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COHERENCE OF THE REAL SYMMETRIC HARDY ALGEBRA
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(Communicated by L. Rodman)

Abstract. Let D denote the open unit disk in C centered at 0 . Let H∞
R

denote the set of all
bounded and holomorphic functions defined in D that also satisfy f (z) = f (z) for all z ∈ D . It
is shown that H∞

R
is a coherent ring.

1. Introduction

In this paper, we prove that the real symmetric Hardy algebra is a coherent ring.
The definitions of these objects and that of coherence of a ring are given below.

We will denote the unit disc {z ∈ C : |z| < 1} by D , and the unit circle {z ∈ C :
|z| = 1} by T .

DEFINITION 1.1. A holomorphic function f : D→C is said to be real symmetric
if

f (z) = f (z) for all z ∈ D.

The real symmetric Hardy algebra H∞
R

is the set of all real symmetric holomorphic
functions f : D → C that are bounded, that is, functions f ∈ H∞ such that

‖ f‖∞ := sup
z∈D

| f (z)| < ∞.

Then H∞
R

is a real Banach algebra with pointwise operations and this norm.
We denote by H2

R
the space of real symmetric holomorphic functions f : D → C

such that

‖ f‖2 := sup
0<r<1

(
1
2π

∫ 2π

0
| f (reiθ )|2dθ

) 1
2

< ∞.

Then H2
R

is a real Hilbert space.
We denote by H1

R
the space of real symmetric holomorphic functions f : D → C

such that

‖ f‖1 := sup
0<r<1

(
1
2π

∫ 2π

0
| f (reiθ )|dθ

)
< ∞.

Then H1
R

is a real Banach space.
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We now recall the definition of a coherent ring.

DEFINITION 1.2. A commutative ring R is said to be coherent if for all n ∈ N

and all n -tuples (a1, . . . ,an) of elements from R , the module of all relations between
the ai ’s, namely the following R-module

{(b1, . . . ,bn) ∈ Rn : a1b1 + . . .+anbn = 0},

is a finitely generated submodule of Rn .

McVoy and Rubel proved that the Hardy algebra H∞ is coherent [3]. In [6],
McVoy and Rubel’s result on the coherence of H∞ of the disk D was extended to
more general domains of finite connectivity in the complex plane.

There has been interest in algebraic properties of the real symmetric Hardy alge-
bra and the real symmetric disk algebra, since these arise naturally as classes of stable
transfer functions in control theory; see for example [7]. Whether or not the real sym-
metric ring H∞

R
is coherent is also a relevant question in control theory; see [5]. Our

main result is the following:

THEOREM 1.3. H∞
R

is a coherent ring.

The proof of Theorem 1.3 is a modification of the proof in [6], where the Hardy
algebra is replaced by the real symmetric Hardy algebra. In particular, we will show
a version of the weak-∗ Beurling-Lax-Halmos theorem for the real symmetric Hardy
algebra, which is given below:

THEOREM 1.4. Let M∈ (H∞
R

)m×n . Then there exists a k∈N and a W∈ (H∞
R

)n×k

such that kerH∞
R

M = W(H∞
R

)k .

In the above, by kerH∞
R

M we mean the set {v ∈ (H∞
R

)n : Mv = 0} .

2. Kernels of multiplication maps are images

We will need the following technical lemma:

LEMMA 2.1. Suppose that M is a H∞
R

-submodule of (H∞
R

)n , equipped with the
norm induced from (H2

R
)n . Let w : M → (H2

R
)� be a H∞

R
-module morphism. If w is

continuous, then w(M) ⊂ (H∞
R

)� .

Proof. Let f ∈ M and λ > 0 be such that | (w( f ))(z) |> λ on a subset S of T

of positive measure. (If such a set does not exist, then w( f ) = 0 ∈ (H∞
R

)� , and we are
done.) Now we can arrange S to be real symmetric, that is, S = S . Here | · | denotes
the Euclidean norm in C� . For any k ∈ N , let ϕk ∈ H∞

R
be such that

|ϕk| =
{

k almost everywhere on S,
1 almost everywhere on T\ S.
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For example, we can take ϕk to be the outer function

ϕk(z) = exp

(
1
2π

∫ 2π

0

eiθ + z
eiθ − z

κ(eiθ )dθ
)

(z ∈ D),

where

κ(eiθ ) =
{

logk for eiθ ∈ S,
0 for eiθ ∈ T\ S.

Since κ(eiθ ) = κ(e−iθ ) for all θ , it follows that ϕk satisfies f (z) = f (z) for all z ∈ D .
Then

‖ϕk f‖2
2 � m(T)‖ f‖2

∞ + k2‖ f‖2
∞m(S),

and
‖w(ϕk f )‖2

2 = ‖ϕkw( f )‖2
2 � k2λ 2m(S).

If the induced operator norm of w is denoted by ‖w‖ , then we have, from the above,
that for all k ,

k2λ 2m(S) � ‖w(ϕk f )‖2
2 � ‖w‖2‖ϕk f‖2

2 � ‖w‖2
(

m(T)‖ f‖2
∞ + k2‖ f‖2

∞m(S)
)

.

Dividing by k2m(S) , we obtain

λ 2 � ‖w‖2 m(T)‖ f‖2
∞

k2m(S)
+‖w‖2‖ f‖2

∞.

Passing the limit as k → ∞ , we have

λ 2 � ‖w‖2‖ f‖2
∞.

So w( f ) ∈ (H∞
R

)� . �
We will also need the following result (see for example [4]):

PROPOSITION 2.2. (Wold decomposition) Let H be a Hilbert space and suppose
that T : H →H is an isometry. Let V ⊂H be a subspace satisfying TV ⊂V . Let V0 be
the orthogonal complement of TV in V , that is V0 = V �TV . Then V0 is a wandering
subspace of V (that is, T nV0 ⊥ TmV0 for all distinct n,m � 0 ), and

V =

(⊕
n�0

TnV0

)
⊕
(⋂

n�0

TnV

)
.

Proof of Theorem 1.4. Let

V = { f ∈ (H2
R)n : M f = 0}.

Then V is a real Hilbert space with the induced norm from (H2
R
)n . Consider the map

S : V →V of multiplication by z on V , that is, (S f )(z) = z f (z) , z ∈ D . Suppose V0 is
the orthogonal complement of SV in V . By the Wold decomposition, we have

V =V0⊕SV0⊕S2V0⊕S3V0⊕ . . . .
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Consider the map ΠΠΠΠ : V → Cn given by

ΠΠΠΠ f = f (0).

Then kerΠΠΠΠ = SV . So there is an isomorphism of V/SV onto ran ΠΠΠΠ . But V/SV is
isomorphic to V0 , and ran ΠΠΠΠ , being a subspace of Cn , is a finite dimensional real
vector space of dimension at most 2n . Thus V0 is a finite dimensional real Hilbert
space of dimension k � 2n . Suppose E is the embedding of V in H2

R
(V0) defined in

the following manner: if f = ( f1, . . . , fn) ∈ V , we first use the Wold decomposition in
order to write

f = g0 +Sg1 +S2g2 + . . . ,

with g0,g1,g2, . . . ∈V0 and

‖g0‖2
2 +‖g1‖2

2 +‖g2‖2
2 + . . . < ∞.

Next, we set
(E( f ))(z) = g0 + zg1 + z2g2 + . . . .

Then E : V → H2
R
(V0) is an invertible isometry.

We note that for f belonging to V (and with the same notation above),

(E(S f ))(z) = (E(Sg0 +S2g1 +S3g2 + . . .))(z)
= zg0 + z2g1 + z3g2 + . . .

= z(g0 + zg1 + z2g2 + . . .)
= (S(E f ))(z),

and so E(S f ) = S(E f ) . By induction, E(Si f ) = Si(E f ) for all i∈ N . So now we have
that

E(p f ) = pE( f ) (2.1)

for all real symmetric polynomials p .
We will show that the restriction of E to V ∩ (H∞

R
)n is a H∞

R
-module morphism

onto H∞
R

(V0) . Suppose that ϕ ∈ H∞
R

. Then ϕ belongs to H2
R

, and let (pn)n be a
sequence of polynomials in H2

R
that converge to ϕ . Let f ∈ V . Then by the Cauchy-

Schwarz inequality it follows that pnE( f ) → ϕE( f ) in (H1
R
)n . But since f ∈ (H∞

R
)n ,

we have that pn f → ϕ f in (H2
R
)n . Since E is continuous, we can conclude that

limn pnE( f ) exists:

E(ϕ f ) = E(lim
n

pn f ) = lim
n

E(pn f ) = lim
n

pnE( f ).

Suppose that g ∈ H2
R
(V0) is such that pnE( f ) → g in H2

R
(V0) . Then we also have that

pnE( f ) → g in H1
R
(V0) . Since the limit is unique, we conclude that

g = ϕE( f ).

Thus E(ϕ f ) = ϕE( f ) . So E : V ∩ (H∞
R

)n → H2
R
(V0) is a H∞

R
-module morphism. By

Lemma 2.1, it follows that

E(V ∩ (H∞
R )n) ⊂ H∞

R (V0).
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Now we will show that the restriction of E−1 : H2
R
(V0) → (H2

R
)n to H∞

R
(V0) is a H∞

R
-

module morphism. The proof is the same, mutatis mutandis, as the above. First of all,
we note that E−1 is continuous since E : V → H2

R
(V0) was an invertible isometry. The

property
E−1(pg) = pE−1(g)

for all g ∈ H2
R
(V0) and real symmetric polynomials p , follows from (2.1) by writing

g = E f , f ∈ V , and applying E−1 . The rest is done again by approximating in H2
R

a
given ϕ ∈ H∞

R
by a sequence (pn)n of real symmetric polynomials, and with a similar

argument as provided above, we see that for g ∈ H∞
R
(V0) ,

E−1(ϕg) = E−1(lim
n

png) = lim
n

E−1(png) = lim
n

pnE−1(g) = ϕE−1(g).

So again by Lemma 2.1, it follows that

E−1(H∞
R (V0)) ⊂ (H∞

R )n.

But E−1(H2
R
(V0)) ⊂V . Consequently,

E−1(H∞
R (V0)) ⊂V ∩ (H∞

R )n.

This shows that E : V ∩ (H∞
R

)n → H∞
R

(V0) is a H∞
R

-module isomorphism. But since
dimV0 < ∞ , this finishes the proof of the claim in the statement of this theorem. �

3. Coherence of the real symmetric Hardy algebra

Proof of Theorem 1.3. Suppose that n ∈ N and that ( f1, . . . , fn) ∈ (H∞
R

)n . Then
with

M :=
[

f1 . . . fn
] ∈ (H∞

R )1×n,

we have that the module of relations between the fi ’s is precisely kerH∞
R

M . By The-

orem 1.4, there exists a k ∈ N and a W ∈ (H∞
R

)n×k such that kerH∞
R

M = W(H∞
R

)k .
Clearly the columns of W generate the module of relations between the fi ’s. Hence
the ring H∞

R
is coherent. �

REMARK 3.1. In fact from the proof of Theorem 1.4, we see that the module of
relations on ( f1, . . . , fn) ∈ (H∞

R
)n has a set of generators (as a H∞

R
-module) of cardinal-

ity � 2n .

A characterization of coherent rings is the following; see [1]:

PROPOSITION 3.2. A commutative ring R is coherent if and only if the intersec-
tion of any two finitely generated ideals in R is finitely generated and the annihilator
of any element is finitely generated.
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Since we have shown that H∞
R

is coherent, it follows that the intersection of any
two finitely generated ideals in H∞

R
is finitely generated. In fact, one can obtain a bound

on the number of generators of the intersection. To do this, we recall the following result
from [3, Lemma 1.17] (the proof of which uses the diagram chasing method from [2]).

PROPOSITION 3.3. If R is a commutative ring and if the module of relations on
each n-tuple of elements of R is generated by N(n) elements of R for each n, then
whenever I and J are ideals of R generated by m and n elements of R, respectively,
it follows that I∩ J has a set of generators of cardinality � N(n+m) .

In light of Remark 3.1, we obtain the following consequence.

COROLLARY 3.4. If I and J are two ideals in H∞
R

with m and n generators,
respectively, then I∩ J has a set of generators of cardinality � 2(m+n) .
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