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A RESULT ON POSITIVE MATRICES AND

APPLICATIONS TO HANKEL OPERATORS

MARCUS CARLSSON

(Communicated by L. Rodman)

Abstract. Let S denote the shift operator on l2(N) and set e0 = (1,0,0, . . .) . A special case
of the main result says that if W is a self-adjoint operator on l2(N) such that W(e0) = 0 and
S∗WS � W , then W � 0 . We apply this result to AAK-type theorems on generalized Hankel
operators, providing new insights related to previous work by S. Treil and A. Volberg [10].

1. Introduction

This paper contains two main results, Theorem A and Theorem B. The first is
a positivity test for infinite matrices and the second is an application to generalized
Hankel operators. We first introduce some notation. Let N = {0,1, . . .} and let M∞
denote the set of all functions from N×N into C , i.e. M∞ is the set of all ”infinite
matrices” W = (wm,n)m,n�0 . Let c denote the set of sequences a = (am)∞m=0 in C and
let c00 denote the subset of sequences with finite support. We identify M∞ with the set
of all linear operators from c00 into c via (Wa)m =∑n�0 wm,nan , and we define W ∗ as
the transpose of the conjugate of W , i.e. W ∗ = (wn,m)m,n�0 . Given a,b ∈ c we write
〈a,b〉 = ∑n�0 anbn whenever the sum is finite. We thus have

〈Wa,b〉 = 〈a,W ∗b〉 =∑
m,n

bmwm,nan,

and we will also use the notation b∗Wa for the above expression. W ∈ M∞ will be
called Hermitian symmetric if W ∗ =W and positive if a∗Wa � 0 for all a∈ c00 . In this
case we write W � 0. Moreover, if W1,W2 ∈ M∞ we write W1 � W2 whenever W1 −
W2 � 0. Finally, let S denote the shift operator on c00 defined by Sa = (0,a0,a1, . . .) .
Note that S∗ is the backward shift.

To illustrate the first theorem, we present the following example. Let w = (wj)∞j=0
be a sequence in R . If w0 = 0 and wj+1 � wj for all j ∈ N , then obviously wj � 0 for
all j ∈ N . Another way to express this is to say that if W ∈ M∞ is a diagonal matrix
such that W (e0) = 0 and S∗WS � W , then W � 0. Less trivial is the following result:

Mathematics subject classification (2010): Primary 47B35, Secondary 47B15, 47B37.
Keywords and phrases: Positive matrices, Hankel operators.

c© � � , Zagreb
Paper OaM-05-16

227



228 M. CARLSSON

THEOREM A. Let W ∈ M∞ be Hermitian symmetric such that W (e0) = 0 . If
S∗WS � W, then

W � 0.

Note that a matrix T ∈ M∞ is Toeplitz if and only if S∗TS = T . An immediate
consequence of Theorem A is therefore the following result.

COROLLARY 1.1. Let W = (wm,n) be Hermitian symmetric and set tm = w0,m,
t−m = wm,0 for all m ∈ N . Let T = (tn−m)m,n�0 be the corresponding Toeplitz matrix;

T =

⎛
⎜⎜⎜⎜⎜⎝

w0,0 w0,1 w0,2 . . .

w1,0 w0,0 w0,1
. . .

w2,0 w1,0 w0,0
. . .

...
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠ .

If S∗WS � W, then W � T . If S∗WS � W then W � T .

We will now discuss applications of these results to generalized Hankel operators.
By abuse of notation, let S denote the unilateral shift operator on l2 = l2(N) , i.e. S is
the extension of the shift operator S defined earlier on the dense subset c00 . Recall that
an operator Γ : l2 → l2 is called a Hankel operator if it satisfies

ΓS = S∗Γ,

and that S∗ is the backward shift. This definition is equivalent to demanding that the
matrix representation of Γ in the standard basis (em)∞m=0 (i.e. e0 = (1,0,0, . . .), e1 =
(0,1,0, . . .), etc.) looks like a Hankel matrix

Γ ” = ”

⎛
⎜⎜⎜⎜⎝
γ0 γ1 γ2 · · ·
γ1 γ2 γ3 · · ·
γ2 γ3 γ4

. . .
...

...
. . .

. . .

⎞
⎟⎟⎟⎟⎠ , γn ∈ C. (1.1)

Given a Hilbert space X we let L (X) denote the set of bounded operators on X . We
define ”generalized Hankel operators” as follows.

DEFINITION 1.2. Let X1 and X2 be Hilbert spaces and let S ∈ L (X1) and B ∈
L (X2) be given operators. A bounded operator Γ : X1 → X2 will be called Hankel
(with respect to S and B) if it satisfies

ΓS = BΓ. (1.2)

It is easy to see that this definition is equivalent with the one in [7], (Vol 1, Part
B, Sec 1.7), and that it is slightly more general than the one used by S. Treil and A.
Volberg in [10].
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EXAMPLE 1.3. As an example, let w = (wm)∞m=0 be any positive sequence and
define l2w as the completion of c00 with respect to the norm

‖a‖2 =
∞

∑
m=0

|am|2wm.

Let v be another positive sequence, let S be the shift operator on l2w and let B be the
backward shift operator on l2v . Then Γ : l2w → l2v is Hankel if and only if its matrix
representation (in the standard bases (em)∞m=0 in l2w and l2v respectively) looks like
(1.1). A concrete example would be to take wm = vm = m+ 1, in which case l2w = l2v
correspond to the Dirichlet space.

We introduce more notation. Let Γ : X1,→ X2 be any bounded operator and recall
that its singular values σ0,σ1, . . . are defined as

σn = inf{‖Γ|M ‖ : M � X1 and codim M = n}, (1.3)

where M � X1 means that M is a subspace and Γ|M denotes the restriction of Γ to
M . Set σ∞ = limn→∞σn . Recall that for a compact operator Γ , the singular values
appear as the eigenvalues of the operator

√
Γ∗Γ . A vector un ∈ X1 will be called a

σn -singular vector if ‖un‖ = 1 and

σ2
n un = Γ∗Γun.

In the general case, the polar decomposition of Γ shows that such vectors always exist
when σn > σ∞ , whereas they may or may not exist if σn = σ∞ . In the remainder, we
assume that σn is such that a singular vector exists. (A very simple example of singular
vectors is computed in Section 5). An operator S on some Hilbert space X is called
expansive if ‖Sx‖ � ‖x‖ for all x ∈ X and contractive if ‖S‖ � 1. In the setting of
Example 1.3, S is expansive if and only if w is increasing, and B is a contraction if
and only if v is increasing. The subspace generated by taking the closure of the span of
{Smx : m ∈ N} will be denoted by [x]S .

THEOREM B. Let X1 and X2 be Hilbert spaces and let Γ : X1 → X2 be a Hankel
operator with respect to some operators S ∈ L (X1) and B ∈ L (X2) , as in Definition
1.2. Moreover assume that S is expansive and that B is a contraction. Let un ∈ X be a
singular vector to Γ with singular value σn . Then

‖Γ|[un]S‖ = σn.

In particular, if σn−1 > σn then codim [un]S � n.

We note that in the classical case, i.e. when X1 = X2 is the (unweighted) l2 -space
and S and B are as in Example 1.3, then the equality ‖Γ|[un]S‖= σn is a straightforward
application of (1.2) and standard H2 -theory. In this case, we also have the famous the-
orem by Adamjan, Arov and Krein [1], known as the ”AAK-theorem”, which says that
codim [un]S = n if σn−1 > σn > σn+1 . (See [1] or [8] for a more accessible version.)
Combined with the work of Butz [3], Theorem B can be used to give a new proof of
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the AAK-theorem that avoids using Nehari’s theorem. Incidentally, this also provides
a new proof of Nehari’s theorem, although we will not pursue these matters here.

Extensions of Nehari’s theorem in a similar setting as in Theorem B has been
treated by Treil and Volberg in [10]. Although they prove that a form of the Nehari
theorem does hold, we will in Section 5 show that a stronger extension, (of the type
that one would need to imitate the classical proofs of the AAK-theorem), fails. Nev-
ertheless, Treil and Volberg also give an extension of the AAK-theorem in [10]. An
application of Theorem B leads to an improvement of this extension in certain impor-
tant cases. We will discuss these matters further in Section 4.

The paper is outlined as follows. In Section 2 we prove Theorem A and in Sec-
tion 3 we prove Theorem B. Section 4 contains a more detailed account of the AAK-
theorem, its connections with Theorem B and the related work by Treil and Volberg.
Finally, in Section 5 we give some counterexamples to natural questions arising in Sec-
tion 4.

2. On positive matrices

In order to prove Theorem A we actually first need to prove a special case of
Corollary 1.1. First some notation. Let X be a fixed Hilbert space and let S ∈ L (X) .
Given any u ∈ X , we associate with it the Toeplitz-matrix

Tu,S =

⎛
⎜⎜⎜⎜⎝

〈u,u〉 〈Su,u〉 〈S2u,u〉 · · ·
〈u,Su〉 〈u,u〉 〈Su,u〉 · · ·
〈u,S2u〉 〈u,Su〉 〈u,u〉 . . .

...
...

. . .
. . .

⎞
⎟⎟⎟⎟⎠ (2.1)

as well as the following matrix

Nu,S =

⎛
⎜⎜⎜⎜⎝

〈u,u〉 〈Su,u〉 〈S2u,u〉 · · ·
〈u,Su〉 〈Su,Su〉 〈S2u,Su〉 · · ·
〈u,S2u〉 〈Su,S2u〉 〈S2u,S2u〉 . . .

...
...

. . .
. . .

⎞
⎟⎟⎟⎟⎠ (2.2)

LEMMA 2.1. Let W = (wm,n)m,n�0 be strictly positive Hermitian symmetric, set
tm = w0,m and t−m = wm,0 for all m ∈ N . Let T = (tn−m)m,n�0 be the corresponding
Toeplitz matrix. If S∗WS � W , then W � T .

Proof. Let lW denote the completion of c00 with respect to the norm

‖a‖2
lW = a∗Wa.

Then S is a contraction on the space lW . Thus S has a unitary dilation, i.e. there exists
a Hilbert space Z that contains lW as a subspace and a unitary operator U ∈ L (Z)
such that Snx = PlWUnx for all x ∈ lW and n ∈ N , where PlW denotes the orthogonal
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projection in Z onto lW . (See [6] for more details.) Let a ∈ c00 be arbitrary and recall
that e0 = (1,0,0, . . .) . Clearly

‖a‖2
lW = ‖∑anS

ne0‖2
lW = ‖PlW ∑anU

ne0‖2
Z.

Moreover, it is easy to see that T = Te0,S = Te0,U = Ne0,U , so

a∗Ta = a∗Ne0,Ua = ‖∑anU
ne0‖2

Z.

Thus
a∗(T −W )a = ‖∑anU

ne0‖2
Z −‖PlW ∑anU

ne0‖2
Z � 0,

as desired. �
THEOREM A. If W = (wm,n)m,n�0 ∈ M∞ is Hermitian symmetric with w0,m =

wm,0 = 0 and S∗WS � W , then
W � 0.

Proof. For each k ∈ N we define a new matrix Wk = (wk
m,n)m,n�0 given by

⎧⎪⎪⎨
⎪⎪⎩

wk
m,n = wm,n m,n � k

wk
m+l,k+l = wm,k m � k, l > 0

wk
k+l,m+l = wk,m m � k, l > 0

wk
m,n = 0 elsewhere

This cumbersome definition is easily visualized, here is W3 :⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 w1,1 w1,2 w1,3 0 0

0 w2,1 w2,2 w2,3 w1,3
. . .

0 w3,1 w3,2 w3,3 w2,3
. . .

0 0 w3,1 w3,2 w3,3
. . .

0 0
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For each fixed a ∈ c00 we clearly have

lim
k→∞

a∗Wka = a∗Wa, (2.3)

and hence it is enough to show that Wk � 0 for all k ∈ N. Decompose an arbitrary a as
a = ab +ae , where ab = (a0,a1, . . . ,ak−1,0,0, . . .). Note that

(Sab)∗Wk(Sae) = a∗bWkae

(Sae)∗Wk(Sae) = a∗eWkae

a∗bWkab = a∗bWab � (Sab)∗W (Sab) = (Sab)∗Wk(Sab)
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from which it follows that
Wk � S∗WkS (2.4)

Set ck = max{wm,n : 0 � m,n � k} and note that

∣∣ a∗Wka
∣∣ < 2kck‖a‖2

l2

whenever a 	= 0, which follows from the calculation

∣∣ a∗Wka
∣∣ =

∣∣∑
n

∑
|m−n|�k−1

wk
m,naman

∣∣ �∑
n

∑
|m−n|�k−1

ck
(|am|2 + |an|2)

2

� 2∑
n

∑
|m−n|�k−1

ck
|an|2

2
� (2k−1)ck‖a‖2

l2 .

Let I ∈ M∞ denote the identity matrix and put Vk = I− 1
2kck

Wk. By the above calcula-
tion we have Vk > 0 and (2.4) implies that S∗VkS � Vk . But then Lemma 2.1 applies
which yields that Vk � I or

0 � (I−Vk) =
1

2kck
Wk.

It follows that Wk � 0 for all k and hence W � 0 follows by (2.3). �

The proof of Corollary 1.1 is immediate so we omit it. Note however the following
reformulation.

COROLLARY 2.2. Let X be a Hilbert space and let u ∈ X be arbitrary. If S ∈
L (X) is a contraction, then

Nu,S � Tu,S.

If S is expansive, then
Tu,S � Nu,S.

Proof. To simplify notation we will write N(u,S) = Nu,S . Given a∈ c00 , it is easy
to see that

‖a‖lN(u,S) = ‖∑anS
nu‖X

and hence a∗(S∗Nu,SS)a = ‖Sa‖lN(u,S) = ‖S∑anSnu‖X . By these identities, the corollary
is easily seen to follow from Corollary 1.1. �

3. Applications to Hankel operators

Given an operator Γ : X1 →X2 and x∈X1 , recall that ‖Γ|[x]S‖ denotes the operator
norm of Γ restricted to the invariant subspace [x]S generated by x and S ∈L (X1) . We
can now prove Theorem B.



A RESULT ON POSITIVE MATRICES AND APPLICATIONS... 233

THEOREM B. Let Γ : X1 → X2 be a Hankel operator with respect to some oper-
ators S ∈ L (X1) and B ∈ L (X2) , as in Definition 1.2, where S is expansive and B is
a contraction. Let σ0 � σ1 � . . . denote its singular values, let n ∈ N be fixed and let
u ∈ X be a singular vector with singular value σn . Then

‖Γ|[u]S‖ = σn.

Moreover, if σn−1 > σn then codim [u]S � n.

Proof. Put v = Γu . By the polar decomposition of Γ it follows that ‖v‖ = σn .
Obviously then ‖Γ|[u]S‖ � ‖Γu‖ = ‖v‖ = σn, so we focus on proving the reverse in-
equality. It suffices to show that

‖Γ(∑amSmu)‖ � σn‖∑amSmu‖

for all a ∈ c00 . Note that ‖∑amSmu‖2 = a∗Nu,S a and similarly

‖Γ(∑amSmu)‖2 = ‖∑amBmΓu‖2 = a∗Nv,B a,

where we have used the Hankel commutation relation (1.2). This also yields

〈Bmv,v〉 = 〈BmΓu,Γu〉 = 〈ΓSmu,Γu〉 = 〈Smu,Γ∗Γu〉 = σ2
n 〈Smu,u〉

which implies that Tv,B = σ2
n Tu,S . The desired inequality follows via Corollary 2.2 and

the calculation

σ2
n ‖∑amSmu‖2 = σ2

n (a∗Nu,S a) � σ2
n (a∗Tu,S a) =

= a∗Tv,B a � a∗Nv,B a = ‖Γ(∑amSmu)‖2.

The last part of the statement follows immediately by the first and the definition of
singular numbers;

inf{‖Γ|M ‖ : M � X and codim M = n−1}= σn−1 > σn = ‖Γ|[u]S‖. �

REMARK. There are counterexamples to the conclusion of Theorem B if either of
the restrictions on S and B are removed.

4. A review of generalized Hankel operators and the AAK-theorem

This section aims at putting Theorem B in its proper context. Recall the celebrated
result by Adamyan, Arov and Krein [1], known as the AAK-theorem and usually stated
as follows.

THEOREM. (AAK) Let Γ : l2 → l2 be a Hankel operator and let σn be its n’th
singular value. Then there is a rank n Hankel operator K such that

σn = ‖Γ−K‖.
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However, the theorem is much stronger because its proof provides a way of ac-
tually calculating the best rank n Hankel approximation. This in turn is related to the
curious fact that the Fourier series defined by the n :th singular vector has precisely n
zeroes in the unit disc, (assuming that σn+1 < σn < σn−1 ). We outline this in more
detail below.

It is easy to see that a rank 1 Hankel operator necessarily has the following form

Γ(z0) =

⎛
⎜⎜⎜⎜⎝

1 z0 z2
0 · · ·

z0 z2
0 z3

0 · · ·
z2
0 z3

0 z4
0

. . .
...

...
. . .

. . .

⎞
⎟⎟⎟⎟⎠ , |z0| < 1, (4.1)

but it is not true that any finite rank Hankel operator is a sum of such. In fact, a ”sym-
bol” for the above rank one Hankel operator is easily seen to be (1− z0z)−1 and in
general, any rank n Hankel operator has a symbol of the form r(z) where r is a ratio-
nal function with degree n and all poles lie in {z ∈ C : |z| > 1} , (see e.g. [8]). In terms
of applications, the power of the AAK-theorem comes from the fact that the location
of these poles can be easily calculated using the singular vectors. For simplicity, let
us assume that σn is distinct and denote the corresponding singular vector by un . Let
ǔn denote the analytic function in the unit disc defined by ǔn(z) = ∑∞

m=0 un(m)zm . The
proof of the AAK-theorem then shows that ǔn has precisely n roots (z j)n

j=1 , counted
with multiplicity, and that the poles of the rational symbol for K in the AAK-theorem
are located at (1/z j)n

j=1 , again counted with multiplicity. In particular, if ǔn has dis-
tinct zeroes, then the best rank n Hankel approximant of Γ is a sum of n matrices of
the form (4.1) with z0 replaced by z j, j = 1, . . . ,n .

Using Beurling’s and Nehari’s theorem, a short argument shows that the AAK-
theorem is equivalent with the following result

THEOREM. (AAK*) Let Γ : l2 → l2 be a Hankel operator and let σn be its n’th
singular value. Then there is a singular vector un to σn such that codim [un]S = n and
‖Γ|[un]S‖ = σn .

We will now discuss S. Treil and A. Volberg’s extension of the AAK-theorem in
[10]. Throughout the remainder, X1 and X2 will denote Hilbert spaces and Γ : X1 → X2

will denote a Hankel operator with respect to some operators S ∈ L (X1) and B ∈
L (X2) .

THEOREM. (Treil, Volberg) Assume that S is expansive and that B is a contrac-
tion and let Γ : X1 → X2 be a Hankel operator. Let σn be a fixed singular value
of Γ . Then there exists an S-invariant subspace M with codim M = n such that
‖Γ|M ‖ = σn.

Their proof relies on a fixed point lemma by Ky Fan and does not imply anything
concerning the singular vectors. In particular, it is not clear whether

M = [un]S (4.2)
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holds, which in terms of applications is important as it provides a way to actually calcu-
late M . Clearly (4.2) is not to be expected in the full generality of the above theorem.
For instance, if codim S(X1) > 1 it is easy to see that codim [u]S = ∞ for all u ∈ X1.
However, for the concrete case considered in Example 1.3, this question is very nat-
ural. The conditions on S (the shift) and B (the backward shift) are then equivalent
with the weights w and v being increasing. Take for instance a Hankel operator whose
symbol is a polynomial from the Dirichlet space into itself, i.e. we set w = (1,2,3, . . .)
and consider Γ : l2w → l2w . Fix n and let un be a σn -singular vector. Assume for
simplicity that σn+1 < σn < σn−1 . Theorem B combined with (1.3) and well known
characterizations of subspaces with finite codimension (see e.g. [2]) then show that
ǔn(z) = ∑∞

m=0 un(m)zm has at least n zeroes in the unit disc, (counted with multiplic-
ities). In the unweighted case we know that it has precisely n -zeroes, (counted with
multiplicities). By studying Hankel operators Γ : l2w → l2v for a large variety of increas-
ing weights, we have not been able to find one example where ǔn does not have n
zeroes. Moreover, we are able to prove that we indeed have

codim [un]S = n (4.3)

in the special case when w = (1,R,R2, . . .) for R � 1 and v is an arbitrary increasing
sequence, as well as when v = w = ( jα )∞j=1 for 0 � α � 1. A full extension of the
AAK-theorem in the second form (AAK*) is thus available, for instance, for Hankel
operators from the Hardy to the Dirichlet space or from the Dirichlet space into itself.
As the methods for the proof of (4.3) are quite lengthy and completely different from
the ones presented here, and as we hope to improve the argument, we will publish this
separately. The details can also be found in [4].

5. Counterexamples

In this section we provide a counterexample to two natural questions related to the
material in the previous section. The first concerns the original version of the AAK-
theorem in the weighted setting, the second concerns Nehari’s theorem.

Let us consider a Hankel operator Γ : l2w → l2v , where w,v are increasing sequences,
and let n be such that σn+1 < σn < σn−1 . By the remarks at the end of the last section,
ǔn has precisely n zeroes, (at least if v = (1,1,1, . . .)) . We assume that these zeroes
are distinct, (which generically is the case), and label them z1, . . . ,zn . Theorem AAK
naturally leads to the question of whether

inf
{∥∥∥Γ− n

∑
j=1

c jΓ(zkj)
∞
k=0

∥∥∥
l2w→l2v

: c1, . . . ,cn ∈ C

}
= σn. (5.1)

This is in general false, as the following example shows.

EXAMPLE 5.1. Assume that w0 = v0 = 1 and let Γ be defined by the sequence
γ = e1 as in (1.1). Since Ran S2 is a reducing subspace for Γ , it suffices to consider

Γ̃=
(

0 1
1 0

)
.
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Then

Γ̃∗ =
(

1 0
0 w1

)−1 (
0 1
1 0

)(
1 0
0 v1

)

so Γ̃∗Γ̃=
(

v1 0
0 w−1

1

)
and therefore σ0 =

√
v1 , u0 = e0 , σ1 = 1/

√
w1 , u1 = e1/

√
w1 ,

since w1,v1 � 1. We thus get ǔ0(z) = 1 and ǔ1 = z/
√

w1 . Note that ǔ0 has no zeroes
in D whereas ǔ1 has 1 zero at 0. The rank one Hankel operator corresponding to 0 is(

1 0
0 0

)
. If (5.1) were to hold, then we should have

inf

{∥∥∥∥
(−c1 1

1 0

)∥∥∥∥
l2w→l2v

: c ∈ C

}
= σ1 = 1/

√
w1. (5.2)

(To be formally correct, we should introduce a new notation for the restriction of l2v and
l2w to Span {e0,e1} , but we omit this technicality.) However,∥∥∥∥

(−c1 1
1 0

)(
1
0

)∥∥∥∥
l2v

/∥∥∥∥
(

1
0

)∥∥∥∥
l2w

=
√

c2
1 + v1,

which clearly is greater than 1/
√

w1 unless c1 = 0 and v1 = w1 = 1.

Incidentally, this also provides a counterexample related to Nehari’s theorem. Let
us write l2(N) and l2(Z) for the standard unweighted l2 -spaces. Nehari’s theorem
says that an operator

Γ : l2(N) → l2(N)

that satisfies BΓ= ΓS can be ”lifted” to an operator Γ̃ : l2(Z) → l2(Z) such that BΓ̃=
Γ̃S , ‖Γ̃‖ = ‖Γ‖ and

Γ = Pl2(N)Γ̃|l2(N), (5.3)

where Pl2(N) : l2(Z) → l2(N) denotes the orthogonal projection. Assume now that v,w

are increasing positive sequences on Z , and define l2v (N) , l2v (Z) , l2w(N) , l2w(Z) and
Pl2v (N) : l2v (Z) → l2v (N) in the obvious way. The extension of Nehari’s theorem by S.

Treil and A. Volberg in [10] shows that any operator Γ : l2w(N) → l2v (N) satisfying
BΓ= ΓS can be lifted to an operator Γ̃ : l2w(N)→ l2v (Z) such that BΓ̃= Γ̃S , ‖Γ̃‖= ‖Γ‖
and

Γ= Pl2v (N)Γ̃.

However, Example 5.1 shows that it is not possible in general to find a Γ̃ : l2v (Z)→ l2w(Z)
with BΓ̃ = Γ̃S , ‖Γ̃‖ = ‖Γ‖ and

Γ= Pl2v (N)Γ̃|l2w(N),

because this would imply that (5.2) holds.

Acknowledgements. This research was supported under NSF CMG grant DMS
0724644.



A RESULT ON POSITIVE MATRICES AND APPLICATIONS... 237

RE F ER EN C ES

[1] V. M. ADAMJAN, D. Z. AROV, M. G. KREIN, Analytic properties of the Schmidt pairs of a Hankel
operator and the generalized Schur-Takagi problem (Russian), Mat. Sb. (N.S.), 86, 128 (1971), 34–75.

[2] A. ALEMAN, Finite codimensional invariant subspaces in Hilbert spaces of analytic functions, J.
Funct. Anal., 119, 1 (1994), 1–18.

[3] J. R. BUTZ, s -numbers of Hankel matrices, J. Functional Analysis, 15 (1974), 297–305.
[4] M. CARLSSON, AAK-theory on weighted spaces, GMIG-project review report 2009, Purdue Univer-

sity.
[5] J.B. CONWAY, A course in functional analysis, Second edition, Graduate Texts in Mathematics, 96.

Springer-Verlag, New York, 1990.
[6] C. FOIAS, S. SZ-NAGY, Harmonic analysis of operators on Hilbert space.Harmonic analysis of

operators on Hilbert space, North-Holland Publishing Co., 1970.
[7] N. K. NIKOLSKI, Operators, functions, and systems: an easy reading. Vol. 1. Hardy, Hankel, and

Toeplitz, Mathematical Surveys and Monographs, 92. American Mathematical Society, Providence,
RI, 2002.

[8] V.V. PELLER, Hankel operators and their applications, Springer Monographs in Mathematics,
Springer-Verlag, New York, 2003.

[9] R. ROCHBERG, A new characterization of Dirichlet type spaces and applications, Illinois J. Math.,
37, 1 (1993), 101–122.

[10] S. TREIL, A. VOLBERG, A fixed point approach to Nehari’s problem and its applications, 165–186,
Oper. Theory Adv. Appl., 71, Birkhäuser, Basel, 1994.
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