SUFFICIENT CONDITIONS FOR COMPLETE POSITIVITY

Robert Reams

(Communicated by R. Bhatia)

Abstract

Marcus and Minc gave sufficient conditions on the diagonal entries of a doubly nonnegative doubly stochastic $n \times n$ matrix A, that there is a doubly nonnegative doubly stochastic matrix C with $A=C^{2}$. In this event, A is completely positive. We shall assume that A is doubly nonnegative and irreducible and provide slightly more general sufficent conditions on the diagonal entries of A for the existence of C. Our main result provides sufficient conditions on the principal 2×2 minors of a doubly nonnegative doubly stochastic irreducible matrix A for the existence of C.

1. Introduction

Let $A=\left(a_{i j}\right) \in \mathbf{R}^{n \times n}$. We will say A is nonnegative when $a_{i j} \geqslant 0$, for $1 \leqslant i, j \leqslant n$, and in the same way for $x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbf{R}^{n}$ we will call the vector x nonnegative when $x_{i} \geqslant 0$ for $1 \leqslant i \leqslant n$. As usual e_{i} will denote the i th standard basis vector. If A is nonnegative and has row and column sums 1 then A is called doubly stochastic. For $x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbf{R}^{n}$, we will write $x \geqslant 0$ to mean x is nonnegative, and $x>0$ to mean x is positive, which is to say $x_{i}>0$ for all $1 \leqslant i \leqslant n$. A is said to be positive semidefinite if A is symmetric and $x^{T} A x \geqslant 0$, for all $x \in \mathbf{R}^{n} . A$ is said to be doubly nonnegative if it is both nonnegative and positive semidefinite. A is said to be completely positive if $A=B^{T} B$, where $B \in \mathbf{R}^{m \times n}$ is nonnegative. A is said to be irreducible if there is no permutation matrix $P \in \mathbf{R}^{n \times n}$ such that $P^{T} A P$ can be written in block form as $P^{T} A P=\left(\begin{array}{cc}A_{11} & O \\ A_{21} & A_{22}\end{array}\right)$, where O is a zero block matrix (which is not $n \times n$). The PerronFröbenius Theorem [5] states that an $n \times n$ irreducible nonnegative matrix A has a real eigenvalue $r>\left|\lambda_{i}\right|$, where λ_{i}, for $2 \leqslant i \leqslant n$, are the other eigenvalues of A. Additionally, this theorem states that A has a positive eigenvector v corresponding to r. The eigenvalue r is often called the Perron root and v the Perron vector. With the eigenvalues ordered as $r \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}$, we will denote the eigenvector corresponding to λ_{2} by $w=\left(w_{1}, \ldots, w_{n}\right)^{T}$. Let $A \in \mathbf{R}^{m \times n}$ and k be such that $1 \leqslant k \leqslant \min \{m, n\}$, then $A^{(k)}$ will denote the k th compound matrix [3]. That is to say $A^{(k)}$ is the $\binom{m}{k} \times\binom{ n}{k}$ matrix whose entries are the $k \times k$ minors of A listed in $A^{(k)}$ in lexicographic order. We will say $C \in \mathbf{R}^{n \times n}$ is a square root of $A \in \mathbf{R}^{n \times n}$, if $A=C^{2}$.

[^0]In Section 2, we extend a result due to Marcus and Minc [8] (also in [2] and [10]). Their result gives sufficient conditions on the diagonal entries of $A \in \mathbf{R}^{n \times n}$, for the existence of a positive semidefinite doubly stochastic square root C if A is positive semidefinite and doubly stochastic. Theorem 1 is similarly concerned with the existence of a positive semidefinite square root which is nonnegative, but only requires A to be doubly nonnegative and irreducible. In Section 3, Theorem 3 gives sufficient conditions on the 2×2 principal minors of doubly nonnegative, doubly stochastic and irreducible A for the existence of a nonnegative positive semidefinite square root C.

2. Conditions on diagonal entries

Marcus and Minc's result [8] is a corollary of Theorem 1.
THEOREM 1. Let $A=\left(a_{i j}\right) \in \mathbf{R}^{n \times n}$ be doubly nonnegative and irreducible. Then $A=C^{2}$, for positive semidefinite $C=\left(c_{i j}\right) \in \mathbf{R}^{n \times n}$. Let r be the Perron root of A, and $v=\left(v_{1}, \ldots, v_{n}\right)^{T}$ its Perron vector. If $a_{i i} \leqslant \frac{r v_{i}^{2}}{\sum_{j \neq p} v_{j}^{2}}$, for all $i, 1 \leqslant i \leqslant n$, for all p, $1 \leqslant p \leqslant n$, then C is nonnegative.

Proof. Write $A=U^{T} \Lambda U$, where U is orthogonal and $\Lambda=\operatorname{diag}\left(r, \lambda_{2}, \ldots, \lambda_{n}\right)$, then $C=U^{T} \Lambda^{\frac{1}{2}} U$ is positive semidefinite (and unique [5]). A irreducible implies $r>0$ and $v>0$.

If $c_{i_{0} j_{0}}<0$, for some $i_{0}, j_{0}, i_{0} \neq j_{0}$, then
$a_{i_{0} i_{0}}=e_{i_{0}}^{T} C^{2} e_{i_{0}}=c_{1 i_{0}}^{2}+\cdots+c_{n i_{0}}^{2}>\sum_{j \neq j_{0}} c_{j i_{0}}^{2} \geqslant \frac{\left(\sum_{j \neq j_{0}} c_{j i_{0}} v_{j}\right)^{2}}{\sum_{j \neq j_{0}} v_{j}^{2}}>\frac{\left(\sqrt{r} v_{i_{0}}\right)^{2}}{\sum_{j \neq j_{0}} v_{j}^{2}}=\frac{r v_{i_{0}}^{2}}{\sum_{j \neq j_{0}} v_{j}^{2}}$, where the second inequality is from Cauchy-Schwartz and the third from $c_{i_{0} j_{0}}<0$.

Since C is symmetric we remark that if $c_{i_{0} j_{0}}<0$ we also have $a_{j_{0} j_{0}}>\frac{r v_{j_{0}}^{2}}{\sum_{i \neq i_{0}} v_{i}^{2}}$. Marcus and Minc's result has $r=1$ and $v=(1,1, \ldots, 1)^{T}$ in Theorem 1.

Corollary 2. (Marcus and Minc) Let $A=\left(a_{i j}\right) \in \mathbf{R}^{n \times n}$ be positive semidefinite and doubly stochastic, and $A=C^{2}$, where $C \in \mathbf{R}^{n \times n}$ is positive semidefinite. Then $a_{i i} \leqslant \frac{1}{n-1}$, for all $i, 1 \leqslant i \leqslant n$, implies C is nonnegative.

For $n \leqslant 4$, Maxfield and Minc [9] proved that if an $n \times n$ matrix is doubly nonnegative then it is completely positive. Hall [7], and later Gray and Wilson [4], gave examples to show that a 5×5 doubly nonnegative matrix need not be completely positive. Kaykobad [6] proved that a diagonally dominant symmetric nonnegative matrix is completely positive, and there are other results known that relate a completely positive matrix to its graph (see [1], [2]).

It is possible for A to be completely positive but not writeable in the form $A=C^{2}$, where C is nonnegative and positive semidefinite. There is no example to illustrate this fact by using 2×2 matrices. However, there are examples with 3×3 matrices,
for instance $A=\left(\begin{array}{ccc}\frac{81}{64} & 0 & \frac{15}{16} \\ 0 & \frac{81}{64} & \frac{15}{16} \\ \frac{15}{16} & \frac{55}{16} & \frac{3}{2}\end{array}\right)$, for which $A=C^{2}$, when $C=\left(\begin{array}{ccc}1 & -\frac{1}{8} & \frac{1}{2} \\ -\frac{1}{8} & 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 1\end{array}\right) \cdot C$ is the unique positive semidefinite square root of A, but A is doubly nonnegative and therefore completely positive from Maxfield and Minc's result [9]. In fact, $A=B^{T} B$, where $B=\left(\begin{array}{ccc}\frac{9}{8} & 0 & \frac{5}{6} \\ 0 & \frac{9}{8} & \frac{5}{6} \\ 0 & 0 & \frac{1}{3}\end{array}\right)$.

3. Conditions on principal 2×2 minors

Finally we come to our main result, Theorem 3, which extends Theorem 1 when $v=e$.

THEOREM 3. For $n \geqslant 3$ let $A=\left(a_{i j}\right) \in \mathbf{R}^{n \times n}$ be positive semidefinite, doubly stochastic, irreducible, and $A=C^{2}$, where $C \in \mathbf{R}^{n \times n}$ is positive semidefinite. Let w be an eigenvector corresponding to λ_{2}, where λ_{2} is the second largest eigenvalue of A, and P a permutation matrix so that $P w$ has its components in increasing order. Let $B=$ PAP $^{T}=\left(b_{i j}\right)$. If $\left|\begin{array}{ll}a_{i i} & a_{i j} \\ a_{i j} & a_{j j}\end{array}\right| \leqslant \frac{\lambda_{2}\left(w_{j}-w_{i}\right)^{2}}{\sum_{1 \leqslant k<l \leqslant n,(k, l) \neq(p, q)}\left(w_{l}-w_{k}\right)^{2}}$, for all $(i, j), 1 \leqslant$ $i, j \leqslant n$, for all $(p, q), 1 \leqslant p<q \leqslant n$, and either $b_{11} \leqslant \frac{1}{n-1}$ or $b_{n n} \leqslant \frac{1}{n-1}$ then C is nonnegative.

Proof. The denominator $\sum_{1 \leqslant k<l \leqslant n,(k, l) \neq(p, q)}\left(w_{l}-w_{k}\right)^{2}$ in the inequality of the theorem cannot be zero for any (p, q), since if it were then w would be a multiple of e which is not possible.

Note that we must have $c_{i i}>0$ for all $i, 1 \leqslant i \leqslant n$, since for any positive semidefinite matrix $C=\left(c_{i j}\right)$ if the diagonal entry $c_{i i}=0$, then the i th row and i th column of C would be all zeros, which would make C and therefore A reducible. Now to prove our theorem suppose, for the sake of obtaining a contradiction, that C has a negative entry. Since $A=C^{2}$ if and only if $B=\left(P C P^{T}\right)^{2}$, without loss of generality we may replace C by $P C P^{T}$, where P is as stated in the theorem. With $i_{0} \neq j_{0}$ we'll say that $c_{i_{0} j_{0}}<0$.

If $\left(i_{0}, j_{0}\right)=(1, n)$ then $b_{11}>\frac{1}{n-1}$ and $b_{n n}>\frac{1}{n-1}$ from the proof of Theorem 1 when $v=e$ and the remark after Theorem 1 , which would contradict $b_{11} \leqslant \frac{1}{n-1}$ or $b_{n n} \leqslant \frac{1}{n-1}$ in the statement of the theorem. Thus $\left(i_{0}, j_{0}\right) \neq(1, n)$. We claim we can argue that $C^{(2)}$ has a negative entry. Fix $\left(i_{0}, j_{0}\right)$ for the remainder of the proof. For any $m, 1 \leqslant m \leqslant n$, if $m>i_{0}$ and $m>j_{0}$ (assuming there is such an m) consider the pair of 2×2 minors $\left|\begin{array}{ll}c_{i_{0} i_{0}} & c_{i_{0} m} \\ c_{j_{0} i_{0}} & c_{j_{0} m}\end{array}\right|$ and $\left|\begin{array}{ll}c_{i_{0} j_{0}} & c_{i_{0} m} \\ c_{j_{0} j_{0}} & c_{j_{0} m}\end{array}\right|$. We will see that for some m satisfying $m>i_{0}$ and $m>j_{0}$, at least one of these 2×2 minors is negative. If $m<i_{0}$ and $m<j_{0}$ (assuming there is such an m) consider $\left|\begin{array}{ll}c_{i_{0} m} & c_{i_{0} j_{0}} \\ c_{j_{0} m} & c_{j_{0} j_{0}}\end{array}\right|$ and $\left|\begin{array}{ll}c_{i_{0} m} & c_{i_{0} i_{0}} \\ c_{j_{0} m} & c_{i_{0} j_{0}}\end{array}\right|$.

Suppose to the contrary that for all m satisfying $m>i_{0}$ and $m>j_{0}$ we have both

$$
\begin{equation*}
c_{i_{0} i_{0}} c_{j_{0} m} \geqslant c_{i_{0} m} c_{i_{0} j_{0}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{i_{0} j_{0}} c_{j_{0} m} \geqslant c_{i_{0} m} c_{j_{0} j_{0}} \tag{2}
\end{equation*}
$$

and for all m satisfying $m<i_{0}$ and $m<j_{0}$ we have both

$$
\begin{equation*}
c_{i_{0} m} c_{j_{0} j_{0}} \geqslant c_{i_{0} j_{0}} c_{j_{0} m} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{i_{0} m} c_{i_{0} j_{0}} \geqslant c_{i_{0} i_{0}} c_{j_{0} m} \tag{4}
\end{equation*}
$$

If for $m>i_{0}$ and $m>j_{0}$ we have $c_{i_{0} m} \geqslant 0$, then inequality (2) implies $c_{j_{0} m} \leqslant 0$, whereas if $c_{i_{0} m} \leqslant 0$ then inequality (1) implies $c_{j_{0} m} \geqslant 0$. So far we have only argued that $c_{i_{0} m}$ and $c_{j_{0} m}$ are oppositely signed or one of them (at least) is zero. For $m<i_{0}$ and $m<j_{0}$ a similar argument shows $c_{i_{0} m}$ and $c_{j_{0} m}$ are oppositely signed or one of them (at least) is zero.

Suppose now that $c_{i_{0} j_{0}}$ is on the superdiagonal, and consider row i_{0} and row j_{0} of C. With $c_{i_{0} j_{0}}$ on the superdiagonal this means that for all $m \neq i_{0}$ and $m \neq j_{0}$ we have $m>i_{0}$ and $m>j_{0}$, or we have $m<i_{0}$ and $m<j_{0}$. Then the dot product of row i_{0} and row j_{0}, thought of as vectors, which equals $\left(\sum_{m \neq i_{0}, m \neq j_{0}} c_{i_{0} m} c_{j_{0} m}\right)+c_{i_{0} i_{0}} c_{j_{0} i_{0}}+$ $c_{i_{0} j_{0}} c_{j_{0} j_{0}}$, must be negative. But this would imply the $\left(i_{0}, j_{0}\right)$ entry of A is negative, which is not the case.

We next argue that with C having a negative off-diagonal entry, not in the upper right (or lower left) corner and not on the superdiagonal, then if $C^{(2)}$ has all nonnegative entries this would contradict C being irreducible, which is not possible.

Suppose that $i_{0}=1$ and $3 \leqslant j_{0} \leqslant n-1$. Suppose that $c_{1 j_{0}}$ is the leftmost negative entry in the first row, so that $c_{1 l} \geqslant 0$ for all $l, 3 \leqslant l<j_{0}$. We must have $c_{1 l} c_{j_{0} l}>0$ for at least one $l, 2 \leqslant l<j_{0}$, since otherwise $a_{1 j_{0}}=c_{11} c_{1 j_{0}}+\sum_{1<l<j_{0}} c_{1 l} c_{j_{0} l}+c_{1 j_{0}} c_{j_{0} j_{0}}+$ $\sum_{j_{0}<l \leqslant n} c_{1 l} c_{j_{0} l}$ would be negative since $c_{1 l} c_{j_{0} l} \leqslant 0$ for all $l>j_{0}$, from inequalities (1)(2) and the reasoning of the paragraph immediately after them. Fix $l, 2 \leqslant l<j_{0}$, for which $c_{1 l} c_{j_{0} l}>0$. Since $c_{1 l} \geqslant 0$ this implies $c_{1 l}>0$ and $c_{j_{0} l}>0$. If now $\left|\begin{array}{ll}c_{1 l} & c_{1 n} \\ c_{j_{0} l} & c_{j_{0} n}\end{array}\right| \geqslant$ 0 , this implies $c_{1 n}=0$ and $c_{j_{0} n}=0$, since $c_{j_{0} n} \leqslant 0$. Then letting $k \in\{2, \ldots, n-1\}$, if we have $\left|\begin{array}{ll}c_{1 l} & c_{1 n} \\ c_{k l} & c_{k n}\end{array}\right| \geqslant 0$, this implies $c_{k n} \geqslant 0$, and then $\left|\begin{array}{ll}c_{1 j_{0}} & c_{1 n} \\ c_{k j_{0}} & c_{k n}\end{array}\right| \geqslant 0$ implies $c_{k n}=0$. But now we have that all entries of the nth column of C, except $c_{n n}$, are zeroes, implying C, and therefore A, is reducible, contrary to our assumption.

Finally, suppose $c_{i_{0} j_{0}}<0$, where $i_{0}>1$ and $j_{0}>i_{0}$, and furthermore $c_{1 l} \geqslant 0$ for all $l, 1 \leqslant l \leqslant n$. Then $\left|\begin{array}{ll}c_{1 i_{0}} & c_{1 j_{0}} \\ c_{i_{0} i_{0}} & c_{i_{0} j_{0}}\end{array}\right| \geqslant 0$ implies $c_{1 i_{0}}=0$ and $c_{1 j_{0}}=0$. But then $\left|\begin{array}{ll}c_{11} & c_{1 j_{0}} \\ c_{i_{0}} 1 & c_{i_{0} j_{0}}\end{array}\right| \geqslant 0$ is not possible.

Now $A e=r e$ and $A w=\lambda_{2} w$ implies $A X=X \operatorname{diag}\left(r, \lambda_{2}\right)$, where X is the $n \times 2$ matrix with 1st column e and 2 nd column w, and $\operatorname{diag}\left(r, \lambda_{2}\right)$ is 2×2. Taking the 2nd compound of both sides, and with $x=X^{(2)}$, we can say $A^{(2)} x=r \lambda_{2} x$, where x is the vector with its components written in lexicographic order, so that here $x=$ $\left(w_{2}-w_{1}, w_{3}-w_{1}, \ldots\right)^{T}$. Then $\left(C^{(2)}\right)^{2} x=r \lambda_{2} x$, where $r=1$. Since by replacing A with $P A P^{T}$ and the components of $P w$ are increasing we may assume (after making the replacement) that the components of x are nonnegative. Then $C^{(2)}$, being the unique positive semidefinite square root of $A^{(2)}$, has eigenvector x, and corresponding eigenvalue $\sqrt{\lambda_{2}}$. Labeling the negative entry in $C^{(2)}$ (or one of the negative entries if there is more than one) as $\left|\begin{array}{ll}c_{i_{0} p} & c_{i_{0} q} \\ c_{j_{0} p} & c_{j_{0} q}\end{array}\right|$, a similar argument to that given in the proof Theorem 1 is all that remains.

$$
\begin{align*}
\left|\begin{array}{cc}
a_{i_{0} i_{0}} & a_{i_{0} j_{0}} \\
a_{i_{0} j_{0}} & a_{j_{0} j_{0}}
\end{array}\right| & =\sum_{1 \leqslant k<l \leqslant n}\left|\begin{array}{cc}
c_{i_{0} k} & c_{i_{0} l} \\
c_{j_{0} k} k & c_{j_{0} l}
\end{array}\right|^{2}, \tag{5}\\
& >\sum_{1 \leqslant k<l \leqslant n,(k, l) \neq(p, q)}\left|\begin{array}{cc}
c_{i_{0} k} & c_{i_{0} l} \\
c_{j_{0} k} k & c_{j_{0} l}
\end{array}\right|^{2}, \tag{6}\\
& \geqslant \frac{\left(\sum_{(k, l) \neq(p, q)}\left|\begin{array}{c}
c_{i_{0} k} k \\
c_{j_{0} k} k \\
c_{j_{0}} l \\
j_{0} l
\end{array}\right| x_{k l}\right)^{2}}{\sum_{(k, l) \neq(p, q)} x_{k l}^{2}} \tag{7}\\
& \geqslant \frac{\left(\sqrt{\left.\lambda_{2} x_{i_{0} j_{0}}\right)^{2}}\right.}{\sum_{(k, l) \neq(p, q)} x_{k l}^{2}} \tag{8}\\
& =\frac{\lambda_{2} x_{i_{0} j_{0}}^{2}}{\sum_{(k, l) \neq(p, q)} x_{k l}^{2}} \tag{9}
\end{align*}
$$

where equality (5) follows from $A^{(2)}=\left(C^{(2)}\right)^{2}$, inequality (7) from Cauchy-Schwartz, and inequality (8) from $C^{(2)} x=\sqrt{r \lambda_{2}} x$, where $r=1$ here. Note that the vector x is nonnegative, unlike the vector v in Theorem 1 which is necessarily a positive vector.

4. An example

When $n=2$ the sufficient conditions of Corollary 2 that $a_{i i} \leqslant 1$, for each $i, 1 \leqslant$ $i \leqslant 2$, are redundant since they are a consequence of A being doubly stochastic. We saw in the paragraph after Corollary 2 that in any case we can write $A=C^{2}$. Consider Corollary 2 and Theorem 3 with the following 3×3 example when $e=(1,1,1)^{T}$, $w=(-2,1,1)^{T}$ and

$$
C=\beta e e^{T}+\gamma w w^{T}=\left(\begin{array}{lll}
\beta+4 \gamma & \beta-2 \gamma & \beta-2 \gamma \\
\beta-2 \gamma & \beta+\gamma & \beta+\gamma \\
\beta-2 \gamma & \beta+\gamma & \beta+\gamma
\end{array}\right) .
$$

Then since $e^{T} w=0,\|e\|^{2}=4$, and $\|w\|^{2}=6$, we have that

$$
A=C^{2}=3 \beta^{2} e e^{T}+6 \gamma^{2} w w^{T}=\left(\begin{array}{ccc}
3 \beta^{2}+24 \gamma^{2} & 3 \beta^{2}-12 \gamma^{2} & 3 \beta^{2}-12 \gamma^{2} \\
3 \beta^{2}-12 \gamma^{2} & 3 \beta^{2}+6 \gamma^{2} & 3 \beta^{2}+6 \gamma^{2} \\
3 \beta^{2}-12 \gamma^{2} & 3 \beta^{2}+6 \gamma^{2} & 3 \beta^{2}+6 \gamma^{2}
\end{array}\right) .
$$

Taking $3 \beta^{2}=\frac{1}{3}$ and $\frac{1}{6} \geqslant \gamma \geqslant 0$ the matrix A is doubly stochastic and positive semidefinite with second largest eigenvalue $36 \gamma^{2}$, and C is positive semidefinite. Then since $\frac{1}{6} \geqslant \gamma$ the diagonal entry $\frac{1}{3}+6 \gamma^{2} \leqslant \frac{1}{2}$, but if we also take $\gamma>\frac{1}{12}$ the diagonal entry $\frac{1}{3}+24 \gamma^{2}>\frac{1}{2}$ so the sufficient conditions of Corollary 2 do not hold. However, the 2×2 minors $\left|\begin{array}{cc}a_{i i} & a_{i j} \\ a_{i j} & a_{j j}\end{array}\right|$ in lexicographic order are $18 \gamma^{2}, 18 \gamma^{2}, 0$ respectively. The $r \lambda_{2}=\lambda_{2}$ eigenvector of $A^{(2)}$ being $x=\left(w_{j}-w_{i}\right)=(3,3,0)$ means that the denominator on the right hand side of the inequalities of Theorem 3 is largest when it is 18 . Then in lexicographic order the right hand sides of these inequalities are $36 \gamma^{2} \frac{9}{18}, 36 \gamma^{2} \frac{9}{18}, 0$, respectively, at their smallest. Thus, the inequalities of Theorem 3 are satisfied but those of Corollary 2 are not.

Acknowledgement. I am grateful to an anonymous referee for improving the results herein.

REFERENCES

[1] A. Berman and R. J. Plemmons, Nonnegative matrices in the mathematical sciences, SIAM Classics in Appl. Math., 9 (1994).
[2] A. BERMAN AND N. SHAKED-MONDERER, Completely positive matrices, World Scientific Publishing, New Jersey, 2003.
[3] M. Fiedler, Special matrices and their applications in numerical mathematics, 2nd Ed., Dover Publications, New York, 2008.
[4] L. J. Gray and D. G. Wilson, Nonnegative factorization of positive semidefinite matrices, Linear Algebra and its Applications, 31 (1980), 119-127.
[5] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
[6] M. KAYкоbad, On nonnegative factorization of matrices, Linear Algebra and its Applications, 96 (1987), 27-33.
[7] M. Hall Jr., Combinatorial theory, John Wiley and Sons, New York, 1986
[8] M. Marcus and H. Minc, Some results on doubly stochastic matrices, Proc. Amer. Math. Soc., 13 (1962), 571-579.
[9] J. E. Maxfield and H. Minc, On the equation $X X^{\prime}=A$, Proc. Edinburgh Math Soc., 13 (1962), 125-129.
[10] H. Minc, Nonnegative matrices, John Wiley and Sons, New York, 1988.

[^0]: Mathematics subject classification (2010): 15A18, 15B48, 15A51, 15B57.
 Keywords and phrases: Completely positive, doubly nonnegative, square root, doubly stochastic.

