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IRREDUCIBLE WAVELET REPRESENTATIONS AND

ERGODIC AUTOMORPHISMS ON SOLENOIDS

DORIN ERVIN DUTKAY, DAVID R. LARSON AND SERGEI SILVESTROV

(Communicated by J. W. Helton)

Abstract. We focus on the irreducibility of wavelet representations. We present some con-
nections between the following notions: covariant wavelet representations, ergodic shifts on
solenoids, fixed points of transfer (Ruelle) operators and solutions of refinement equations. We
investigate the irreducibility of the wavelet representations, in particular the representation as-
sociated to the Cantor set, introduced in [13], and we present several equivalent formulations of
the problem.

1. Introduction

The interplay between dynamical and systems and operator theory is now a well
developed subject [24, 19, 5, 10]. In particular, the operator theoretic approach to
wavelet theory has been extremely productive [16, 22, 6, 2]. We will work along the
same lines: we are interested in the connections between irreducible covariant repre-
sentations, ergodic shifts on solenoids and fixed points of transfer (or Ruelle) operators.

1.1. Classical wavelet theory

In the theory of wavelets (see e.g., [12]), orthonormal bases for L2(R) are con-
structed by applying dilation and translation operators, in a certain order, to a given
vector ψ called the wavelet. Thus from the start of this construction, we have two
unitary operators:

U f (x) =
1√
2

f
( x

2

)
, T f (x) = f (x−1), ( f ∈ L2(R),x ∈ R)

which satisfy a covariance relation:

UTU−1 = T 2.
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Using Borel functional calculus, one can define a representation of L∞(T) , where T is
the unit circle:

π( f ) = f (T )

so in particular π(zn) = Tn , and this representation will satisfy the covariance relation

Uπ( f )U−1 = π( f (z2)), ( f ∈ L∞(T)) (1.1)

The main technique of constructing wavelets is by multiresolutions: one starts with
a quadrature-mirror-filter (QMF) m0 ∈ L∞(T) , (T is the unit circle) that satisfies the
QMF-condition

1
2 ∑

w2=z

|m0(w)|2 = 1, (z ∈ T),

the low-pass condition m0(1) =
√

2, and perhaps some regularity (Lipschitz, etc.)
Then, a scaling function is constructed by an infinite product formula

ϕ̂(x) =
∞

∏
n=1

m0

(
e2π i x

2n

)
√

2
,

where we denote by f̂ the Fourier transform of the function f

f̂ (x) =
∫

R

f (t)e−2π itx dt, (x ∈ R).

DEFINITION 1.1. We call the function ϕ the scaling function associated to the
QMF m0 . The scaling function satisfies the scaling equation

Uϕ = π(m0)ϕ , (1.2)

and it generates a sequence of subspaces Vn , n ∈ Z :

V0 = span{Tkϕ |k ∈ Z} = span{π( f )ϕ | f ∈ L∞(T)},
Vn = U−nV0, (n ∈ Z).

We call (Vn)n∈Z the multiresolution associated to ϕ . The multiresolution has the prop-
erties that Vn ⊂Vn+1 (this follows from the scaling equation),

⋃
n∈Z

Vn = L2(R). (1.3)

If m0 is carefully chosen, one gets an orthonormal scaling function ϕ , i.e., its translates
are orthogonal 〈

Tkϕ ,T lϕ
〉

= δkl, (k, l ∈ Z).

Equivalently

〈π( f )ϕ ,ϕ〉 =
∫

T

f dμ , ( f ∈ L∞(T)) (1.4)
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Once the orthonormal scaling function and the multiresolution are constructed the
wavelet is obtained by considering the detail space W0 := V1 �V0 . Analyzing the
multiplicity of the representation π on the spaces V0 and V1 , one can see that there
is a function ψ such that {Tkψ |k ∈ Z} is an orthonormal basis for W0 . Applying Un ,
one gets that

{UnTkψ |n,k ∈ Z}
is an orthonormal basis for L2(R) , thus ψ is a wavelet.

1.2. Wavelets on the Cantor set

Let C be the Middle Third Cantor set. A quick inspection shows that its charac-
teristic function satisfies the following scaling equation:

χC

( x
3

)
= χC(x)+ χC(x−2), (x ∈ R).

This enables one to construct a multiresolution structure where χC is a scaling function,
not in L2(R) where C has measure zero, but in L2 of a Hausdorff measure (see [13]).
More precisely, let

R :=
⋃{

C+
k
3n |k,n ∈ Z

}
and let Hs be the Hausdorff measure associated to the Hausdorff dimension s = log3 2
of the Cantor set, restricted to R .

Recall (see [18]) that the Hausdorff measure for dimension s is defined as follows:
for a subset E of R , define for δ > 0:

Hs
δ (E) := inf

{
∑
i∈I

diam(Ai)s : E ⊂
⋃
i∈I

Ai ,diam(Ai) < δ

}
.

Then
Hs(E) := lim

δ→0
Hs
δ (E)

defines a metric outer measure. The Hausdorff measure is the restriction of Hs to
Caratheodory-measurable sets.

The dilation and translation operators on L2(R,Hs) defined by

U f (x) =
1√
2

f
( x

3

)
, T f (x) = f (x−1),

are unitary and satisfy the covariance relation UTU−1 = T 3 . Moreover ϕ = χC is an
orthogonal scaling function: it satisfies the scaling equation

Uϕ =
1√
2

(
ϕ +T2ϕ

)
,

its integer translates are orthogonal, and it generates a multiresolution, in the same sense
as the one described above for L2(R) .
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At the FL-IA-CO-OK Workshop in February 2009 in Iowa City, after discussions
with Judy Packer and Palle Jorgensen, the following question arose: is this representa-
tion irreducible, i.e., is the commutant of {U,T} trivial in B(L2(R,Hs))?

This is one of the questions that motivated the investigation in the present paper.
Even though we do not give a definite answer to this question, we will present some
positive evidence that the respresentation is not irreducible.

1.3. Wavelet representations

Although specific examples of wavelet representations have been studied for some
time by many authors, a useful generalization of this concept which can be used in a
variety of situations was first introduced in [15] to extend the multiresolution techniques
to other discrete dynamical systems, and to construct orthonormal wavelet bases on
other spaces beside L2(R) . The idea was to keep some of the essential properties of the
multiresolutions mentioned above, but now as axioms in some abstract Hilbert space.

For more connections between wavelet representations, generalized multiresolu-
tions and direct limits we refer to [1, 9, 3, 4, 8, 7].

Let X be a compact metric space. Let r : X → X be a Borel measurable function
and assume that 0 < #r−1(x) < ∞ for all x ∈ X . Assume that μ is a Borel probability
measure on X which is strongly invariant, i.e.,

∫
f dμ =

∫
1

#r−1(x) ∑
r(y)=x

f (y)dμ(x), ( f ∈C(X)). (1.5)

THEOREM 1.2. [15, Corollary 3.6] Let m0 be a function in L∞(X ,μ) such that

1
#r−1(x) ∑

r(y)=x

|m0(y)|2 = 1, (x ∈ X) (1.6)

Then there exists a Hilbert space H , a unitary operator U on H , a representation π
of L∞(X) on H and an element ϕ of H such that

(i) (Covariance) Uπ( f )U−1 = π( f ◦ r) for all f ∈ L∞(X) .

(ii) (Scaling equation) Uϕ = π(m0)ϕ

(iii) (Orthogonality) 〈π( f )ϕ ,ϕ〉 =
∫

f dμ for all f ∈ L∞(X) .

(iv) (Density) {U−nπ( f )ϕ |n ∈ N, f ∈ L∞(X)} is dense in H .

Moreover they are unique up to isomorphism.

DEFINITION 1.3. We say that (H ,U,π ,ϕ) in Theorem 1.2 is the wavelet repre-
sentation associated to m0 .

The paper is structured as follows: in Section 2 we describe a concrete realization
of the wavelet representation on the solenoid. This was mainly done in [15], but we
present here a slightly different form. We show how the irreducibility of the wavelet
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representation is related to the ergodic properties of the shift on the solenoid, and to the
fixed points of a transfer operator.

In Theorem 2.4 we describe the multiresolution structure that comes with a wavelet
representation.

In Section 3 we investigate two examples. The first one is the wavelet represen-
tation associated to an arbitrary map r , and the constant function m0 = 1. Using the
multiresolution structure we show in Theorem 3.1 that the shift on the solenoid is er-
godic iff r is ergodic.

The second example is the wavelet representation associated to the Cantor set, in-
troduced in [14]. That is r(z) = z3 on the unit circle and m0(z) = 1√

2
(1 + z2) . We

show in Proposition 3.7 that there is an L2(T,μ) function which is a fixed point for the
transfer operator Rm0 . However, this function is not bounded, and it does not satisfy
the conditions of Theorem 2.5, so we cannot conclude that the representation is irre-
ducible. In any case, this does provide some evidence that the representation might not
be irreducible.

2. Representations on the solenoid

When the function m0 is non-singular, i.e., μ({x ∈ X |m0(x) = 0}) = 0, the
wavelet representation can be realized more concretely on the solenoid. We describe
this realization. The basic idea is to regard the multiresolution as a martingale; the idea
appeared initially in [11] and [20]. It was then developed in [15] for a larger class of
maps r and low-pass filters m0 (see also [21]). Since we will need this representation
in a slightly different form we include some of the details, and we refer to [15] for a
more rigurous account.

DEFINITION 2.1. Let

X∞ :=
{
(x0,x1, . . .) ∈ XN |r(xn+1) = xn for all n � 0

}
(2.1)

We call X∞ the solenoid associated to the map r .
On X∞ consider the σ -algebra generated by cylinder sets. Let r∞ : X∞ → X∞

r∞(x0,x1, . . .) = (r(x0),x0,x1, . . .) for all (x0,x1, . . .) ∈ X∞ (2.2)

Then r∞ is a measurable automorphism on X∞ .
Define θ0 : X∞ → X ,

θ0(x0,x1, . . .) = x0. (2.3)

The measure μ∞ on X∞ will be defined by constructing some path measures Px on the
fibers Ωx := {(x0,x1, . . .) ∈ X∞ |x0 = x}.

Let
c(x) := #r−1(r(x)), W (x) = |m0(x)|2/c(x), (x ∈ X).

Then

∑
r(y)=x

W (y) = 1, (x ∈ X) (2.4)
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W (y) can be thought of as the transition probability from x = r(y) to one of its pre-
images y under the map r .

For x ∈ X , the path measure Px on Ωx is defined on cylinder sets by

Px({(xn)n�0 ∈Ωx |x1 = z1, . . . ,xn = zn}) = W (z1) . . .W (zn) (2.5)

for any z1, . . . ,zn ∈ X .
This value can be interpreted as the probability of the random walk to go from x

to zn through the points x1, . . . ,xn .
Next, define the measure μ∞ on X∞ by∫

f dμ∞ =
∫

X

∫
Ωx

f (x,x1, . . .)dPx(x,x1, . . .)dμ(x) (2.6)

for bounded measurable functions on X∞ .
Consider now the Hilbert space H := L2(X∞,μ∞) . Define the operator

U f = m0 ◦θ0 f ◦ r∞, ( f ∈ L2(X∞,μ∞)) (2.7)

Define the representation of L∞(X) on H

π( f )g = f ◦θ0 g, ( f ∈ L∞(X),g ∈ H ) (2.8)

Let ϕ = 1 be the constant function 1.

THEOREM 2.2. Suppose m0 is non-singular, i.e., μ({x ∈ X |m0(x) = 0}) = 0 .
Then the data (H ,U,π ,ϕ) from Definition 2.1 form the wavelet representation asso-
ciated to m0 .

Proof. We check that U is unitary, all the other relations follow from some easy
computations. To check that U is an isometry it is enough to apply it on functions f
on X∞ which depend only on the first n+1 coordinates f = f (x0, . . . ,xn) . Then f ◦ r∞
depends only on x0, . . . ,xn−1 . We have, using (2.5) and the strong invariance of μ :∫

|m0 ◦θ0|2| f ◦ r∞|2 dμ∞

=
∫

X
|m0(x0)|2 ∑

r(x1)=x0,...,r(xn−1)=xn−2

W (x1) . . .W (xn−1) f (r(x0),x0,x1, . . . ,xn−1)dμ(x0)

=
∫

X

1
#r−1(x) ∑

r(y)=x

|m0(y)|2 ∑
r(x1)=y,r(x2)=x1,...,r(xn−1)=xn−2

W (x1) . . .W (xn−1)

· f (r(y),y,x1, . . . ,xn−1)dμ(x)

=
∫

X
∑

y1,...yn

W (y1) . . .W (yn) f (x,y1, . . . ,yn)dμ(x) =
∫

f dμ∞.

This shows that U is an isometry.
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The fact that m0 is non-singular insures that U is onto and has inverse

U f =
1

m0 ◦θ0 ◦ r−1
∞

f ◦ r−1
∞ �

The commutant of the wavelet representations, i.e., the set of operators that com-
mute with both the “dilation” operator U and the “translation” operators π( f ) ,has a
simple description that we will present below. Also the operators in the commutant are
in one-to-one correspondence with bounded fixed points of the transfer operator. The
commutant of the classical wavelet representation on L2(R) was computed in [16].
We will be interested in computing this commutant for other choices of filters, such as
m0 = 1 or for the wavelet representation associated to the Cantor set.

THEOREM 2.3. [15, Theorem 7.2] Suppose m0 is non-singular and let (H ,U,π ,ϕ)
be the wavelet representation as in Theorem 2.2.

(i) The commutant {U,π}′ in B(H ) consists of operators of multiplication by
functions f ∈ L∞(X∞,μ∞) which are invariant under r∞ , i.e., f ◦ r∞ = f . We call
these functions cocycles.

(ii) There is a one-to-one correspondence between cocycles and bounded fixed points
for the transfer operator Rm0 defined for functions on X :

Rm0 f (x) =
1

#r−1(x) ∑
r(y)=x

|m0(y)|2 f (y), (x ∈ X) (2.9)

The correspondence is defined as follows:

For a bounded cocycle f on X∞ the function

h(x) =
∫
Ωx

f (x,x1, . . .)dPx(x,x1,x2, . . .) (2.10)

is a bounded fixed point for Rm0 , i.e., Rm0h = h.

For a bounded measurable fixed point h for the transfer operator Rm0 , the limit
exists μ∞ -a.e.

f (x0,x1, . . .) := lim
n→∞

h(xn), ((x0,x1, . . .) ∈ X∞) (2.11)

and defines a bounded cocyle.

Next, we describe the multiresolution structure associated to a wavelet represen-
tation. The proof is standard in wavelet theory, but we include the main ideas for the
benefit of the reader.

THEOREM 2.4. Let

V0 := span{π( f )ϕ | f ∈ L∞(X)} ,

Vn := U−nV0, (n ∈ Z).

Then
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(i) UV0 ⊂V0 .

(ii)
⋃

n∈ZVn = H .

(iii) V0 is an invariant subspace for the representation π . The spectral measure of the
representation π restricted to V0 is μ and the multiplicity function is constant 1.

(iv) V1 is an invariant subspace for the representation π . The spectral measure of the
representation π restricted to V1 is μ and the multiplicity function is mV1(x) =
#r−1(x) , x ∈ X .

(v) Let W0 :=V1�V0 . Then W0 is invariant for π . The multiplicity function of π on
W0 is mW0(x) = #r−1(x)−1 .

(vi) (⊕
n∈Z

UnW0

)
⊕
⋂
n∈Z

Vn = H .

(vii) Let N := supx∈X #r−1(x) ∈ N∪{∞} . There exists functions ψ1, . . . ,ψN (if N is
∞ then the functions ψ are just indexed by natural numbers, we don’t have a
ψ∞ ) in W0 with the following properties:

〈
Unπ( f )ψi,U

mπ(g)ψ j
〉

= δmnδi j

∫
f gχ{#r−1(x)�i+1}dμ , (2.12)

( f ,g ∈ L∞(X),m,n ∈ Z, i, j ∈ {1, . . . ,N})
span{Unπ( f )ψi | f ∈ L∞(X),n ∈ Z, i ∈ {1, . . . ,N}} = H �

⋂
n∈Z

Vn (2.13)

Proof.
(i) follows from the scaling equation, (ii) follows from the desity property of the

wavelet representation, (iii) follows from the orthogonality. The fact that V1 is invari-
ant for π follows from the covariance relation. The multiplicity function for V1 was
computed in [15, Theorem 4.1]. (v) follows from (iv). (vi) follows from the fact that U
is unitary so U−nW0 = Vn+1�Vn for all n ∈ Z .

For (vii) consider the space

L2(X ,μ ,mW0) :=
{

f : X →∪x∈XC
mW0

(x) | f (x) ∈ C
mW0

(x)

for all x ∈ X ,

∫
X
‖ f (x)‖2 dμ(x) < ∞

}
.

On this space we have the representation of L∞(X) by multiplication Mf . By (v) there
is an isomorphism J : W0 → L2(X ,μ ,mW0) such that Jπ( f ) = Mf J for all f ∈ L∞(X) .

Let ei be the canonical vectors in Cn . Define the functions ηi ∈ L2(X ,μ ,mW0) :

ηi(x) =
{

ei, if mW0(x) = #r−1(x)−1 � i
0, otherwise.
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Let ψi := J−1ηi .
It is then easy to see that if i �= j then

〈
ηi(x),η j(x)

〉
= 0 for all x , so

〈
π( f )ψi,π(g)ψ j

〉
= 0 for all f ,g ∈ L∞(X) , i �= j . Also

〈 fηi,gηi〉 =
∫
{#r−1(x)−1�i}

f gdμ .

This, together with (vi) implies (2.12).
Equation (2.13) is also a consequence of (vi) if we show that π( f )ψi span W0 .

But it is clear that Mfηi span L2(X ,μ ,mW0) so, applying J−1 we get the result. �

Finally, we present several equivalent formulations of the problem of the irre-
ducibility of a wavelet representation.

THEOREM 2.5. Suppose m0 is non-singular. The following affirmations are equiv-
alent:

(i) The wavelet representation is irreducible, i.e., the commutant {U,π}′ is trivial.

(ii) The automorphism r∞ on (X∞,μ∞) is ergodic.

(iii) The only bounded measurable fixed points for the transfer operator Rm0 are the
constants.

(iv) There does not exist a non-constant fixed point h ∈ Lp(X ,μ) with p > 1 of the
transfer operator Rm0 with the property that

sup
n∈N

∫
X
|m(n)

0 (x)|2|h(x)|p dμ(x) < ∞ (2.14)

where

m(n)
0 (x) = m0(x)m0(r(x)) . . .m0(rn−1(x)), (x ∈ X). (2.15)

(v) If ϕ ′ ∈ H , satisfies the same scaling equation as ϕ , i.e., Uϕ ′ = π(m0)ϕ ′ , then
ϕ ′ is a constant multiple of ϕ .

Proof. The equivalences of (i)–(iii) follow immediately from Theorem 2.3. It is
also clear that (iv) implies (iii), because bounded functions satisfy (2.14) with any p >
1. Indeed, using the strong invariance of μ :

∫
|m(n)

0 |2|h|p dμ � ‖h‖∞
∫

|m(n)
0 |2 dμ = ‖h‖∞

∫
X

Rn
m0

1dμ = ‖h‖∞.

We prove that (ii) implies (iv) by contradiction. Suppose there is a non-constant h
with the given properties. Define the functions on X∞

hn(x0,x1, . . .) = h(xn), (x0,x1, . . .) ∈ X∞.
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Then (hn)n is a martingale with respect to the filtration θ−1
n (B) , where B is the Borel

σ -algebra in X and θn : X∞ →X , θn(x0,x1, . . .) = xn . We denote by En the conditional
expectation onto θ−1

n (B) . We have, since hn+1 depends only on x0, . . . ,xn+1 :

En(hn+1)(x0, . . . ,xn, . . .) =
1

#r−1(xn)
∑

r(xn+1)=xn

|m0(xn+1)|2hn+1(x0, . . . ,xn+1, . . .)

=
1

#r−1(xn)
∑

r(xn+1)=xn

|m0(xn+1)|2h(xn+1) = h(xn)

= hn(x0,x1, . . .).

We want to apply Doob’s discrete martingale convergence theorem. We have to
check that

sup
n

∫
X∞

|hn|p dμ∞ < ∞. (2.16)

But, using the strong invariance of μ applied n times:

∫
X∞

|hn|p dμ∞ =
∫

X
∑

r(x1)=x0,...r(xn)=xn−1

W (x1) . . .W (xn)|h(xn)|p dμ(x0)

=
∫

X
Rn

m0
|h|p dμ =

∫
X
|m(n)

0 |2|h|p dμ

Doob’s theorem implies then that

f (x0,x1, . . .) = lim
n

hn(x0,x1, . . .)

exists μ∞ -a.e., and in L1(X∞,μ∞) . Then

E0( f ) = lim
n

E0(hn) = h

so f is not a constant. But we also have

f ◦ r∞(x0,x1, . . .) = f (r(x0),x0,x1, . . .) = lim
n

h(xn−1) = f (x0,x1, . . .)

μ∞ -a.e. This contradicts the fact that r∞ is ergodic.
(ii) ⇒ (v) . Take a ϕ ′ as in (v). Then, the scaling equation implies

m0 ◦θ0ϕ ′ ◦ r∞ = Uϕ ′ = π(m0)ϕ ′ = m0 ◦ϕ ′.

Since m0 is non-singular, this implies that ϕ ′ ◦ r∞ = ϕ ′ . But since r∞ is ergodic it
follows that ϕ ′ is a constant, i.e., ϕ ′ is a constant multiple of ϕ .

(v) ⇒ (ii) . If r∞ is not ergodic, then one can take ϕ ′ to be the characteristic
function of a proper r∞ -invariant set. It follows immediately that ϕ ′ satisfies the scaling
equation, and thus its existence contradicts (v). �
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3. Examples

In this section we will consider two examples. The first example is the wavelet rep-
resentation associated to m0 = 1. The map r can be any map satisfying the conditions
above. We show that the wavelet representation associated to m0 = 1 is irreducible if
and only if r is ergodic.

The second example is the wavelet representation associated to the Cantor set,
representation that was defined in [13]. The representation is associated to the map
r(z) = z3 , for z ∈ C , |z| = 1, and the QMF filter m0(z) := (1 + z2)/

√
2. While we

were not able to determine if this representation is irreducible or not, we present sev-
eral equivalent formulations of the problem, in terms of the existence of solutions for
refinement equations or the existence of fixed points for transfer operators. We find a
non-trivial fixed point for the associated tranfer operator which is in L2(T) , but it is not
bounded (so it does not settle the problem, but gives some positive evidence that the
representation might be reducible). At the same time we show that it is hard to give a
constructive solution for the irreducibility problem: in Proposition 3.4 we prove that the
refinement equation has no non-trivial compactly supported solutions. In Corollary 3.6
we show that the transfer operator has no non-trivial solutions with Fourier transform
in l1(Z) . In Proposition 3.10 we show that the method of successive approximations
will not produce a new solution to the refinement equation, if the seed is compactly
supported.

3.1. The wavelet representation associated to m0 = 1

THEOREM 3.1. Let m0 = 1 and let (H ,U,π ,ϕ) be the associated wavelet rep-
resentation. The following affirmations are equivalent:

(i) The automorphism r∞ on (X∞,μ∞) is ergodic.

(ii) The wavelet representation is irreducible.

(iii) The only bounded functions which are fixed points for the transfer operator R1 ,
i.e.,

R1h(x) :=
1

#r−1(x) ∑
r(y)=x

h(y) = h(x)

are the constant functions.

(iv) The only L2(X ,μ)-functions which are fixed points for the transfer operator R1 ,
are the constants.

(v) The endomorphism r on (X ,μ) is ergodic.

Proof. The equivalence of (i)–(iv) is given in Theorem 2.5. We will prove that (i)
and (iv) are equivalent.

(i) ⇒ (v) . Suppose r is not ergodic. Let f be a bounded, non-constant μ -a.e.,
function on X such that f = f ◦ r . Define f̃ := f ◦ θ0 . Then it is easy to see that
f̃ = f̃ ◦ r∞ . But since r∞ is ergodic this implies that f̃ is constant μ∞ -a.e. But since
f̃ = f ◦θ0 depends only on the first coordinate, this implies that f is constant μ -a.e.
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(v) ⇒ (i) . Let f be a bounded function on X∞ such that f = f ◦ r∞ . We use
Theorem 2.4. Pick g∈ L∞(X) , and i∈ {1, . . . ,N} arbitrary. Assuming that π(g)ψi �= 0,
let A := ‖π(g)ψi‖ . (The case A = 0 can be treated easily) Then we see that for all n∈Z

we have〈
f ,Un 1

A
π(g)ψi

〉
=
〈

U−n f ,
1
A
π(g)ψi

〉
=
〈

f ◦ r−n
∞ ,

1
A
π(g)ψi

〉
=
〈

f ,
1
A
π(g)ψi

〉

Thus these numbers do not depend on n . Moreover, we know that as n varies, the
vectors Un 1

Aπ(g)ψi are orthogonal. Using Bessel’s inequality, we have

∞ ·
∣∣∣∣
〈

f ,
1
A
π(g)ψi

〉∣∣∣∣
2

= ∑
n∈Z

∣∣∣∣
〈

f ,Un 1
A
π(g)ψi

〉∣∣∣∣
2

� ‖ f‖2 < ∞.

This implies that all these numbers
〈
f ,Un 1

Aπ(g)ψi
〉

have to be 0.
Thus f is orthogonal to all Unπ(g)ψi , and, by Theorem 2.4(vii), this shows that

f ∈ ∩nVn . In particular f ∈ V0 so there exists a function f̃ ∈ L2(X ,μ) such that f =
f̃ ◦θ0 . But since f is invariant under r∞ , f̃ is invariant under r so it has to be constant
μ -a.e., so f is constant μ∞ -a.e. Therefore μ∞ is ergodic. �

3.2. The wavelet representation associated to the Cantor set

Recall ([13]) that the wavelet representation associated to the Cantor set is associ-
ated to r(z) = z3 on the unit circle T , and the function

m0(z) =
1√
2
(1+ z2), (z ∈ T) (3.1)

As we mentioned in the introduction, in section 1.2, it can be realized on the Hilbert
space L2(R,Hs) associated to the Hausdorff measure Hs on the subset R .

THEOREM 3.2. The following assertions are equivalent:

(i) The wavelet representation associated to m0 is irreducible.

(ii) If a sequence (ak)k∈Z ∈ l2(Z) satisfies the properties that ∑k∈Z akzk ∈ L∞(T,μ)
and

ak =
1
2
a3k−2 +a3k +

1
2
a3k+2, (k ∈ Z) (3.2)

then ak = 0 for all k �= 0 .

(iii) If a function ξ ∈ L2(R,Hs) satisfies the refinement equation

ξ (x) = ξ (3x)+ ξ (3x−2), for Hs -a.e. x ∈ R ,

then ξ is a constant multiple of the characteristic function of the Cantor set C .

Proof. To prove (i)⇔(ii) we use the equivalence of (i) and (ii) in Theorem 2.5 and
the following Lemma.
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LEMMA 3.3. Let f ∈ L2(T,μ) , f = ∑k∈Z fkzk . Then f is a fixed point for the
transfer operator Rm0 iff

fn =
1
2

f3n−2 + f3n +
1
2

f3n+2, (n ∈ Z) (3.3)

Proof. We have

|m0(z)|2 = 1+
1
2
z2 +

1
2
z−2 (3.4)

Using the strong invariance of μ , we compute the Fourier coefficients of Rm0 f for
a function f ∈ L2(T,μ) :

(Rm0 f )k =
〈
Rm0 f ,zk

〉
=
∫

T

Rm0 f · z−k dμ =
∫

T

1
3 ∑

w3=z

|m0(w)|2 f (w) ·w−3k dμ(z)

=
∫

T

|m0(z)|2 f (z)z−3k dμ(z)

=
∫

T

(
z−3k +

1
2
z−(3k−2) +

1
2
z−(3k+2)

)
f (z)dμ(z) =

1
2

f3k−2 + f3k +
1
2

f3k+2

Thus

(Rm0 f )k =
1
2

f3k−2 + f3k +
1
2

f3k+2, (k ∈ Z) (3.5)

This implies (3.3) �

To see that (i) and (iii) are equivalent, use (v) in Theorem 2.5. �

Next, we will analyze conditions (ii) and (iii) in Theorem 3.2 and rule out some
solutions. More precisely, in Propositon 3.4 we prove that there are no compactly sup-
ported solutions for the refinement equation in (iii); in Corollary 3.6 we show that there
are no l1 -solutions for the fixed point problem in (ii). However, in Proposition 3.7 we
do find an l2 -solution. In Proposition 3.10 we show that the method of successive ap-
proximations produces highly divergent sequences for the refinement equation in (iii).

PROPOSITION 3.4. The only Borel measurable solutions for the refinement equa-
tion

ϕ(x) = ϕ(3x)+ϕ(3x−2), (x ∈ R)

with bounded support, are constant multiples of the characteristic function of the Can-
tor set C , up to Hs -measure zero.

Proof. Let a := sup{x∈R |ϕ(x) �= 0} . We cannot have a > 1, because then there
exists a sequence xn � a that converges to a and such that ϕ(xn) �= 0. But then either
ϕ(3xn) or ϕ(3xn − 2) is non-zero, and both 3xn and 3xn − 2 are bigger than a for n
large. Thus a � 1. A similar argument shows that 0 is a lower bound for the support of
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ϕ . Thus ϕ has to be supported on [0,1] . Let K be its support, i.e., K is the closure in
R of {x ∈ R |ϕ(x) �= 0} . We claim that

K =
K
3
∪ K +2

3
(3.6)

If x ∈ [0,1] and ϕ(x) �= 0 then either ϕ(3x) or ϕ(3x− 2) is non-zero, therefore
either x ∈ K/3 or x ∈ (K +2)/3. This proves one inclusion.

From the scaling equation, we have that

ϕ(x/3) = ϕ(x)+ϕ(x−2)

But if x ∈ [0,1] , then x−2 is not, so ϕ(x/3) = ϕ(x) for x ∈ [0,1] . Similarly ϕ((x+
2)/3) = ϕ(x) for x ∈ [0,1] .

If x∈K/3 then ϕ(3x) �= 0 and 3x∈ [0,1] , so ϕ(x) = ϕ(3x) �= 0, so x∈K . Hence
K/3 ⊂ K . Similarly (K +2)/3 ⊂ K . This proves (3.6). Since the Cantor set C is the
only compact solution for (3.6) (see e.g. [23]), it follows that ϕ is supported on the
Cantor set.

The map r(x) = 3xmod1 on the Cantor set with the Hausdorff measure Hs , is
ergodic, since it is conjugate to the shift on the symbolic space {0,1}N , σ(d1,d2, . . .) =
(d2,d3, . . .) with the product measure, where 0 and 1 get equal probabilities 1/2. The
conjugating map is Ψ(d1,d2, . . .) = ∑n�1 2dn/3n .

Moreover ϕ is invariant under the shift since ϕ(x/3) = ϕ((x+2)/3) = ϕ(x) for
x ∈ C . Then, ϕ must be constant on C , and the proposition is proved. �

To study solutions for the fixed-point problem in Theorem 2.5 (iii) or its particular
form in Theorem 3.2 (ii), we need some background on the transfer operator. The next
theorem is contained in [13], Theorem 5.1, Proposition 7.1, and Theorem 7.4.

THEOREM 3.5. [13] Let m0(z) = 1+z2√
2

and let Rm0 be the corresponding transfer
operator.

(i) If h ∈C(T) and Rm0h = h then h is constant.

(ii) There are no functions f ∈ C(T) and λ ∈ C with |λ | = 1 , λ �= 1 and Rm0 f =
λ f .

(iii) There is a unique Borel probability measure on T such that∫
T

Rm0 f dν =
∫

T

f dν, ( f ∈C(T)).

Moreover ν has full support, in other words, every non-empty open subset of T

has positive measure.

(iv) For all f ∈C(T) , limn→∞Rn
m0

f = ν( f ) , uniformly on T .

COROLLARY 3.6. There is no non-trivial solution for equation (3.2) in l1(Z) . By
trivial, we mean a sequence (ak)k∈Z with ak = 0 for all k �= 0 .
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Proof. Suppose (ak)k∈Z is a solution for (3.2) in l1 . Then ∑k∈Z akzk is uniformly
convergent to a continuous function h , and Rm0h = h . Then, by Theorem 3.5, it follows
that h is a constant, so the sequence (ak)k∈Z is the trivial solution. �

In the next proposition we present a solution in l2(Z) for equation (3.2). However,
its Fourier transform, while in L2(T,μ) , is not bounded, and therefore it does not offer
a solution to our problem. It just gives some evidence that this wavelet representation
might not be irreducible.

PROPOSITION 3.7. Define the sequence (an)n∈Z as follows:

an :=

⎧⎨
⎩

1
2k , if n is an even number between 3k +1 and 3k+1−1, k � 0

− 1
2k , if n is an even number between −(3k+1−1) and −(3k +1), k � 0
0, otherwise.

(3.7)
Then the function

h(z) := ∑
k∈Z

akz
k, (z ∈ T) (3.8)

satisfies the following properties:

(i) h ∈ L2(T,μ) but h �∈ L∞(T,μ) .

(ii) Rm0h = h.

(iii) supn
∫
T
|m(n)

0 |2|h|2 dμ = ∞.

Proof. First we claim that (an)n∈Z is in l2(Z) . Indeed, there are 3k even numbers
between 3k +1 and 3k+1−1. Then

∑
n∈Z

|an|2 = 2 ·∑
k�0

(
1
2k

)2

·3k = 2 ·
∞

∑
k=0

(
3
4

)k

< ∞.

Thus h ∈ L2(T,μ) .
Next, we check that Rm0h = h . Using Lemma 3.3 we have to check that (an)n∈Z

satisfies equation (3.3). If n is odd, then 3n,3n−2,3n+2 are all odd, so the equation
holds. If n is even we have three cases. If n = 0 then a−2 = −1, a2 = 1, and the
equation holds. Assume now n is even and n > 0. If n is between 3k +1 and 3k+1−1.
Then 3n− 2 is bigger than 3k+1 + 1 and 3n+ 2 is less than 3k+2 − 1. And of course
3n,3n+2,3n−2 are all even. Since we have

an =
1
2k , a3n−2 = a3n = a3n+2 =

1
2k+1

we see that the equation (3.3) holds.
The case n < 0 can be treated similarly.
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To prove (iii), we estimate the integral in (3.8). This is the square of the L2 -norm

of the function f (n) := m(n)
0 h , which can be computed as the sum of the squares of its

Fourier coefficients, which we denote by (a(n)
k )k∈Z .

We have a(0)
k = ak for all k . Also, f (n+1) = m0(z3n

) f (n) so

a(n+1)
k =

a(n)
k +a(n)

k−2·3n√
2

. (3.9)

We prove by induction, that for all n � 0, and all k � 3n , k even, the sequence

(a(n)
k )k is decresing and non-negative. For n = 0, this is clear. Assume this holds for n

and prove it for n+1. We have for k even, and k � 3n+1 , k−2 ·3n � 3n and is even.
Then

a(n+1)
k+2 =

a(n)
k+2 +a(n)

k+2−2·3n√
2

�
a(n)

k +a(n)
k−2·3n√
2

= a(n+1)
k

and from the formula (3.9) it is clear that a(n)
k � 0.

Next, we claim that for k � 3n , even,

a(n)
k �

√
2

n
ak. (3.10)

Indeed, since k−2 ·3n−1 � 3n−1 , and a(n−1) is decreasing:

a(n)
k =

a(n−1)
k +a(n−1)

k−2·3n−1√
2

� 2a(n−1)
k√
2

=
√

2a(n−1)
k

Then, by induction a(n)
k �

√
2

n
a(0)

k =
√

2
n
ak for k � 3n even.

Now, using (3.10), we have

‖ f (n)‖2 = ∑
k∈Z

|a(n)
k |2 � ∑

k�3n

|a(n)
k |2 � 2n ∑

k�3n

|ak|2 =

2n ∑
m�n

∑
3m�k<3m+1

|ak|2 = 2n ∑
m�n

3m
(

1
2m

)2

= 2n
(

3
4

)n

· 1
1−3/4

→ ∞

This proves (iii).
(iii) also implies that h cannot be bounded, otherwise, using the strong invariance

of μ : ∫
T

|m(n)
0 |2|h|2 dμ � ‖h‖∞

∫
T

Rn
m0

1dμ = ‖h‖∞. �

REMARK 3.8. We know that the operators U and T satisfy the commutation re-
lation UTU−1 = T 3 . this implies that a formal series ∑k∈Z T 3k

commutes with both U
and T . The problem with this series is that it is pointwise divergent at many points. For
example, if f has bounded support then the functions T 3k

f will be disjointly supported
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for k big enough, but will have the same L2(R,Hs)-norm, since T is unitary. How-
ever, it is possible that the geometry of the space L2(R,Hs) allows this formal series to
be convergent on a large subspace, in which case an application of the spectral theorem
for unbounded operators might prove that the representation is in fact not irreducible.

This remark and the existence of fixed points for the transfer operator in Proposi-
tion 3.7 give us some positive evidence that the wavelet representation associated to the
Cantor set is not irreducible. On the other hand Proposition 3.4, Corollary 3.6 and the
next Proposition 3.10 show that a constuctive solution will be hard to come by.

One way to try to obtain solutions for the refinement equation is to iterate the
cascade operator.

DEFINITION 3.9. The operator M :=U−1π(m0) on H is called the cascade op-
erator.

We prove that convergence of the iterates of the cascade cannot be obtained if one starts
with a function with bounded support.

PROPOSITION 3.10. Let ξ ∈ L2(R,Hs) with bounded support. Suppose ξ is not
a constant multiple of χC . Then there is a positive constant cξ > 0 such that

lim
n→∞

‖Mn+1ξ −Mnξ‖2 = cξ .

In particular, the sequence (Mnξ )n∈N is not convergent.

Proof. First, we need to introduce the correlation function for ξ1,ξ2 ∈ H . This
is defined by considering the representation on the solenoid.

p(ξ1,ξ2)(x) :=
∫
Ωx

ξ (x,x1, . . .)ξ 2(x,x1, . . .)dPx(x,x1, . . .), (x ∈ T). (3.11)

Note that the correlation function is in L1(T,μ) and has the following property (and it
is completely determined by it):

〈π( f )ξ2,ξ2〉 =
∫

T

f p(ξ1,ξ2)dμ , ( f ∈ L∞(X ,μ)) (3.12)

Moreover, we claim that

p(Mξ1,Mξ2) = Rm0 p(ξ1,ξ2) (3.13)

Indeed, we have∫
T

f p(Mξ1,Mξ2)dμ = 〈π( f )Mξ1,Mξ2〉 =
〈
π(|m0|2 f ◦ r)ξ1,ξ2

〉
=
∫

T

|m0|2 f ◦ rp(ξ1,ξ2)dμ =
∫

T

f Rm0 p(ξ1,ξ2)dμ .
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Now, take ξ ∈H with bounded support, and not a constant multiple of χC . Then
Mξ − ξ is also of bounded support. We have

‖Mn+1ξ −Mnξ‖2 =
∫

T

p(Mn+1ξ −Mnξ ,Mn+1ξ −Mnξ )dμ

=
∫

T

Rn
m0

p(Mξ − ξ ,Mξ − ξ )dμ . (3.14)

If η ∈ H is a function of bounded support then, by (3.12), we have that∫
T

zk p(η ,η)dμ =
〈
Tkη ,η

〉
, (k ∈ Z).

Therefore p(η ,η) � 0 is a trigonometric polynomial.
Thus h0 := p(Mξ − ξ ,Mξ − ξ ) � 0 is a trigonometric polynomial. We claim

first that h0 cannot be identically 0. If that is the case then from (3.12) it follows that
‖Mξ − ξ‖2 = 0 so Mξ = ξ . But we saw in Proposition 3.4 that the only solutions of
the refinement equation that have bounded support are multiples of χC .

Since h0 is not identically zero and h0 � 0 and it is continuous it follows that
ν(h0) > 0, since ν has full support by Theorem 3.5. From (3.14), using Theorem 3.5
and the fact that h0 is continuous it follows that ‖Mn+1ξ −Mnξ‖2 → ∫

T
ν(h0)dμ =

ν(h0) > 0, and the result is obtained. �

REMARK 3.11. In the interval of time between the submission and the acceptance
of this paper, the first and third author have proved that the wavelet representation
associated to the middle-third Cantor set is actually reducible [17]. The proof is not
constructive, so it is not clear how the operators in the commutant, or the L∞ -fixed
points of the transfer operator look like. The present paper shows that a constructive
approach can be quite complicated.
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