$), where $y_{ij} = \phi(z_{ij})$, $i, j = 1, \dots, m+1, z_1 = (z_{ij})_{m \times m} \in \mathbf{M}_m(X)$ and

$$z_2 = \begin{pmatrix} z_{1m+1} \\ \vdots \\ z_{mm+1} \end{pmatrix}, \quad z_3 = (z_{m+11} \dots z_{m+1m}), \quad z_4 = z_{m+1m+1}.$$

Then $||1_m - y_1|| < \frac{1}{3}$, $||y_2|| < \frac{1}{3}$, $||y_3|| < \frac{1}{3}$ and $||1 - y_4|| < \frac{1}{3}$. By assumption, there is $z'_1 \in GL_m^0(\mathscr{A}) \cap M_m(X)$ such that $||z_1 - z'_1|| < \frac{\varepsilon}{3(||\phi_m|| + 1)}$. Pick $x_1 \in M_m(X)$ such that

$$\|(z_1')^{-1} - x_1\| < \frac{\varepsilon}{3(\|z_1'\| + 1)(\|z_3\| + 1)(\|\phi_m\| + 1)}.$$
(1)

Set

$$z' = \begin{pmatrix} 1_n & 0 \\ z_3 x_1 & 1 \end{pmatrix} \begin{pmatrix} z'_1 & z_2 \\ 0 & z_4 - z_3 x_1 z_2 \end{pmatrix} = \begin{pmatrix} z'_1 & z_2 \\ z_3 x_1 z'_1 & z_4 \end{pmatrix} \in \mathbf{M}_{m+1}(X).$$

Then $||z-z'|| \leq ||z-z'|| + ||z_3|| ||1_m - x_1 z_1'|| < \varepsilon$.

Note that $||1_m - \phi_m(z_1)|| < \frac{1}{3}$ and $||\phi_m(z_1) - \phi_m(z_1')|| < \frac{1}{3}$. So $||1_m - \phi_m(z_1')|| < \frac{1}{3}$

 $\frac{2}{3}$ and hence $\|(\phi_m(z'_1))^{-1}\| < 3$. Consequently, $\|\phi_m(x_1)\| < 4$ by (1). Therefore,

$$|1 - \phi(z_4 - z_3 x_1 z_2)|| < ||1 - y_4|| + ||y_3|| ||\phi_m(x_1)|| ||y_2|| < 1.$$
⁽²⁾

Applying Corollary 2.2 to (2), we have $z_4 - z_3 x_1 z_2 \in GL_0(\mathscr{A})$. Thus, we can deduce that $\begin{pmatrix} z'_1 & z_2 \\ 0 & z_4 - z_3 x_1 z_2 \end{pmatrix} \in GL^0_{m+1}(\mathscr{A})$. Since $\begin{pmatrix} 1_n & 0 \\ z_3 x_1 & 1 \end{pmatrix} \in GL^0_{m+1}(\mathscr{A})$, it follows that $z' \in GL^0_{m+1}(\mathscr{A})$. This completes the proof. \Box

Now we give the proof of Theorem 1.1 as follows.

Proof. Let $G \in GL_n(\mathscr{A})$ such that $G_0 = \phi_n(G) \in GL_n^0(\mathscr{B})$ for some n. We will prove $G \in GL_n^0(\mathscr{A})$. Since X is dense in \mathscr{A} and ϕ has dense range, we can find $A \in M_n(X)$ with ||A - G|| small enough so that $A \in GL_n(\mathscr{A})$ with [A] = [G] in $GL_n(\mathscr{A})/GL_n^0(\mathscr{A})$ and $\phi_n(\mathscr{A}) \in GL_n^0(\mathscr{B})$. Noting that $\phi_n(A)$ can be written as $\phi_n(A) = e^{b_1} \cdots e^{b_s}$ for some $b_1, \cdots, b_s \in M_n(\mathscr{B})$, we can find $a_1, \cdots, a_s \in M_n(\mathscr{A})$ with $||\phi_n(a_i) - b_i||$ small enough, $i = 1, \cdots, s$, such that

$$\|\phi_n(A)^{-1} - \phi_n(e^{-a_1} \cdots e^{-a_s})\| < \frac{1}{6(\|\phi_n(A)\| + 1)}$$

Choose $B_0 \in M_n(X)$ such that

$$\|e^{-a_1}\cdots e^{-a_s}-B_0\|<\frac{1}{6(\|e^{a_1}\cdots e^{a_s}\|+1)(\|\phi_n\|+1)(\|\phi_n(A)\|+1)}.$$

Then $B_0 \in GL_n^0(\mathscr{A})$ and

$$||I_n - \phi_n(AB_0)|| \leq ||\phi_n(A)|| ||\phi_n(A)^{-1} - \phi_n(B_0)|| < \frac{1}{3}.$$

Therefore there exists $Z \in GL_n^0(\mathscr{A}) \cap M_n(X)$ such that $||AB_0 - Z|| < \frac{1}{||(AB_0)^{-1}||}$ by Lemma 2.3. So, $AB_0 \in GL_n^0(\mathscr{A})$ and hence $G \in GL_n^0(\mathscr{A})$.

Since $\phi_{\mathbf{S}^1}$ is relatively spectral and $\operatorname{Ran}(\phi_{\mathbf{S}^1})$ is dense in $\Omega(\mathscr{B})$ by Lemma 2.1, we get that the induced homomorphism $(\phi_{\mathbf{S}^1})_* \colon K_1(\Omega(\mathscr{A})) \to K_1(\Omega(\mathscr{B}))$ is injective by above argument. Thus, from the commutative diagram of split exact sequences

$$0 \longrightarrow K_{1}(S\mathscr{B}) \longrightarrow K_{1}(\Omega(\mathscr{B})) \longrightarrow K_{1}(\mathscr{B}) \longrightarrow 0$$

$$\downarrow^{\phi_{*}} \uparrow \qquad (\phi_{S^{1}})_{*} \uparrow \qquad \phi_{*} \uparrow \qquad (3)$$

$$0 \longrightarrow K_{1}(S\mathscr{A}) \longrightarrow K_{1}(\Omega(\mathscr{A})) \longrightarrow K_{1}(\mathscr{A}) \longrightarrow 0,$$

we get that $\phi_* \colon K_1(S\mathscr{A}) \to K_1(S\mathscr{B})$ is injective, that is, $\phi_* \colon K_0(\mathscr{A}) \to K_0(\mathscr{B})$ is injective. \Box

REMARK 2.4. If $csr(C(S^1, \mathscr{B})) \leq 2$, where $csr(\cdot)$ is the connected stable rank of Banach algebras introduced by Rieffel in [5], then ϕ_* is also surjective.

In fact, when $\operatorname{csr}(C(\mathbf{S}^1,\mathscr{B})) \leq 2$, we have $\operatorname{csr}(\mathscr{B}) \leq 2$ by [4, Proposition 8.4]. So the natural homomorphism $i_{\mathscr{B}} \colon GL(\mathscr{B})/GL_0(\mathscr{B}) \to K_1(\mathscr{B})$ is surjective by using the proof of Theorem 10.10 in [5]. On the other hand, if ϕ is relatively spectral and has dense range, then the induced homomorphism $\phi_* \colon GL(\mathscr{A})/GL_0(\mathscr{A}) \to GL(\mathscr{B})/GL_0(\mathscr{B})$ is injective by the proof of Theorem 1.1. To show ϕ_* is surjective, let $b \in GL(\mathscr{B})$ and pick $a \in X$ such that $\|\phi(a) - b\| < \frac{1}{\|b^{-1}\|}$. Then $\phi(a) \in GL(\mathscr{B})$ with $[b] = [\phi(a)]$ and hence $a \in GL(\mathscr{A})$. Thus, $\phi_*([a]) = [b]$ and consequently, $\phi_* \colon K_1(\mathscr{A}) \to K_1(\mathscr{B})$ is surjective.

By the above argument, we also have $(\phi_{\mathbf{S}^1})_*$ is surjective. Thus, using the commutative diagram (3), we obtain that $\phi_* : K_1(S\mathscr{A}) \to K_1(S\mathscr{B})$ is surjective.

Especially, when \mathscr{B} is of topological stable rank one, $\operatorname{csr}(\mathscr{B}) \leq 2$ and $\operatorname{csr}(C(\mathbf{S}^1, \mathscr{B})) \leq 2$. So ϕ_* is surjective.

Acknowledgement. The author is grateful to the referee for his (or her) very helpful comments and suggestions.

REFERENCES

- [1] B. BLACKADAR, K-Theory for Operator Algebras, Springer-Verlag, 1986.
- J.-B. BOST, Principe d'Oka, K-théorie et systèmes dynamiques non commutatifs, Invent. Math., 101, 2 (1990), 261–333.
- [3] B. NICA, Relatively spectral morphisms and applications to K-theory, J. Funct. Anal., 255 (2008), 3303–3328.
- [4] B. NICA, Homotopical stable ranks for Banach algebras, http://arxiv.org/ abs/0911.2945v1.
- [5] M.A. RIEFFEL, Dimension and stable rank in the K-Theory of C^{*}-algebras, Proc. London Math. Soc., 46(1983), 301–333.

(Received January 31, 2010)

Yifeng Xue Department of Mathematics East China Normal University Shanghai 200241 P.R.China e-mail: yfxue@math.ecnu.edu.cn