ALGEBRAS OF TRUNCATED TOEPLITZ OPERATORS

N. A. SEDLOCK
(Communicated by I. M. Spitkovsky)

Abstract

We find necessary and sufficient conditions for the product of two truncated Toeplitz operators on a model space to itself be a truncated Toeplitz operator, and as a result find a characterization for the maximal algebras of bounded truncated Toeplitz operators.

1. Introduction

Let \mathbb{C} denote the complex plane, \mathbb{C}^{*} the Riemann sphere, \mathbb{D} denote the unit disc, and let \mathbb{T} denote the unit circle. H^{2} is the usual Hardy space, the subspace of $L^{2}(\mathbb{T})$ of normalized Lebesgue measure m on \mathbb{T} whose harmonic extensions to \mathbb{D} are holomorphic (or, whose negative indexed Fourier coefficients are all zero). H^{2} will interchangably refer to both the boundary functions and the functions on \mathbb{D}. Let P denote the projection from $L^{2}(\mathbb{T})$ to H^{2}, which is given explicitly by the Cauchy integral:

$$
(P f)(\lambda)=\int_{\mathbb{T}} \frac{f(\zeta)}{1-\lambda \bar{\zeta}} d m(\zeta), \lambda \in \mathbb{D}
$$

The reproducing kernel at $\lambda \in \mathbb{D}$ for the Hardy space is the the Szego kernel $K_{\lambda}:=$ $(1-\bar{\lambda} z)^{-1}$. S denotes the shift operator $f \mapsto z f$ on H^{2}. Its adjoint (the backward shift) is the operator

$$
S^{*} f=\frac{f-f(0)}{z}
$$

A Toeplitz operator is the compression of a multiplication operator on $L^{2}(\mathbb{T})$ to H^{2}. In other words, given $\Phi \in L^{2}(\mathbb{T})$ (called the symbol of the operator), $T_{\Phi}=P M_{\Phi}$ is the operator that sends f to $P(\Phi f)$ for all $f \in H^{2}$. This operator is bounded if and only if $\Phi \in L^{\infty}(\mathbb{T})$, and the mapping $\Phi \rightarrow T_{\Phi}$ from L^{∞} to the space of bounded operators on H^{2} is linear and one-to-one. In the case that $\Phi \in H^{\infty}$, the Toeplitz operator T_{Φ} is just the multiplication operator M_{Φ}. In [2], Brown and Halmos describe the algebraic properties of Toeplitz operators. Among other things, they found necessary and sufficient conditions for the product of two Toeplitz operators to itself be a Toeplitz operator, namely that either the first operator's symbol is antiholomorphic or the second

[^0]operator's symbol is holomorphic. In either case, the symbol of the product is the product of the symbols (i.e. $T_{\Phi} T_{\Psi}=T_{\Phi \Psi}$).

More recently, Sarason [11] found analogues to several of Brown and Halmos's results for truncated Toeplitz operators on the model spaces $H^{2} \ominus u H^{2}$, where u is some non-constant inner function. The model spaces are the backward-shift invariant subspaces of H^{2} (that they are backward shift invariant follows easily from the fact that $u H^{2}$ is clearly shift invariant). Let K_{u}^{2} denote the space $H^{2} \ominus u H^{2}$ from here forward. Let $P_{u}=P-M_{u} P M_{\bar{u}}$ denote the projection from L^{2} to K_{u}^{2}.

Given $\Phi \in L^{2}(\mathbb{T})$ we then define the truncated Toeplitz operator (TTO) A_{Φ} to be the operator that sends f to $P_{u}(\Phi f)$ for all $f \in K_{u}^{2} . A_{\Phi}$ is well-defined on the set of bounded functions in K_{u}^{2}, which is dense in K_{u}^{2} and which we denote K_{u}^{∞}. We let \mathscr{T}_{u} denote the set of truncated Toeplitz operators which extend to be bounded on all of K_{u}^{2}.

Truncated Toeplitz operators have many of the same properties as ordinary Toeplitz operators (for example, $A_{\Phi}^{*}=A_{\bar{\Phi}}$) but there are also striking differences. For example, there are bounded truncated Toeplitz operators with unbounded symbols [1] (though any truncated Toeplitz operator with a bounded symbol is itself bounded). Additionally, symbols are not unique: the same operator can be generated from more than one symbol, and we say that Ψ is a symbol for A_{Φ} if $A_{\Phi}=A_{\Psi}$. Given two functions Ψ and Φ, we write $\Psi \stackrel{A}{\equiv} \Phi$ to mean that $A_{\Psi}=A_{\Phi}$.

The truncated Toeplitz operators in \mathscr{T}_{u} do not form an algebra. There are, however, weakly closed algebras contained in \mathscr{T}_{u}. The goal of this paper is to describe the maximal algebras contained in \mathscr{T}_{u}, where by maximal we mean that any weakly closed algebra in \mathscr{T}_{u} is contained within one of these maximal algebras.

In what follows, for functions f, g in $L^{2}(\mathbb{T}),\langle f, g\rangle=\int_{\mathbb{T}} f \bar{g} d m,\|f\|=\sqrt{\langle f, f\rangle}$ and $f \otimes g$ is the rank one operator that maps h to $f\langle h, g\rangle$. Further, if A is an operator on a Hilbert space, $[A]^{\prime}$ denotes the commutant of A.

2. Background

In this section we lay out basic facts about operators in \mathscr{T}_{u} and model spaces. Let u be a non-trivial inner function. K_{u}^{2} is then a reproducing kernel Hilbert space with reproducing kernels $K_{\lambda}^{u}:=P_{u} K_{\lambda}=\frac{1-\overline{u(\lambda)} u}{1-\bar{\lambda} z}$ for $\lambda \in \mathbb{D}$. Note that K_{λ}^{u} is bounded for all λ, and hence in K_{u}^{∞}.

The function u is said to have an angular derivative in the sense of Caratheodory (ADC) at the point $\zeta \in \mathbb{T}$ if u has a nontangential limit $u(\zeta)$ of unit modulus at ζ and u^{\prime} has a nontangential limit $u^{\prime}(\zeta)$ at ζ. It is known that u has an ADC at ζ if and only if every function in K_{u}^{2} has a nontangential limit at ζ [10]. Thus there exists a reproducing kernel function K_{ζ}^{u} such that $\left\langle f, K_{\zeta}^{u}\right\rangle=f(\zeta)$. Specifically, K_{ζ}^{u} is the limit of K_{λ}^{u} as λ approaches ζ nontangentially in the disc and so $K_{\zeta}^{u}=\frac{1-\overline{u(\zeta)} u}{1-\bar{\zeta} z}$. If u is a finite Blaschke product, both u and u^{\prime} are holomorphic in a domain which compactly contains \mathbb{D} and so these boundary reproducing kernels are defined for every unimodular ζ.

Truncated Toeplitz operators have a symmetry property called C-symmetry. This concept is due to Garcia and Putinar [6, 7, 8]. Given a \mathbb{C}-Hilbert space \mathscr{H} and an antilinear isometric involution C on \mathscr{H}, we say that a bounded operator T is a C symmetric operator (CSO) if $T^{*}=C T C$. Here by isometric we mean that $\langle C f, C g\rangle=$ $\langle g, f\rangle$.
In $L^{2}(\mathbb{T})$, the operator $C f=u \overline{z f}$ is a conjugation which bijectively maps $u H^{2}$ to $\overline{z H^{2}}$ and K_{u}^{2} to itself. By restricting ourselves to K_{u}^{2}, C can be thought of as a conjugation on K_{u}^{2}. From here on, C always refers to this operator. We will sometimes write \widetilde{f} for $C f$ for sake of readability. The conjugate reproducing kernel is $\widetilde{K_{\lambda}^{u}}(z)=$ $\frac{u(z)-u(\lambda)}{z-\lambda}$ for $z \neq \lambda$ and $\widetilde{K_{\lambda}^{u}}(\lambda)=u^{\prime}(\lambda)$ and has the property that for $f \in K_{u}^{2}, \widetilde{f}(\lambda)=$ $\left\langle\widetilde{K_{\lambda}^{u}}, f\right\rangle$.

Consider the operator $C A_{\Phi} C$, where $\Phi \in L^{2}(\mathbb{T})$ and $A_{\Phi} \in \mathscr{T}_{u}$. If $f, g \in K_{u}^{2}$, then

$$
\begin{aligned}
\left\langle C A_{\Phi} C f, g\right\rangle & =\left\langle C g, A_{\Phi} C f\right\rangle \\
& =\langle u \overline{z g}, \Phi u \overline{z f}\rangle \\
& =\langle\bar{\Phi} f, g\rangle \\
& =\left\langle\left(A_{\Phi}\right)^{*} f, g\right\rangle
\end{aligned}
$$

and so we see that operators in \mathscr{T}_{u} are C-symmetric.
Two CSOs commute if and only if their product is C-symmetric.
Proposition 2.1. Let A_{1} and A_{2} be C-symmetric. Then $A_{1} A_{2}$ is C-symmetric if and only if A_{1} and A_{2} commute.

Proof. Say $A_{1} A_{2}$ is C-symmetric. Then

$$
A_{1} A_{2}=C A_{2}^{*} A_{1}^{*} C=C A_{2}^{*} C C A_{1}^{*} C=A_{2} A_{1}
$$

On the other hand, if A_{1} and A_{2} commute, then so do their adjoints, and so

$$
C A_{1} A_{2} C=A_{1}^{*} A_{2}^{*}=A_{2}^{*} A_{1}^{*}
$$

The operator $S_{u}=P_{u} S=A_{z}$ is critical to what follows. Since K_{u}^{2} is invariant under S^{*} we see that $S_{u}^{*}=S^{*}$. Let $f \in K_{u}^{2}$ such that $f(0)=0$, i.e. $f \perp K_{0}^{u}$. Then $S^{*} f=f / z$. On the other hand, $S^{*} K_{0}^{u}=\left(1-\overline{u(0)} u-1+|u(0)|^{2}\right) / z=-\overline{u(0)} \widetilde{K_{0}^{u}} . S_{u}$ is C-symmetric, and so S_{u} is characterized by the following equations: $S_{u} f=z f$ for $f \perp \widetilde{K_{0}^{u}}$, and $S_{u} \widetilde{K_{0}^{u}}=-u(0) K_{0}^{u}$.

The symbols of TTOs are a more complex issue than the symbols of Toeplitz operators. Sarason proved the following results in [11] as Theorem 3.1 and Theorem 4.1 respecitively.

Proposition 2.2. If $\Phi \in L^{2}(\mathbb{T})$ then $A_{\Phi}=0$ if and only if $\Phi \in u H^{2}+\overline{u H^{2}}$.

Proposition 2.3. A is in \mathscr{T}_{u} iff $A-S_{u} A S_{u}^{*}=\Phi \otimes K_{0}^{u}+K_{0}^{u} \otimes \Psi$ for some $\Phi, \Psi \in$ K_{u}^{2}, in which case $A=A_{\Phi+\bar{\Psi}}$.

Thus we have a way of finding a symbol for a TTO, but TTOs do not have unique symbols.

The following is a necessary and sufficient condition for a TTO with symbol in $K_{u}^{2}+\overline{K_{u}^{2}}$ to equal zero.

Proposition 2.4. Let $\varphi_{1}, \varphi_{2} \in K_{u}^{2}$. Then $A_{\varphi_{1}+\overline{\varphi_{2}}}=0$ if and only if $\varphi_{1}=c K_{0}^{u}$ and $\varphi_{2}=-\bar{c} K_{0}^{u}$ for some $c \in \mathbb{C}$.

Proof. Let $\varphi_{1}=c K_{0}^{u}$ and $\varphi_{2}=-\bar{c} K_{0}^{u}$. Then

$$
A_{\varphi_{1}+\overline{\varphi_{2}}}=A_{c K_{0}^{u}-c \overline{K_{0}^{u}}}=A_{c u(z) \overline{u(0)}-c \overline{u(z)} u(0)}
$$

so $A_{\varphi_{1}+\overline{\varphi_{2}}}=0$.
Now suppose $A_{\varphi_{1}+\overline{\varphi_{2}}}=0$. Then $A-S_{u} A S_{u}^{*}=0=\varphi_{1} \otimes K_{0}^{u}+K_{0}^{u} \otimes \varphi_{2}$, so $\varphi_{1}=c K_{0}^{u}$ for some $c \in \mathbb{C}$. Hence $c K_{0}^{u} \otimes K_{0}^{u}+K_{0}^{u} \otimes \varphi_{2}=0$ and so $\varphi_{2}=-\bar{c} K_{0}^{u}$ as required.

Since $I=A_{K_{0}^{u}}$ we can compute the identities

$$
\begin{equation*}
I-S_{u} S_{u}^{*}=K_{0}^{u} \otimes K_{0}^{u} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
I-S_{u}^{*} S_{u}=\widetilde{K_{0}^{u}} \otimes \widetilde{K_{0}^{u}} \tag{2.2}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
S_{u} \widetilde{S_{u} \widetilde{\varphi}}=S_{u} S_{u}^{*} \varphi=\varphi-\varphi(0) K_{0}^{u} \tag{2.3}
\end{equation*}
$$

for all $\varphi \in K_{u}^{2}$.
The following identities are Lemma 2.2 of [11].

PROPOSITION 2.5.

(1) If $\lambda \in \mathbb{D}$,

$$
S_{u}^{*} K_{\lambda}^{u}=\bar{\lambda} K_{\lambda}^{u}-\overline{u(\lambda)} \widetilde{K_{0}^{u}}
$$

and

$$
S_{u} \widetilde{K_{\lambda}^{u}}=\lambda \widetilde{K_{\lambda}^{u}}-u(\lambda) K_{0}^{u}
$$

(2) If $\lambda \in \mathbb{D}$ is nonzero,

$$
S_{u} K_{\lambda}^{u}=\frac{1}{\bar{\lambda}}\left(K_{\lambda}^{u}-K_{0}^{u}\right)
$$

and

$$
S_{u}^{*} \widetilde{K_{\lambda}^{u}}=\frac{1}{\lambda}\left(\widetilde{K_{\lambda}^{u}}-\widetilde{K_{0}^{u}}\right)
$$

(3) These equalities all hold for $\lambda \in \mathbb{T}$ such that u has an $A D C$ at λ.

3. Generalized Shifts

We now define the generalized compressed shift operator. Our definition follows Sarason's definition in Section 14 of [11].

DEFINITION 3.1. Let $\alpha \in \overline{\mathbb{D}}$. Then $S_{u}^{\alpha}=S_{u}+\frac{\alpha}{1-\alpha \overline{u(0)}} K_{0}^{u} \otimes \widetilde{K_{0}^{u}}$.
Again, we can think about the generalized shift as follows. If $f \in K_{u}^{2}$ and $f \perp \widetilde{K_{0}^{u}}$, then $S_{u}^{\alpha} f=z f$. On the other hand,

$$
\begin{aligned}
S_{u}^{\alpha} \widetilde{K_{0}^{u}} & =S_{u} \widetilde{K_{0}^{u}}+\frac{\alpha\left\langle\widetilde{K_{0}^{u}}, \widetilde{K_{0}^{u}}\right\rangle}{1-\alpha \overline{u(0)}} K_{0}^{u} \\
& =-u(0) K_{0}^{u}+\frac{\alpha\left(1-|u(0)|^{2}\right)}{1-\alpha \overline{u(0)}} K_{0}^{u} \\
& =\frac{\alpha-u(0)}{1-\alpha \overline{u(0)}} K_{0}^{u}
\end{aligned}
$$

The corollary to Theorem 10.1 in [11] states that if a bounded operator A on K_{u}^{2} is in $\left[S_{u}^{\alpha}\right]^{\prime}$ then A is in \mathscr{T}_{u}. The following proof gives us the symbol of any operator in $\left[S_{u}^{\alpha}\right]^{\prime}$.

Proposition 3.2. Let $\alpha \in \overline{\mathbb{D}}$. If A is a bounded operator that commutes with S_{u}^{α} then A is in \mathscr{T}_{u} and has a symbol $\varphi+\alpha \overline{S_{u} \widetilde{\varphi}}$ where $\varphi=A K_{0}^{u}(1-\alpha \overline{u(0)})^{-1}$.

Proof. First note that

$$
\begin{equation*}
A S_{u}^{\alpha}=A S_{u}+\frac{\alpha}{1-\alpha \overline{u(0)}}\left(A K_{0}^{u}\right) \otimes \widetilde{K_{0}^{u}} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{align*}
S_{u}^{\alpha} A & =S_{u} A+\frac{\alpha}{1-\alpha \overline{u(0)}} K_{0}^{u} \otimes\left(A^{*} \widetilde{K_{0}^{u}}\right) \\
& =S_{u} A+\frac{\alpha}{1-\alpha \overline{u(0)}} K_{0}^{u} \otimes\left(\widetilde{A K_{0}^{u}}\right) . \tag{3.2}
\end{align*}
$$

If A and S_{u}^{α} commute then we can use Equations (3.1) and (3.2) to see that

$$
\begin{aligned}
S_{u} A & =S_{u}^{\alpha} A-\frac{\alpha}{1-\alpha \overline{u(0)}} K_{0}^{u} \otimes\left(\widetilde{A K_{0}^{u}}\right) \\
& =A S_{u}^{\alpha}-\frac{\alpha}{1-\alpha \overline{u(0)}} K_{0}^{u} \otimes\left(\widetilde{A K_{0}^{u}}\right) \\
& =A S_{u}+\frac{\alpha}{1-\alpha \overline{u(0)}}\left(A K_{0}^{u}\right) \otimes \widetilde{K_{0}^{u}}-\frac{\alpha}{1-\alpha \overline{u(0)}} K_{0}^{u} \otimes\left(\widetilde{A K_{0}^{u}}\right) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
A-S_{u} A S_{u}^{*} & =A-A S_{u} S_{u}^{*}-\frac{\alpha}{1-\alpha \overline{u(0)}} A K_{0}^{u} \otimes S_{u} \widetilde{K_{0}^{u}}+\frac{\alpha}{1-\alpha \overline{u(0)}} K_{0}^{u} \otimes S_{u} \widetilde{A K_{0}^{u}} \\
& =A K_{0}^{u} \otimes K_{0}^{u}+\frac{\overline{u(0)} \alpha}{1-\alpha \overline{u(0)}} A K_{0}^{u} \otimes K_{0}^{u}+\frac{\alpha}{1-\alpha \overline{u(0)}} K_{0}^{u} \otimes S_{u} \widetilde{A K_{0}^{u}} \\
& =\frac{A K_{0}^{u}}{1-\alpha \overline{u(0)}} \otimes K_{0}^{u}+K_{0}^{u} \otimes \bar{\alpha} S_{u} C\left(\frac{A K_{0}^{u}}{1-\alpha \overline{u(0)}}\right)
\end{aligned}
$$

The conclusion then follows from Proposition 2.3.
Corollary 1. Let A be a bounded opeator that commutes with $S_{u}^{\alpha *}$, for $\alpha \in \overline{\mathbb{D}}$. Then A is in \mathscr{T}_{u} and has a symbol of the form $\bar{\alpha} \psi+\overline{S_{u} \widetilde{\psi}}+c$ for $\psi \in K_{u}^{2}$ and $c \in \mathbb{C}$.

Proof. A^{*} commutes with S_{u}^{α} and therefore has symbol $\varphi+\alpha \overline{S_{u} \widetilde{\varphi}}$ where $\varphi=$ $A^{*} K_{0}^{u}(1-\alpha \overline{u(0)})$ by the previous proposition. Therefore A has symbol $\bar{\alpha} S_{u} \widetilde{\varphi}+\bar{\varphi}$. Define $\psi=S_{u} \widetilde{\varphi}$. Then by Equation $2.3 S_{u} \widetilde{\psi}=S_{u} \widetilde{S_{u} \widetilde{\varphi}}=\varphi-\varphi(0) K_{0}^{u}$ and $\bar{\alpha} \psi+\overline{S_{u} \widetilde{\psi}}+$ $\overline{\varphi(0)}$ is a symbol for A.

Suppose A_{Φ} and A_{Ψ} are in \mathscr{T}_{u} and both commute with S_{u}^{α} for some $\alpha \in \overline{\mathbb{D}}$. Then their product $A_{\Phi} A_{\Psi}$ also commutes with S_{u}^{α}, and is therefore also in \mathscr{T}_{u}. So we know of two cases when the product of two operators in \mathscr{T}_{u} is itself in \mathscr{T}_{u} - when both operators commute with some S_{u}^{α} or $S_{u}^{\alpha *}$, or when one of the operators is $A_{c}=c I$ for some $c \in \mathbb{C}$. We will show in Section 5 that these are the only cases where the product of two operators in \mathscr{T}_{u} is itself in \mathscr{T}_{u}.

4. TTOs of type α

If A_{Φ} is in \mathscr{T}_{u} and commutes with S_{u}^{α}, then $A_{\Phi+c}$ also commutes with S_{u}^{α} for all $c \in \mathbb{C}$. If $\alpha \in \overline{\mathbb{D}} \backslash\{0\}$, then $\bar{\alpha}^{-1} \in \mathbb{C} \backslash \mathbb{D}$, and by the corollary to Proposition 3.2 any operator in \mathscr{T}_{u} which commutes with $S_{u}^{\alpha *}$ has a symbol of the form $\psi+\bar{\alpha}^{-1} \overline{S_{u} \widetilde{\psi}}+c$ with $\psi \in K_{u}^{2}$ and $c \in \mathbb{C}$. We therefore make the following definition.

DEFINITION 4.1. An operator $A \in \mathscr{T}_{u}$ is said to be a TTO of type α for $\alpha \in \mathbb{C}$ if A has a symbol of the form $\varphi+\alpha \overline{S_{u} \widetilde{\varphi}}+c$, where $\varphi \in K_{u}^{2}$ and $c \in \mathbb{C}$. Note that an operator in \mathscr{T}_{u} is of type 0 if and only if it has a holomorphic symbol. We say an operator in \mathscr{T}_{u} is of type ∞ if it has an antiholomorphic symbol.

Proposition 4.2. Let $A:=A_{\varphi_{1}+\overline{\varphi_{2}}}$ be in \mathscr{T}_{u}, where $\varphi_{i} \in K_{u}^{2}$.
(1) If $\alpha \in \mathbb{C}$, then A is of type α if and only if $\bar{\alpha} S_{u} \widetilde{\varphi_{1}}-\varphi_{2} \in \mathbb{C} K_{0}^{u}$.
(2) A is of type ∞ if and only if $\varphi_{1} \in \mathbb{C} K_{0}^{u}$ if and only if $S_{u} \widetilde{\varphi_{1}} \in \mathbb{C} K_{0}^{u}$.

Proof.

(1) Let $A_{\varphi_{1}+\overline{\varphi_{2}}}$ be of type α. Then by Proposition 3.2 and its corollary there is some $\varphi \in K_{u}^{2}$ and $c \in \mathbb{C}$ such that $A_{\varphi_{1}+\overline{\varphi_{2}}}=A_{\varphi+c K_{0}^{u}+\alpha \overline{S_{u} \widetilde{\varphi}}}$, or, equivalently

$$
A_{\varphi_{1}-\varphi-c K_{0}^{u}+\overline{\varphi_{2}}-\alpha \overline{S_{u} \tilde{\varphi}}}=0
$$

By Proposition 2.4 we have that $\varphi_{1}-\varphi \in \mathbb{C} K_{0}^{u}$ and that $\varphi_{2}-\bar{\alpha} S_{u} \widetilde{\varphi} \in \mathbb{C} K_{0}^{u}$. So then by Proposition 2.5 we have that $S_{u} \widetilde{\varphi_{1}}-S_{u} \widetilde{\varphi} \in \mathbb{C} K_{0}^{u}$ and so $\bar{\alpha} S_{u} \widetilde{\varphi_{1}}-\varphi_{2}=$ $\bar{\alpha} S_{u} \widetilde{\varphi_{1}}-\bar{\alpha} S_{u} \widetilde{\varphi}-\varphi_{2}+\bar{\alpha} S_{u} \widetilde{\varphi} \in \mathbb{C} K_{0}^{u}$.
Now suppose that $\bar{\alpha} S_{u} \widetilde{\varphi_{1}}-\varphi_{2} \in \mathbb{C} K_{0}^{u}$. Then $\varphi_{2}=\bar{\alpha} S_{u} \widetilde{\varphi_{1}}+c K_{0}^{u}$ for some $c \in \mathbb{C}$ and thus $A_{\varphi_{1}+\overline{\varphi_{2}}}=A_{\varphi_{1}+\alpha \overline{S_{u} \widetilde{\varphi_{1}}}+\overline{c K_{0}^{u}}}$ is of type α.
(2) A is of type ∞ if and only if $\varphi_{1}+\overline{\varphi_{2}} \stackrel{A}{\equiv} \bar{\psi}$ for some $\psi \in K_{u}^{2}$, which is true if and only if $\varphi_{1}=P_{u}\left(\overline{\psi-\varphi_{2}}\right) \stackrel{A}{\equiv} \overline{\psi(0)-\varphi_{2}(0)}$ which is true if and only if $\varphi_{1} \in \mathbb{C} K_{0}^{u}$. If $\varphi_{1}=c K_{0}^{u}$ then $S_{u} \widetilde{\varphi_{1}}=-\bar{c} u(0) K_{0}^{u}$ by Proposition 2.5. On the other hand, if $S_{u} \widetilde{\varphi_{1}}=c K_{0}^{u}$ then

$$
\begin{aligned}
\varphi_{1} & =\left(S_{u} S_{u}^{*}-K_{0}^{u} \otimes K_{0}^{u}\right) \varphi_{1} \\
& =S_{u} \widetilde{S_{u} \widetilde{\varphi_{1}}}-\varphi_{1}(0) K_{0}^{u} \\
& =S_{u} \widetilde{c K_{0}^{u}}-\varphi_{1}(0) K_{0}^{u} \\
& =-\bar{c} u(0) K_{0}^{u}-\varphi_{1}(0) K_{0}^{u} \\
& \in \mathbb{C} K_{0}^{u} \quad \square
\end{aligned}
$$

Proposition 4.3. Any TTO of type $\alpha \in \mathbb{C}$ has a symbol of the form $\varphi_{0}+\alpha \overline{S_{u} \widetilde{\varphi_{0}}}+$ $c K_{0}^{u}$ where $\varphi_{0}(0)=0$ and $c \in \mathbb{C}$, and any TTO of antiholomorphic type has a symbol of the form $\overline{\varphi_{0}}+c K_{0}^{u}$ where $\varphi_{0}(0)=0$.

Proof. To prove the first statement, let A be of type $\alpha \in \mathbb{C}$ and let $\varphi+\alpha \overline{S_{u} \widetilde{\varphi}}+c K_{0}^{u}$ be a symbol of A, where $\varphi \in K_{u}^{2}$ and $c \in \mathbb{C}$. Define $\varphi_{0}=\varphi-\frac{\left\langle\varphi, K_{0}^{u}\right\rangle}{\left\langle K_{0}^{u}, K_{0}^{u}\right\rangle} K_{0}^{u}$. Then $\varphi_{0} \perp K_{0}^{u}$, or in other words, $\varphi_{0}(0)=0$. Then since by Proposition $2.5 S_{u} \widetilde{K_{0}^{u}}=-u(0) K_{0}^{u}$ we have that

$$
\begin{aligned}
\varphi+\alpha \overline{S_{u} \widetilde{\varphi}}+c K_{0}^{u} & \stackrel{A}{\equiv} \varphi_{0}+\frac{\left\langle\varphi, K_{0}^{u}\right\rangle}{\left\langle K_{0}^{u}, K_{0}^{u}\right\rangle} K_{0}^{u}+\alpha \overline{S_{u} \widetilde{\varphi_{0}}}+\alpha \overline{\left\langle\varphi, K_{0}^{u}\right\rangle} \overline{\left\langle K_{0}^{u}, K_{0}^{u}\right\rangle} \overline{K_{0}^{u}}+c K_{0}^{u} \\
& \stackrel{A}{\equiv} \varphi_{0}+\alpha \overline{S_{u} \widetilde{\varphi_{0}}}+c_{1} K_{0}^{u}
\end{aligned}
$$

where $c_{1} \in \mathbb{C}$.
To prove the second statement, consider $A=A_{\bar{\varphi}}$ and let $\varphi_{0}=\varphi-\frac{\left\langle\varphi, K_{0}^{u}\right\rangle}{\left\langle K_{0}^{u}, K_{0}^{u}\right\rangle} K_{0}^{u}$. Then $\bar{\varphi} \stackrel{A}{\equiv} \overline{\varphi_{0}}+\frac{\left\langle K_{0}^{u}, \varphi\right\rangle}{\left\langle K_{0}^{u}, K_{0}^{u}\right\rangle} K_{0}^{u}$.

Let $\alpha \in \mathbb{C} \backslash\{0\}$. Then if $A=A_{\varphi_{1}+\overline{\varphi_{2}}}$ is of type α, its adjoint is $A^{*}=A_{\psi_{1}+\overline{\psi_{2}}}$ where $\psi_{1}=\varphi_{2}$ and $\psi_{2}=\varphi_{1}$. By Proposition 4.2 it follows that

$$
\bar{\alpha} S_{u} \psi_{2}-\psi_{1} \in \mathbb{C} K_{0}^{u}
$$

It follows by Proposition 2.5 that

$$
\begin{aligned}
S_{u} C\left(\bar{\alpha} S_{u} \widetilde{\psi_{2}}-\psi_{1}\right) & =\alpha S_{u} S_{u}^{*} \psi_{2}-S_{u} \widetilde{\psi_{1}} \\
& =\alpha \psi_{2}-S_{u} \widetilde{\psi_{1}}+\alpha\left\langle\psi_{2}, K_{0}^{u}\right\rangle K_{0}^{u} \\
& \in \mathbb{C} K_{0}^{u}
\end{aligned}
$$

The second equation follows from Equation 2.3. Hence we have that $\alpha^{-1} S_{u} \widetilde{\psi_{1}}-\psi_{2} \in$ $\mathbb{C} K_{0}^{u}$ and so it follows that A^{*} is of type $\overline{\alpha^{-1}}$. In the case that A is of type $0, A$ has a holomorphic symbol, and so its adjoint A^{*} has an antiholomorphic symbol, and is therefore of type ∞. Thus we can state the following duality relationship.

Proposition 4.4. An operator in \mathscr{T}_{u} is of type $\alpha \in \mathbb{C}^{*}$ if and only if its adjoint is of type $\overline{\alpha^{-1}}$ using the convention that $0^{-1}=\infty$ and $\infty^{-1}=0$.

The operator $c I=A_{c K_{0}^{u}}=A_{c \overline{K_{0}^{u}}}$ is, by the above definition, of type α for every $\alpha \in \mathbb{C}^{*}$. This is the only way that an operator in \mathscr{T}_{u} can be of more than one type. Specifically, this means that any $A \in \mathscr{T}_{u}$ is either of no type, one type, or every type.

Proposition 4.5. Let $A \in \mathscr{T}_{u}$ be of type α and of type β, where $\alpha \neq \beta$. Then $A=c I$ for some $c \in \mathbb{C}$.

Proof. If $\alpha=0$ and $\beta=\infty$, then there are $\varphi, \psi \in K_{u}^{2}$ such that $A=A_{\varphi}=A_{\bar{\psi}}$ and so $A_{\varphi}-S_{u} A_{\varphi} S_{u}^{*}=\varphi \otimes K_{0}^{u}$ and $A_{\bar{\psi}}-S_{u} A_{\bar{\psi}} S_{u}^{*}=K_{0}^{u} \otimes \psi$ by Proposition 2.3. Thus $\varphi \otimes K_{0}^{u}=K_{0}^{u} \otimes \psi$ and $\varphi=c K_{0}^{u}$ for some $c \in \mathbb{C}$, and so $A=c I$.

Now suppose that at least one of α and β is in $\mathbb{C} \backslash\{0\}$. By looking at A^{*} if needed we can assume without loss of generality that neither α or β is ∞. By Proposition 4.3 there are $\varphi, \psi \in K_{u}^{2}$ and $c, d \in \mathbb{C}$ such that $\varphi(0)=\psi(0)=0$ and both $\varphi+\alpha \overline{S_{u} \widetilde{\varphi}}+c$ and $\psi+\beta \overline{S_{u} \widetilde{\psi}}+d$ are symbols for A. It follows that

$$
\begin{aligned}
A-S_{u} A S_{u}^{*} & =\varphi \otimes K_{0}^{u}+c K_{0}^{u} \otimes K_{0}^{u}+\alpha K_{0}^{u} \otimes S_{u} \widetilde{\varphi} \\
& =\psi \otimes K_{0}^{u}+d K_{0}^{u} \otimes K_{0}^{u}+\beta K_{0}^{u} \otimes S_{u} \widetilde{\psi}
\end{aligned}
$$

By rearranging terms we see that $\varphi-\psi \in \mathbb{C} K_{0}^{u}$. Since $\varphi, \psi \perp K_{0}^{u}$ it follows that $\varphi=\psi$ and

$$
(c-d) K_{0}^{u} \otimes K_{0}^{u}=(\beta-\alpha) K_{0}^{u} \otimes S_{u} \widetilde{\varphi}
$$

Therefore $S_{u} \widetilde{\varphi}=\frac{c-d}{\beta-\alpha} K_{0}^{u}$ but since

$$
\left\langle S_{u} \widetilde{\varphi}, K_{0}^{u}\right\rangle=\left\langle\widetilde{K_{0}^{u}}, S_{u}^{*} \varphi\right\rangle=\left\langle S_{u} \widetilde{K_{0}^{u}}, \varphi\right\rangle=\left\langle-u(0) K_{0}^{u}, \varphi\right\rangle=0
$$

we get that $c=d$ and $S_{u} \widetilde{\varphi}=0$.

Finally we calculate $\varphi=\left(I-K_{0}^{u} \otimes K_{0}^{u}\right) \varphi=S_{u} \widetilde{S_{u} \widetilde{\varphi}}=0$ and get that $A=A_{c}=$ $c I$.

For the rest of this section fix $\alpha \in \overline{\mathbb{D}}$. By Proposition 3.2 if an operator $A \in \mathscr{T}_{u}$ is in $\left[S_{u}^{\alpha}\right]^{\prime}$ then it is of type α. We spend the remainder of this section proving that every TTO of type α is in $\left[S_{u}^{\alpha}\right]^{\prime}$. Specifically, we will show that the product of two TTOs of type α is itself in \mathscr{T}_{u}. Therefore any two TTOs of type α commute and so any TTO of type α commutes with S_{u}^{α}. Therefore for $\alpha \in \overline{\mathbb{D}},\left[S_{u}^{\alpha}\right]^{\prime}$ is precisely the TTOs of type α, and therefore $\left[S_{u}^{\alpha *}\right]^{\prime}$ is precisely the TTOs of type $\bar{\alpha}^{-1}$ with the convention that $\frac{1}{0}=\infty$.

First we prove a lemma that will prove useful here and later.
LEMMA 4.6. Let $\Phi=\varphi_{1}+\overline{\varphi_{2}}$ and $\Psi=\psi_{1}+\overline{\psi_{2}}$ where $\varphi_{i}, \psi_{i} \in K_{u}^{2}$ such that $A_{\Phi}, A_{\Psi} \in \mathscr{T}_{u}$. Then $A_{\Phi} A_{\Psi}$ is in \mathscr{T}_{u} if and only if

$$
\varphi_{1} \otimes \psi_{2}-\left(S_{u} \widetilde{\varphi_{2}}\right) \otimes\left(S_{u} \widetilde{\psi_{1}}\right)=\Phi_{0} \otimes K_{0}^{u}+K_{0}^{u} \otimes \Psi_{0}
$$

for some $\Phi_{0}, \Psi_{0} \in K_{u}^{2}$.

Proof. In what follows, Φ_{0} and Ψ_{0} represent functions in K_{u}^{2} that can be different from use to use. By Proposition 2.3, $A_{\Phi} A_{\Psi} \in \mathscr{T}_{u}$ if and only if $A_{\Phi} A_{\Psi}-S_{u} A_{\Phi} A_{\Psi} S_{u}^{*}=$ $\Phi_{0} \otimes K_{0}^{u}+K_{0}^{u} \otimes \Psi_{0}$. It suffices to show that $A_{\Phi} A_{\Psi}-S_{u} A_{\Phi} A_{\Psi} S_{u}^{*}=\varphi_{1} \otimes \psi_{2}-\left(S_{u} \widetilde{\varphi_{2}}\right) \otimes$ $\left(S_{u} \widetilde{\psi_{1}}\right)+\Phi_{0} \otimes K_{0}^{u}+K_{0}^{u} \otimes \Psi_{0}$. Recall Equation 2.2, which states that $I=S_{u}^{*} S_{u}+\widetilde{K_{0}^{u}} \otimes$ $\widetilde{K_{0}^{u}}$. Therefore

$$
\begin{align*}
S_{u} A_{\Phi} A_{\Psi} S_{u}^{*} & =S_{u} A_{\Phi}\left(S_{u}^{*} S_{u}+\widetilde{K_{0}^{u}} \otimes \widetilde{K_{0}^{u}}\right) A_{\Psi} S_{u}^{*} \\
& =S_{u} A_{\Phi} S_{u}^{*} S_{u} A_{\Psi} S_{u}^{*}+\left(S_{u} A_{\Phi} \widetilde{K_{0}^{u}}\right) \otimes\left(S_{u} A_{\bar{\Psi}} \widetilde{K_{0}^{u}}\right) \tag{4.1}
\end{align*}
$$

Since $A_{\Phi} \widetilde{K_{0}^{u}}=P_{u}\left[\left(\varphi_{1}+\overline{\varphi_{2}}\right)(\bar{z}(u-u(0)))\right]$ we have

$$
\begin{aligned}
S_{u} A_{\Phi} \widetilde{K_{0}^{u}} & =S_{u}\left(\widetilde{\varphi_{2}}+\varphi_{1}(0) \widetilde{K_{0}^{u}}-u(0) S_{u}^{*} \varphi_{1}\right) \\
& =S_{u} \widetilde{\varphi_{2}}-u(0) \varphi_{1}(0) K_{0}^{u}-u(0) S_{u} S_{u}^{*} \varphi_{1} \\
& =S_{u} \widetilde{\varphi_{2}}-u(0) \varphi_{1}(0) K_{0}^{u}-u(0) \varphi_{1}+u(0)\left(K_{0}^{u} \otimes K_{0}^{u}\right) \varphi_{1} \\
& =S_{u} \widetilde{\varphi_{2}}-u(0) \varphi_{1}(0) K_{0}^{u}-u(0) \varphi_{1}+u(0) \varphi_{1}(0) K_{0}^{u} \\
& =S_{u} \widetilde{\varphi_{2}}-u(0) \varphi_{1}
\end{aligned}
$$

so the second term of (4.1) is

$$
\begin{aligned}
\left(S_{u} A_{\Phi} \widetilde{K_{0}^{u}}\right) \otimes\left(S_{u} A_{\bar{\Psi}} \widetilde{K_{0}^{u}}\right)= & \left(S_{u} \widetilde{\varphi_{2}}-u(0) \varphi_{1}\right) \otimes\left(S_{u} \widetilde{\psi_{1}}-u(0) \psi_{2}\right) \\
= & S_{u} \widetilde{\varphi_{2}} \otimes S_{u} \widetilde{\psi_{1}}-u(0)\left[\varphi_{1} \otimes S_{u} \widetilde{\psi_{1}}\right] \\
& -\widetilde{u(0)}\left[S_{u} \widetilde{\varphi_{2}} \otimes \psi_{2}\right]+|u(0)|^{2}\left[\varphi_{1} \otimes \psi_{2}\right] .
\end{aligned}
$$

By Proposition 2.3 we have that $S_{u} A_{\Phi} S_{u}^{*}=A_{\Phi}-\varphi_{1} \otimes K_{0}^{u}-K_{0}^{u} \otimes \varphi_{2}$, and so the first term of (4.1) is

$$
\begin{aligned}
S_{u} A_{\Phi} S_{u}^{*} S_{u} A_{\Psi} S_{u}^{*}= & \left(A_{\Phi}-\varphi_{1} \otimes K_{0}^{u}-K_{0}^{u} \otimes \varphi_{2}\right)\left(A_{\Psi}-\psi_{1} \otimes K_{0}^{u}-K_{0}^{u} \otimes \psi_{2}\right) \\
= & A_{\Phi} A_{\Psi}-\Phi_{0} \otimes K_{0}^{u}-\left(A_{\Phi} K_{0}^{u}\right) \otimes \psi_{2} \\
& -\varphi_{1} \otimes\left(A_{\bar{\Psi}} K_{0}^{u}\right)+\left(1-|u(0)|^{2}\right) \varphi_{1} \otimes \psi_{2}-K_{0}^{u} \otimes \Psi_{0} \\
= & A_{\Phi} A_{\Psi}+\Phi_{0} \otimes K_{0}^{u}-K_{0}^{u} \otimes \Psi_{0}-\left(1+|u(0)|^{2}\right) \varphi_{1} \otimes \psi_{2} \\
& +\overline{u(0)}\left(S_{u} \widetilde{\left.\varphi_{2} \otimes \psi_{2}\right)+u(0)\left(\varphi_{1} \otimes S_{u} \widetilde{\psi_{1}}\right) .}\right.
\end{aligned}
$$

By combining the expanded terms together, we get

$$
S_{u} A_{\Phi} A_{\Psi} S_{u}^{*}=S_{u} \widetilde{\varphi_{2}} \otimes S_{u} \widetilde{\psi_{1}}-\varphi_{1} \otimes \psi_{2}+\Phi_{0} \otimes K_{0}^{u}+K_{0}^{u} \otimes \Psi_{0}+A_{\Phi} A_{\Psi}
$$

and the result follows.
THEOREM 4.7. Let $\alpha \in \overline{\mathbb{D}}$, and let A be a bounded operator on K_{u}^{2}. Then A is a TTO of type α if and only if A is in $\left[S_{u}^{\alpha}\right]^{\prime}$.

Proof. Proposition 3.2 proves that everything in $\left[S_{u}^{\alpha}\right]^{\prime}$ is of type α, so assume A is of type α. We will prove that $A S_{u}^{\alpha}$ is in \mathscr{T}_{u}, and hence C-symmetic, and so $A S_{u}^{\alpha}=S_{u}^{\alpha} A$ by Proposition 2.1.
S_{u}^{α} commutes with itself, and therefore is of type α. By Definition 3.1

$$
S_{u}^{\alpha} K_{0}^{u}=S_{u} K_{0}^{u}+\frac{\alpha \overline{u^{\prime}(0)}}{1-\alpha \overline{u(0)}} K_{0}^{u}
$$

So by Proposition 3.2

$$
(1-\alpha \overline{u(0)})^{-1}\left(S_{u} K_{0}^{u}+\alpha \overline{S_{u} \widetilde{S_{u} K_{0}^{u}}}+\frac{\alpha \overline{u^{\prime}(0)}}{1-\alpha \overline{u(0)}}\left(K_{0}^{u}+\alpha \overline{S_{u} \widetilde{K_{0}^{u}}}\right)\right)
$$

is a symbol for S_{u}^{α}. By Proposition 2.5

$$
K_{0}^{u}+\alpha \overline{S_{u} \widetilde{K_{0}^{u}}} \stackrel{A}{\equiv}(1-\alpha \overline{u(0)})
$$

and so it follows that

$$
\begin{equation*}
(1-\alpha \overline{u(0)})^{-1}\left(S_{u} K_{0}^{u}+\alpha \overline{S_{u} \widetilde{S_{u} K_{0}^{u}}}+\alpha \overline{u^{\prime}(0)} K_{0}^{u}\right) \tag{4.2}
\end{equation*}
$$

is also a symbol for S_{u}^{α}.
Suppose A is of type α. Then we may without loss of generality assume that $\varphi+\alpha \overline{S_{u} \widetilde{\varphi}}$ is a symbol for A where φ is in K_{u}^{2}. Applying Lemma 4.6 we see that $A S_{u}^{\alpha}$ is in \mathscr{T}_{u} if and only if there exist $\Phi, \Psi \in K_{u}^{2}$ such that

$$
\varphi \otimes\left(\bar{\alpha} S_{u} \widetilde{S_{u} K_{0}^{u}}\right)-\left(\widetilde{S_{u}} \widetilde{\overline{\alpha S_{u}} \widetilde{\varphi}}\right) \otimes S_{u} \widetilde{S_{u} K_{0}^{u}}=\Phi \otimes K_{0}^{u}+K_{0}^{u} \otimes \Psi
$$

Factoring α out of the left-hand side, we get

$$
\begin{aligned}
\varphi \otimes\left(S_{u} \widetilde{S_{u} K_{0}^{u}}\right)-\left(S_{u} \widetilde{S_{u} \widetilde{\varphi}}\right) \otimes S_{u} \widetilde{S_{u} K_{0}^{u}} & =\left(\left(I-S_{u} S_{u}^{*}\right) \varphi\right) \otimes S_{u} \widetilde{S_{u} K_{0}^{u}} \\
& =\varphi(0) K_{0}^{u} \otimes S_{u} \widetilde{S_{u} K_{0}^{u}}
\end{aligned}
$$

The conclusion follows.

5. Algebras of TTOs

The results of the previous section show that the TTOs of type α form a weakly closed commutative algebra for any $\alpha \in \mathbb{C}^{*}$, which we denote \mathscr{B}^{α}. In this section we will show that these algebras are maximal - any algebra in \mathscr{T}_{u} is a subalgebra of at least one \mathscr{B}^{α}.

We begin by showing that if A_{Φ} is of type $\alpha, A_{\Psi} \in \mathscr{T}_{u}$, and their product is in \mathscr{T}_{u}, then either A_{Φ} is a multiple of I, or A_{Ψ} is of type α as well.

LEMmA 5.1. Let $A_{\Phi}, A_{\Phi} \in \mathscr{T}_{u}$ such that $A_{\Phi} A_{\Psi} \in \mathscr{T}_{u}$ and let $\alpha \in \mathbb{C}^{*}$. If one of the operators in the product is of type α, then either it is a constant multiple of the identity operator, or the other is of type α as well.

Proof. Since $A_{\Phi} A_{\Psi}$ is in \mathscr{T}_{u}, it is a CSO, and so $A_{\Phi} A_{\Psi}=A_{\Psi} A_{\Phi}$ by Proposition 2.1. Thus we assume without loss of generality that A_{Φ} is of type α. Additionally $A_{\Phi} A_{\Psi}$ is in \mathscr{T}_{u} if and only if its adjoint $C A_{\Phi} A_{\Psi} C=A_{\Phi} A_{\bar{\Psi}}$ is as well, where $A_{\bar{\Phi}}$ is of type $\bar{\alpha}^{-1}$, so we assume without loss of generality that A_{Φ} is of type $\alpha \in \overline{\mathbb{D}}$. So $\Phi \stackrel{A}{\equiv} \varphi_{0}+\alpha \overline{S_{u} \widetilde{\varphi_{0}}}+c K_{0}^{u}$ and $\Psi \stackrel{A}{\equiv} \psi_{1}+\overline{\psi_{2}}$ for some $\varphi_{0}, \psi_{1}, \psi_{2} \in K_{u}^{2}$, where by Proposition 4.3 we may assume that $\varphi_{0}(0)=0, c \in \mathbb{C}$. By Lemma 4.6, there exists $\Phi_{0}, \Psi_{0} \in K_{u}^{2}$ such that

$$
\begin{aligned}
\Phi_{0} \otimes K_{0}^{u}+K_{0}^{u} \otimes \Psi_{0} & =\left(\varphi_{0}+c K_{0}^{u}\right) \otimes \psi_{2}-\left(S_{u}\left(\widetilde{\overline{\alpha S_{u}} \widetilde{\varphi_{0}}}\right)\right) \otimes\left(S_{u} \widetilde{\psi_{1}}\right) \\
& =\varphi_{0} \otimes \psi_{2}+c K_{0}^{u} \otimes \psi_{2}-\varphi_{0} \otimes\left(\bar{\alpha} S_{u} \widetilde{\psi_{1}}\right) \\
& =\varphi_{0} \otimes\left(\psi_{2}-\bar{\alpha} S_{u} \widetilde{\psi_{1}}\right)+c K_{0}^{u} \otimes \psi_{2}
\end{aligned}
$$

So $\varphi_{0} \otimes\left(\psi_{2}-\bar{\alpha} S_{u} \widetilde{\psi_{1}}\right)=\Phi_{0} \otimes K_{0}^{u}+K_{0}^{u} \otimes \Psi_{1}$ for some $\Psi_{1} \in K_{u}^{2}$. So either Φ_{0} and K_{0}^{u} are linearly dependent or Ψ_{1} and K_{0}^{u} are. If Φ_{0} and K_{0}^{u} are linearly dependent, then $\Phi_{0}=c_{1} K_{0}^{u}$ which means $\varphi_{0}=c_{2} K_{0}^{u}$, but this and $\varphi_{0}(0)=0$ then imply that $c_{2}=0$, and so $\varphi_{0}=0$ and $A_{\Phi}=c I$. Otherwise, $\Psi_{1}=c_{3} K_{0}^{u}$ and so $\psi_{2}-\bar{\alpha} S_{u} \widetilde{\psi_{1}}=c_{4} K_{0}^{u}$, which means A_{Ψ} is of type α by Proposition 4.2.

We now prove the main theorem of this section.
THEOREM 5.2. Let $\Phi, \Psi \in L^{2}(\mathbb{T})$ such that $A_{\Phi}, A_{\Psi} \in \mathscr{T}_{u}$. Then $A_{\Phi} A_{\Psi} \in \mathscr{T}_{u}$ if and only if one of two (not mutually exclusive) cases holds:

Trivial case: Either A_{Φ} or A_{Ψ} is equal to cI for some $c \in \mathbb{C}$.

Non-trivial case: A_{Φ} and A_{Ψ} are both of type α for some $\alpha \in \mathbb{C}^{*}$, in which case their product is of type α as well.

Proof. The sufficiency of either case follows from earlier discussion, so we prove their necessity. In what follows we will use the fact that if Φ and Ψ are functions such that $A_{\Phi} A_{\Psi} \in \mathscr{T}_{u}$, then for any complex constants $c_{1}, c_{2} A_{\Phi+c_{1}} A_{\Psi+c_{2}} \in \mathscr{T}_{u}$.

Suppose $A_{\Phi} A_{\Psi} \in \mathscr{T}_{u}$. By Lemma 5.1 it suffices to show that one of A_{Φ} and A_{Ψ} is of type α for some $\alpha \in \mathbb{C}^{*}$.

There exists $\varphi_{i}, \psi_{i} \in K_{u}^{2}$ such that we may assume without loss of generality that $\Phi=\varphi_{1}+\overline{\varphi_{2}}$ and that $\Psi=\psi_{1}+\overline{\psi_{2}}$. Then it follows by Lemma 4.6 that

$$
\varphi_{1} \otimes \psi_{2}-\left(S_{u} \widetilde{\varphi_{2}}\right) \otimes\left(S_{u} \widetilde{\psi_{1}}\right)=\Phi_{0} \otimes K_{0}^{u}+K_{0}^{u} \otimes \Psi_{0}
$$

holds for some Φ_{0}, Ψ_{0} in K_{u}^{2}. If at least one of Φ_{0} and Ψ_{0} is non-zero, but one of them is in $\mathbb{C} K_{0}^{u}$, then the right-hand side of this equation is a rank one operator $f \otimes g$. Thus we consider the following three cases.
(1) $\varphi_{1} \otimes \psi_{2}-\left(S_{u} \widetilde{\varphi_{2}}\right) \otimes\left(S_{u} \widetilde{\psi_{1}}\right)=0$
(2) $\varphi_{1} \otimes \psi_{2}-\left(S_{u} \widetilde{\varphi_{2}}\right) \otimes\left(S_{u} \widetilde{\psi_{1}}\right)=f \otimes g ; f, g \in K_{u}^{2}$
(3) $\varphi_{1} \otimes \psi_{2}-\left(S_{u} \widetilde{\varphi_{2}}\right) \otimes\left(S_{u} \widetilde{\psi_{1}}\right)=\Phi_{0} \otimes K_{0}^{u}+K_{0}^{u} \otimes \Psi_{0} ; \Phi_{0}, \Psi_{0} \neq c K_{0}^{u}$

In what follows, c and c_{i} represent complex constants that may change from paragraph to paragraph.

Case 1: We have $\varphi_{1} \otimes \psi_{2}=\left(S_{u} \widetilde{\varphi_{2}}\right) \otimes\left(S_{u} \widetilde{\psi_{1}}\right)$, which means that ψ_{2} and $S_{u} \widetilde{\psi_{1}}$ are linearly dependent. Both ψ_{2} and $S_{u} \widetilde{\psi_{1}}$ are non-zero, so $\psi_{2}=\bar{\alpha} S_{u} \widetilde{\psi_{1}}$ for $\alpha \neq 0$ and it follows from Proposition 4.2 that A_{Ψ} is of type α.

Case 2: We have $\varphi_{1} \otimes \psi_{2}-\left(S_{u} \widetilde{\varphi_{2}}\right) \otimes\left(S_{u} \widetilde{\psi_{1}}\right)=f \otimes g ; f, g \in K_{u}^{2}$. So either φ_{1} and $S_{u} \widetilde{\varphi_{2}}$ are linearly dependent or $S_{u} \widetilde{\psi_{1}}$ and ψ_{2} are. In the latter case, we again get that A_{Ψ} is of type α for some $\alpha \neq 0$. Assume instead that $\varphi_{1}=c_{1} S_{u} \widetilde{\varphi_{2}}$ for $c_{1} \neq 0$. Then by Equation $2.3 c_{2} S_{u} \widetilde{\varphi_{1}}=S_{u} \widetilde{S_{u} \widetilde{\varphi_{2}}}=\varphi_{2}-\left\langle\varphi_{2}, K_{0}^{u}\right\rangle K_{0}^{u}$, and so $\varphi_{2}-c_{2} S_{u} \widetilde{\varphi_{1}} \in \mathbb{C} K_{0}^{u}$ and therefore by Proposition $4.2 A_{\Phi}$ is of type $\alpha=\overline{c_{2}}$.

Case 3: We have $\varphi_{1} \otimes \psi_{2}-\left(S_{u} \widetilde{\varphi_{2}}\right) \otimes\left(S_{u} \widetilde{\psi_{1}}\right)=\Phi_{0} \otimes K_{0}^{u}+K_{0}^{u} \otimes \Psi_{0} ; \Phi_{0}, \Psi_{0} \neq c K_{0}^{u}$. There exists $f \in K_{u}^{2}$ such that $f(0)=0$ and $\left\langle f, \Phi_{0}\right\rangle=1$. Then we have

$$
\begin{aligned}
K_{0}^{u} & =\left(\Psi_{0} \otimes K_{0}^{u}+K_{0}^{u} \otimes \Phi_{0}\right) f \\
& =\left(\psi_{2} \otimes \varphi_{1}\right) f-\left(S_{u} \widetilde{\psi_{1}} \otimes S_{u} \widetilde{\varphi_{2}}\right) f \\
& =\psi_{2}\left\langle f, \varphi_{1}\right\rangle-S_{u} \widetilde{\psi_{1}}\left\langle f, S_{u} \widetilde{\varphi_{2}}\right\rangle
\end{aligned}
$$

If $\left\langle f, \varphi_{1}\right\rangle=0$, then $c K_{0}^{u}=S_{u} \widetilde{\psi_{1}}$, and so by Proposition $4.2 A_{\Psi}$ is of type ∞. Similarly, if $\left\langle f, S_{u} \widetilde{\varphi_{2}}\right\rangle=0$, then $c K_{0}^{u}=\psi_{2}$ and A_{Ψ} is of type 0 . So we can assume that $\psi_{2}=\bar{\alpha} S_{u} \widetilde{\psi_{1}}+c K_{0}^{u}$ for some $\alpha \neq 0$. Thus A_{Ψ} is of type α by Proposition 4.2.

Example 5.3. Theorem 5.1 of [11] classifies all the rank one operators in \mathscr{T}_{u} and finds symbols for them. Specifically, for $\lambda \in \mathbb{D} \widetilde{K_{\lambda}^{u}} \otimes K_{\lambda}^{u}$ is in \mathscr{T}_{u} and has with
symbol $u /(z-\lambda)$, and if u has an ADC at $\zeta \in \mathbb{T}$ then $K_{\zeta}^{u} \otimes K_{\zeta}^{u}$ is in \mathscr{T}_{u} and has symbol $K_{\zeta}^{u}+\overline{K_{0}^{u}}[\zeta]-1$. We will show that all of them are of type α for some $\alpha \in \mathbb{C}^{*}$, and compute α.

Let $\lambda \in \mathbb{D}$ and consider $A=\widetilde{K_{\lambda}^{u}} \otimes K_{\lambda}^{u}$, with symbol $u /(z-\lambda)$. Since $\widetilde{K_{\lambda}^{u}}(\lambda)=$ $u^{\prime}(\lambda),\left(\widetilde{K_{\lambda}^{u}} \otimes K_{\lambda}^{u}\right)^{2}=u^{\prime}(\lambda) \widetilde{K_{\lambda}^{u}} \otimes K_{\lambda}^{u}$ so it follows that $\widetilde{K_{\lambda}^{u}} \otimes K_{\lambda}^{u}$ is of type α for some $\alpha \in \mathbb{C}^{*}$. Since

$$
\begin{aligned}
u /(z-\lambda) & \stackrel{A}{\equiv} \widetilde{K_{\lambda}^{u}}+u(\lambda) /(z-\lambda) \\
& \stackrel{A}{\equiv} \widetilde{K_{\lambda}^{u}}+u(\lambda) \overline{z K_{\lambda}} \\
& \stackrel{A}{\equiv} \widetilde{K_{\lambda}^{u}}+u(\lambda) \overline{S_{u} K_{\lambda}^{u}}
\end{aligned}
$$

A is of type $u(\lambda)$.
Now instead suppose that $\zeta \in \mathbb{T}$ such that u has an ADC at ζ, and consider $A=K_{\zeta}^{u} \otimes K_{\zeta}^{u}$ which has symbol $K_{\zeta}^{u}+\overline{K_{\zeta}^{u}}-1$. Again it is clear that A^{2} is a scalar multiple of A and hence A is of type α for some α. Since A is self-adjoint, it follows that α is unimodular. We compute

$$
\begin{aligned}
\widetilde{K_{\zeta}^{u}} & =\frac{u-u(\zeta)}{z-\zeta} \\
& =\frac{u(\zeta)(1-\overline{u(\zeta)} u)}{\zeta(1-\bar{\zeta} z)} \\
& =\bar{\zeta}_{u(\zeta) K_{\zeta}^{u}}
\end{aligned}
$$

so

$$
S_{u} \widetilde{K_{\zeta}^{u}}=\zeta \widetilde{K_{\zeta}^{u}}-u(\zeta) K_{0}^{u}=u(\zeta)\left(K_{\zeta}^{u}-K_{0}^{u}\right)
$$

Thus $K_{\zeta}^{u}-1 \stackrel{A}{\equiv} \overline{u(\zeta)} S_{u} \widetilde{K_{\zeta}^{u}}$ and so $K_{\zeta}^{u}+u(\zeta) \overline{S_{u} \widetilde{K_{\zeta}^{u}}}$ is a symbol for A, which is therefore of type $u(\zeta)$.

Theorem 5.2 has the following consequence which is an analogue of Corollary 2 in [2].

THEOREM 5.4. Let $A \in \mathscr{T}_{u}$ be invertible. Then $A^{-1} \in \mathscr{T}_{u}$ if and only if A is of type α for some $\alpha \in \mathbb{C}^{*}$. If $A^{-1} \in \mathscr{T}_{u}$, then A and A^{-1} are of the same type

Proof. If $A^{-1} \in \mathscr{T}_{u}$, then both A and A^{-1} are of type α for some $\alpha \in \mathbb{C}^{*}$ by Theorem 5.2 since their product is $I=A_{K_{0}^{u}}$. If A is of type α, either $|\alpha| \leqslant 1$ or A^{*} is of type $\beta=1 / \bar{\alpha} \leqslant 1$. In the first case, we have that $A S_{u}^{\alpha}=S_{u}^{\alpha} A$, so $A^{-1} S_{u}^{\alpha}=$ $A^{-1} S_{u}^{\alpha} A A^{-1}=A^{-1} A S_{u}^{\alpha} A^{-1}=S_{u}^{\alpha} A^{-1}$ and A^{-1} is a TTO of type α. In the second case, we have that A^{*} is an invertible TTO of type β where $|\beta| \leqslant 1$, so its inverse is a TTO of type β as well. By taking adjoints again, the result follows.
$\mathbb{C} I$ is a subalgebra of \mathscr{B}^{α} for every α, and the intersection of \mathscr{B}^{α} and \mathscr{B}^{β} is either \mathscr{B}^{α} or $\mathbb{C} I$ depending on whether $\alpha=\beta$ or not. We now consider an arbitrary algebra \mathscr{A} contained in \mathscr{T}_{u} and its relationship to \mathscr{B}^{α}.

THEOREM 5.5. Let \mathscr{A} be an algebra contained in \mathscr{T}_{u}. Then there exists an $\alpha \in$ \mathbb{C}^{*} such that \mathscr{A} is a subalgebra of \mathscr{B}^{α}.

Proof. Suppose every A in \mathscr{A} is of the form $c I$, for $c \in \mathbb{C}$. Then $I \in \mathscr{A}$ and so $\mathscr{A}=\mathbb{C} I$ which is a subalgebra of every \mathscr{B}^{α}.

Suppose then that there is $A \in \mathscr{A}$ not of the form $c I . A^{2} \in \mathscr{T}_{u}$ so by Theorem 5.2 A is of type α for some unique α. If $B \in \mathscr{A}$ then $A B \in \mathscr{T}_{u}$ and so since $A \neq c I$ it follows from Theorem 5.2 that B is of type α as well, and therefore every operator in \mathscr{A} is of type α, and so it is a subalgebra of \mathscr{B}^{α}

6. Properties of \mathscr{B}^{α}

Due to the duality between \mathscr{B}^{α} and $\mathscr{B}^{\left(\bar{\alpha}^{-1}\right)}$ via taking adjoints, in order to study these algebras we can look at the cases where $\alpha \in \overline{\mathbb{D}}$. These algebras can then be divided into two different groups, $\alpha \in \mathbb{D}$ and $\alpha \in \mathbb{T}$. Different techniques are needed to deal with each of these cases. We discuss what the product of two TTOs of type α is, and expand on Theorem 5.4 by finding necessary and sufficient conditions for a TTO of type α to be invertible, based on its symbol.

6.1. $\alpha \in \mathbb{D}$

In this subsection, assume $\alpha \in \mathbb{D}$.
Sarason's Commutant Lifting Theorem [9] states that if A is a bounded operator that commutes with S_{u}, then there exists a function $\varphi \in H^{\infty}$ such that $\|A\|=\|\varphi\|_{\infty}$ and $A=A_{\varphi}$. The goal of this subsection is to find a Commutant Lifting Theorem for $\left[S_{u}^{\alpha}\right]^{\prime}$.

Let $u_{\alpha}=\frac{u-\alpha}{1-\bar{\alpha} u}$ for $\alpha \in \mathbb{D}$. In what follows, we will be dealing with operators in both \mathscr{T}_{u} and $\mathscr{T}_{u_{\alpha}}$. Let A_{Φ}^{u} refer to an operator in \mathscr{T}_{u} and $A_{\Phi}^{u_{\alpha}}$ an operator in $\mathscr{T}_{u_{\alpha}}$.
$T_{\alpha}=M_{\left(1-|\alpha|^{2}\right)^{-1 / 2}(1-\bar{\alpha} u)}$ is an unitary map from $K_{u_{\alpha}}^{2}$ onto K_{u}^{2} called a Crofoot transform [5]. Note that $T_{\alpha}^{-1}=M_{\left(1-|\alpha|^{2}\right)^{1 / 2}(1-\bar{\alpha} u)^{-1}}$. Sarason [11] showed that $S_{u}^{\alpha}=$ $A_{z /(1-\alpha \bar{u})}^{u}$ and that $T_{\alpha}^{-1} S_{u}^{\alpha} T_{\alpha}=A_{z}^{u_{\alpha}}$, the compressed shift on $K_{u_{\alpha}}^{2}$. Thus there is a unitary equivalence between \mathscr{B}^{α} on K_{u}^{2} and \mathscr{B}^{0} on $K_{u_{\alpha}}^{2}$. The following propositions describe the operators of the form $A_{\varphi /(1-\alpha \bar{u})}^{u}$ for $\varphi \in H^{2}$, which are in fact the operators in \mathscr{B}^{α}.

PROPOSITION 6.1.
(1) For $\varphi \in K_{u}^{2}$ and $\alpha \in \mathbb{D}, A_{\varphi /(1-\alpha \bar{u})}^{u}=A_{\varphi(1+\alpha \bar{u})}^{u}=A_{\varphi-\alpha \overline{S_{u}} \bar{\varphi}}^{u}$.
(2) If $\varphi \in H^{2}$, then $A_{\bar{\varphi} /(1-\alpha \bar{u})}^{u}=A_{\bar{\varphi}}^{u}$. Specifically, $A_{(1-\alpha \bar{u})^{-1}}^{u}=I$.
(3) $S_{u}^{\alpha}=A_{z /(1-\alpha \bar{u})}^{u}$.

Proof.

(1) Since

$$
\frac{1}{1-\alpha \bar{u}}=\sum_{n=0}^{\infty}(\alpha \bar{u})^{n}
$$

we can compute

$$
\frac{\varphi}{1-\alpha \bar{u}}=\sum_{n=0}^{\infty} \varphi(\alpha \bar{u})^{n}
$$

But since $\bar{u} \varphi \in \overline{z H^{2}}$ it follows that $\sum_{n=0}^{\infty} \varphi(\alpha \bar{u})^{n} \stackrel{A}{\equiv} \varphi(1+\alpha \bar{u})$ and so $A_{\varphi /(1-\alpha \bar{u})}^{u}=$ $A_{\varphi(1+\alpha \bar{u})}^{u}$. The second equality then holds because

$$
\overline{S_{u} \widetilde{\varphi}}=\overline{\overline{S_{u}^{*} \varphi}}=\bar{u} z \frac{\varphi-\varphi(0)}{z} \stackrel{A}{\equiv} \varphi \bar{u} .
$$

(2) $\frac{\bar{\varphi} /(1-\alpha \bar{u})}{\overline{u H^{2}}} \stackrel{A}{\equiv} \bar{\varphi}+\alpha \overline{u \varphi} /(1-\alpha \bar{u}) \stackrel{A}{=} \bar{\varphi}$ by Proposition 2.2, since $\overline{u \varphi} /(1-\alpha \bar{u}) \in$
(3) Equation (4.2) and part (1) of this proof imply that S_{u}^{α} has symbol

$$
\frac{1}{1-\alpha \overline{u(0)}}\left(\frac{S_{u} K_{0}^{u}}{1-\alpha \bar{u}}+\alpha \overline{u^{\prime}(0)}\right)
$$

so it suffices to show that

$$
\frac{z(1-\alpha \overline{u(0)})}{1-\alpha \bar{u}} \stackrel{A}{\equiv} \frac{S_{u} K_{0}^{u}}{1-\alpha \bar{u}}+\alpha \overline{u^{\prime}(0)}
$$

Since $z=S_{u} K_{0}^{u}+u P(\bar{u} z)$,

$$
\begin{aligned}
\frac{z}{1-\alpha \bar{u}} & \stackrel{A}{\equiv} \frac{S_{u} K_{0}^{u}}{1-\alpha \bar{u}}+\frac{u P(\bar{u} z)}{1-\alpha \bar{u}} \\
& \xlongequal[\equiv]{=} \frac{S_{u} K_{0}^{u}}{1-\alpha \bar{u}}+\frac{\alpha P(\bar{u} z)}{1-\alpha \bar{u}} .
\end{aligned}
$$

Since $\widetilde{K_{0}^{u}}=(u-u(0)) \bar{z}, P(\bar{u} z)=\overline{\widetilde{K_{0}^{u}}(0)}+\overline{u(0)} z=\overline{u^{\prime}(0)}+\overline{u(0)} z$,

$$
\begin{aligned}
\frac{z(1-\alpha \overline{u(0)})}{1-\alpha \bar{u}} & \stackrel{A}{=} \frac{z}{1-\alpha \bar{u}}-\frac{\alpha \overline{u(0)} z}{1-\alpha \bar{u}} \\
& \stackrel{A}{\equiv} \frac{S_{u} K_{0}^{u}}{1-\alpha \bar{u}}+\frac{\alpha \overline{u^{\prime}(0)}}{1-\alpha \bar{u}}+\frac{\alpha \overline{u(0)} z}{1-\alpha \bar{u}}-\frac{\alpha \overline{u(0)} z}{1-\alpha \bar{u}} \\
& \stackrel{A}{\equiv} \frac{S_{u} K_{0}^{u}}{1-\alpha \bar{u}}+\alpha \overline{u^{\prime}(0)} .
\end{aligned}
$$

LEMMA 6.2. Let $\varphi \in H^{2}$ and $\alpha \in \mathbb{D}$. Then $T_{\alpha} A_{\varphi}^{u_{\alpha}} T_{\alpha}^{-1}=A_{\varphi /(1-\alpha \bar{u})}^{u}$ and $T_{\alpha} A_{\bar{\varphi}}^{u_{\alpha}} T_{\alpha}^{-1}$ $=A_{\bar{\varphi} /(1-\bar{\alpha} u)}^{u}$. Therefore $A_{\varphi}^{u_{\alpha}}$ and $A_{\varphi /(1-\alpha \bar{u})}^{u}$ (respectively $A_{\bar{\varphi}}^{u_{\alpha}}$ and $A_{\bar{\varphi} /(1-\bar{\alpha} u)}^{u}$) have the same norm, and if $\psi \in H^{2}$, then $A_{\varphi /(1-\alpha \bar{u})}^{u}=A_{\psi /(1-\alpha \bar{u})}^{u}$ (respectively $A_{\bar{\varphi} /(1-\bar{\alpha} u)}^{u}=$ $\left.A_{\bar{\psi} /(1-\bar{\alpha} u)}^{u}\right)$ if and only if $u_{\alpha} \mid(\varphi-\psi)$.

Proof. It suffices to show that the equalities hold on K_{u}^{∞}, so let $f \in K_{u}^{\infty}$. Then

$$
A_{\varphi /(1-\alpha \bar{u})}^{u} f=P_{u}\left(\frac{f \varphi}{1-\alpha \bar{u}}\right)=P\left(\frac{f \varphi}{1-\alpha \bar{u}}\right)-u P\left(\frac{\bar{u} f \varphi}{1-\alpha \bar{u}}\right)
$$

On the other hand,

$$
\begin{aligned}
T_{\alpha} A_{\varphi}^{u_{\alpha}} T_{\alpha}^{-1} f & =(1-\bar{\alpha} u) P_{u_{\alpha}}\left(\frac{f \varphi}{1-\bar{\alpha} u}\right) \\
& =(1-\bar{\alpha} u)\left[\frac{f \varphi}{1-\bar{\alpha} u}-u_{\alpha} P\left(\frac{\overline{u_{\alpha}} f \varphi}{1-\bar{\alpha} u}\right)\right] \\
& =f \varphi-(u-\alpha) P\left(\frac{\bar{u} f \varphi}{1-\alpha \bar{u}}\right) \\
& =f \varphi+P\left(\frac{\alpha \bar{u} f \varphi}{1-\alpha \bar{u}}\right)-u P\left(\frac{\bar{u} f \varphi}{1-\alpha \bar{u}}\right) \\
& =P\left(\frac{f \varphi}{1-\alpha \bar{u}}\right)-u P\left(\frac{\bar{u} f \varphi}{1-\alpha \bar{u}}\right)
\end{aligned}
$$

Since T_{α} is unitary, it follows that $A_{\varphi /(1-\alpha \bar{u})}^{u}=A_{\psi /(1-\alpha \bar{u})}^{u}$ if and only if $A_{\varphi}^{u_{\alpha}}=$ $A_{\psi}^{u_{\alpha}}$, but by Proposition 2.2 the latter is true if and only if $u_{\alpha} \mid \varphi-\psi$.

Since T_{α} is unitary, we have

$$
\begin{aligned}
A_{\bar{\varphi} /(1-\bar{\alpha} u)}^{u} & =\left(A_{\varphi /(1-\alpha \bar{u})}^{u}\right)^{*} \\
& =\left(T_{\alpha} A_{\varphi}^{u_{\alpha}} T_{\alpha}^{-1}\right)^{*} \\
& =T_{\alpha} A_{\bar{\varphi}}^{u_{\alpha}} T_{\alpha}^{-1}
\end{aligned}
$$

proving the result for the adjoints.
THEOREM 6.3. Let A be an bounded operator on K_{u}^{2} and let $\alpha \in \mathbb{D}$. Then A is of type α if and only if there is a function $\varphi \in H^{2}$ such that $A=A_{\varphi /(1-\alpha \bar{u})}^{u}$. If A is of type α then there is a function $\psi \in H^{\infty}$ such that $\|\psi\|_{\infty}=\|A\|$ and $A=A_{\psi /(1-\alpha \bar{u})}^{u}$ and therefore every operator of type α has a bounded symbol. Further, if φ, ψ are in H^{∞} then $A_{\varphi /(1-\alpha \bar{u})}^{u} A_{\psi /(1-\alpha \bar{u})}^{u}=A_{\varphi \psi /(1-\alpha \bar{u})}^{u}$.

Proof. Let $B=T_{\alpha}^{-1} A T_{\alpha}$. Then

$$
A A_{z /(1-\alpha \bar{u})}^{u}=A_{z /(1-\alpha \bar{u})}^{u} A
$$

if and only if

$$
B A_{z}^{u_{\alpha}}=T_{\alpha}^{-1} A A_{z /(1-\alpha \bar{u})}^{u} T_{\alpha}=T_{\alpha}^{-1} A_{z /(1-\alpha \bar{u})}^{u} A T_{\alpha}=A_{z}^{u_{\alpha}} B
$$

But this is true if and only if $B=A_{\varphi}^{u_{\alpha}}$ for some $\varphi \in H^{2}$ which is true if and only if $A=A_{\varphi /(1-\alpha \bar{u})}^{u}$ for some $\varphi \in H^{2}$, hence the first claim holds. By the Commutant Lifting Theorem, there is a function $\psi \in H^{\infty}$ such that $A_{\varphi}^{u_{\alpha}}=A_{\psi}^{u_{\alpha}}$ and $\left\|A_{\varphi}^{u_{\alpha}}\right\|=\|\psi\|_{\infty}$. By Lemma 6.2 it follows that $A=A_{\psi /(1-\alpha \bar{u})}^{u}$. Since T_{α} is unitary, $\|A\|=\|\psi\|_{\infty}$.

To prove the last claim, we compute

$$
A_{\varphi /(1-\alpha \bar{u})}^{u} A_{\psi /(1-\alpha \bar{u})}^{u}=T_{\alpha}^{-1} A_{\varphi}^{u_{\alpha}} A_{\psi}^{u_{\alpha}} T_{\alpha}=T_{\alpha}^{-1} A_{\varphi \psi}^{u_{\alpha}} T_{\alpha}=A_{\varphi \psi /(1-\alpha \bar{u})}^{u}
$$

Just as $A_{\varphi}^{u}=\varphi\left(S_{u}\right)$ for $\varphi \in H^{\infty}$, we get that $A_{\varphi /(1-\alpha \bar{u})}^{u}=\varphi\left(S_{u}^{\alpha}\right)$ for $\varphi \in H^{\infty}$.
Note that λ is in the spectrum of A_{φ}^{u} if and only if $\inf _{z \in \mathbb{D}}(|u(z)|+|\varphi(z)-\lambda|)=$ 0 [3].

Proposition 6.4. Let $\alpha \in \mathbb{D}$ and let $\varphi \in H^{\infty}$. Then $A_{\varphi /(1-\alpha \bar{u})}^{u}$ is invertible if and only if $\inf _{z \in \mathbb{D}}\left(\left|u_{\alpha}(z)\right|+|\varphi(z)|\right)>0$

Proof. $A_{\varphi /(1-\alpha \bar{u})}^{u}$ is invertible if and only if $A_{\varphi}^{u_{\alpha}}$ is invertible, which is true if and only if $\inf _{z \in \mathbb{D}}\left(\left|u_{\alpha}(z)\right|+|\varphi(z)|\right)>0$.

6.2. $\alpha \in \mathbb{T}$

The case of $|\alpha|=1$ is indirectly dealt with in $[11,1]$ and we collect those results here. There are TTOs of unimodular type without a bounded symbol under certain conditions. Specifically, in [1] it is shown that there exists u an inner function with an ADC at $\zeta \in \mathbb{T}$ such that $K_{\zeta}^{u} \otimes K_{\zeta}^{u} \in \mathscr{T}_{u}$ does not have a bounded symbol.

Example 5.3 shows that $K_{\zeta}^{u} \otimes K_{\zeta}^{u}$ is of type $u(\zeta)$, and hence it is an example of a TTO of unimodular type without a bounded symbol.

If, however, we weaken what we mean by "bounded symbol" we can find a bounded symbol for any TTO of unimodular type. Specifically, we change the measure with respect to which we take the sup norm of a function.

Let α be unimodular, and fixed for the rest of this section. An operator is of type α if and only if it commutes with S_{u}^{α}, which is in this case a unitary operator known as a Clark unitary operator, and is unitarily equivalent to M_{z} on the space $L^{2}\left(\mathbb{T}, \mu_{\alpha}\right)$ where μ_{α} is the Clark measure associated with S_{u}^{α} [4]. $\left[M_{z}\right]^{\prime}$ is the space of multiplication operators induced by $L^{\infty}\left(\mu_{\alpha}\right)$ and so by using the unitary equivalence, every operator of type α is equal to $\Phi\left(S_{u}^{\alpha}\right)$ where $\Phi \in L^{\infty}\left(\mu_{\alpha}\right)$. In this sense we can think about Φ as a "bounded symbol" for the operator. This gives us a symbol calculus of sorts for operators of type α : given Φ, Ψ bounded μ_{α}-almost everywhere, the product of M_{Φ} and M_{Ψ} is $M_{\Phi \Psi}$ where $\Phi \Psi$ is itself bounded μ_{α}-almost everywhere. Hence $\Phi\left(S_{u}^{\alpha}\right) \Psi\left(S_{u}^{\alpha}\right)=\Phi \Psi\left(S_{u}^{\alpha}\right)$. It follows that a TTO of type α is invertible if and only if it is of the form $\Phi\left(S_{u}^{\alpha}\right)$, where $|\Phi| \geqslant \delta>0 \mu_{\alpha}$-almost everywhere.

We can use this symbol calculus to precisely describe the unitary operators in \mathscr{T}_{u} on a given model space.

Proposition 6.5. Let $A \in \mathscr{T}_{u}$. Then A is unitary if and only if it is equal to $\Phi\left(S_{u}^{\alpha}\right)$ for some $\alpha \in \mathbb{T}$ and some $\Phi \in L^{\infty}\left(\mathbb{T}, \mu_{\alpha}\right)$ such that $|\Phi|=1 \mu_{\alpha}$-almost everywhere. Specifically, any unitary operator in \mathscr{T}_{u} is of unimodular type, and commutes with the Clark unitary operator of the same type.

Proof. If A is unitary then $A A^{*}=I$, which means that A and A^{*} must both be of the same type $\alpha \in \mathbb{C}^{*}$. Thus $\alpha=\bar{\alpha}^{-1}$ which implies that α is of unimodular type. So $A=\Phi\left(S_{u}^{\alpha}\right)$ for some $\Phi \in L^{\infty}\left(\mathbb{T}, \mu_{\alpha}\right)$. Then $I=A A^{*}=\Phi\left(S_{u}^{\alpha}\right) \bar{\Phi}\left(S_{u}^{\alpha}\right)=|\Phi|^{2}\left(S_{u}^{\alpha}\right)$ which implies that $|\Phi|=1 \mu_{\alpha}$-almost everywhere. The other direction is obvious.

REFERENCES

[1] A. Baranov, I. Chalendar, E. Fricain, J. Mashreghi, and D. Timotin, Bounded symbols and reproducing kernel thesis for truncated Toeplitz operators, arXiv:0909.0131v1, 2009.
[2] A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math., 213 (1963-1964), 89-102.
[3] J. A. Cima, A. L. Matheson, and W. T. Ross, The Cauchy Transform, Mathematical Surveys and Monographs, 125, American Mathematical Society, Providence, RI, 1998.
[4] D. N. Clark, One dimensional perturbations of restricted shifts, J. Analyse Math., 25 (1972), 169191.
[5] R. B. CROFOOT,
M ultipliers between invariant subspaces of the backward shift, Pacific J. Math., 166, 2 (1994), 225-246.
[6] S. R. Garcia, Conjugation and Clark operators, Contemporary Mathematics, 393 (2006), 67-111.
[7] S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc., 358, 3 (2006), 1285-1315.
[8] S. R. Garcia and M. Putinar, Complex symmetric operators and applications ii, Trans. Amer. Math. Soc., 359, 8 (2007), 3913-3931.
[9] D. Sarason, Generalized interpolation in H^{∞}, Trans. Amer. Math. Soc, 127 (1967), 179-203.
[10] D. Sarason, Sub-Hardy Hilbert spaces in the unit disc, John Wiley and Sons, Inc., New York, 1994.
[11] D. Sarason, Algebraic properties of truncated Toeplitz operators, Operators and Matrices, 1, 4 (2007), 491-526.
(Received June 18, 2010)

> N. A. Sedlock
> Framingham State University
> Department of Mathematics 100 State Street, P.O. Box 9101 Framingham, MA 01701-9101 U.S.A. e-mail: nsedlock@framingham.edu

[^0]: Mathematics subject classification (2010): Primary 47L80; Secondary 47A05, 47B35.
 Keywords and phrases: Toeplitz operator, truncated Toeplitz operator, model space, reproducing kernel, complex symmetric operator, operator algebra, maximal algebra, conjugation, bounded operator interpolation.

