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GENERALIZED BICIRCULAR PROJECTIONS VIA

RANK PRESERVING MAPS ON THE SPACES OF
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AJDA FOŠNER AND DIJANA ILIŠEVIĆ

(Communicated by N.-C. Wong)

Abstract. We study several related maps from the space of symmetric (respectively, antisymmet-
ric) operators, acting on a complex Hilbert space, to itself: rank preserving linear maps (more
precisely, maps preserving rank one operators in the symmetric case, and maps preserving rank
two operators in the antisymmetric case), surjective linear isometries and generalized bicircular
projections.

1. Introduction

Let H be a complex Hilbert space and let B(H ) be the algebra of all bounded
linear operators on H . Throughout this paper we will fix an orthonormal basis {eλ :
λ ∈Λ} of H . For x∈H we have x =∑λ∈Λ 〈x,eλ 〉eλ and define x =∑λ∈Λ 〈eλ ,x〉eλ .
Notice that 〈x,y〉 = 〈y,x〉 for all x,y ∈ H .

Let T ∈ B(H ) . If S ∈ B(H ) is such that
〈
Teλ ,eμ

〉
=

〈
Seμ ,eλ

〉
for all λ ,μ ∈

Λ , then S is called the transpose of T associated to the basis {eλ : λ ∈ Λ} and it is
denoted by Tt . An easy computation shows Ttx = T ∗x for all x ∈ H . This implies
〈Ttx,y〉 = 〈Ty,x〉 for all x,y ∈ H . If Tt = T, then T is called a symmetric operator,
and if Tt = −T, then T is called an antisymmetric operator.

For x,y ∈ H we write x⊗ y for the operator defined by (x⊗ y)(ξ ) = 〈ξ ,y〉x for
all ξ ∈ H . Clearly, x⊗ y ∈ B(H ) and ‖x⊗ y‖ = ‖x‖ · ‖y‖. If x and y are nonzero,
then x⊗ y is rank one. It can be easily verified that (x⊗ y)t = y⊗ x for all x,y ∈ H .

By S (H ) and A (H ) we will denote the linear subspaces of all symmetric and
antisymmetric operators in B(H ) , respectively. The matrix space Sn(C) of all n×n
complex symmetric matrices, and the matrix space Kn(C) of all n×n complex skew-
symmetric matrices, equipped with the spectral norm, can be considered as a special
(finite dimensional) case of S (H ) and A (H ), respectively.

Let X be a complex Banach space. A linear map P : X → X satisfying P2 = P is
called a linear projection on X . By P is denoted its complementary projection I −P,
where I is the identity operator on X .
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DEFINITION 1.1. A linear projection P on X is called bicircular if the map P+
λP is an isometry for all modulus one λ ∈ C, and it is called a generalized bicircular
projection if the map P+λP is an isometry for some modulus one λ ∈ C, λ 	= 1.

The structure of bicircular projections on S (H ) and A (H ) is determined in
[9, Theorems 2.3 and 2.5], and the structure of generalized bicircular projections on
Sn(C) and Kn(C), with respect to the spectral norm, in [4, Theorems 5.1 and 5.2].
The aim of this paper is to fill a gap between these results by deducing the form of
generalized bicircular projections on S (H ) and A (H ), where H is infinite di-
mensional. Although most of our results hold for finite dimensional H as well, we
will assume throughout the paper that H is infinite dimensional.

By [9, Theorem 2.3] there are only trivial bicircular projections on S (H ), that
is, zero and the identity operator. However, if P is a bicircular projection on A (H ),
then either P or P is of the form X 
→ RX +XRt with R = x⊗ x for some norm one
x ∈ H , see [9, Theorem 2.5].

According to the recent general result [5, Theorem 2.1] in the setting of JB*-
triples, a generalized bicircular projection P acting on a JB*-triple A is either bicircu-
lar, or λ = −1 and P = 1

2(I +ϕ) for some surjective linear isometry ϕ : A → A sat-
isfying ϕ2 = I. Since S (H ) and A (H ) belong to the class of JB*-triples and the
structure of bicircular projections on these spaces has been already known, it remains to
determine the structure of surjective linear isometries on these spaces. It turns out that
this problem can be reduced to the problem of linear maps preserving rank, more pre-
cisely, preserving rank one operators in S (H ) and preserving rank two operators in
A (H ). Recall that every surjective linear isometry ϕ : A → A, where A = S (H ) or
A = A (H ), satisfies ϕ(XY ∗X) = ϕ(X)ϕ(Y )∗ϕ(X) for all X ,Y ∈ A (the correspond-
ing result in a more general setting of JB*-triples can be found in [6] and [3, Theorem
D]). Our purpose is to find an explicit formula for ϕ .

The linear preserver problem which concerns characterization of linear operators
on matrix spaces that leave certain functions, subsets, relations, etc., invariant has been
one of the most active and fertile subjects in matrix theory during the past one hundred
years. In the last few decades a lot of results on linear preservers, not only on matrix
algebras, but also on more general rings and operator algebras, have been obtained.
It has turned out that one of the most important classes of linear preserver problems
in matrix and operator theory is the one concerning rank. More information on linear
(as well as nonlinear) preserver problems can be found e.g. in a book [7], where an
extensive list of references on this subject is given.

2. Generalized bicircular projections on S (H )

If X ∈ B(H ) is a rank one operator and u is a nonzero element of its range, it is
an easy exercise to prove the existence of v ∈ H such that X = u⊗ v (e.g. [8, p. 56]).
If X ∈ S (H ), then u⊗ v = v⊗ u. Thus there exists α ∈ C such that v = αu. If we
define x = α1/2u, then
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〈(u⊗ v)eλ ,eμ〉 = 〈v,eλ 〉〈u,eμ〉 = α〈u,eλ 〉〈u,eμ〉
= 〈x,eλ 〉〈x,eμ〉 = 〈(x⊗ x)eλ ,eμ〉

for all λ ,μ ∈ Λ. Hence, X = x⊗ x. If x⊗ x = y⊗ y, then y = x or y = −x. Therefore,
every symmetric rank one operator has the form x⊗ x for some unique (up to a sign)
x ∈ H .

LEMMA 2.1. A nonzero operator X ∈S (H ) is rank one if and only if XS (H )X
= CX .

Proof. If X ∈ S (H ) is rank one, then there exists x ∈ H such that X = x⊗ x.
For all Y ∈ S (H ) and y ∈ H we have

XYXy = (x⊗ x)Y (x⊗ x)y = (x⊗ x)Y (〈y,x〉x)
= 〈y,x〉(x⊗ x)Yx = 〈y,x〉〈Yx,x〉x = 〈Yx,x〉(x⊗ x)y = 〈Yx,x〉Xy.

Therefore, XS (H )X ⊆ CX . Fix λ ∈ C. If 〈Yx,x〉 = 0 for all Y ∈ S (H ), then
XS (H )X = 0. In particular, XX∗X = 0 which yields X = 0. Hence, there exists
Y ∈ S (H ) such that 〈Yx,x〉 	= 0. If we define Z = λ

〈Yx,x〉Y, then Z ∈ S (H ) and
XZX = λX . Hence, CX ⊆ XS (H )X .

Assume that a nonzero X ∈ S (H ) is such that XS (H )X = CX . There exists
λ ∈ Λ such that Xeλ 	= 0. Furthermore, there exists α ∈ C with the property X(eλ ⊗
eλ )X = αX . Thus,

〈Xx,eλ 〉Xeλ = αXx

for all x∈H . If α = 0, then 〈Xx,eλ 〉Xeλ = 0 for all x∈H . This implies 〈Xx,eλ 〉=
0 for all x ∈ H . In particular, for all μ ∈ Λ,

〈Xeλ ,eμ〉 = 〈Xeμ ,eλ 〉 = 0,

which yields Xeλ = 0; a contradiction. Hence, α 	= 0. Thus,

Xx =
1
α
〈Xx,eλ 〉Xeλ ∈ C(Xeλ ),

so X is rank one. �

LEMMA 2.2. If A ∈ S (H ) is such that XAX = 0 for all rank one operators
X ∈ S (H ), then A = 0.

Proof. Let x ∈ H be nonzero and let X = x⊗ x. Then

0 = XAXx = (x⊗ x)A(x⊗ x)x
= 〈x,x〉(x⊗ x)Ax = 〈x,x〉〈Ax,x〉x.
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Thus 〈Ax,x〉= 0 for all x ∈H . Inserting x+y instead of x, and using the assumption
that A is symmetric, we get

0 = 〈Ax,y〉+ 〈Ay,x〉 = 2〈Ax,y〉

for all x,y ∈ H . Hence, A = 0. �

LEMMA 2.3. If A,B ∈ B(H ) are such that AXAt = BXBt for all rank one op-
erators X ∈ S (H ), then A = B or A = −B.

Proof. For all x,y ∈ H we have

A(x⊗ x)Aty = 〈Aty,x〉Ax = 〈Ax,y〉Ax

and analogously
B(x⊗ x)Bty = 〈Bx,y〉Bx.

Our assumption yields
〈Ax,y〉Ax = 〈Bx,y〉Bx. (1)

This implies
〈Ax,y〉2 = 〈Bx,y〉2. (2)

Assume A 	= B and A 	= −B. Let x1 ∈ H be such that Ax1 	= Bx1. Then there
exists y1 ∈ H such that 〈Ax1,y1〉 	= 〈Bx1,y1〉. By (2), we have 〈Ax1,y1〉= −〈Bx1,y1〉.
Then (1) implies

〈Bx1,y1〉(Ax1 +Bx1) = 0.

Since 〈Bx1,y1〉 = −〈Ax1,y1〉 	= −〈Bx1,y1〉, we have 〈Bx1,y1〉 	= 0. Hence, Ax1 =
−Bx1. Let x2 ∈ H be such that Ax2 	= −Bx2. In the same manner we conclude
Ax2 = Bx2. Inserting x1 + x2 instead of x and y1 instead of y in (1), we get

〈Bx1,y1〉Bx2 + 〈Bx2,y1〉Bx1 = 0, (3)

which implies
〈Bx1,y1〉〈Bx2,y1〉 = 0.

Since 〈Bx1,y1〉 	= 0, we have 〈Bx2,y1〉 = 0. Notice that Bx2 = Ax2 	= −Bx2 implies
Bx2 	= 0. Then the first summand in (3) is nonzero, and the second one is zero; a con-
tradiction. Hence, A = B or A = −B. �

PROPOSITION 2.4. Let ϕ : S (H )→S (H ) be a bounded injective linear map
preserving rank one operators. Then there exists a unique (up to a sign) T ∈ B(H )
such that

ϕ(X) = TXTt

for all rank one X ∈ S (H ) . Furthermore, the map T is injective.
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Proof. Let us fix a nonzero x0 ∈H and write ϕ(x0⊗x0) = u0⊗u0 with u0 ∈H .
Let x ∈ H be such that x and x0 are linearly independent and write ϕ(x⊗ x) = u⊗u
for some u ∈ H . Then u and u0 are also linearly independent.

Notice that

ϕ(x0 ⊗ x+ x⊗ x0) =
1
2
ϕ

(
(x0 + x)⊗ (x0 + x)

)− 1
2
ϕ

(
(x0 − x)⊗ (x0− x)

)

=
1
2
v⊗ v− 1

2
w⊗w

for some linearly independent v,w ∈ H . On the other hand,

ϕ(x0 ⊗ x+ x⊗ x0) = ϕ
(
(x0 + x)⊗ (x0 + x)

)−ϕ(x0⊗ x0)−ϕ(x⊗ x)
= v⊗ v−u0⊗u0−u⊗u.

Hence,
1
2
v⊗ v+

1
2
w⊗w = u0⊗u0 +u⊗u.

If ξ ∈ H is such that 〈w,ξ 〉 = 0 and 〈v,ξ 〉 = 1, then

v = 2〈u0,ξ 〉u0 +2〈u,ξ 〉u,

that is, v = αu0 +βu for some α,β ∈ C. This implies

ϕ(x0 ⊗ x+ x⊗ x0) = (αu0 +βu)⊗ (αu0 +βu)−u0⊗u0−u⊗u

= (α2 −1)u0⊗u0 +αβ (u0⊗u+u⊗u0)+ (β 2−1)u⊗u. (4)

Assume that β 2−1 	= 0. Let λ = (αβ )2

β 2−1
−α2 +1. Then

ϕ(x0 ⊗ x+ x⊗ x0 +λx0⊗ x0)
= ϕ(x0 ⊗ x+ x⊗ x0)+λϕ(x0⊗ x0)
= (α2 −1+λ )u0⊗u0 +αβ (u0⊗u+u⊗u0)+ (β 2−1)u⊗u

= u0⊗
( (αβ )2

β 2−1
u0 +αβu

)
+u⊗ (

αβu0 +(β 2−1)u
)

=
( αβ
β 2−1

u0 +u
)
⊗ (

αβu0 +(β 2−1)u
)

=
1

β 2 −1

(
αβu0 +(β 2−1)u

)⊗ (
αβu0 +(β 2−1)u

)

is rank one. Thus, λ 	= 0. However,

ϕ(x0 ⊗ x+ x⊗ x0 +λx0⊗ x0)

= ϕ
(
(λ−1/2x+λ 1/2x0)⊗ (λ−1/2x+λ 1/2x0)

)−λ−1ϕ(x⊗ x)

is rank two; a contradiction. Therefore, β 2 −1 = 0. Analogously, α2 −1 = 0. Hence,
αβ = 1 or αβ = −1. Let us define Tx = αβu. Then (4) can be written as

ϕ(x0 ⊗ x+ x⊗ x0) = u0⊗Tx+Tx⊗u0.
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We also have
ϕ(x⊗ x) = u⊗u = αβu⊗αβu = Tx⊗Tx.

If x = μx0 for some μ ∈ C, define Tx = μu0. Then

ϕ(x0 ⊗ x+ x⊗ x0) = 2μϕ(x0⊗ x0) = 2μu0⊗u0

= u0⊗ μu0 + μu0⊗u0 = u0⊗Tx+Tx⊗u0,

and also
ϕ(x⊗ x) = μ2ϕ(x0 ⊗ x0) = μu0⊗ μu0 = Tx⊗Tx.

Hence, for all x ∈ H ,
ϕ(x⊗ x) = Tx⊗Tx,

ϕ(x0 ⊗ x+ x⊗ x0) = Tx0⊗Tx+Tx⊗Tx0.

Since ϕ is linear, for all λ ∈ C, x,y ∈ H ,

Tx0⊗T (λx+ y)+T (λx+ y)⊗Tx0

= ϕ(x0 ⊗ (λx+ y)+ (λx+ y)⊗ x0)
= λϕ(x0 ⊗ x+ x⊗ x0)+ϕ(x0⊗ y+ y⊗ x0)
= λ (Tx0⊗Tx+Tx⊗Tx0)+Tx0⊗Ty+Ty⊗Tx0

= Tx0⊗ (λTx+Ty)+ (λTx+Ty)⊗Tx0,

which implies

Tx0 ⊗
(
T (λx+ y)− (λTx+Ty)

)
+

(
T (λx+ y)− (λTx+Ty)

)⊗Tx0 = 0

and we finally conclude that T is linear as well. Furthermore, for all x ∈ H ,

‖Tx‖2 = ‖Tx⊗Tx‖ = ‖ϕ(x⊗ x)‖ � ‖ϕ‖ · ‖x⊗ x‖ = ‖ϕ‖ · ‖x‖2,

hence T ∈ B(H ).
For all x,y,z ∈ H ,

〈T (x⊗ x)Tty,z〉 = 〈Tty,x〉〈Tx,z〉 = 〈Tx,y〉〈Tx,z〉
= 〈y,Tx〉〈Tx,z〉 = 〈(Tx⊗Tx)y,z〉 = 〈ϕ(x⊗ x)y,z〉.

Hence, ϕ(X) = TXTt for all rank one X ∈ S (H ). By Lemma 2.3, we conclude that
such T is unique, up to a sign.

It remains to prove that T is injective. Let x ∈ H be such that Tx = 0. Then
ϕ(x⊗ x) = 0, thus injectivity of ϕ yields x⊗ x = 0 and finally x = 0. �

THEOREM 2.5. Let ϕ : S (H ) → S (H ) be a surjective linear isometry. Then
there exists a unitary U ∈ B(H ) such that

ϕ(X) = UXUt

for all X ∈ S (H ) .
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Proof. If X ∈S (H ) is a rank one operator, then XS (H )X = CX according to
Lemma 2.1. This implies

Cϕ(X) = ϕ(CX) = ϕ(XS (H )X) = ϕ(X)ϕ(S (H ))∗ϕ(X) = ϕ(X)S (H )ϕ(X).

Lemma 2.1 implies that ϕ(X) is rank one as well.
According to Proposition 2.4 there exists U ∈ B(H ) such that

ϕ(X) = UXUt

for all rank one X ∈ S (H ) .
Let X ,Y ∈ S (H ) and let Y be a rank one operator. Then

ϕ(YX∗Y ) = ϕ(Y )ϕ(X)∗ϕ(Y )

implies
ϕ(YX∗Y ) = UYUtϕ(X)∗UYUt ,

that is
ϕ(YX∗Y ) = ϕ(YUtϕ(X)∗UY )

since YUtϕ(X)∗UY ∈ S (H ) is either zero or a rank one operator. Injectivity of ϕ
yields

YX∗Y = YUtϕ(X)∗UY.

Lemma 2.2 implies
X∗ = Utϕ(X)∗U,

hence
X = U∗ϕ(X)(Ut)∗ (5)

for all X ∈ S (H ). Since ϕ is bijective, replacing X with ϕ−1(X) we get

ϕ−1(X) = U∗X(Ut)∗,

that is
X = ϕ(U∗X(Ut)∗)

for all X ∈S (H ). In particular, if X ∈S (H ) is rank one, then U∗X(Ut)∗ ∈S (H )
is either zero or rank one, so we have

X = UU∗X(Ut)∗Ut .

Lemma 2.3 yields UU∗ = I or UU∗ = −I. Since UU∗ is positive, UU∗ = I. Then (5)
implies

ϕ(X) = UXUt (6)

for all X ∈ S (H ). Inserting (6) in (5) we get

X = U∗UXUt(Ut)∗,

thus U∗U = I or U∗U = −I by Lemma 2.3. Since U∗U is positive, U∗U = I. Hence,
U is unitary. �
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REMARK 2.1. The proof of Theorem 2.5 can be obtained using the results from
[1]. However, we decided to prove it via Proposition 2.4 for the sake of completeness,
since we deal with the maps having more properties than those in [1].

COROLLARY 2.6. Let P : S (H ) → S (H ) be a nontrivial linear projection
and λ 	= 1 a modulus one complex number. Then P+λP is an isometry if and only
if λ = −1 and there exists R = R∗ = R2 ∈ B(H ) such that P or P has the form
X 
→ RXRt +(I−R)X(I−Rt).

Proof. According to [9, Theorem 2.3], there are no nontrivial bicircular projec-
tions on S (H ), so [5, Theorem 2.1] implies λ = −1 and P = 1

2(I +ϕ) for some
surjective linear isometry ϕ : S (H )→S (H ) such that ϕ2 = I. According to Theo-
rem 2.5, there exists a unitary U ∈B(H ) such that ϕ(X)=UXUt for all X ∈S (H ) .
Since ϕ2 = I, we get

U2X(Ut)2 = X

for all X ∈ S (H ). Lemma 2.3 implies U2 = I or U2 = −I.
If U2 = I, then P has the form X 
→ RXRt +(I−R)X(I−Rt) with R = 1

2(I−U).
If U2 = −I, then P has the form X 
→ RXRt +(I−R)X(I−Rt) with R = 1

2(I − iU).
In both cases, R = R∗ = R2. �

3. Generalized bicircular projections on A (H )

In the setting of A (H ) we follow the same pattern as in the setting of S (H ),
but the role of rank one operators is now played by rank two operators. However,
as expected, it is more difficult to deal with rank two operators than with rank one
operators.

First recall some well-known facts on rank two operators. If X ∈ B(H ) is rank
two, then its range is a two-dimensional Hilbert space. Let {e, f} be an orthonormal
basis for the range of X . There exist linear functionals f ,g on H such that Xξ =
f (ξ )e+g(ξ ) f for all ξ ∈ H . Since f (ξ ) = 〈Xξ ,e〉, we conclude that f is bounded.
If we define X1ξ = f (ξ )e for all ξ ∈ H , then X1 ∈ B(H ) is rank one. Analogously,
X2ξ = g(ξ ) f defines a rank one X2 ∈ B(H ). Hence, X is a sum of two rank one
operators in B(H ).

LEMMA 3.1. If X ∈ A (H ) is a rank two operator, then there exist x,y ∈ H
such that X = x⊗ y− y⊗ x.

Proof. Let X = x⊗ u+ v⊗w with x,u,v,w ∈ H and x,v linearly independent.
Since X ∈ A (H ),

x⊗u+ v⊗w = −u⊗ x−w⊗ v.

This implies
〈u,ξ 〉x+ 〈w,ξ 〉v+ 〈x,ξ 〉u+ 〈v,ξ 〉w= 0 (7)
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for all ξ ∈ H . Since x and v are linearly independent, there exists ξ1 ∈ H such
that 〈v,ξ1〉 = 0 and 〈x,ξ1〉 = 1. Then (7) implies u = αx + βv for some α,β ∈ C.
Furthermore, there exists ξ2 ∈ H such that 〈x,ξ2〉 = 0 and 〈v,ξ2〉 = 1, so (7) implies
w = γx+ δv for some γ,δ ∈ C. Now (7) can be written as

〈2αx+(β + γ)v,ξ 〉x+ 〈(β + γ)x+2δv,ξ 〉v = 0

for all ξ ∈ H . Since x and v are linearly independent,

2αx+(β + γ)v = (β + γ)x+2δv = 0

and finally α = δ = 0 and γ = −β . Hence, u = βv and w = −βx, thus

X = x⊗βv− v⊗βx = x⊗βv−βv⊗ x.

It remains to put y = βv. �

REMARK 3.1. It is clear that for a rank two X ∈ A (H ) the representation X =
x⊗ y− y⊗ x from Lemma 3.1 is not unique. Namely, if α,β ,γ,δ ∈ C are such that
αδ −βγ = 1 and z = αx+βy, w = γx+ δy, then z⊗w−w⊗ z = x⊗ y− y⊗ x.

Let us prove the converse. Let x,y ∈ H be linearly independent and let z,w ∈H
be linearly independent. Assume that

x⊗ y− y⊗ x = z⊗w−w⊗ z.

Let H1 be the linear subspace of H generated by x and y, and let H2 be the linear
subspace of H generated by z and w. For ξ ∈ H1

⊥ we have

〈w,ξ 〉z−〈z,ξ 〉w = 0.

This implies 〈w,ξ 〉 = 〈z,ξ 〉 = 0, so ξ ∈ H2
⊥. Hence, H1

⊥ ⊆ H2
⊥, which yields

H2 ⊆ H1. Thus, z = αx+βy and w = γx+ δy for some α,β ,γ,δ ∈ C. Then

x⊗ y− y⊗ x = (αδ −βγ)(x⊗ y− y⊗ x),

which implies αδ −βγ = 1.
In particular, if x,y,z ∈ H are such that x⊗ y− y⊗ x = x⊗ z− z⊗ x, then the

above consideration yields z = λx+ y for some λ ∈ C. The converse is trivial.

LEMMA 3.2. Let x,y ∈ H be linearly independent and let z,w ∈ H be linearly
independent. Let T = x⊗ y− y⊗ x and S = z⊗w−w⊗ z. If T + S is rank two, then
the set {x,y,z,w} is linearly dependent.

Proof. According to Lemma 3.1, there exist u,v ∈ H such that T +S = u⊗ v−
v⊗u. Then

x⊗ y− y⊗ x+ z⊗w−w⊗ z = u⊗ v− v⊗u.



248 A. FOŠNER AND D. ILIŠEVIĆ

Let H0 be the linear subspace of H generated by {x,y,z}. For all ξ ∈ H0
⊥ we

have
〈w,ξ 〉z = 〈v,ξ 〉u−〈u,ξ 〉v.

We consider three cases.
(i) If 〈u,ξ 〉= 〈v,ξ 〉= 0 for all ξ ∈H ⊥

0 , then w ∈ H0. Hence, w = αx+βy+ γz
for some α,β ,γ ∈ C.

(ii) If there exists ξ ∈H ⊥
0 such that 〈u,ξ 〉 	= 0, then v =αu+β z for some α,β ∈

C. Then T + S = βu⊗ z− z⊗βu, which implies T = (βu +w)⊗ z− z⊗ (βu+w).
According to Remark 3.1, z is a linear combination of x and y. Hence, the set {x,y,z}
is linearly dependent, and so is {x,y,z,w}.

(iii) The case when 〈v,ξ 〉 	= 0 for some ξ ∈H ⊥
0 is analogous to the case (ii). �

LEMMA 3.3. Let T,S ∈ A (H ) be rank two operators such that T + S is also
rank two. Then there exists x ∈ H such that T = x⊗ y− y⊗ x and S = x⊗ z− z⊗ x
for some y,z ∈ H . If T and S are linearly independent, such x ∈ H is unique, up to
a scalar multiple.

Proof. According to Lemma 3.1, there exist a,b,c,d ∈ H such that T = a⊗b−
b⊗ a and S = c⊗ d − d ⊗ c. Lemma 3.2 implies that the set {a,b,c,d} is linearly
dependent. Without loss of generality, we may assume that there exist α,β ,γ ∈ C such
that d = αa+βb+ γc, thus S = c⊗ (αa+βb)− (αa+βb)⊗ c.

If β = 0, then d = αa+ γc and S = a⊗ (−αc)− (−αc)⊗a . It remains to define
x = a, y = b, z = −αc.

If β 	= 0, we have T = 1
β a⊗ (αa+βb)− (αa+βb)⊗ 1

β a. We define x = αa+
βb, y = − 1

β a, z = −c.
Assume that there exist u,v,w ∈ H such that T = u⊗ v− v⊗u and S = u⊗w−

w⊗ u. By Remark 3.1, u = αx + βy = γx+ δ z for some α,β ,γ,δ ∈ C. If T and S
are linearly independent, {x,y,z} is linearly independent. Thus, α = γ and β = δ = 0.
This implies u = αx. �

REMARK 3.2. Let {x,y,z} be a linearly independent subset of H . Define T =
x⊗ y− y⊗ x, S = x⊗ z− z⊗ x, W = y⊗ z− z⊗ y. Let λ ,μ ,ν ∈ C be such that λT +
μS+νW = 0. Then, for all ξ ∈ H ,

〈λy+ μz,ξ 〉x+ 〈−λx+νz,ξ 〉y+ 〈−μx−νy,ξ 〉z= 0,

which implies λy + μz = −λx + νz = −μx− νy = 0, and finally λ = μ = ν = 0.
Hence, {T,S,W} is a linearly independent subset of A (H ).

LEMMA 3.4. Let x ∈ H be nonzero and let Ω = {x⊗ y− y⊗ x : y ∈ H }. Let
{T,S,W} be a linearly independent set of rank two operators in A (H ) such that
T,S ∈ Ω, W /∈ Ω, and such that T +W and S +W are rank two. Then there exist
unique y,z ∈ H and μ ∈ C such that

T = x⊗ y− y⊗ x, S = x⊗ z− z⊗ x, W = μ(y⊗ z− z⊗ y).
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Proof. Let T = x⊗u−u⊗x, S = x⊗v−v⊗x for some u,v∈H . Since T +W is
rank two, Lemma 3.3 implies the existence of p,q,r ∈H such that T = p⊗q−q⊗ p,
W = p⊗ r − r⊗ p. By Remark 3.1, p = α1x + β1u for some α1,β1 ∈ C, β1 	= 0.
Since S +W is also rank two, Lemma 3.2 implies that the set {x,v, p,r} is linearly
dependent. Then the set {x,u,v,r} is also linearly dependent. Since {x,u,v} is linearly
independent, we may write r = α2x+β2u+ γ2v for some α2,β2,γ2 ∈ C. Then

W = (α1β2−α2β1)(x⊗u−u⊗ x)+α1γ2(x⊗ v− v⊗ x)+β1γ2(u⊗ v− v⊗u).

If we define V = u⊗v−v⊗u, then W = αT +βS+ γV for some α,β ,γ ∈ C. Clearly,
γ 	= 0. We write

W = γ
((β

γ
x+u

)
⊗

(
− α

γ
x+ v

)
−

(
− α

γ
x+ v

)
⊗

(β
γ

x+u
))

.

It remains to define μ = γ, y = β
γ x+u, z = −α

γ x+ v.
Let us prove that this representation is unique. Assume that there exist y1,z1 ∈H

and μ1 ∈ C such that

T = x⊗ y1− y1⊗ x, S = x⊗ z1− z1⊗ x, W = μ1(y1⊗ z1− z1⊗ y1).

According to Remark 3.1, there exist α,β ∈ C such that y1 = αx + y, z1 = βx + z.
Thus,

W = μ1
(
α(x⊗ z− z⊗ x)−β (x⊗ y− y⊗ x)+ (y⊗ z− z⊗ y)

)
= −βμ1T +αμ1S+

μ1

μ
W.

Since the set {T,S,W} is linearly independent, μ1 = μ , α = β = 0. �

LEMMA 3.5. Let Γ ⊆ A (H ) be a set of rank two operators such that T + S is
either zero or a rank two operator for all T,S ∈ Γ. If Γ is not contained in a three-
dimensional subspace of A (H ), then there exists a unique (up to a scalar multiple)
x ∈ H such that Γ⊆ {x⊗ y− y⊗ x : y ∈ H }.

Proof. Let T,S∈ Γ be linearly independent. By Lemma 3.3, there exists a unique,

up to a scalar multiple, x ∈ H such that T,S ∈ {x⊗ y− y⊗ x : y ∈ H } de f
= Ω.

Suppose that there exists V in Γ which is not in Ω. Then T +V and S +V are
rank two. By Lemma 3.4, there exist unique y,z ∈ H and μ ∈ C such that

T = x⊗ y− y⊗ x, S = x⊗ z− z⊗ x, V = μ(y⊗ z− z⊗ y).

Since T and S are linearly independent, {x,y,z} is linearly independent, thus {T,S,V}
is linearly independent by Remark 3.2. Since Γ is not contained in a three-dimensional
subspace of A (H ), there exists W ∈ Γ such that {T,S,V,W} is linearly independent.
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If W /∈ Ω, then Lemma 3.4 implies the existence of unique u,v ∈ H and ν ∈ C

such that

T = x⊗u−u⊗ x, S = x⊗ v− v⊗ x, W = ν(u⊗ v− v⊗u).

Remark 3.1 yields u =αx+y and v = βx+z for some α,β ∈C. Then W = ν(−βT +
αS+ 1

μV ), which is in contradiction with linear independence of {T,S,V,W}.
If W ∈Ω, then Lemma 3.4 applied to T, W and V implies the existence of unique

p,q ∈ H and τ ∈ C such that

T = x⊗ p− p⊗ x, W = x⊗q−q⊗ x, V = τ(p⊗q−q⊗ p).

Now we have V = μ(y⊗ z− z⊗ y) = τ(p⊗ q− q⊗ p). According to Remark 3.1,
q = γy+δ z for some γ,δ ∈ C. Then W = x⊗q−q⊗ x = γT +δS, which contradicts
the fact that {T,S,W} is linearly independent.

Hence, Γ⊆Ω. �

LEMMA 3.6. A nonzero operator X ∈A (H ) is rank two if and only if XA (H )X
= CX .

Proof. If X ∈ A (H ) is rank two, then there exist x,y ∈ H such that X = x⊗
y− y⊗ x. For all Y ∈ A (H ) and z ∈ H we have

XYXz = (x⊗ y− y⊗ x)Y (x⊗ y− y⊗ x)z
= (x⊗ y− y⊗ x)(〈z,y〉Yx−〈z,x〉Yy)
= 〈z,y〉(〈Yx,y〉x−〈Yx,x〉y)−〈z,x〉(〈Yy,y〉x−〈Yy,x〉y)
= 〈z,y〉〈Yx,y〉x+ 〈z,x〉〈Yy,x〉y
= 〈Yx,y〉(〈z,y〉x−〈z,x〉y)
= 〈Yx,y〉(x⊗ y− y⊗ x)z = 〈Yx,y〉Xz.

Hence, XA (H )X ⊆ CX . Analogously as in the proof of Lemma 2.1 we get CX ⊆
XA (H )X .

Let us assume that a nonzero X ∈ A (H ) has the property XA (H )X = CX .
There exists λ ∈Λ such that Xeλ 	= 0. Then there exists μ ∈Λ such that 〈Xeλ ,eμ〉 	= 0.
Since X ∈A (H ), μ 	= λ . If we assume that Xeμ = 0, then 〈Xeλ ,eμ〉=−〈Xeμ ,eλ 〉=
0; a contradiction. Hence, Xeμ 	= 0 as well. In particular, there exists α ∈ C such that
X(eλ ⊗ eμ − eμ ⊗ eλ )X = αX . This implies, for all x ∈ H ,

〈Xx,eμ〉Xeλ −〈Xx,eλ 〉Xeμ = αXx. (8)

If α = 0, then
〈Xx,eμ〉Xeλ = 〈Xx,eλ 〉Xeμ

for all x ∈ H . In particular, for x = eλ we get

〈Xeλ ,eμ〉Xeλ = 0,
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a contradiction. Therefore, α 	= 0. Hence, (8) implies

Xx =
1
α
〈Xx,eμ〉Xeλ −

1
α
〈Xx,eλ 〉Xeμ .

Let δ ,ε ∈ C be such that δXeλ + εXeμ = 0. Then

0 = δ 〈Xeλ ,eμ〉+ ε〈Xeμ ,eμ〉 = δ 〈Xeλ ,eμ〉,

which implies δ = 0, thus ε = 0 as well. Hence, the set {Xeλ ,Xeμ} is linearly inde-
pendent. Thus, X is rank two. �

LEMMA 3.7. If A ∈ A (H ) is such that XAX = 0 for all rank two operators
X ∈ A (H ), then A = 0.

Proof. If A 	= 0, then there exist x,y ∈ H such that 〈Ax,y〉 	= 0. Since A ∈
A (H ), x and y are linearly independent. In the same manner as in the proof of
Lemma 3.6, for X = x⊗ y− y⊗ x we get

0 = XAX = 〈Ax,y〉X ,

a contradiction. Hence, A = 0. �

LEMMA 3.8. If A ∈ B(H ) is such that AXAt = X for all rank two operators
X ∈ A (H ), then A = I or A = −I.

Proof. For all λ ,μ ∈ Λ, λ 	= μ , we have

A(eλ ⊗ eμ − eμ⊗ eλ )Ateμ = (eλ ⊗ eμ− eμ ⊗ eλ )eμ ,

which implies
〈Ateμ ,eμ〉Aeλ −〈Ateμ ,eλ 〉Aeμ = eλ ,

that is
〈Aeμ ,eμ〉Aeλ −〈Aeλ ,eμ〉Aeμ = eλ . (9)

Let η ∈ Λ be such that η 	= λ and η 	= μ . Replacing λ with η in (9), we get

〈Aeμ ,eμ〉Aeη −〈Aeη ,eμ〉Aeμ = eη . (10)

Then 〈Aeμ ,eμ〉 	= 0 or 〈Aeη ,eμ〉 	= 0. From (9) we get

〈Aeμ ,eμ〉〈Aeλ ,eη〉 = 〈Aeλ ,eμ〉〈Aeμ ,eη〉. (11)

Interchanging the roles of μ and η , (11) becomes

〈Aeη ,eη 〉〈Aeλ ,eμ〉 = 〈Aeλ ,eη 〉〈Aeη ,eμ〉. (12)
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If 〈Aeμ ,eμ〉 	= 0, divide (11) by 〈Aeμ ,eμ〉 and substitute 〈Aeλ ,eη〉 into (12). If 〈Aeη ,eμ〉
	= 0, divide (12) by 〈Aeη ,eμ〉 and substitute 〈Aeλ ,eη〉 into (11). In both cases we get

〈Aeλ ,eμ〉(〈Aeη ,eη 〉〈Aeμ ,eμ〉− 〈Aeμ ,eη 〉〈Aeη ,eμ〉) = 0,

that is
〈Aeλ ,eμ〉

〈〈Aeμ ,eμ〉Aeη −〈Aeη ,eμ〉Aeμ ,eη
〉

= 0,

which implies, by (10), 〈Aeλ ,eμ〉 = 0 for all λ ,μ ∈ Λ, λ 	= μ . Substituting this into
(9) we get

〈Aeμ ,eμ〉Aeλ = eλ , (13)

which implies
〈Aeμ ,eμ〉〈Aeλ ,eλ 〉 = 1 (14)

for all λ ,μ ∈ Λ, λ 	= μ . Let η ∈ Λ, η 	= λ , η 	= μ . We have

〈Aeμ ,eμ〉2 = 〈Aeμ ,eμ〉2(〈Aeλ ,eλ 〉〈Aeη ,eη〉)
= (〈Aeλ ,eλ 〉〈Aeμ ,eμ〉)(〈Aeμ ,eμ〉〈Aeη ,eη〉) = 1

for all μ ∈ Λ. By (14), either 〈Aeμ ,eμ〉 = 1 for all μ ∈ Λ, or 〈Aeμ ,eμ〉 = −1 for all
μ ∈ Λ. By (13), either Aeλ = eλ for all λ ∈ Λ, or Aeλ = −eλ for all λ ∈ Λ, and the
lemma follows. �

PROPOSITION 3.9. Let ϕ : A (H )→A (H ) be a bounded injective linear map
preserving rank two operators in both directions. Then there exists a unique (up to a
sign) T ∈ B(H ) such that

ϕ(X) = TXTt

for all rank two X ∈ A (H ) . Furthermore, T is injective.

Proof. Let x∈H be nonzero and let Γx = {ϕ(x⊗y−y⊗x) : y∈H }. Then Γx ⊆
A (H ) is a set of rank two operators and zero, and the sum of any two operators in Γx

is either zero or rank two. Assume that Γx is contained in a three-dimensional subspace
of A (H ). Let y,z,w ∈ H be such that the set {x,y,z,w} is linearly independent.
Suppose that

αϕ(x⊗ y− y⊗ x)+βϕ(x⊗ z− z⊗ x)+ γϕ(x⊗w−w⊗ x) = 0

for some α,β ,γ ∈ C. Linearity and injectivity of ϕ then imply

x⊗ (αy+β z+ γw)− (αy+β z+ γw)⊗ x = 0.

Then there exists δ ∈ C such that αy + β z + γw = δx. Since {x,y,z,w} is linearly
independent, α = β = γ = δ = 0. Hence,

{ϕ(x⊗ y− y⊗ x), ϕ(x⊗ z− z⊗ x), ϕ(x⊗w−w⊗ x)} ⊆ Γx



GENERALIZED BICIRCULAR PROJECTIONS VIA RANK PRESERVING MAPS 253

is linearly independent. Then for every v ∈ H there exist α(v), β (v), γ(v) ∈ C such
that

ϕ(x⊗v−v⊗x) = α(v)ϕ(x⊗y−y⊗x)+β (v)ϕ(x⊗ z− z⊗x)+ γ(v)ϕ(x⊗w−w⊗x),

which yields

x⊗ v− v⊗ x = x⊗ (α(v)y+β (v)z+ γ(v)w)− (α(v)y+β (v)z+ γ(v)w)⊗ x.

Remark 3.1 implies the existence of δ (v) ∈ C such that

v = α(v)y+β (v)z+ γ(v)w+ δ (v)x.

Hence, {x,y,z,w} is a basis for H , which is impossible.
According to Lemma 3.5, for every x ∈ H there exists a unique, up to a scalar

multiple, ux ∈ H such that Γx ⊆ {ux⊗ v− v⊗ux : v ∈ H }. Let us fix such a ux and
define Sx = ux, x ∈ H . Let Ωx = {Sx⊗ v− v⊗Sx : v ∈ H }.

Let x,y ∈ H be linearly independent. Since ϕ(x⊗ y− y⊗ x) ∈ Ωx ∩Ωy, there
exist ux,y,vx,y ∈ C such that

ϕ(x⊗ y− y⊗ x) = Sx⊗ux,y−ux,y⊗Sx = Sy⊗ vx,y− vx,y⊗Sy.

By Remark 3.1, there exist α(x,y),β (x,y) ∈ C such that

Sy = α(x,y)Sx+β (x,y)ux,y.

This implies
Sx⊗Sy−Sy⊗Sx = β (x,y)ϕ(x⊗ y− y⊗ x). (15)

Assume β (x,y) = 0. Then Sy = α(x,y)Sx. Let z ∈ H be such that {x,y,z} is linearly
independent. Then

β (y,z)ϕ(y⊗ z− z⊗ y) = Sy⊗Sz−Sz⊗Sy

= α(x,y)(Sx⊗Sz−Sz⊗Sx)
= α(x,y)β (x,z)ϕ(x⊗ z− z⊗ x),

which implies β (y,z) = β (x,z) = 0. Hence, Sz = α(x,z)Sx. Let w ∈ H be such
that {x,y,z,w} is linearly independent. Since ϕ(z⊗w−w⊗ z) ∈ Ωx, the operator
ϕ(x⊗ y− y⊗ x+ z⊗w−w⊗ z) is in Ωx as well, in particular, it is either zero or rank
two. If it is rank two, since ϕ is rank two preserving in both directions, Lemma 3.2
implies that {x,y,z,w} is linearly dependent; if it is zero, the same conclusion follows
from injectivity of ϕ and Remark 3.1. Since this contradicts the fact that {x,y,z,w} is
linearly independent, β (x,y) 	= 0. If we put μ(x,y) = 1

β (x,y) , then (15) implies

ϕ(x⊗ y− y⊗ x) = μ(x,y)(Sx⊗Sy−Sy⊗Sx) (16)

for all linearly independent x,y ∈ H . Obviously, μ(x,y) = μ(y,x).
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Let x,y ∈ H be linearly independent. Inserting x+ y instead of x in (16), we get

ϕ(x⊗ y− y⊗ x) = μ(x+ y,y)(S(x+ y)⊗Sy−Sy⊗S(x+ y)). (17)

Comparing (16) and (17), we conclude, by Remark 3.1,

μ(x+ y,y)S(x+ y) = μ(x,y)Sx+ν(x,y)Sy (18)

for some ν(x,y) ∈ C. Let w ∈H be such that the set {x,y,w} is linearly independent.
Then (18) implies

μ(x+ y,y)
(
S(x+ y)⊗Sw−Sw⊗S(x+ y)

)
= μ(x,y)(Sx⊗Sw−Sw⊗Sx)+ν(x,y)(Sy⊗Sw−Sw⊗Sy),

that is

μ(x+ y,y)
μ(x+ y,w)

(
ϕ(x⊗w−w⊗ x)+ϕ(y⊗w−w⊗ y)

)

=
μ(x,y)
μ(x,w)

ϕ(x⊗w−w⊗ x)+
ν(x,y)
μ(y,w)

ϕ(y⊗w−w⊗ y),

and finally
μ(x+ y,y)
μ(x+ y,w)

=
μ(x,y)
μ(x,w)

=
ν(x,y)
μ(y,w)

.

Hence,
μ(x,w)
μ(y,w)

=
μ(x,y)
ν(x,y)

(19)

for all w∈H such that {x,y,w} is linearly independent. Let α,β ∈ C\{0}. If t ∈H
is such that {x,y, t} is linearly independent, then the sets {x,t,αx+βy} and {y,t,αx+
βy} are linearly independent as well. Thus, using (19) several times, we get

μ(x,αx+βy)
μ(y,αx+βy)

=
μ(x,αx+βy)
μ(t,αx+βy)

· μ(t,αx+βy)
μ(y,αx+βy)

=
μ(x,t)
ν(x,t)

· ν(y,t)
μ(y,t)

=
μ(x,t)
μ(y,t)

· ν(y,t)
ν(x,t)

=
μ(x,t)
μ(y,t)

· ν(y,t)μ(y,x)
ν(x,t)μ(x,y)

=
μ(x,t)
μ(y,t)

· μ(y,t)μ(t,x)
μ(x,t)μ(t,y)

=
μ(x,t)
μ(y,t)

.

By (19), this yields
μ(x,αx+βy)
μ(y,αx+βy)

=
μ(x,y)
ν(x,y)

. (20)
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Now (19) and (20) imply
μ(x,w)
μ(y,w)

=
μ(x,y)
ν(x,y)

(21)

for all w ∈ H such that {x,w} and {y,w} are linearly independent.
From now on, z is a fixed nonzero element in H . Define ν(x) = ν(x,z) for all

x ∈ H linearly independent with z. Then

ν(x) =
μ(x,z)μ(z,y)

μ(x,y)
(22)

for all x,y ∈ H such that {x,y}, {x,z}, {y,z} are linearly independent. Notice that,
for all such x,y ∈ H , we have

ν(y) =
μ(y,z)μ(z,x)

μ(y,x)
=

μ(x,z)μ(z,y)
μ(x,y)

= ν(x). (23)

Fix a nonzero α ∈ C. Inserting αx instead of x in (16), we get

αϕ(x⊗ y− y⊗ x) = μ(αx,y)(S(αx)⊗Sy−Sy⊗S(αx)). (24)

Comparing (16) and (24) and using Remark 3.1, we get

μ(αx,y)S(αx) = αμ(x,y)Sx+ τ(x,y)Sy (25)

for some τ(x,y) ∈ C. Let w ∈ H be linearly independent with x. Then

μ(αx,w)S(αx) = αμ(x,w)Sx+ τ(x,w)Sw. (26)

Comparing (25) and (26), we get

α
μ(x,y)
μ(αx,y)

Sx+
τ(x,y)
μ(αx,y)

Sy = α
μ(x,w)
μ(αx,w)

Sx+
τ(x,w)
μ(αx,w)

Sw,

which implies

τ(x,y)
μ(αx,y)

(Sx⊗Sy−Sy⊗Sx) =
τ(x,w)
μ(αx,w)

(Sx⊗Sw−Sw⊗Sx).

This yields, by (16),

τ(x,y)
μ(αx,y)μ(x,y)

ϕ(x⊗ y− y⊗ x) =
τ(x,w)

μ(αx,w)μ(x,w)
ϕ(x⊗w−w⊗ x).

In particular, for w ∈ H such that {x,y,w} is linearly independent, we conclude
τ(x,y) = 0. Hence, (25) can be written as

μ(αx,y)S(αx) = αμ(x,y)Sx. (27)
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Therefore,
μ(αx,y)
μ(x,y)

=
αSx

S(αx)

for all x,y ∈ H such that {x,y} is linearly independent. This implies

μ(αx,y)
μ(x,y)

=
μ(αx,w)
μ(x,w)

(28)

for all x,y,w ∈ H such that {x,y}, {x,w} are linearly independent.
Let α ∈ C be nonzero and let x ∈ H be linearly independent with z. Let y ∈ H

be such that {x,y}, {y,z} are linearly independent. By (22) and (28), we have

ν(αx) =
μ(αx,z)μ(z,y)

μ(αx,y)
=

μ(x,z)μ(z,y)
μ(x,y)

= ν(x). (29)

By (23) and (29), ν(x) is a constant for all x ∈ H linearly independent with z; let us
denote it by ν. Let w ∈ H be linearly independent with z and define, for all nonzero
λ ∈ C,

μ(λ z,z) = ν
μ(λ z,w)
μ(z,w)

.

By (28), μ(λ z,z) does not depend on the choice of w. We have

ν =
μ(λ z,z)μ(z,w)

μ(λ z,w)
(30)

for all w ∈ H linearly independent with z. According to (22) and (30), for all linearly
independent x,y ∈ H we have

ν =
μ(x,z)μ(z,y)

μ(x,y)
. (31)

Define Tx = ν−1/2μ(x,z)Sx for all nonzero x ∈ H , and Tx = 0 for x = 0.
Let x,y ∈ H be linearly independent. Using (31) and (16), we get

Tx⊗Ty−Ty⊗Tx = ν−1μ(x,z)μ(z,y)(Sx⊗Sy−Sy⊗Sx)
= μ(x,y)(Sx⊗Sy−Sy⊗Sx) = ϕ(x⊗ y− y⊗ x).

Let us prove linearity of T. Let x,y ∈ H be linearly independent. By (31),

μ(x,y)
μ(x,z)

=
μ(z,y)
ν

,
μ(x+ y,y)
μ(x+ y,z)

=
μ(z,y)
ν

,

hence
μ(x,y)

μ(x+ y,y)
=

μ(x,z)
μ(x+ y,z)

. (32)

According to (21),

ν(x,y) =
μ(x,y)μ(x+ y,y)

μ(x+ y,x)
,
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which, together with (32), implies

ν(x,y)
μ(x+ y,y)

=
μ(y,z)

μ(x+ y,z)
. (33)

Then (18) implies, using (32) and (33),

S(x+ y) =
μ(x,y)

μ(x+ y,y)
Sx+

ν(x,y)
μ(x+ y,y)

Sy

=
μ(x,z)

μ(x+ y,z)
Sx+

μ(y,z)
μ(x+ y,z)

Sy

=
1

ν−1/2μ(x+ y,z)
(Tx+Ty)

and finally T (x+ y) = Tx+Ty. Let α ∈ C and x ∈ H be nonzero. By (31),

μ(x,y)
μ(x,z)

=
μ(z,y)
ν

,
μ(αx,y)
μ(αx,z)

=
μ(z,y)
ν

,

which implies
μ(x,y)
μ(αx,y)

=
μ(x,z)
μ(αx,z)

.

According to (27),

S(αx) = α
μ(x,y)
μ(αx,y)

Sx = α
μ(x,z)
μ(αx,z)

Sx =
1

ν−1/2μ(αx,z)
αTx

and finally T (αx) = αTx.
For all x,y ∈ H and all λ ,μ ∈ Λ we have

〈T (x⊗ y)Tteλ ,eμ〉 = 〈Tteλ ,y〉〈Tx,eμ〉 = 〈Ty,eλ 〉〈Tx,eμ〉
= 〈eλ ,Ty〉〈Tx,eμ〉 = 〈(Tx⊗Ty)eλ ,eμ〉.

Hence, T (x⊗ y)Tt = Tx⊗Ty. Since T is additive, we conclude, for all linearly inde-
pendent x,y ∈ H ,

ϕ(x⊗ y− y⊗ x) = T (x⊗ y− y⊗ x)Tt .

Thus, ϕ(X) = TXTt for all rank two X ∈ A (H ).
Furthermore, for all linearly independent x,y ∈ H , we have

‖Tx⊗Ty−Ty⊗Tx‖ = ‖ϕ(x⊗ y− y⊗ x)‖ � ‖ϕ‖ · ‖x⊗ y− y⊗ x‖.

If {x,y} is linearly dependent, then linearity of T yields that {Tx,Ty} is linearly de-
pendent as well. Hence,

‖Tx⊗Ty−Ty⊗Tx‖ � ‖ϕ‖ · ‖x⊗ y− y⊗ x‖
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holds for all x,y ∈ H . Let (yn) be a sequence in H such that yn → 0 and Tyn → w
for some w ∈ H . Then

‖Tx⊗Tyn−Tyn⊗Tx‖ � ‖ϕ‖ · ‖x⊗ yn− yn⊗ x‖.
After taking the limits, we conclude

Tx⊗w−w⊗Tx = 0

for all x ∈ H . Assume w 	= 0. Then for every x ∈ H there exists γ(x) ∈ C such that
Tx = γ(x)w. If x and y are linearly independent, then

ϕ(x⊗ y− y⊗ x) = Tx⊗Ty−Ty⊗Tx

= γ(x)w⊗ γ(y)w− γ(y)w⊗ γ(x)w = 0.

Since ϕ is injective, this is impossible. Hence, w = 0. According to the closed graph
theorem, T is bounded.

Let us prove that T is injective. Suppose that there exists a nonzero x ∈ H such
that Tx = 0. Then ϕ(x⊗ y− y⊗ x) = 0 for all y ∈ H . Since ϕ is injective, this yields
that {x,y} is a linearly dependent set for all y ∈ H ; a contradiction.

Let V ∈ B(H ) be such that ϕ(X) = VXVt for all rank two X ∈ A (H ). Let
x ∈ H be nonzero and let y ∈ H be linearly independent with x. Then we have

Vx⊗Vy−Vy⊗Vx = Tx⊗Ty−Ty⊗Tx, (34)

and Remark 3.1 implies
Vx = α(x,y)Tx+β (x,y)Ty. (35)

Analogously, if w ∈ H is such that {x,y,w} is linearly independent, we get

Vx = α(x,w)Tx+β (x,w)Tw. (36)

Since T is linear and injective, comparing of (35) and (36) yields
(
α(x,y)−α(x,w)

)
x+β (x,y)y−β (x,w)w = 0.

Since {x,y,w} is linearly independent, α(x,y) = α(x,w) and β (x,y) = β (x,w) = 0.
Then Vx = α(x,y)Tx. Analogously, Vy = α(y,x)Ty. Inserting this in (34), we get
α(x,y)α(y,x) = 1. Hence,

1 =
(
α(x,y)α(y,x)

)(
α(x,w)α(w,x)

)(
α(y,w)α(w,y)

)
=

(
α(x,y)α(x,w)

)(
α(y,x)α(y,w)

)(
α(w,x)α(w,y)

)
= α(x,y)2α(y,w)2α(w,y)2

= α(x,y)2(α(y,w)α(w,y)
)2 = α(x,y)2,

which implies α(x,y) = 1 or α(x,y) = −1. Hence, for every x ∈ H , Vx = Tx or
Vx = −Tx. If Vx = Tx for some x ∈ H , then (34) yields Vx = Tx for all x ∈ H ,
hence V = T. Analogously, if Vx = −Tx for some x ∈ H , then V = −T. �
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REMARK 3.3. As far as we know, linear maps on A (H ) preserving rank two
operators have been studied only in the finite dimensional (matrix) case, see [2, Theo-
rem 2.4].

Based on Lemmas 3.6, 3.7, 3.8 and Proposition 3.9 one can prove the following
result in an analogous way as Theorem 2.5. Let us emphasize that the assumption that
ϕ is a surjective linear isometry yields not only that ϕ preserves rank two operators,
but that it preserves rank two operators in both directions.

THEOREM 3.10. Let ϕ : A (H )→A (H ) be a surjective linear isometry. Then
there exists a unitary U ∈ B(H ) such that

ϕ(X) = UXUt

for all X ∈ A (H ) .

Theorem 3.10 together with [9, Theorem 2.5] and [5, Theorem 2.1] yields the
following corollary.

COROLLARY 3.11. Let P : A (H ) → A (H ) be a nontrivial linear projection
and λ 	= 1 a modulus one complex number. Then P+λP is an isometry if and only if
one of the following holds:

(i) λ = −1 and there exists R = R∗ = R2 ∈ B(H ) such that P or P has the form
X 
→ RXRt +(I−R)X(I−Rt),

(ii) P or P has the form X 
→RX +XRt, where R = x⊗x for some norm one x∈H .
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