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Abstract. We investigate the topological and metric structure of the set of idempotent operators
and projections which have prescribed diagonal entries with respect to a fixed orthonormal basis
of a Hilbert space. As an application, we settle some cases of conjectures of Larson, Dykema,
and Strawn on the connectedness of the set of unit-norm tight frames.

1. Introduction

A finite unit-norm tight frame (FUNTF) is a finite sequence of unit vectors
(x1, . . . ,xk) in an n -dimensional Hilbert space H which has the following reproducing
property:

y =
n
k

k

∑
j=1

〈
y,x j

〉
x j for all y ∈ H . (1.1)

When k = n , the above defines an orthonormal basis in H . The redundancy inherent
in the frames with k > n makes them useful in signal processing, as the original signal
may be recovered after a partial loss in transmission. We refer to [1, 3, 5, 6, 7] for
background on FUNTF and to [9, 10, 16] for the general theory of frames.

We denote the set of all k -vector unit-norm tight frames in an n -dimensional
Hilbert space by FC

k,n or FR
k,n depending on the base field. When k = n , the topol-

ogy of these sets is well understood. Indeed, FC
n,n can be identified with the unitary

group U(n) and FR
n,n with the orthogonal group O(n) . In particular, FC

n,n is path-
wise connected while FR

n,n has two connected components. Much less is known about
the topology of frames with redundancy, i.e., with k > n . The third author conjec-
tured in [15] that FC

k,n is pathwise connected whenever k > n � 1, or, equivalently,
all k -vector unit-norm tight frames are homotopic. Dykema and Strawn proved in [6]
that FC

k,1 is pathwise connected for k � 1 and FR
k,2 is pathwise connected for k � 4.
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They conjectured that FR
k,n is pathwise connected whenever k � n+2 � 4. They also

showed that over either field, the number of connected components remains the same
when n is replaced with k− n . The latter implies that FC

k,k−1 and FR
k,k−2 are also

pathwise connected. The other cases of the conjecture remained open.
The Grammian operator [10] of a FUNTF is a scalar multiple of a projection with

constant diagonal, see for instance Corollary 2.6 in [6] or Theorem 3.5 in [3]. Fur-
thermore, Fk,n fibers over the set of projections in B(Ck) or B(Rk) with all diagonal
entries equal to n/k . The fibers are identified with the orthogonal group, which is con-
nected in the complex case and has two connected components in the real case. Thus,
the topological structure of Fk,n is largely determined by the structure of the set of pro-
jections with a fixed constant diagonal. The latter set is the subject of our first result.
We denote by Mn(C) (resp. Mn(R)) the set of all n×n matrices with complex (resp.
real) entries. When the choice of C or R is unimportant, we write simply Mn .

THEOREM 1.1. The set of projections in M2n(C) with all diagonal entries equal
to 1/2 is pathwise connected for all n � 1 .

Theorem 1.1 implies that FC
2n,n is connected for n � 1. In the case of real scalars

Theorem 1.1 remains true if n � 2, see Remark 3.2. Therefore, FR
2n,n has at most two

connected components when n � 2, and its quotient under the natural action of the
orthogonal group in Rn is connected.

We denote by Mn(C) (resp. Mn(R)) the set of all n× n matrices with complex
(resp. real) entries. When the choice of C or R is unimportant, we write simply
Mn . Let Dn ⊂ Mn be the subalgebra of diagonal matrices. There is a natural linear
operator (conditional expectation) E : Mn → Dn which acts by erasing off-diagonal
entries. Theorem 1.1 concerns the preimage of (1/2)id under the restriction of E to
projections. It is natural to ask if preimages of other matrices are connected as well.
We do not have a complete answer, see however Theorem 4.1. The image of the set of
projections under E was the subject of recent papers by Kadison [11, 12].

Theorem 8.1 provides a partial extension of Theorem 1.1 to infinite-dimensional
spaces, where the notion of connectedness is understood in the sense of norm topology
on the space of bounded operators.

Our second main result is a non-self-adjoint version of Theorem 1.1, which applies
to idempotent matrices with an arbitrary fixed diagonal.

THEOREM 1.2. For every d in Dn(C) , the set of idempotents q in Mn(C) such
that E(q) = d is pathwise connected.

Naturally, the set of idempotents q such that E(q) = d is empty for some matrices
d . Diagonal matrices of the form E(q) are characterized in Theorem 5.1. Our proof
of Theorem 1.2 involves several results of independent interest. First, we characterize
the diagonals of idempotents with given range in terms of the commutator of the range
projection [q] (Theorem 6.3). Specifically, the characterization involves the relative
commutator {[q]}′ ∩Dn . Along the way we obtain the following rigidity result (Theo-
rem 6.5): for every d ∈ Dn there exists ε > 0 such that the existence of an idempotent
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q with ‖E(q)−d‖< ε implies the existence of another idempotent q1 with E(q1) = d .
A perturbation argument is used to connect an arbitrary idempotent to an idempotent q
such that {[q]}′∩Dn = C id while preserving the diagonal. Finally, we show that idem-
potents whose range projection has trivial relative commutant form a path-connected
set.

The paper concludes with Section 8, where some of our results are extended to
operators in separable infinite-dimensional Hilbert spaces. Whether full analogues of
Theorem 1.1 and 1.2 hold in infinite dimensions remains open.

2. Preliminaries

2.1. Projections as 2×2 matrices

The content of this section is well-known folklore. It is essentially contained in [8,
Theorem 2]. We include this discussion for the convenience of the reader, since it is the
basis for our proof of Theorem 1.1.

When a Hilbert space comes as an orthogonal direct sum of two Hilbert spaces,
say H = K⊕L , projections p of B(H ) can be identified with those 2×2 matrices

p =
(

a b
b∗ d

)
where a,b,d are operators in B(K),B(L,K),B(L) respectively, such that

(i) 0 � a � id and 0 � d � id ;

(ii) |b∗| = √
a(id−a) and |b| = √

d(id−d) ;

(iii) ab = b(id−d).

Then it is readily seen that Ker b∗ = Ker bb∗ = Ker a(id− a) = Ker (id− a)⊕
Ker a , hence

K = Ker (id−a)⊕Ker a⊕ (Ker b∗)⊥ .

Likewise,
L = Ker d⊕Ker (id−d)⊕ (Ker b)⊥ .

According to these two decompositions, we can write

a = id⊕0⊕a′ , d = 0⊕ id⊕d′ and b = 0⊕0⊕b′,

where b′ , for instance, denotes the restriction of b to (Ker b)⊥ which is injective and
whose range is dense in (Ker b∗)⊥ .

There is a unique polar decomposition b′ = u′|b′| , where u′ is an isometry from
(Ker b)⊥ onto (Ker b∗)⊥ . Note that (ii) and (iii) above entail |b′| =

√
d′(id−d′)

and a′b′ = b′(id−d′) . Hence |b′| commutes with d′ and a′u′|b′|= u′(id−d′)|b′| . The
range of |b′| being dense in (Ker b)⊥ , it follows that

a′u′ = u′(id−d′).

Thus the positive injective contractions a′ and id−d′ are unitarily equivalent and the
same statement holds for id−a′ and d′ .
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2.2. Diagonal conditional expectation and minimal block decomposition

Let H be a separable Hilbert space and let us fix an orthonormal basis. Let
{ei}i∈I denote the corresponding set of rank one projections. An element x of B(H ) ,
i.e. a bounded linear operator on H , can be identified with its matrix with respect to
this basis. It is then called diagonal if all of its off-diagonal entries are equal to zero,
i.e eixe j = 0 whenever i �= j . The set D made of these diagonal elements is a maximal
abelian self-adjoint algebra in B(H ) (it is equal to its commutant). It comes with the
so-called diagonal conditional expectation

E : B(H ) → D

defined as the idempotent map which erases the off-diagonal entries.
Let x in B(H ) be fixed and denote

x∼ the smallest equivalence relation on I such
that i

x∼ j whenever eixe j �= 0. Summing the projections ei over each equivalence
class, we obtain an orthogonal decomposition of the unit { f j} j∈J within D . We call

x = ∑
j∈J

x f j

the minimal block decomposition of x . By construction, the projections f j commute
with x . More precisely, these are the minimal projections of the commutative von
Neumann algebra {x}′ ∩D . Note({x}′ ∩D

)′ 
∏
j∈J

f jB(H ) f j,

which justifies the terminology.
Our strategy for the proof of Theorem 1.2 consists in restricting ourselves to idem-

potents q which share the same diagonal E(q)= d and the property that {q}′∩D = Cid
or, equivalently, ({x}′ ∩D)′ = B(H ) .

3. Projections with diagonal 1/2

3.1. Proof of Theorem 1.1

Proof. Let p in M2n(C) be a projection such that E(p) = id/2 and write p as a
2×2 matrix

p =
(

a b
b∗ d

)
(3.1)

with coefficients a,b,d in Mn . We will now use implicitly the preliminary remarks of
2.1.

By assumption on the diagonal, we have Tr a = Tr (id− d) = n/2. Since the
restriction of a to (Ker b∗)⊥ and that of id−d to (Ker b)⊥ are unitarily equivalent,
they have equal trace and it follows that dimKer (id−a)= dimKer d . Considering id−
p instead, the same argument shows that dim Ker a = dim Ker (id−d) . In particular,
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we see that the subspaces Ker b and Ker b∗ have the same dimension, hence we can
extend the unitary u′ to a unitary u in Mn such that

p =
(

a
√

a(id−a)u
u∗

√
a(id−a) u∗(id−a)u

)
.

Now if we put at := (id− t)a+(t/2)id in B(K) , it is easily seen that the formula

pt :=
(

at
√

at(id−at)u
u∗

√
at(id−at) u∗(id−at)u

)
.

defines a projection-valued path connecting p0 = p and

p1 =
(

id/2 u/2
u∗/2 id/2

)
,

and such that E(pt) = 1/2 for all t . The main point is the latter assertion, which readily
follows from the linearity of E and the identities

at = (id− t)a+ t(1/2)id ,

u∗(id−at)u = (id− t)u∗(id−a)u+(t/2)id.

Finally, by connectedness of the unitary group in Mn(C) , every projection p in
M2n(C) with diagonal id/2 can be connected to

q =
(

id/2 id/2
id/2 id/2

)
. �

REMARK 3.1. Most of the proof of Theorem 1.1 carries over to a separable Hilbert
space H over real or complex scalars. Indeed, we used the assumption that the space
is finite-dimensional only to prove that the subspaces Ker b and Ker b∗ are of the same
dimension. (The unitary group in B(H ) is known to be path-connected and even
contractible [13].) Thus we have the following result: if H is decomposed into a
direct sum K ⊕L , then the set of all projections of form (3.1) with E(p) = id/2 and
dim Ker b = dim Ker b∗ is path-connected.

REMARK 3.2. The set of projections with diagonal id/2 in M2(R) is not con-
nected, since it consists of just two elements(

1/2 ±1/2
±1/2 1/2

)

However, this set is path-connected in M2n(R) for all n > 1. Indeed, the unitary group
splits into two components: special unitary group and its complement. If the block b
in (3.1) is not invertible, then in the proof of Theorem 1.1 we can choose the unitary u
to have determinant 1 or −1. Thus, the existence of a projection p with E(p) = id/2



144 J. GIOL, L.V. KOVALEV, D. LARSON, N. NGUYEN AND J. E. TENER

and noninvertible b implies the connectedness of the set. Such a projection can be
easily constructed by including the 4×4 block

⎛
⎜⎜⎝

1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2

⎞
⎟⎟⎠ .

3.2. Explicit parametrization in 4 dimensions

We observe that there are three sets of projections in M4(C) with diagonal id/2.
First, those whose all entries are non-zero can be parametrized by

p =

⎛
⎜⎜⎜⎝

1/2 t1ξ1 t2ξ2 t3ξ3

t1ξ1 1/2 ∓it3ξ1ξ2 ±it2ξ1ξ3

t2ξ2 ±it3ξ1ξ2 1/2 ∓it1ξ2ξ3

t3ξ3 ∓it2ξ1ξ3 ±it1ξ2ξ3 1/2

⎞
⎟⎟⎟⎠

with
√

t21 + t22 + t23 = 1/2, t j > 0, and ξ j in T . Then come those with exactly four null
entries:

p =

⎛
⎜⎜⎜⎝

1/2 t1ξ1 t2ξ2 0

t1ξ1 1/2 0 t2ξ3

t2ξ2 0 1/2 −t1ξ1ξ2ξ3

0 t2ξ3 −t1ξ1ξ2ξ3 1/2

⎞
⎟⎟⎟⎠

with
√

t21 + t22 = 1/2, t j > 0, ξ j in T , and the two other families obtained by permu-
tation of the basis. Finally, here are those which have eight null entries:

p =

⎛
⎜⎜⎝

1/2 ξ1/2 0 0
ξ1/2 1/2 0 0

0 0 1/2 ξ2/2
0 0 ξ2/2 1/2

⎞
⎟⎟⎠

with ξ j in T , and the two other families obtained by permutation of the basis.
It follows readily that the set of diagonal 1/2 projections is pathwise connected in

M4(C) , giving us an explicit, parametric proof of Theorem 1.1 in that case.
In the real case, the latter set restricts to three sets of four projections. Also, there

are no 4× 4 diagonal 1/2 projections whose entries are all non-zero real numbers.
And those with four null entries split into twenty-four paths which connect the twelve
extreme projections. For instance, for every ε1,ε2,ε5,ε6 in {±1} such that ε1ε2ε5ε6 =
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−1, the extreme projections

p =

⎛
⎜⎜⎝

1/2 ε1/2 0 0
ε1/2 1/2 0 0

0 0 1/2 ε6/2
0 0 ε6/2 1/2

⎞
⎟⎟⎠

and

q =

⎛
⎜⎜⎝

1/2 0 ε2/2 0
0 1/2 0 ε5/2

ε2/2 0 1/2 0
0 ε5/2 0 1/2

⎞
⎟⎟⎠

can be connected by the path⎛
⎜⎜⎝

1/2 cosθε1/2 sinθε2/2 0
cosθε1/2 1/2 0 sinθε5/2
sinθε2/2 0 1/2 cosθε6/2

0 sinθε5/2 cosθε6/2 1/2

⎞
⎟⎟⎠

with θ running from 0 to π/2.
We let the reader check that any two extreme projections can be connected by at

most three paths of this type. In particular, diagonal 1/2 projections in M4(R) form a
pathwise connected set.

4. Further connectedness results for projections with fixed diagonal

4.1. Amplification of the 2×2 case

Here is a generalization of Theorem 1.1. The proof is basically the same, so we
only insist on the points that differ.

THEOREM 4.1. For every d in D2n of the type d = cos2 θe + sin2 θe⊥ with a
rank n projection e in D2n and θ in [0,π/2] , the set of projections p in M2n(C) such
that E(p) = d is pathwise connected.

Proof. Up to a permutation, we can assume that e is the projection onto the span
of the first n vectors of the canonical basis. Now let p be a projection in M2n , written as
a 2×2 matrix over Mn like in the previous section. Since Tr a = Tr (id−d) = ncos2 θ
and Tr (id−a) = Tr d = nsin2 θ , there exists a unitary u in Mn such that

p =
(

a
√

a(id−a)u
u∗

√
a(id−a) u∗(id−a)u

)
.

Then we put at := (id− t)a+ t cos2 θ1 and it simply remains to mimick the rest of the
proof of Theorem 1.1. �
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5. Diagonals of idempotents

An idempotent is an operator which is equal to its square. For d in Dn to be the
diagonal of an idempotent q in Mn , it is necessary that Tr d = rank q belongs to the
set of integers {0,1, . . . ,n} . Now is this sufficient? The cases Tr d = 0 and Tr d = n
have to be treated separately. Since 0 and id are the only idempotents with rank 0 and
n , respectively, it turns out that 0 and 1 are the only possible diagonals of idempotents
with trace 0 and n , respectively. The remainder of this section is devoted to proving
that for every d in Dn with Tr d in {1, . . . ,n−1} there exists an idempotent q in Mn

such that E(q) = d .
The case Tr d = 1 is very easy. Let {d1, . . . ,dn} denote the set of values on the

diagonal of d so that ∑n
j=1 d j = 1. Then consider for instance the matrix q in Mn

which is defined by its entries qi, j := di . It is readily seen that q is idempotent and that
E(q) = d .

We proceed by induction on k .
Assume it has been proven that for all n � k and for all d in Dn with Tr d = k−1

there exists an idempotent q in Mn such that E(q) = d . We now take n � k+1 and d
in Dn with Tr d = k . Let {d1, . . . ,dn} denote the set of values on the diagonal of d .

If d j0 = 1 for some j0 , then ∑ j �= j0 d j = k− 1 and the induction hypothesis, to-
gether with an obvious splicing argument, help us find q .

Since d �= id , there exist at least two indices i, j such that di +d j �= 2 (otherwise,
we find that d j = 1 for all j ). Without loss of generality, we can assume that d1+d2 �= 2
and we put λ := (d2−1)/(d1 +d2−2) . Since (d1 +d2−1)+d3 + · · ·+dn = k−1, we
can find by assumption an idempotent r in Mn−1 such that E(r) has diagonal values
{d1 +d2−1,d3, . . . ,dn} . Now consider the idempotent

q̃ =
(

1 0
0 r

)
=

⎛
⎝1 0 0

0 d1 +d2−1 0
0 0 ∗

⎞
⎠

and the invertible element

σ =

⎛
⎝λ λ −1 0

1 1 0
0 0 id

⎞
⎠

in Mn . Then a straightforward computation shows that the idempotent q := σ q̃σ−1 has
diagonal d .

Thus we have proved:

THEOREM 5.1. Let d be in Dn . Then d is the diagonal of an idempotent in Mn

if and only if one of the following holds:

(i) d = 0 ;

(ii) d = id ;

(iii) Tr d belongs to {1, . . . ,n−1} .
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6. Idempotents with prescribed range and diagonal

Throughout this section, we will work with the conditional expectation E from
Mn onto Dn , the set of diagonal n× n matrices. Given an idempotent p , recall that
the set of idempotents which have the same range as p is equal to the affine subset
p+ pMnp⊥ , where p⊥ = id− p . We will now investigate the intersections of the latter
with the preimages E−1(d) .

First we determine the range of the linear operator x �−→ E(pxp⊥) . The follow-
ing lemma should be compared to Lemma 4.2 in [6], which concerns the rank of the
differential of the conditional expectation on the Grassmannian manifold.

LEMMA 6.1. Let p be a projection in Mn with minimal block decomposition p =
∑s

j=1 p f j . Then

E(pMnp⊥) = {d ∈ Dn : Tr d f j = 0, 1 � j � s}.

REMARK 6.2. If we give Mn(C) its Hilbert-Schmidt (or Euclidean) structure via
the inner product Tr a∗b , then the previous lemma can be restated by saying that
E(pMnp⊥) is equal to the orthogonal complement of {p}′ ∩Dn in Dn .

Proof. Let d belong to E(pMnp⊥) , say d = E(pxp⊥) . Then for all j = 1 . . . ,s we
have Tr d f j = Tr pxp⊥ = Tr p⊥ f j px by commutativity of the trace, hence Tr d f j = 0
since p⊥ f j p = p⊥p f j = 0. Thus E(pMnp⊥) is contained in Dn and is orthogonal to
the span of the f j ’s, namely {p}′ ∩Dn .

Now let d in Dn be orthogonal to E(pMnp⊥) . This means that for all x in Mn , we
have Tr (pxp⊥)∗d = Tr x∗pdp⊥ = 0. Hence pdp⊥ = 0, i.e. the range of p is invariant
under d . By Lagrange interpolation, we can find a polynomial g such that d∗ = g(d) .
Thus pd∗p⊥ = pg(d)p⊥ = 0. It follows that d commutes with p , hence d belongs to
{p}′ ∩Dn and the proof is complete. �

Given a projection p , we characterize the diagonals which can be realized as the
diagonal of an idempotent with the same range as p .

THEOREM 6.3. Let p be a projection in Mn with minimal block decomposition
p = ∑s

j=1 p f j . For every diagonal matrix d in Dn , the following assertions are equiv-
alent:

(i) d belongs to E(p+ pMnp⊥);

(ii) Tr d f j = rank p f j for j = 1, . . . ,s.

Proof. The first assertion says that d−E(p) belongs to E(pMnp⊥) . By Lemma
6.1, this is equivalent to the fact that Tr (d −E(p)) f j = 0 for j = 1 . . . ,s . And since
Tr E(p) f j = Tr p f j = rank p f j , we get the equivalence with the second assertion. �

The case of diagonal id/2 being our original motivation, let us restate the previous
result in this particular situation.
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COROLLARY 6.4. Let p be a projection in M2n with minimal block decomposi-
tion p = ∑s

j=1 p f j . Then there is a diagonal id/2 idempotent in M2n with range equal
to that of p if and only if rank f j = 2rank p f j for j = 1, . . . ,s.

Now that we have characterized the diagonals that belong to E(p+ pMnp⊥) , we
will give a uniform lower estimate of the distance between a diagonal and the closed
affine subspaces E(p+ pMnp⊥) of Mn which do not contain it.

THEOREM 6.5. Let d be a diagonal in Dn . Let S be the set of all possible sums
of diagonal elements of d , i.e. the set of all Tr (de) when e runs over all diagonal
projections. Put γ := 1 if S is contained in Z and γ := dist(S \Z,Z) otherwise. Then
for all projections p in M2n , we have the following alternative: either d belongs to
E(p+ pMnp⊥) or

dist(d,E(p+ pMnp⊥)) � γ
�n/2� .

Proof. Suppose that d does not belong to E(p+ pMnp⊥) and let p = ∑s
j=1 p f j

be the minimal block decomposition of p . By Theorem 6.3, there is one j such that
Tr d f j �= rank p f j . �

Again, we find it worth restating the result above in the special case of diagonal
id/2, in a slightly different form.

COROLLARY 6.6. Let q be an idempotent in M2n . If ‖E(q)− 1/2‖ < 1
n , then

there exists an idempotent q̃ with diagonal id/2 and with range equal to that of q .

Proof. In this case, the constant γ is equal to 1/2. Let p be the range projection
of q . Since dist(d,E(p+ pMnp⊥)) < 1

n , Theorem 6.5 implies that 1/2 is actually the
diagonal of an idempotent q̃ in E(p+ pMnp⊥) . �

7. Connectedness of idempotents with fixed diagonal

This section is devoted to the proof of Theorem 1.2. Like in the previous section,
we work with n× n matrices and the diagonal conditional expectation E : Mn → Dn .
But this time, we need to assume that matrices are taken over the complex field (this
assumption is used in Lemma 7.3 only).

Given an idempotent q , it will prove convenient to denote [q] its range projection
which is given, for instance, by the formula [q] = q(q+q∗− id)−1 .

The key idea in our strategy is to reduce to the case of idempotents for which the
algebra {[q]}′ ∩Dn is trivial. We begin with a simple observation.

REMARK 7.1. The commutativefinite-dimensional algebra {[q]}′∩Dn is the span
of all diagonal projections which leave the range of q invariant, i.e. those diagonal pro-
jections e such that e[q] = [q]e or, equivalently, q⊥eq = 0.
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We now proceed to the construction that will allow us to implement the reduction
claimed above.

PROPOSITION 7.2. Let q be a nontrivial idempotent in Mn . If dim {[q]}′ ∩Dn >
1 , then there exists an idempotent r in Mn such that

(i) E(r) = E(q);

(ii) {[r]}′ ∩Dn � {[q]}′ ∩Dn ;

(iii) there is a piecewise affine path consisting of at most two steps from q to r within
the set of idempotents with diagonal constant equal to E(q) .

Proof. According to Remark 7.1, the algebra {[q]}′ ∩Dn is spanned by the diag-
onal projections e such that eq = qeq . By assumption, we can find one such e that is
non trivial. We will construct an idempotent r such that {[r]}′ ∩Dn � {[q]}′ ∩Dn , the
inclusion being proper because we will arrange for e not to be in {[r]}′ ∩Dn .

The first step is to connect q to an idempotent q̃ which commutes with e and has
same range and diagonal as q . Note that this leaves the algebra {[q]}′∩Dn = {[q̃]}′∩Dn

unchanged and that one passes from q to q̃ by a straight line segment. To do this, we
set q̃ := q− x with x = eqe⊥ + e⊥qe . Since e is a diagonal projection, it is clear
that E(x) = 0 so that E(q̃) = E(q) . Using the identity eq = qeq , we first check that
q̃e = eq̃ = eqe . Then we verify that qx = x and xq = 0, so that q̃q = q and qq̃ = q̃ ,
which is the algebraic condition for the idempotents q and q̃ to have the same range.

Since q is assumed to be non trivial, so is q̃ , i.e. q̃ �= 0 and q̃⊥ �= 0. Also, we took
e non trivial, i.e. e �= 0 and e⊥ �= 0. Now if q̃e = 0, we have q̃e⊥ = q̃ and q̃⊥e = e .
Likewise, if q̃⊥e⊥ = 0, we find that q̃e⊥ = e⊥ and q̃⊥e = q̃⊥ . As a consequence,
up to replacing e by e⊥ , we can further assume that q̃e �= 0 and q̃⊥e⊥ �= 0, so that
q̃⊥e⊥Mnq̃e �= {0} . We pick now an element y �= 0 in the latter. Note that y = e⊥ye =
q̃⊥yq̃ .

For the second step, we will exhibit an idempotent r with same nullspace and
diagonal as q̃ , and such that {[r]}′ ∩Dn � {[q̃]}′ ∩Dn . To this aim, we consider the
parametrized family of idempotents given by rt := q̃ + ty . Since y = e⊥ye , we have
E(y) = 0 hence E(rt) = E(q̃) = d for all t . Since y = q̃⊥yq̃ , we see that q̃y = y and
yq̃ = 0, hence rt is an idempotent with the same nullspace as q̃ for all t . Also, for all
t �= 0, we observe that e does not belong to {[r]t}′ ∩Dn , since r⊥t ert = −ty �= 0. So it
only remains to find a value of t �= 0 for which {[rt ]}′ ∩Dn ⊂ {[q]}′ ∩Dn and we will
suffice to take the corresponding rt for the desired r . Actually, we will show that all
but finitely many values of t will do.

Let f be a diagonal projection and consider the map g : t �−→ r⊥t f rt . Since each
matrix coefficient is a polynomial of degree not greater than 2, g is either constant
equal to zero or vanishes for at most two distinct values of t . So if f does not belong
to {[q]}′ ∩Dn or, in other terms, if g(0) �= 0, we see that f belongs to {[rt ]}′ ∩Dn

for two values of t at most. Because there are only finitely many diagonal projections,
we deduce that for all but finitely many values of t , the projections that lie in {[rt ]}′ ∩
Dn also belong to {[q]}′ ∩Dn , hence, in view of Remark 7.1, {[rt ]}′ ∩Dn ⊂ {[q]}′ ∩
Dn . �
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LEMMA 7.3. Let us fix 0 < k < n and let G(k,n) denote the set of projections
with rank k in Mn(C) . The set Ω := {p ∈ G(k,n) : {p}′ ∩Dn = Cid} is an open,
dense, pathwise connected subset of G(k,n) .

Proof. As is well-known, the Grassmannian G(k,n) is a connected complex man-
ifold of dimension k(n− k) . Now let us take p in G(k,n) and observe that p belongs
to Ω if and only if there is no nontrivial diagonal projection which commutes with p .
Hence G(k,n)\Ω is equal to the union, over all nontrivial projections e in Dn , of the
subsets {p∈G(k,n) : ep = pe} . The latter can in turn be decomposed into the disjoint
union of the subsets Fl = {p ∈ G(k,n) : ep = pe, rankep = l} , l running from 0 to
k . Each set Fl can be identified with G(l, rank e)×G(k− l,n− rank e) , which is a
complex manifold of dimension not greater than k(n− k)−1.

This shows in particular that G(k,n)\Ω is closed and has empty interior. Being a
proper analytic subset of the connected complex manifold G(k,n) , this set has pathwise
connected complement (cf. Proposition 3 of Section 2.2 in [4]). �

Thanks to this result and to the Lemma 6.1 of the previous section, we will now
prove that the sets Ω∩E−1(d) are either connected or empty.

THEOREM 7.4. For every diagonal d in Dn , the set of idempotents q such that
E(q) = d and {[q]}′ ∩Dn = C id is pathwise connected whenever it is not empty.

Proof. Let q and r be two idempotents in the set under consideration, if not empty.
By Lemma 7.3 with k = rank q , we can find a projection-valued path pt connecting [q]
and [r] within Ω , i.e. such that {pt}′∩Dn = C id for all t . Then it follows from Lemma
6.1 that for all t , E(ptMnp⊥t ) is equal to Dn ∩Ker Tr, the orthogonal complement of
C id in Dn with respect to the Hilbert-Schmidt inner product. Hence each operator

Dt : Mn → Dn = Dn ∩Ker Tr ⊕C id , x �−→ E(ptxp⊥t )

is such that DtD∗
t realizes an isomorphism from Dn ∩Ker Tr onto itself. Thus

Ct := D∗
t (DtD

∗
t )

−1 : Dn∩Ker Tr → Mn

defines a continuous path of right inverses for Dt , seen as operators from Mn to Dn ∩
Ker Tr.

Now consider the path xt := Ct(d−E(pt)) in Mn , which is continuous and satis-
fies E(ptxt p⊥t )= d−E(pt) for all t . Setting qt := pt + ptxt p⊥t , we obtain an idempotent-
valued path within the desired set, from q0 = [q] to q1 = [r] . Since E is linear, it only
remains to connect the latter to q and r respectively by straight line segments and we
are done. �

Proof of Theorem 1.2. Let q and r be idempotents with diagonal d . By Propo-
sition 7.2, we can connect them, within a finite number of affine steps in the set of
idempotents with diagonal d , to two idempotents, q̃ and r̃ respectively, such that,
moreover, {[q]}′ ∩Dn = {[r]}′ ∩Dn = C id . The latter pair can now be connected by
Theorem 7.4 and the proof is complete. �
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8. Extensions to infinite dimensions

In this section we extend some of the preceding results to operators on a separable
Hilbert space H over complex or real scalars. Recall that by Theorem 1.1 the set
of projections with 1/2 on the diagonal is path-connected in M2n(C) or in M2n(R)
for n > 1. Theorem 8.1 is a partial extension of this result to B(H ) equipped with
the operator norm topology. To state it we need the following definition: an operator
x ∈ B(H ) with ‖x‖ = 1 is 2 -pavable if there exists a diagonal projection e such that
‖exe‖ < 1 and ‖e⊥xe⊥‖ < 1. Note that for any projection p the operator 2p− id has
norm 1; in fact, it is a symmetry (i.e., self-adjoint unitary). See [2] for recent results on
paving of projections.

THEOREM 8.1. The projections p ∈ B(H ) such that E(p) = id/2 and 2p− id
is pavable are pathwise connected within the set of all projections with diagonal id/2 .

Proof. Let f be a diagonal projection with infinite rank and nullity. Given a pro-
jection p as in the statement, we must find a path (within the set of projections with
diagonal id/2) from p to the block matrix

p0 =
(

id/2 id/2
id/2 id/2

)

in which the blocks correspond to ran f and ran f⊥ . Let e be a projection that paves
2p− id. Note that e has infinite rank and nullity. Replacing e with e⊥ if necessary, we
can ensure that both e f and e⊥ f⊥ have infinite rank. Let {ei}i∈N be the standard basis
of H . Let σ ∈ B(H ) be a zero-diagonal involution that acts by permuting the basis
elements so that (i) {ei,σei} ⊂ ran(e f ) for infinitely many values of i ∈ N and (ii)
{ei,σei} ⊂ ran(e⊥ f⊥) for infinitely many values of i ∈ N . Let us write the projection
p1 := (id+σ)/2 in the block form

p1 =
(

a1 b1

b∗1 d1

)
(8.1)

with respect to the decomposition H = ran f ⊕ ran f⊥ . The block b1 has infinite-
dimensional kernel which contains all vectors ei +σei such that {ei,σei} ⊂ ran f⊥ .
Similarly, the kernel of b∗1 contains all vectors ei +σei such that {ei,σei} ⊂ ran f . By
Remark 3.1 the projection p1 can be connected by an appropriate path to p0 .

Now let p1 be represented as in (8.1) but with respect to decomposition H =
rane⊕ rane⊥ . Replacing f with e in the preceding paragraph, we again find that
b1 and b∗1 have infinite dimensional kernels. Writing p in block form with the same
decomposition H = rane⊕ rane⊥ , we obtain

p =
(

a b
b∗ d

)

with ‖2a− id‖ < 1 and ‖2d− id‖< 1. It follows that both a(id−a) and d(id−d) are
invertible. As was noted in section 2.1, this implies the invertibility of b (and b∗ ). By
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Remark 3.1 the projection p can be connected by an appropriate path to p1 , and we
are done. �

Recall that B(H ) is the dual of S1 , the set of trace-class operators on H . This
duality induces w∗ -topology on B(H ) . Recall the definition of the minimal block
decomposition of an operator from section 2.2.

THEOREM 8.2. Given a projection p ∈ B(H ) , let ∑ j∈J p f j be its minimal block
decomposition. The w∗ -closure of the set

{E(q) : q2 = q, ranq = ran p}
consists of all operators d ∈D(H ) such that tr(d f j) = rk(p f j) whenever f j has finite
rank.

Since the idempotents q in Theorem 8.2 are all of the form p+ pxp⊥ , the conclu-
sion of Theorem 8.2 can be deduced from the following lemma.

LEMMA 8.3. Let p ∈ B(H ) be a projection. Define Dp : B(H ) → B(H ) by
Dp(x) = E(pxp⊥) . The w∗ -closure of ranDp is the space

{d ∈ D(H ) : tr(dc) = 0 ∀c ∈ {p}′D∩S1}. (8.2)

Proof. Let N be the space in (8.2). First we prove that ranDp ⊆ N . If d = Dp(x)
for some x ∈ B(H ) , then for each c ∈ {p}′D∩S1 we have

tr(dc) = tr(pxp⊥c) = tr(p⊥cpx) = tr(p⊥pcx) = 0

which means that d ∈ N .
Next, suppose that c ∈ D(H )∩ S1 annihilates ranDp . This means that for any

x ∈ B(H ) we have tr(pxp⊥c) = 0. Since

tr(pxp⊥c) = tr(p⊥cpx), ∀x ∈ B(H ),

it follows that
p⊥cp = 0, (8.3)

i.e., ran p is invariant under c . Using continuous functional calculus, we can write
c∗ = F(c) , where F(z) = z on the spectrum σ(c) . Note that σ(c) has empty in-
terior and connected complement. By Mergelyan’s theorem there exists a sequence
of polynomials Pn such that Pn → F uniformly on σ(c) . It follows from (8.3) that
p⊥Pn(c)p = 0 for all n . Letting n → ∞ , we obtain p⊥c∗p = 0. Taking adjoints, we
find that pc = pcp . Since pcp = cp by (8.3), c and p commute. Thus c annihilates
N . �

REMARK 8.4. In general, ranDp is not w∗ -closed. Indeed, if p or p⊥ has finite
rank, then ranDp is contained in S1 , although it may be w∗ -dense in D(H ) . There-
fore, Theorem 8.2 does not completely describe the possible diagonals of idempotents
with a given range. The difficulty of obtaining such a description can be illustrated by
the following fact: there exists a nonzero idempotent with zero diagonal [14, Theorem
3.7].
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Concerning the connectedness of idempotents sharing the same diagonals, we have
the following result which generalizes Proposition 7.2. Recall that {[r]}′D means the
range of the diagonal expectation E restricted to the commutant of the range projection
of r , i.e {[r]}′D = {[r]}′ ∩D(H ) .

PROPOSITION 8.5. For any idempotent q ∈ B(H )\ {0,1} there exists an idem-
potent r ∈ B(H ) such that {[r]}′D = C id and there is a piecewise linear path from q
to r within the set of idempotents with diagonal E(q) .

The proof is preceded by two lemmas.

LEMMA 8.6. For any idempotent q∈B(H ) there exists an idempotent q̃∈ ({[q]}′D)′
such that ran q̃ = ranq and E(q̃) = E(q) .

Proof. Let { f j} j∈J be the set of minimal projections in {[q]}′D . Let q̃ =∑ j∈J q f j

be the expectation of q with respect to the block-diagonal algebra ({[q]}′D)′ . It is easy
to see that q̃ is an idempotent and E(q̃) = E(q) . Since qq̃ = q̃ and q̃q = q , we have
ran q̃ = ranq . Finally, q̃ f j = f jq f j = f j q̃ for all j ∈ J , which means q̃∈ ({[q]}′D)′ . �

LEMMA 8.7. Suppose that t �→ x(t) is a real analytic map from R to B(H ) .
Then there exists a countable set C ⊂ R such that all operators x(t) , t ∈ R \C, have
the same minimal block decomposition.

Proof. Each entry of the matrix representing x(t) in the canonical basis of H
is a real-analytic function of t . Recall that a scalar-valued real-analytic function has
at most countably many zeroes unless it vanishes identically. Therefore, the set of
nonzero entries in the matrix of x(t) is the same for all but countably many values of t .
Since the set of nonzero entries determines the minimal block decomposition, the claim
follows. �

Proof of Proposition 8.5. Let { f j} j∈J be the set of minimal projections in {[q]}′D .
By virtue of Lemma 8.6 we may assume that

q ∈ ({[q]}′D)′, i.e., q = ∑
j∈J

f jq f j. (8.4)

For k, l ∈ J we set ykl = fkq⊥xklq fl , where xkl ∈ B(H ) is chosen as follows. If either
k = l , q⊥ fk = 0, or q fl = 0, then set xkl = 0. Otherwise, choose xkl so that 0 < ‖ykl‖<
2−k−l . Let n = ∑k,l∈J ykl .

One can easily check that qn = 0, nq = n , and E(n) = 0. Therefore, qt := q+ tn
is an idempotent for all t ∈ R , and E(qt) = E(q) . The range projection of qt ,

[qt ] = (q+ tn)(q+q∗+ t(n+n∗)− id)−1

is real analytic in t . By Lemma 8.7 [qt ] has the same minimal block decomposition for
all t ∈ R \C where C is countable. If this decomposition consists of just one block,
then we can set r = q+ tn for some t ∈ R\C .
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Suppose that the minimal block decomposition of [qt ] , t ∈ R \C , is nontrivial.
Then there exists a diagonal projection f /∈ {0, id} that commutes with [qt ] for all
t ∈ R\C , hence for all t ∈ R . This can be expressed as

(q⊥− tn) f (q+ tn) = 0, t ∈ R. (8.5)

The coefficient of t in (8.5) must be zero, hence

q⊥ f n−n f q = 0.

Since f ∈ [q]′D , we have f = ∑ j∈K f j for some K ⊂ J . Also, f commutes with q due
to (8.4). Thus we obtain

0 = q⊥ f n−n f q = f q⊥n−nq f = f n−n f = f n f⊥− f⊥n f ,

hence f n f⊥ = f⊥n f = 0. From the definition of n one can see that f n f⊥ = 0 only if

q⊥ f = 0 or q f⊥ = 0. (8.6)

Similarly, f⊥n f = 0 implies

q⊥ f⊥ = 0 or q f = 0. (8.7)

Since q, f /∈ {0, id} , the relations (8.6)–(8.7) contradict each other. This completes the
proof. �
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