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ON THE BEST CONSTANTS IN MARKOV–TYPE INEQUALITIES

INVOLVING GEGENBAUER NORMS WITH DIFFERENT WEIGHTS

ALBRECHT BÖTTCHER AND PETER DÖRFLER

(Communicated by F. Kittaneh)

Abstract. The paper is concerned with best constants in Markov-type inequalities between the
norm of a higher derivative of a polynomial and the norm of the polynomial itself. The norm
of the polynomial is taken in L2 with the Gegenbauer weight corresponding to a parameter α ,
while the derivative is measured in L2 with the Gegenbauer weight for a parameter β . Under
the assumption that β −α is an integer, we determine the first order asymptotics of the best
constants as the degree of the polynomial goes to infinity.

1. Introduction and main result

We denote by Pn the linear space of all algebraic polynomials of degree at most
n with complex coefficients. For a real number α > −1, the Gegenbauer norm ‖ · ‖α
is defined by

‖ f‖2
α =

∫ 1

−1
| f (t)|2(1− t2)αdt. (1)

This paper is devoted to the best constant γ in inequalities of the form

‖ f (ν)
n ‖β � γ‖ fn‖α for all fn ∈ Pn, (2)

where α,β > −1 are real numbers and f (ν)
n is the ν th derivative of fn . The problem

of finding the best constant in (2) with two different weights α and β was brought to
our attention by Jürgen Prestin at the Workshop on Approximation Theory and Signal
Analysis in Lindau, Lake Constance, in March 2009. The best constant in (2) depends

on ν,n,α,β and will be denoted by γ(ν)
n (α,β ) . Our main result says that if β −α is

an integer, then there exist numbers Gν(α,β ) and bν(α,β ) such that

γ(ν)
n (α,β ) ∼ Gν(α,β )nbν (α ,β ) as n → ∞

and it provides explicit expressions for Gν (α,β ) and bν(α,β ) . Here and in the fol-
lowing we write xn ∼ yn if xn/yn → 1 as n → ∞ .
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262 A. BÖTTCHER AND P. DÖRFLER

Inequalities of the form (2) are referred to as inequalities of the Markov type, and
we refer to the books [11], [12], [13] for more on this big topic. The Markov brothers

determined the best constant μ (ν)
n in the inequality ‖ f (ν)

n ‖∞ � μ (ν)
n ‖ fn‖∞ for fn ∈ Pn

in case ‖ · ‖∞ is the maximum norm on some segment of the real line. Erhard Schmidt
[15], [16] considered the Legendre case (α = β = 0) and discovered that

γ(1)
n (0,0) ∼ 1

π
n2.

The very recent paper [10] is dedicated to the exact value of γ(1)
n (0,0) . Shampine [17],

[18] proved that

γ(2)
n (0,0) ∼ 1

4k2
0

n4,

where k0 = 1.8751041 . . . can be identified as the smallest positive solution of the equa-
tion 1+ cosk coshk = 0. Konyagin [9] established that

γ(ν)
n (α,β ) �

{
nν if β −α � ν,

n2ν+α−β if β −α < ν,
(3)

where xn � yn means that there are constants 0 < c1 < c2 <∞ such that c1 � xn/yn � c2

for all n . The estimates γ(ν)
n (α,β ) � Cnb with the correct exponent b were already

obtained earlier by Daugavet and Rafal’son [6]. Guessab and Milovanović [7] showed
that

γ(ν)
n (α,α +ν) =

√
n!

(n−ν)!
Γ(n+2α+ν+1)
Γ(n+2α+1)

∼ nν . (4)

See also [1] and Section 6.1.8 of [11]. Finally, in [3], we proved that

γ(ν)
n (α,α) ∼ 1

2ν
‖L∗

ν,α ,α‖∞n2ν , (5)

where L∗
ν,α ,α is the Volterra integral operator on L2(0,1) that is given by

(L∗
ν,α ,α f )(x) =

1
(ν−1)!

∫ x

0
x−α/2yα/2(x− y)ν−1 f (y)dy

and ‖ · ‖∞ denotes the operator norm.

Our aim is to refine estimates (3) to asymptotic equalities, that is, we want to
improve (3) to something like (5). In [4], we were able to solve the analogue of this
problem for the Laguerre norms given by

||| f |||2α =
∫ ∞

0
| f (t)|2tαe−tdt (α > −1).

Let λ (ν)
n (α,β ) be the best constant for which ||| f (ν)

n |||β � λ ||| fn|||α for all fn ∈ Pn .
The result of [4] states that if m = β −α is an integer such that α+m > −1, then

λ (ν)
n (α,α +m) ∼

{
2m−νnm/2 if m � ν,

‖L∗
ν,α ,α+m‖∞nν−m/2 if m < ν,
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where L∗
ν,α ,α+m is given on L2(0,1) by

(L∗
ν,α ,α+m f )(x) =

1
(ν−m−1)!

∫ x

0
x−α/2y(α+m)/2(x− y)ν−m−1 f (y)dy.

Here is the main result of the present paper.

THEOREM 1.1. Let α > −1 be a real number and let m be an integer such that
α +m > −1 . Then

γ(ν)
n (α,α +m) ∼

{
nν if m � ν,

1
2ν−m ‖L∗

ν,α ,α+m‖∞n2ν−m if m < ν.

Tight estimates for the norms ‖L∗
ν,α ,α+m‖∞ can be obtained as in [3]. In the case

where m = ν−1, we also have the following.

THEOREM 1.2. If α > −1 , then

γ(ν)
n (α,α +ν−1)∼ Gν(α,α +ν−1)nν+1,

where Gν(α,α +ν−1) is 1/(ν+1) times the reciprocal of the smallest positive zero
of the Bessel function J(α−1)/(ν+1) .

Theorem 1.2 implies in particular that

γ(1)
n (0,0) ∼ 1

π
n2, γ(1)

n (2,2) ∼ 1
2π

n2,

γ(2)
n

(
−1

2
,
1
2

)
∼ 2

3π
n3, γ(2)

n

(
5
2
,
7
2

)
∼ 1

3π
n3,

γ(3)
n (3,5) ∼ 1

4π
n4, γ(4)

n

(
7
2
,
13
2

)
∼ 1

5π
n5.

The rest of the paper is devoted to the proofs of Theorems 1.1 and 1.2. In Section 2,
we determine the matrix representation of the operator f �→ f (ν) in orthonormal bases
of Gegenbauer polynomials and in Sections 3 and 4, we then compute the asymptotics
of the spectral norms of the matrices.

We want to remark that our restriction to the case where β −α is an integer comes
from the techniques employed in Sections 3 and 4. The matrix representation of the dif-
ferentiation operator f �→ f (ν) is available without any restriction. But if β −α is an
integer, we can fairly quickly derive asymptotic expressions for the matrix represen-
tation (Lemmas 2.1 and 2.2) and, in addition, an infinite matrix we will encounter in
Section 3 is banded and the kernel (y2 − x2)α+ν−β−1 , which will play a decisive role
in Section 4, is a polynomial in x and y . All these circumstances simplify things es-
sentially. The method of this paper in combination with more elaborate analysis will
probably also work in the case where β −α is not an integer. However, the techni-
cal details would increase the volume of the paper drastically and would also to some
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extent obscure the two ideas underlying Sections 3 and 4. The objective of this paper
is to present a method that allows us to find the asymptotics of the best constants in
Markov-type inequalities with changing weights, and the restriction to the case where
β −α is an integer allows us to do this in a very lucid fashion. We leave the analysis of
the case where β −α is not an integer for future investigations.

2. Gegenbauer polynomials

Let Pn(α) stand for the space Pn with the norm (1). The constant γ(ν)
n (α,β ) is

just the operator norm of the operator Dν : Pn(α)→Pn(β ) , where Dν is the operator
of taking the ν th derivative. We denote by

Pk(t,α) =
1

2kk!
(t2−1)−α

dk

dtk
(t2 −1)α+k

the k th Gegenbauer polynomial and by

P̂k(t,α) =

√
k!(2k+2α+1)Γ(k+2α+1)

22α+1Γ(k+α+1)2 Pk(t,α)

the k th normalized Gegenbauer polynomial for the weight (1− t2)α . We abbreviate
Pk(t,α) and P̂k(t,α) to Pk(α) and P̂k(α) . Then {P̂0(α), . . . , P̂n(α)} and {P̂0(β ), . . . ,
P̂n(β )} are orthonormal bases in Pn(α) and Pn(β ) , respectively. We are interested

in the matrix representation Cn = (c(ν)
jk (α,β ))n

j,k=0 of Dν in this pair of bases. The

entries c(ν)
jk (α,β ) are zero for j > k−ν and are otherwise given by

P̂(ν)
k (α) =

k−ν
∑
j=0

c(ν)
jk (α,β )P̂j(β ). (6)

It is well known that

P̂(ν)
k (α) = ω(ν)

k (α)P̂k−ν(α +ν), (7)

where

ω(ν)
k (α) =

√
k!

(k−ν)!
Γ(k+2α+ν+1)
Γ(k+2α+1)

(8)

(see, e.g., [19, p. 282]). This implies at once that

c(ν)
jk (α,α +ν) =

{
ω(ν)

k (α) for j = k−ν,
0 otherwise.

Hence, if β = α + ν then Cn has only one nonzero diagonal and the operator norm
(= spectral norm) of Cn is the maximum of the absolute values of the entries on this
diagonal. It follows that

γ(ν)
n (α,α +ν) = max

ν�k�n
ω(ν)

k (α) = ω(ν)
n (α),
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which is just Guessab and Milovanivič’s result (4).

Combining (6) and (7) we see that the coefficient c(ν)
jk (α,β ) are determined by

ω(ν)
k (α)P̂k−ν (α +ν) =

k−ν
∑
j=0

c(ν)
jk (α,β )P̂j(β ). (9)

We are thus led to the so-called connection problem for Gegenbauer polynomials. The
solution of this problem is known and can be found in [2, p. 360], [8, p. 291], [14,
p. 587], for example. The formulas given there use the orthogonal polynomials with
respect to the weight (1− t2)α−1/2 and the normalization is that the k th polynomial
assumes the value (2α)k/k! at t = 1, where (z)k := Γ(z+ k)/Γ(z) . Our polynomials
Pk(α) correspond to the weight (1− t2)α and take the value (α+1)k/k! at t = 1 (see,
e.g., [19, p. 283]). Converting the formulas of [2], [8], [14] into our setting we obtain

that c(ν)
jk (α,β ) = 0 if j + k−ν is an odd number and that

c(ν)
jk (α,β ) = ω(ν)

k (α)
δ (α+ν)

k−ν
δ (β )

j

j +β +1/2
(k+ j−ν)/2+β +1/2

× (α +ν−β )(k− j−ν)/2 (α +ν+1/2)(k+ j−ν)/2

((k− j−ν)/2)! (β +1/2)(k+ j−ν)/2
(10)

with

δ (η)
� =

Γ(2η +1)
Γ(η +1)

√
�!(2�+2η+1)

22η+1Γ(�+2η+1)

if j + k−ν is an even number.

Our proof of Theorem 1.1 splits into two parts, one for β � α + ν and the other
one for β < α + ν , and the arguments we will employ differ in the two parts. For
β � α +ν , it will turn out to be more convenient to express things in slightly different
terms. Let β = α+ν+ μ with an integer μ � 0. From (6) we infer that

P̂k(α) =
k

∑
j=0

c(0)
jk (α,α +ν+ μ)P̂j(α +ν+ μ),

and the connection formula implies that the sum is actually over j = k− 2� with 0 �
� � μ . Thus, we may write

P̂k(α) =
μ

∑
�=0

q�k(α,μ)P̂k−2�(α +ν+ μ) (11)

with certain coefficients q�k(α,μ) . Using (10) one can show the following.

LEMMA 2.1. For each fixed � ,

q�k(α,μ) = (−1)�
(μ

�

) 1
2μ

+O

(
1
k

)
as k → ∞.
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In the case where β < α + ν , we will use the following result, which can be derived
from (10).

LEMMA 2.2. Let β = α +ν−1− μ with some integer μ � 0 and suppose β >
−1 . If j + k−ν is even, then

c(ν)
jk (α,β ) =

1
2μ−1μ!

j1/2+β k1/2−αR2μ( j,k)
(

1+O

(
1
j

))(
1+O

(
1
k

))

where R2μ( j,k) is a polynomial in j and k of the form

R2μ( j,k) = (k2 − j2)μ + ∑
σ+τ<2μ

rσ τ jσkτ .

3. Proof of the main result for m � ν

The case m = ν was already disposed of at the beginning of Section 2. So let
m � ν+1, that is, m = ν+μ with an integer μ � 1. From (7) and (11) we obtain that

P̂(ν)
k (α) = ω(ν)

k (α)P̂k−ν(α +ν)

= ω(ν)
k (α)

[
q0,k−ν(α +ν,μ)P̂k−ν(α +ν+ μ)

+q1,k−ν(α +ν,μ)P̂k−ν−2(α +ν+ μ)+ . . .

+qμ,k−ν(α +ν,μ)P̂k−ν−2μ(α +ν+ μ)
]
.

The coefficient of P̂j(α +ν+μ) in this decomposition is the ( j,k) entry of the matrix
representation Cn of Dν : Pn(α) → Pn(α + ν + μ) . Put N = n− ν + 1. A little
thought reveals that

Cn =
(

0 An

0 0

)
, (12)

where An ∈ R
N×N is upper-triangular and banded. Let us abbreviate ω(ν)

k (α) and
q jk(α +ν,μ) to ωk and q jk . The main diagonal of An is

ωνq00, ων+1q01, . . . , ων+N−1q0,N−1,

the first superdiagonal is zero, the second superdiagonal is

ων+2q12, ων+3q13, . . . , ων+N−1q1,N−1,

the third superdiagonal is again zero and so on. The last nonzero superdiagonal is the
2μ th, and its entries are

ων+2μqμ,2μ , ων+2μ+1qμ,2μ+1, . . . , ων+N−1qμ,N−1.

Thus, we may write An = An,0 +An,1 + . . .+An,μ where An,� has the entries

ων+2�q�,2�, ων+2�+1q�,2�+1, . . . , ων+N−1q�,N−1
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in the 2� th superdiagonal and zeros elsewhere. Consequently,

1
nν

‖An,�‖∞ =
1
nν

max
0�s�N−2�−1

∣∣ων+2�+sq�,2�+s
∣∣ .

From (8) we infer that

ων+2�+s = ω(ν)
ν+2�+s(α) � (ν +2�+ s)ν +E1(ν +2�+ s)ν−1

with some constant E1 < ∞ depending only on α and ν , and since ν + 2� + s �
ν +N−1 = n , it follows that

ων+2�+s � nν−1(ν +2�+ s)+E1n
ν−1 = nν−1(ν +2�+ s+E1).

Lemma 2.1 tells us that

|q�,2�+s| = |q�,2�+s(α +ν,μ)| �
(μ

�

) 1
2μ

+
E2

s+1

where E2 < ∞ depends only on α,ν,μ , � . Thus,

1
nν

|ων+2�+sq�,2�+s| � ν +2�+ s+E1

n

[(μ
�

) 1
2μ

+
E2

s+1

]

=
ν +2�+ s

n

(μ
�

) 1
2μ

+
E2(ν +2�+ s)

n(s+1)
+

E1

n

(μ
�

) 1
2μ

+
E1E2

n(s+1)
.

As ν +2�+ s � n , this is at most

(μ
�

) 1
2μ

+O

(
1
n

)
.

It results that

1
nν

‖An‖∞ � 1
nν

μ

∑
�=0

‖An,�‖∞ �
μ

∑
�=0

(μ
�

) 1
2μ

+O

(
1
n

)

=
(

1
2

+
1
2

)μ
+O

(
1
n

)
= 1+O

(
1
n

)
. (13)

To get a lower estimate for An consider

Bn :=
1
nν

JNAnJN

where JN is the N ×N matrix with ones on the counterdiagonal and zeros elsewhere.
We denote by πN the projection

πN : �2(Z+) → �2(Z+), {x0,x1,x2, . . .} �→ {x0, . . . ,xN−1,0, . . .}.
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Clearly, ‖BnπN‖∞ = ‖Bn‖∞ = ‖An‖∞/nν . Let B be the (simply) infinite lower-triangular
Toeplitz matrix whose 2k th subdiagonal is

(−1)k
(μ

k

) 1
2μ

for 0 � k � μ

and all other entries of which are zero. The so-called symbol of B is the function
(1− z2)μ/2μ and hence (see, for example, [5, page 10]) the operator norm of B on
�2(Z+) is

‖B‖∞ = max
|z|=1

|(1− z2)μ |
2μ

= 1.

We claim that BnπN converges strongly to B as n→∞ . The Banach-Steinhaus theorem
then yields that

1 = ‖B‖∞ � liminf
n→∞

‖BnπN‖∞ = liminf
n→∞

1
nν

‖An‖∞,

which together with (13) implies that

γ(ν)
n (α,α +ν+ μ) = ‖Cn‖∞ = ‖An‖∞ ∼ nν

and thus completes the proof of Theorem 1.1 for m = ν + μ � ν .

So let us prove the claim. From (13) we see that ‖BnπN‖∞ = O(1) . The strong
convergence of BnπN to B will therefore follow once we have shown that BnπNek →
Bek for every k , where ek ∈ �2(Z+) is the sequence whose k th term is 1 and the
remaining terms of which are zero. As BnπN is banded with fixed bandwidth, it suffices
to verify that the j th term of BnπNek converges to the j th term of Bek . Equivalently,
it is enough to prove that the jk entry of BnπN converges to the jk entry of B . The
only nonzero subdiagonals of BnπN and B are those with the numbers 0,2, . . . ,2μ .
It remains to consider the entries in these subdiagonals. Let 0 � � � μ and 0 � s �
N − 2�− 1. The 2� th subdiagonal of BnπN is the 2� th superdiagonal of An/nν in
reverse order. Thus, the s th entry of the 2� th subdiagonal of BnπN is

1
nν

ων+2�+N−2�−1−sq�,2�+N−2�−1−s =
1
nν

ων+N−1−sq�,N−1−s =
1
nν

ωn−sq�,n−ν−s.

By virtue of (8) and Lemma 2.2, this is

1
nν

(n− s)ν
(

1+O

(
1

n− s

))[
(−1)�

(μ
�

) 1
2μ

+O

(
1

n−ν− s

)]
, (14)

and since α,ν,μ , �,s are fixed, it follows that (14) converges to

(−1)�
(μ

�

) 1
2μ

,

which is exactly the s th entry in the 2� th subdiagonal of the Toeplitz matrix B .
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4. Proof of the main result for m < ν

Let m = ν − 1− μ with an integer μ � 0. From (6) we infer that the matrix
representation of Dν : Pn(α) → Pn(α + ν − 1− μ) is again of the form (12) with
an N ×N upper-triangular matrix An , where N = n− ν+ 1. The connection formula
shows that An is of chessboard structure above the main diagonal. Since, obviously,

γ(ν)
n−1 � γ(ν)

n � γ(ν)
n+1 , it suffices to prove Theorem 1.1 in the case where N is even. In

that case there is a permutation matrix Un such that

An = Un

(
En 0
0 Fn

)
Un,

where En = (e jk)
N/2−1
j,k=0 and Fn = ( f jk)

N/2−1
j,k=0 with

e jk = c(ν)
2 j,ν+2k(α,α +ν−1− μ), f jk = c(ν)

2 j+1,ν+2k+1(α,α +ν−1− μ).

Clearly, ‖Cn‖∞ = ‖An‖∞ = max(‖En‖∞,‖Fn‖∞) . From Lemma 2.2 we obtain

e jk =
2ν+1

μ!
jα+ν−μ−1/2 k1/2−α (k2 − j2)μ

(
1+O

(
1
j

)
+O

(
1
k

))
.

To find the asymptotics of ‖En‖∞ we can now use an idea by Widom [20] and Shampine
[17], [18]. Let Kn be the integral operator on L2(0,1) whose kernel is e[xN/2],[yN/2]
where [·] denotes the integral part. One can show that

‖En‖∞ =
N
2
‖Kn‖∞

(see, e.g., [3, Lemma 4.1]). For large N and for y > x , the kernel e[xN/2],[yN/2] behaves
like

2ν+1

μ!

(
xN
2

)α+ν−μ−1/2 (yN
2

)1/2−α ((yN
2

)2

−
(

xN
2

)2
)μ

=
1

2μ−1μ!
Nν+μ xα+ν−μ−1/2 y1/2−α (y2− x2)μ ,

which indicates that N−ν−μKn should converge to the operator K on L2(0,1) given by

(K f )(x) =
1

2μ−1μ!

∫ 1

x
xα+ν−μ−1/2 y1/2−α (y2− x2)μ f (y)dy (15)

and that therefore we should have

‖En‖∞ ∼ N
2

Nν+μ ‖K‖∞ =
Nν+μ+1

2
‖K‖∞. (16)

This can be founded rigorously: after expanding (y2 − x2)μ by the binomial theorem,
one can employ Theorem 4.2 of [3] to show that N−ν−μKn converges even in the
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Hilbert-Schmidt norm to K and hence proves (16). Analogously one gets (16) with
En replaced by Fn . In summary,

γ(ν)
n (α,α +ν−1− μ)∼ Nν+μ+1

2
‖K‖∞ ∼ nν+μ+1

2
‖K‖∞. (17)

Taking the adjoint of operator (15) and putting ν −1− μ = m , we can rewrite (17) in
the form

γ(ν)
n (α,α +m) ∼ n2ν−m

2ν−m−1

1
(ν−m−1)!

‖G‖∞, (18)

where G is given on L2(0,1) by

(Gf )(x) =
∫ x

0
x1/2−α yα+m+1/2 (x2 − y2)ν−m−1 f (y)dy. (19)

Let finally V be the unitary operator on L2(0,1) that is defined by

(V f )(x) = 21/2x1/2 f (x2), (V−1 f )(x) = 2−1/2x−1/4 f (x1/2).

We have

(V−1GV f )(x) = 2−1/2x−1/4(GV f )(x1/2)

= 2−1/2x−1/4
∫ x1/2

0
x(1/2−α)/2 tα+m+1/2 (x− t2)ν−m−1 21/2t1/2 f (t2)dt

and after the substitution t2 = y this becomes

1
2

∫ x

0
x−α/2 y(α+m)/2 (x− y)ν−m−1 f (y)dy =

(ν−m−1)!
2

(L∗
ν,α ,α+m f )(x),

where L∗
ν,α ,α+m is as in Section 1. Consequently,

γ(ν)
n (α,α +m) ∼ 1

2ν−m ‖L∗
ν,α ,α+m‖∞n2ν−m,

which completes the proof of Theorem 1.1.

Theorem 1.2 is now an immediate consequence of Corollary 5.2 of [3], which
states that if 2δ +1 > 0 and σ := β +δ +1 > 0, then the operator norm of the operator
defined on L2(0,1) by

(T ∗
β ,δ f )(x) =

∫ x

0
xβ yδ f (y)dy

is 1/σ times the reciprocal of the smallest positive zero of the classical Bessel function
J−(1+2β )/(2σ) . Indeed, in the case m = ν−1, Theorem 1.1 yields

γ(ν)
n (α,α +ν−1)∼ 1

2
‖T ∗

−α/2,(α+ν−1)/2‖∞ nν+1. (20)
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We have β = −α/2, δ = (α + ν − 1)/2, σ = (ν + 1)/2, and hence the coefficient
on the right of (20) is 1/(ν + 1) times the reciprocal of the first positive zero of
J(α−1)/(ν+1) , which completes the proof of Theorem 1.2. Finally, since

J−1/2(x) =

√
2
πx

cosx, J1/2(x) =

√
2
πx

sinx,

we get

γ(ν)
n

(
1−ν

2
,
ν−1

2

)
∼ 2

(ν +1)π
nν+1 for ν = 1,2,

γ(ν)
n

(
ν +3

2
,
3ν+1

2

)
∼ 1

(ν +1)π
nν+1 for ν � 1.

RE F ER EN C ES
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[4] A. BÖTTCHER AND P. DÖRFLER, On the best constants in Markov-type inequalities involving La-
guerre norms with different weights, Monatshefte f. Math., 161 (2010), 357–367.
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