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Abstract. We establish necessary and sufficient conditions for the existence of solution to the
system of adjointable operator equations A1X = D1,XB2 = D2,A3XB3 +B∗

3X
∗C3 = D3 over the

Hilbert C∗ -modules. We also give the explicit expression of the general solution to this system
when the solvability conditions are satisfied. As an application, we investigate the anti-reflexive
Hermitian solution to the system of complex matrix equations AX = B,XC = D,EXE∗ = F .
The findings of this paper extend some known results in the literature.

1. Introduction

We know that investigating solutions to operator equations is a very active research
topic. In 2007, Djordjević [1] considered the operator equation

A∗X ±X∗A = B (1.1)

for bounded operators on Hilbert spaces. In 2008, Cvetković-Ilić [2] gave the solvabil-
ity conditions and the set of the solutions to the operator equations

AX +X∗C = B (1.2)

and
AXB+B∗X∗A∗ = C (1.3)

for bounded operators on Hilbert spaces. Xu [3] in 2008 investigated the equation (1.3)
in the general setting of the adjointable operators between the Hilbert C∗ -modules.
Moreover, Xu [4], Fang et al. [7] studied the system of equations

AX = C, XB = D (1.4)
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for adjointable operators between Hilbert C∗ -modules, which generalized the main re-
sults in [5]–[6].

Hilbert C∗ -module is a natural generalization of Hilbert space and C∗ -algebra.
Hilbert C∗ -modules play important role in the theory of operator algebras, for instance,
we need formulations using Hilbert C*-modules to study Morita equivalence of C*-
algebras, induced representations, Multipliers, K-theory and KK-theory, index theory,
Cuntz-Pimsner algebras and so on. Therefore investigating operator equations over
Hilbert C∗ -modules is very meaningful. Note that all of those equations (1.1)–(1.4) are
special cases of the following system of adjointable operator equations

A1X = D1,XB2 = D2,A3XB3 +B∗
3X

∗C3 = D3 (1.5)

over the Hilbert C∗ -modules, which is of interest in its own right. So far, to our knowl-
edge, there has been little information on general solution to system (1.5) either for
adjointable operator equations in the framework of Hilbert C∗ -modules or for matrix
equations over the complex number field. Moreover, system (1.5) has some applica-
tions, for example, using the results of system (1.5), we can investigate the anti-reflexive
Hermitian solution to the system of complex matrix equations

AX = B,XC = D,EXE∗ = F. (1.6)

It is well-known that the reflexive and anti-reflexive matrices have many important ap-
plications in numerical analysis, information theory and linear estimate theory [8], and
a large number of papers have investigated the reflexive or anti-reflexive solutions to
some matrix equations [9]–[11]. We know that the anti-reflexive Hermitian solution of
system (1.6) of matrix equations has not been concerned yet.

Motivated by the work mentioned above, we in this paper aim to give the solv-
ability conditions to the system of adjointable operator equations (1.5) over the Hilbert
C∗ -modules, as well as present an explicit expression for the general solution to this
system when the solvability conditions are satisfied.

The paper is organized as follows. In Section 2, we begin with some basic con-
cepts and results about adjointable operators and generalized inverse of adjointable op-
erators over the Hilbert C∗ -modules. In Section 3 we present necessary and sufficient
conditions for the existence of the solution to the system (1.5). When the solvability
conditions are met, we also give an expression of the general solution to this system. As
applications, in Section 4, we first show that some known results can be recovered from
the main results of this paper, then propose the solvability conditions and the general
expression of anti-reflexive Hermitian solution to the system of matrix equations (1.6).
We in Section 5 give a conclusion to close this paper.

2. Preliminaries

Hilbert C∗ -modules arose as generalizations of the notion Hilbert space. The basic
idea was to consider modules over C∗ -algebras instead of linear spaces and to allow
the inner product to take values in the C∗ -algebra. The structure was first used by
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Kaplansky [12] in 1952. For more details of C∗ -algebra and Hilbert C∗ -modules, we
refer the reader to [13, 14].

Let A be a C∗ -algebra. An inner-product A -module is a linear space E which is
a right A -module (with a scalar multiplication satisfying λ (xa) = x(λa) = (λx)a for
x ∈ E,a ∈ A,λ ∈ C), together with a map E ×E → A , (x,y) → 〈x,y〉 such that

(1) 〈x,αy+β z〉= α 〈x,y〉+β 〈x,z〉 ;
(2) 〈x,ya〉 = 〈x,y〉a ;
(3) 〈x,y〉 = 〈y,x〉∗ ;
(4) 〈x,x〉 � 0, and 〈x,x〉 = 0 ⇔ x = 0 for any x,y,z ∈ E , α,β ∈ C and a ∈ A .

An inner-product A -module E is called a (right) Hilbert A -module if it is complete
with respect to the induced norm ||x|| = 〈x,x〉1/2 .

Throughout this paper H1 and H2 denote two Hilbert C∗ -modules, and L (H1,H2)
is the set of all maps T : H1 → H2 for which there is a map T ∗ : H2 → H1 such
that 〈Tx,y〉 = 〈x,T ∗y〉 , for any x ∈ H1 and y ∈ H2. We know that any element T of
L (H1,H2) is a bounded linear operator. We call L (H1,H2) the set of adjointable
operators from H1 into H2 . In case H1 = H2 , L (H1,H1) which we abbreviate to
L (H1) , is a C∗ -algebra and we use the notation I to denote the identity operator. We
write R(A) and N (A) for the range and null space of A ∈ L (H1,H2) . An operator
A∈L (H1,H2) is regular if there is an operator A− ∈L (H2,H1) such that AA−A = A ,
A− is called an inner inverse of A . It is well known that A is regular if and only if R(A)
and N (A) , respectively, are closed and complemented subspaces of H2 and H1 .

The Moore-Penrose inverse of A ∈ L (H1,H2) is defined as the operator A† ∈
L (H2,H1) satisfying the Penrose equations

AA†A = A,A†AA† = A†,(A†A)∗ = A†A,(AA†)∗ = AA†.

For simplicity, we use LA and RA to stand for the projector I − A†A and I − AA† ,
respectively.

An operator A ∈ L (H1,H2) has the (unique) Moore-Penrose inverse if and only
if A has closed range, or equivalently if and only if it is regular.

By [[14], Theorem 3.2, Remark 1.1], we have the following lemma.

LEMMA 2.1. The closeness of any one of the following sets implies the close-
ness of the remaining three sets R(A),R(A∗),R(AA∗),R(A∗A). If R(A) is closed,
then R(A) = R(AA∗), R(A∗) = R(A∗A) and the following orthogonal decomposi-
tions holds:

H1 = N (A)⊕R(A∗),H2 = R(A)⊕N (A∗).

Since A is regular, it follows that A has the following matrix form:

A =
[

A1 0
0 0

]
:

[
R(A∗)
N (A)

]
→

[
R(A)

N (A∗)

]
,

where A1 : R(A∗) → R(A) is invertible. In this case, the Moore-Penrose inverse of A
has the following matrix decomposition:

A† =
[

A−1
1 0
0 0

]
:

[
R(A)

N (A∗)

]
→

[
R(A∗)
N (A)

]
.
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For other important properties of operators and generalized inverses of operators
see [15]–[18].

3. The system of adjointable operator equations (1.5)

In this section, we present necessary and sufficient conditions for the existence
of the general solution of (1.5), and give an expression for the general solution to the
system when the solvability conditions are met. We begin with the following lemma.
The proof is analogous to operator equation [5], which is omitted here.

LEMMA 3.1. Let A1 ∈ L (H1,H2) , B2 ∈ L (H4,H3) have closed range, and let
C1 ∈ L (H3,H2) , C2 ∈ L (H4,H1) . Then the system of adjointable operator equations

A1X = C1, XB2 = C2 (3.1)

is consistent if and only if

RA1C1 = 0, C2LB2 = 0, A1C2 =C1B2.

In that case, the general solution of (3.1) is

X = A†
1C1 +LA1C2B

†
2 +LA1YRB2 ,

where Y ∈ L (H3,H1) is arbitrary.

Next lemma is due to Cvetković-Ilić [2], which can be generalized to the Hilbert
C∗ -modules.

LEMMA 3.2. (Corollary 3.1 in [2]) Let A∈L (H1,H2) , B∈L (H2,H1) and C ∈
L (H2). Suppose that B is invertible and D = A∗B−1 is regular. Then the equation (1.3)
has a solution X ∈L (H1) if and only if C =C∗, LDELD = 0, where E = (B∗)−1CB−1 .
In this case, the general solution of equation (1.3) can be expressed as

X =
1
2
(D∗)†E +

1
2
(D∗)†ELD +(Z−Z∗)D+RDW,

where Z ∈ L (H1) and W ∈ L (H1) are arbitrary.

For the simplicity, we put

K1 = (E∗
1 )†(B−1)∗DB−1 +(E∗

1)†(B−1)∗DB−1LE2 ,

K2 = [(B−1)∗DB−1E†
2 +LE1(B

−1)∗DB−1E†
2 ]∗.

LEMMA 3.3. Let A ∈ L (H1,H2) , B ∈ L (H2,H1) , C ∈ L (H2,H1) and D ∈
L (H2). Assume that B is invertible and E1 = A∗B−1 , E2 = CB−1 are regular, then
operator equation

AXB+B∗X∗C = D (3.2)
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has a solution X ∈ L (H1) if

AK1B+B∗K∗
2C = 2D, AK2B+B∗K∗

1C = 2D. (3.3)

In this case the general solution of the equation (3.2) can be expressed by

X =
1
4
K1 +

1
4
K2 +(Z1−Z∗

2)E2 +(Z2−Z∗
1)E1 +RE1W1 +RE2W2, (3.4)

where W1 ∈ L (H1),W2 ∈ L (H1),Z1 ∈ L (H1),Z2 ∈ L (H1) satisfy

(Z2 −Z∗
1)E1 +RE2W2 − (Z1−Z∗

2)E2−RE1W1 =
1
4
(K1 −K2).

Proof. Suppose (3.3) is satisfied. Taking W1 = W2 = Z1 = Z2 = 0, we have the
operator X defined by (3.4) is a solution of the operator equation (3.2).

Now assume (3.2) has a solution X ∈ L (H1) , we want to show that it can be
expressed as (3.4). Let

Â =
[

A 0
0 C∗

]
: H1⊕H1 → H2⊕H2, X̂ =

[
0 X
X 0

]
: H1⊕H1 → H1⊕H1,

B̂ =
[

B 0
0 B

]
: H2⊕H2 → H1 ⊕H1, D̂ =

[
0 D
D∗ 0

]
: H2⊕H2 → H2⊕H2.

Then,

D̂∗ =
[

0 D
D∗ 0

]
= D̂. (3.5)

Put E = Â∗B̂−1,F = (B̂∗)−1D̂B̂−1 , then

LEFLE =
[

0 LE1(B
∗)−1DB−1LE2

LE2(B
∗)−1D∗B−1LE1 0

]
= 0. (3.6)

By AXB+B∗X∗C = D ,

ÂX̂B̂+ B̂∗X̂∗Â∗ =
[

A 0
0 C∗

][
0 X
X 0

][
B 0
0 B

]
+

[
B∗ 0
0 B∗

][
0 X

∗

X
∗

0

][
A∗ 0
0 C

]

=

[
0 AXB+B∗X

∗
C

C∗XB+B∗X
∗
A∗ 0

]
=

[
0 D
D∗ 0

]
= D̂. (3.7)

By (3.5) and (3.6), we know the operator equation (3.7) is consistent. It follows from
Lemma 3.2 that

X̂ =
1
2
(E∗)†F +

1
2
(E∗)†FLE +(Ẑ− Ẑ∗)E +REŴ , (3.8)

where Ẑ ∈ L (H1⊕H1) and Ŵ ∈ L (H1⊕H1) are arbitrary.
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Let

Ẑ =
[

Z11 Z12

Z21 Z22

]
: H1⊕H1 → H1⊕H1, Ŵ =

[
W11 W12

W21 W22

]
: H1⊕H1 → H1⊕H1.

Then by (3.8),

X̂ =
[

(Z11 −Z∗
11)E1

1
2K1 +(Z12−Z∗

21)E2 +RE1W12
1
2K2 +(Z21−Z∗

12)E1 +RE2W21 (Z22 −Z∗
22)E2

]
,

implying

X =
1
2
K1 +(Z12−Z∗

21)E2 +RE1W12 =
1
2
K2 +(Z21−Z∗

12)E1 +RE2W21,

(Z11 −Z∗
11)E1 = (Z22−Z∗

22)E2 = 0.

For Z1 = Z12,Z2 = Z21,W1 = W12,W2 = W21 , we have

X =
1
2
K1 +(Z1−Z∗

2)E2 +RE1W1 =
1
2
K2 +(Z2−Z∗

1)E1 +RE2W2.

Hence, X can be expressed as

X =
1
4
K1 +

1
4
K2 +(Z1−Z∗

2)E2 +(Z2−Z∗
1)E1 +RE1W1 +RE2W2,

where W1 ∈ L (H1),W2 ∈ L (H1),Z1 ∈ L (H1),Z2 ∈ L (H1) satisfy

(Z2 −Z∗
1)E1 +RE2W2− (Z1−Z∗

2)E2−RE1W1 =
1
4
(K1 −K2). �

Now, we turn our attention to consider the system of adjointable operator equations
(1.5), let A4 = A3LA1 , B4 = RB2B3 , C4 = LA1C3 , E1 = A∗

4B
†
4 , E2 =C4B

†
4 , E3 = A∗

41B
−1
41 ,

E4 = C41B
−1
41 and

D4 = D3−A3(A
†
1D1 +LA1D2B

†
2)B3 −B∗

3(A
†
1D1 +LA1D2B

†
2)

∗C3,

K1 = (E∗
1 )†(B†

4)
∗D4B

†
4 +(E∗

1)†(B†
4)

∗D4B
†
4LE2 ,

K2 = [(B†
4)

∗D4B
†
4E

†
2 +LE1(B

†
4)

∗D4B
†
4E

†
2 ]∗,

K3 = (E∗
3 )†(B−1

41 )∗D41B
−1
41 +(E∗

3)†(B−1
41 )∗D41B

−1
41 LE4 ,

K4 = [(B−1
41 )∗D41B

−1
41 E†

4 +LE3(B
−1
41 )∗D41B

−1
41 E†

4 ]∗.

We now give the main theorem of this paper as follows.

THEOREM 3.4. Assume that A1 ∈L (H1,H2) , B2 ∈L (H3,H1) , A3 ∈L (H1,H4) ,
B3 ∈L (H4,H1) , C3 ∈L (H4,H1) , D1 ∈L (H1,H2) , D2 ∈L (H3,H1) , D3 ∈L (H4) ,
and let A1 , B2 , A4 , B4 , C4 , E1 , E2 have closed ranges such that

B†
4B4A4 = A4B4B

†
4, B†

4B4C4 = C4B
†
4B4, (3.9)
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A4K1B4 +B∗
4K

∗
2C4 = 2D4, A4K2B4 +B∗

4K
∗
1C4 = 2D4, (3.10)

LB4RA4D4 = 0, LB4RC∗
4
D∗

4 = 0, (3.11)

RB4A
†
4D4 = RB4(C

∗
4)

†D∗
4, RB4LA4 = RB4LC∗

4
. (3.12)

Then the system of adjointable operator equations (1.5) is consistent if and only if

RA1D1 = 0, D2LB2 = 0, A1D2 = D1B2, (3.13)

LB4D4LB4 = 0. (3.14)

In that case, the general solution of (1.5) can be expressed as

X = A†
1D1 +LA1D2B

†
2 +LA1 [

1
4
K1 +

1
4
K2 +B4B

†
4(Z1−Z∗

2)E2 +B4B
†
4(Z2 −Z∗

1)E1

+B4B
†
4RE1W1B4B

†
4 +B4B

†
4RE2W2B4B

†
4 +RB4A

†
4D4B

†
4 +RB4LA4VB4B

†
4 +URB4]RB2 ,

(3.15)

where U ∈ L (H1),V ∈ L (H1) are arbitrary and W1 ∈ L (H1),W2 ∈ L (H1) , Z1 ∈
L (H1) , Z2 ∈ L (H1) satisfy

B4B
†
4(Z2 −Z∗

1)E1 +B4B
†
4RE2W2B4B

†
4−B4B

†
4(Z1 −Z∗

2)E2−B4B
†
4RE1W1B4B

†
4

=
1
4
(K1 −K2).

Proof. Suppose that the system of adjointable operator equations (1.5) has a solu-
tion X , then X is a solution to the system of adjointable operator equations

A1X = D1, XB2 = D2, (3.16)

therefore (3.13) follows from Lemma 3.1. Note that X is a solution to the system of
adjointable operator equations (3.16), then X can be expressed as

X = A†
1D1 +LA1D2B

†
2 +LA1YRB2 , (3.17)

where Y ∈ L (H1) is arbitrary. Taking (3.17) into

A3XB3 +B∗
3X

∗C3 = D3, (3.18)

we have that
A4YB4 +B∗

4Y
∗C4 = D4 (3.19)

and (3.19) is consistent. It can be verified that

LB4D4LB4 = (I−B†
4B4)(A4XB4 +B∗

4X
∗C4)(I−B†

4B4) = 0.

Suppose (3.13) and (3.14) are satisfied. By Lemma 3.1, (3.16) is consistent. Sup-
pose X is a general solution of (3.16). Note that

LA1X = X −A†
1A1X = X −A†

1D1.
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So,
LA1XRB2 = X −XB2B

†
2−A†

1D1 +A†
1D1B2B

†
2

= X −D2B
†
2−A†

1D1 +A†
1A1D2B

†
2.

Thereby,

X = A†
1D1 +D2B

†
2−A†

1A1D2B
†
2 +LA1XRB2 . (3.20)

Taking (3.20) into (3.18), we can get

A4XB4 +B∗
4X

∗
C4 = D4. (3.21)

Using the following decompositions:

H4 = R(B∗
4)⊕N (B4) and H1 = R(B4)⊕N (B∗

4),

by regularity of B4 ,

B4 =
[

B41 0
0 0

]
:

[
R(B∗

4)
N (B4)

]
→

[
R(B4)
N (B∗

4)

]
,

where B41 : R(B∗
4) → R(B4) is invertible.

In this case, the Moore-Penrose inverse of B4 has the following matrix decompo-
sition:

B†
4 =

[
B−1

41 0
0 0

]
:

[
R(B4)
N (B∗

4)

]
→

[
R(B∗

4)
N (B4)

]
.

Also, A4,C4 and D4 have the following suitable decompositions:

A4 =
[

A41 A42

A43 A44

]
:

[
R(B4)
N (B∗

4)

]
→

[
R(B∗

4)
N (B4)

]
,

C4 =
[
C41 C42

C43 C44

]
:

[
R(B∗

4)
N (B4)

]
→

[
R(B4)
N (B∗

4)

]
,

D4 =
[

D41 D42

D43 D44

]
:

[
R(B∗

4)
N (B4)

]
→

[
R(B∗

4)
N (B4)

]
.

It follows from (3.9) that A42 = A43 = 0 and C42 = C43 = 0. Therefore, the Moore-
Penrose inverses of A4 and C4 have the following matrix decompositions:

A†
4 =

[
A†

41 0
0 A†

44

]
:

[
R(B∗

4)
N (B4)

]
→

[
R(B4)
N (B∗

4)

]
,

C†
4 =

[
C†

41 0
0 C†

44

]
:

[
R(B4)
N (B∗

4)

]
→

[
R(B∗

4)
N (B4)

]
.

By computation we obtain that

LB4D4LB4 =
[

0 0
0 D44

]
,
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that is, D44 = 0. Then for

X =
[

X1 X2

X3 X4

]
:

[
R(B4)
N (B∗

4)

]
→

[
R(B4)
N (B∗

4)

]
,

we can derive

A4XB4 +B∗
4X

∗
C4 =

[
A41X1B41 +B∗

41X
∗
1C41 B∗

41X
∗
3C44

A44X3B41 0

]
=

[
D41 D42

D43 0

]
,

which is equivalent to

A41X1B41 +B∗
41X

∗
1C41 = D41, (3.22)

C∗
44X3B41 = D∗

42, (3.23)

A44X3B41 = D43. (3.24)

It follows from (3.10) that

A41K3B41 +B∗
41K

∗
4C41 = 2D41, A41K4B41 +B∗

41K
∗
3C41 = 2D41.

By Lemma 3.3, the equation (3.22) is solvable. Taking the following decompositions

W1 =
[
W11 W12

W13 W14

]
:

[
R(B4)
N (B∗

4)

]
→

[
R(B4)
N (B∗

4)

]
,

W2 =
[
W21 W22

W23 W24

]
:

[
R(B4)
N (B∗

4)

]
→

[
R(B4)
N (B∗

4)

]
,

Z1 =
[

Z11 Z12

Z13 Z14

]
:

[
R(B4)
N (B∗

4)

]
→

[
R(B4)
N (B∗

4)

]
,

Z2 =
[

Z21 Z22

Z23 Z24

]
:

[
R(B4)
N (B∗

4)

]
→

[
R(B4)
N (B∗

4)

]
,

the solution of (3.22) can be expressed as

X1 =
1
4
K3 +

1
4
K4 +(Z11−Z∗

21)E4 +(Z21−Z∗
11)E3 +RE3W11 +RE4W21,

where W11 ∈ L (R(B4)) , W21 ∈ L (R(B4)) , Z11 ∈ L (R(B4)) , Z21 ∈ L (R(B4))
satisfies

(Z21 −Z∗
11)E3 +RE4W21− (Z11−Z∗

21)E4−RE3W11 =
1
4
(K3 −K4).

By (3.11),
A44A

†
44D43 = D43, C∗

44(C
∗
44)

†D∗
42 = D∗

42,
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implying the equation (3.23) and (3.24) are solvable. Taking the following decomposi-
tions:

Y =
[
Y1 Y2

Y3 Y4

]
:

[
R(B4)
N (B∗

4)

]
→

[
R(B4)
N (B∗

4)

]
,

V =
[
V1 V2

V3 V4

]
:

[
R(B4)
N (B∗

4)

]
→

[
R(B4)
N (B∗

4)

]
yields that the solution of (3.23) and (3.24) can be expressed as

X3 = A†
44D43B

−1
41 +LA44Y3 = (C∗

44)
†D∗

42B
−1
41 +LC∗

44
V3,

where Y3 ∈ L (R(B4) , N (B∗
4)) and V3 ∈ L (R(B4) , N (B∗

4)) are arbitrary. By
(3.12),

A†
44D43 = (C∗

44)
†D∗

42,LA44 = LC∗
44

.

Hence,
X3 = A†

44D43B
−1
41 +LA44Y3,

where Y3 ∈ L (R(B4) , N (B∗
4)) is arbitrary.

Let

U =
[
U1 X2

U3 X4

]
:

[
R(B)

N (B∗)

]
→

[
R(B)

N (B∗)

]
.

Then, by computation, we can derive that X can be expressed as

X =
1
4
K1 +

1
4
K2 +B4B

†
4(Z1 −Z∗

2)E2 +B4B
†
4(Z2 −Z∗

1)E1 +B4B
†
4RE1W1B4B

†
4

+B4B
†
4RE2W2B4B

†
4 +RB4A

†
4D4B

†
4 +RB4LA4VB4B

†
4 +URB4, (3.25)

where U ∈ L (H1) , V ∈ L (H1) are arbitrary and W1 ∈ L (H1) , W2 ∈ L (H1) , Z1 ∈
L (H1) , Z2 ∈ L (H1) satisfy

B4B
†
4(Z2 −Z∗

1)E1 +B4B
†
4RE2W2B4B

†
4−B4B

†
4(Z1 −Z∗

2)E2−B4B
†
4RE1W1B4B

†
4

=
1
4
(K1 −K2).

Taking (3.25) into (3.20), we know that any solution to the system of adjointable oper-
ator equations (1.5) can be expressed as (3.15). �

4. Applications

In this section, we first consider some special cases of system (1.5) to show that
some known results can be recovered from the results of this paper. Then we present the
solvability conditions and an expression of the general anti-reflexive Hermitian solution
to (1.6) by using the results of (1.5).
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Supposing that C1 = D1 , C2 = D2 , C3 = A∗
3 in Theorem 3.4, we can get the

corresponding results to the following system of adjointable operator equations

A1X = C1,XB2 = C2,A3XB3 +B∗
3X

∗A∗
3 = C3. (4.1)

Put

A4 = A3LA1 ,B4 = RB2B3,G = A∗
4B

†
4,

C4 = C3−A3(A
†
1C1 +LA1C2B

†
2)B3−B∗

3(A
†
1C1 +LA1C2B

†
2)

∗A∗
3,

K = (G∗)†(B†
4)

∗C4B
†
4 +(G∗)†(B†

4)
∗C4B

†
4LG. (4.2)

Then we have the following.

COROLLARY 4.1. Let A1 ∈L (H1,H2) , B2 ∈L (H3,H1) , A3 ∈L (H1,H4) , B3 ∈
L (H4,H1) , C1 ∈L (H1,H2) , C2 ∈L (H3,H1) , C3 ∈L (H4) , and let A1 , B2 , A4 , B4 ,
G have closed ranges such that

B†
4B4A4 = A4B4B

†
4, A4KB4 +B∗

4K
∗A∗

4 = 2C4, LB4RA4C4 = 0. (4.3)

Then the system of adjointable operator equations (4.1) is consistent if and only if

RA1C1 = 0, C2LB2 = 0, A1C2 = C1B2, C4 = C∗
4 , LB4C4LB4 = 0. (4.4)

In that case, the general solution of (4.1) can be expressed as

X =A†
1C1 +LA1C2B

†
2 +LA1 [

1
2
K +B4B

†
4(Z−Z∗)G+B4B

†
4RGWB4B

†
4 +RB4A

†
4C4B

†
4

+RB4LA4YB4B
†
4 +URB4]RB2 , (4.5)

where Y ∈ L (H1) , U ∈ L (H1) is arbitrary and W ∈ L (H1) , Z ∈ L (H1) satisfy

B4B
†
4(Z +Z∗)G+B4B

†
4RGWB4B

†
4 = 0. (4.6)

In Theorem 3.4, letting A1 , D1 , B2 , D2 vanish, and A3 = A , B3 = B , C3 = C ,
D3 = D, we can present the solvability conditions and an expression of the general so-
lution of the adjointable operator equation (3.2). For simplicity, we assume that K1,K2

are defined as

K1 = (E∗
1)†(B†)∗DB† +(E∗

1)†(B†)∗DB†LE2 ,

K2 = [(B†)∗DB†E†
2 +LE1(B

†)∗DB†E†
2 ]∗.

COROLLARY 4.2. Let A∈L (H1,H2) , B∈L (H2,H1) , C∈L (H2,H1) and D∈
L (H2) . Suppose that A,B,C, E1 = A∗B† , E2 = CB† are regular and

B†BA = ABB†, B†BC = CB†B,

AK1B+B∗K∗
2C = 2D, AK2B+B∗K∗

1C = 2D,
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LBRAD = 0, LBRC∗D∗ = 0,

RBA†D = RB(C∗)†D∗, RBLA = RBLC∗ .

Then the operator equation (3.2) has a solution X ∈ L (H1) if and only if LBDLB = 0.
In this case, the general solution of the equation (3.2) can be expressed by

X =
1
4
K1 +

1
4
K2 +BB†(Z1−Z∗

2)E2 +BB†(Z2 −Z∗
1)E1 +BB†RE1W1BB†

+BB†RE2W2BB† +RBA†DB† +RBLAYBB† +URB,

where Y ∈ L (H1) , U ∈ L (H1) are arbitrary and W1 ∈ L (H1) , W2 ∈ L (H1) , Z1 ∈
L (H1) , Z2 ∈ L (H1) satisfy

BB†(Z2 −Z∗
1)E1 +BB†RE2W2BB†−BB†(Z1 −Z∗

2)E2−BB†RE1W1BB† =
1
4
(K1 −K2).

REMARK 4.1. Theorem 3.4, Corollary 4.1 and Corollary 4.2 are also new for
finite dimension spaces.

In Theorem 3.4, suppose that A1 , D1 , B2 , D2 vanish, and A3 = A , B3 = B ,
C3 = A∗ , D3 = C, then we can obtain Theorem 2.1 in [3] and Theorem 3.1 in [2] as
follows.

COROLLARY 4.3. Let A∈L (H1,H2) , B∈L (H2,H1) and C∈L (H2) . Assume
that A, B and D = A∗B† are regular and

B†BA = ABB†, AKB+B∗K∗A∗ = 2C, LBRAC = 0,

where K = (D∗)†(B†)∗CB† +(D∗)†(B†)∗CB†LD . Then the operator equation (1.3) has
a solution X ∈ L (H1) if and only if C = C∗, LBCLB = 0. In this case, the general
solution of the equation (1.3) can be expressed by

X =
1
2
K +BB†(Z−Z∗)D+BB†RDWBB† +RBA†CB† +RBLAYBB† +URB,

where Y ∈ L (H1) , U ∈ L (H1) are arbitrary and W ∈ L (H1) , Z ∈ L (H1) satisfy

BB†(Z +Z∗)D+BB†RDWBB† = 0.

In Theorem 3.4, assuming that A1 , D1 , B2 , D2 vanish and A3 = A , B3 = I ,
C3 = C , D3 = B, we can get Theorem 2.2 in [2].

COROLLARY 4.4. Let A ∈ L (H1,H2) , C ∈ L (H2,H1) and B ∈ L (H2) be reg-
ular and K1 = A†B+A†BLC , K2 = [BC† +LA∗BC†]∗. Then the operator equation (1.2)
has a solution X ∈ L (H2,H1) if and only if

AK1 +K∗
2C = 2B, AK2 +K∗

1C = 2B.
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In this case, the general solution of the equation (1.2) can be expressed by

X =
1
4
K1 +

1
4
K2 +(Z1−Z∗

2)C+(Z2−Z∗
1)A

∗ +RA∗W1 +RCW2,

where W1 ∈ L (H1) , W2 ∈ L (H1),Z1 ∈ L (H1) , Z2 ∈ L (H1) satisfy

(Z2 −Z∗
1)A

∗ +RCW2− (Z1−Z∗
2)C−RA∗W1 =

1
4
(K1 −K2).

In Theorem 3.4, supposing that A1 , D1 , B2 , D2 vanish and A3 = A∗ , B3 = I ,
C3 = A , D3 = B, we can have Theorem 2.1 in [1].

COROLLARY 4.5. Let A ∈ L (H1,H2) is regular, and B ∈ L (H2) . Then the op-
erator equation (1.1) has a solution X ∈ L (H1,H2) if and only if

B = B∗, LABLA = 0.

In this case, the general solution of the equation (1.1) can be expressed by

X =
1
2
A†B+

1
2
A†BLA∗ +(Z−Z∗)A∗ +RA∗W,

where W ∈ L (H1),Z ∈ L (H1) satisfy

(Z +Z∗)A∗ +RA∗W = 0.

In Theorem 3.4, letting A3 , B3 , C3 , D3 vanish, we obtain the same results of the
general solutions to (3.1) as [4], [5] and [6].

COROLLARY 4.6. Let A1 ∈L (H1,H2) , B2 ∈L (H4,H3) have closed range, and
let C1 ∈ L (H3,H2) , C2 ∈ L (H4,H1) . Then the system of adjointable operator equa-
tions (3.1) is consistent if and only if

RA1C1 = 0, C2LB2 = 0, A1C2 =C1B2.

In that case, the general solution of (3.1) is

X = A†
1C1 +C2B

†
2−A†

1A1C2B
†
2 +LA1YRB2 ,

where Y ∈ L (H3,H1) is arbitrary.

REMARK 4.2. Corollary 4.3, Corollary 4.4, Corollary 4.5 and Corollary 4.6 show
that Theorem 2.1 in [3], Theorem 2.2, Theorem 3.1 in [2], Theorem 2.1 in [1] and
the results of the general solutions to (3.1) in [4], [5] and [6] can be recovered from
Theorem 3.4 of this paper.
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Now we turn our attention to use Theorem 3.4 to investigate the anti-reflexive
Hermitian solution to the system of matrix equations (1.6) in the rest of this section.
Many authors have investigated the reflexive and anti-reflexive solutions to linear matrix
equations. For instance, the anti-reflexive solution to the matrix equation AX = B was
studied in [9] and the anti-reflexive solution to the system of matrix equations (1.4)
was considered in [10] over the complex number field C . The reflexive re-nonnegative
definite solution to the quaternion matrix equation EXE∗ = F was investigated in [11].

A matrix A ∈ Cn×n is called anti-reflexive (anti-reflexive Hermitian) with respect
to the nontrivial generalized reflection matrix P if A = −PAP (A∗ = A,A = −PAP),
where P is the nontrivial generalized reflection matrix, i.e., P∗ = P 	= I and P2 = I .
Put

C
n×n
ar (P) = {A ∈ C

n×n|A = −PAP}.
HC

n×n
ar (P) = {A ∈ C

n×n|A∗ = A,A = −PAP}.

LEMMA 4.7. (Lemma 1 in [10]) A matrix A ∈ Cn×n
ar (P) if and only if A can be

expressed as

A = U

[
0 M
N 0

]
U∗,

where M ∈ Cr×(n−r), N ∈ C(n−r)×r and U defined as U =
[
U1 U2

]
, U∗

1U2 = 0 is
unitary.

LEMMA 4.8. (Lemma 2.7 in [11]) Suppose that P ∈ Cn×n is a nontrivial gener-

alized reflection matrix and K =
[

I +P
I

]
, then we have the following:

(i) K can be reduced into K =
[

N 0
φ M

]
, where N is a full column rank ma-

trix of size n× r and r = rank(I +P) , by applying a sequence of elementary column
operations on K .

(ii) Perform the Gram-Schmidt process to the columns of N and M , suppose that
the corresponding orthonormal matrices are U1 and U2 .

(iii) Put U =
[
U1 U2

]
, then

P = U

[
Ir 0
0 −In−r

]
U∗.

REMARK 4.3. Lemma 4.8 gives a practical method to represent the unitary matrix
U in Lemma 4.7.

By Lemma 4.7, we have the following.

LEMMA 4.9. A matrix A ∈ HCn×n
ar (P) if and only if A can be expressed as

A = U

[
0 M

M∗ 0

]
U∗,

where M ∈ C
r×(n−r) and U is defined as U =

[
U1 U2

]
, U∗

1U2 = 0 is unitary.
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Now we consider the anti-reflexive Hermitian solution to the system (1.6), where
A,B ∈ C(m1+m3)×(n1+n2), C,D ∈ C(n1+n2)×(m2+m4), E ∈ Cm5×(n1+n2), F ∈ Cm5×m5 are
known and X ∈ HC

(n1+n2)×(n1+n2)
ar (P) unknown. By Lemma 4.9, we can assume that

X = U

[
0 X1

X∗
1 0

]
U∗, (4.7)

where X1 ∈ C
n1×n2 . Suppose that

AU =
[
As1 As2

]
,BU =

[
Bs1 Bs2

]
, (4.8)

U∗C =
[
Cs1

Cs2

]
,U∗D =

[
Ds1

Ds2

]
, (4.9)

EU =
[
A3 B∗

3

]
,F = C3, (4.10)

where As1,Bs1 ∈ Cm1×n1 , Cs1, Ds1 ∈ Cn1×m2 , As2, Bs2 ∈ Cm3×n2 , Cs2, Ds2 ∈ Cn2×m4 ,
A3 ∈ Cm5×n1 , B3 ∈ Cm5×n2 , C3 ∈ Cm5×m5 . Let[

As1

C∗
s1

]
= A1,

[
Bs2

D∗
s2

]
= C1, (4.11)

[
A∗

s2 Cs2
]
= B2,

[
B∗

s1 Ds1
]
= C2. (4.12)

Then the system of matrix equation (1.6) has anti-reflexive Hermitian solution if and
only if the system of matrix equation (4.1) is consistent. By Theorem 3.4, we have the
following theorem.

THEOREM 4.10. Let (4.3) hold. Then System (1.6) has an anti-reflexive Hermi-

tian solution X ∈HC
(n1+n2)×(n1+n2)
ar (P) if and only if the equalities in (4.4) hold. In this

case, the general anti-reflexive Hermitian solution to (1.6) can be expressed as (4.5).

We now give an algorithm for finding the anti-reflexive Hermitian solution to sys-
tem (1.6), and present a numerical example to illustrate our results. Base on Remark
3, Lemma 4.9 and Theorem 4.9, we propose the following algorithm for solving the
anti-reflexive Hermitian solution to system (1.6).

ALGORITHM 4.1. (1) Input A,B ∈ C(m1+m3)×(n1+n2), C,D ∈ C(n1+n2)×(m2+m4),
E ∈ Cm5×(n1+n2), F ∈ Cm5×m5 and the nontrivial generalized reflection matrix P ∈
C(n1+n2)×(n1+n2).

(2) Compute r and U by the way of Lemma 4.8.
(3) Compute A1,B2,A3,B3,C1,C2,C3 by (4.8)–(4.12).
(4) Check whether (4.3) and (4.4) hold or not. If all hold, then go into the follow-

ing.
(5) Compute X1 by (4.5).
(6) Compute X by (4.7).
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EXAMPLE 4.1. Given a generalized reflection matrix

P =

⎡⎢⎢⎣
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎤⎥⎥⎦
and the parameter matrices of system (1.6)

A =
[
1− i 2 i 0

]
, B =

[
0 2+ i 2+4i 5+5i

]
,

C =

⎡⎢⎢⎣
0

5.35
2
i

⎤⎥⎥⎦ , D =

⎡⎢⎢⎣
−5

2+4i
5.35−10.7i

0

⎤⎥⎥⎦ ,

E =
[

2 1 1 7i
0 0 i 0

]
, F =

[
1.42 0.02−0.01i

0.02+0.01i 0

]
.

By Lemma 4.8, we obtain r = 2 and

U =

⎡⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ .

According to (4.8)–(4.12), we derived

A1 =
[

1− i i
0 2

]
, B2 =

[
2 5.35
0 i

]
, A3 =

[
2 1
0 i

]
, B3 =

[
1 0

−7i 0

]
,

C1 =
[

2+ i 5+5i
2−4i 0

]
, C2 =

[
0 −5

2−4i 5.35−10.7i

]
,

C3 =
[

1.42 0.02−0.01i
0.02+0.01i 0

]
.

By computation, (4.3) and (4.4) holds. Using Theorem 4.10, the general solution of
system (4.1) is

X1 = S1 +S2[S3 +S4(Z−Z∗)S5 +S6WS4 +S7 +S8YS4 +US9]S10,

where Y, U are arbitrary, Z, W satisfy

S4(Z−Z∗)S5 +S6WS4 = 0,

and

S1 =
[

0 2+3i
1−2i 0

]
, S2 =

[
0.22−0.17i −0.11+0.056i

0.047+0.014i −0.22+0.07i

]
,

S3 =
[−4−0.17i 0.02i

3.2−0.78i −0.003−0.014i

]
, S4 =

[
1 −0.004i

0.004i 0

]
,
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S5 =
[

0.074+0.05i 0
−0.07−0.03i 0

]
, S6 =

[
0.4+0.002i 0.48+0.09i

0.002i 0.002i

]
,

S7 =
[

0.012−0.004i 0
0.089−2.79i 0.012+0.004i

]
, S8 =

[
0 0.002i

0.001+0.05i 0.44+0.05i

]
,

S9 =
[

0 0.004i
−0.004i 1

]
, S10 =

[
0.33 0.89i
0.03i 0

]
.

Then by (4.7), we obtain the general anti-reflexive Hermitian solution X ∈ HC4×4
ar (P)

to system (1.6), which can be expressed as the following

X =
[

0 X1

X∗
1 0

]
.

5. Conclusion

In this paper, we have investigated the system of adjointable operator equations
(1.5) over the Hilbert C∗ -modules, we have presented necessary and sufficient condi-
tions for the existence and the expression of the general solution to the system (1.5).
Some special cases of system (1.5) have been considered in Section 4 to show that some
known results can be recovered from the results of this paper. As an application, we
have proposed the solvability conditions and the general expression of anti-reflexive
Hermitian solution to the system of matrix equations (1.6) over C . Moreover, we have
given an algorithm for finding the anti-reflexive solution to system (1.6) and presented
a numerical example to illustrate our results.
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[5] A. DAJIĆ, J. J. KOLIHA, Positive solutions to the equations AX = C and XB = D for Hilbert space
operators, J. Math. Anal. Appl., 333 (2007), 567–576.
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