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ON 2× 2 OPERATOR MATRICES

SUNGEUN JUNG, YOENHA KIM AND EUNGIL KO

(Communicated by R. Curto)

Abstract. In this paper, we show that some 2× 2 operator matrices have scalar extensions. In
particular, we focus on some 2-hyponormal operators and their generalizations. As a corol-
lary, we get that such operator matrices have nontrivial invariant subspaces if their spectra have
nonempty interiors in the complex plane.

1. Introduction

Let H be a separable complex Hilbert space and let L (H ) denote the algebra of
all bounded linear operators on H . If T ∈ L (H ) , we write σ(T ) , σp(T ) , σap(T ) ,
and σe(T ) for the spectrum, the point spectrum, the approximate point spectrum, and
the essential spectrum of T , respectively.

An operator T ∈ L (H ) is said to be p-hyponormal if (T ∗T )p � (TT ∗)p for
0 < p < ∞ . Especially, if T is 1-hyponormal (resp. 1

2 -hyponormal), then it is called
hyponormal (resp. semi-hyponormal). An operator A ∈ L (⊕n

1H ) is said to be an
n-hyponormal operator if

A =

⎛⎜⎜⎜⎝
T1,1 T1,2 · · · T1,n

T2,1 T2,2 · · · T2,n
...

...
...

...
Tn,1 Tn,2 · · · Tn,n

⎞⎟⎟⎟⎠
where {Ti, j} are mutually commuting hyponormal operators on H .

An arbitrary operator T ∈ L (H ) has a unique polar decomposition T = U |T | ,
where |T | = (T ∗T )

1
2 and U is the appropriate partial isometry satisfying kerU =

ker|T |= kerT and kerU∗ = kerT ∗ . Associated with T is a related operator |T | 1
2U |T | 1

2 ,
called the Aluthge transform of T , and denoted throughout this paper by T̂ . For an ar-
bitrary operator T ∈ L (H ) , the sequence {T̂ (n)} of Aluthge iterates of T is defined

by T̂ (0) = T and T̂ (n+1) = ̂̂T (n) for every positive integer n (see [1], [8], and [9] for
more details).
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An operator T ∈ L (H ) is called scalar of order m if it possesses a spectral
distribution of order m , i.e. if there is a continuous unital homomorphismof topological
algebras

Φ : Cm
0 (C) → L (H )

such that Φ(z) = T , where as usual z stands for the identical function on C and Cm
0 (C)

for the space of all compactly supported functions continuously differentiable of order
m , 0 � m � ∞ . An operator is subscalar of order m if it is similar to the restriction of
a scalar operator of order m to an invariant subspace.

In 1984, M. Putinar showed in [17] that every hyponormal operator is subscalar
of order 2. In 1987, his theorem was used to show that hyponormal operators with
thick spectra have a nontrivial invariant subspace, which was a result due to S. Brown
(see [2]). In 1995, one author of this paper proved in [11] that every upper triangular
n -hyponormal operator is subscalar, and in the same paper he raised an open question
about the subscalarity of 2-hyponormal operators. As an effort to solve this question,
we obtain partial solutions of the question and more generalized results.

2. Preliminaries

An operator T ∈ L (H ) is said to have the single-valued extension property at
z0 if for every neighborhood D of z0 and any analytic function f : D → H , with
(T − z) f (z) ≡ 0, it results f (z) ≡ 0. An operator T ∈L (H ) having the single-valued
extension property at every z in the complex plane C is said to have the single-valued
extension property (or SVEP). For T ∈ L (H ) and x ∈ H , the set ρT (x) is defined
to consist of elements z0 in C such that there exists an analytic function f (z) defined
in a neighborhood of z0 , with values in H , which verifies (T − z) f (z) ≡ x , and it
is called the local resolvent set of T at x . We denote the complement of ρT (x) by
σT (x) , called the local spectrum of T at x , and define the local spectral subspace of
T , HT (F) = {x ∈ H : σT (x) ⊂ F} for each subset F of C . An operator T ∈ L (H )
is said to have the property (β ) if for every open subset G of C and every sequence fn :
G → H of H -valued analytic functions such that (T − z) fn(z) converges uniformly
to 0 in norm on compact subsets of G , then fn(z) converges uniformly to 0 in norm
on compact subsets of G . An operator T ∈ L (H ) is said to have Dunford’s property
(C) if HT (F) is closed for each closed subset F of C . It is well known by [13] that

Property (β ) ⇒ Dunford’s property (C) ⇒ SVEP.

Let z be the coordinate in the complex plane C and dμ(z) the planar Lebesgue
measure. Consider a bounded (connected) open subset U of C . We shall denote by
L2(U,H ) the Hilbert space of measurable functions f : U → H , such that

‖ f‖2,U = (
∫
U
‖ f (z)‖2dμ(z))

1
2 < ∞.

The space of functions f ∈ L2(U,H ) that are analytic in U is denoted by

A2(U,H ) = L2(U,H )∩O(U,H )
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where O(U,H ) denotes the Fr échet space of H -valued analytic functions on U with
respect to uniform topology. A2(U,H ) is called the Bergman space for U . Note that
A2(U,H ) is a Hilbert space.

Now, let us define a special Sobolev type space. For a fixed non-negative integer
m , the vector-valued Sobolev space Wm(U,H ) with respect to ∂ and of order m will

be the space of those functions f ∈ L2(U,H ) whose derivatives ∂ f , · · · ,∂m
f in the

sense of distributions still belong to L2(U,H ) . Endowed with the norm

‖ f‖2
Wm =

m

∑
i=0

‖∂ i
f‖2

2,U ,

Wm(U,H ) becomes a Hilbert space contained continuously in L2(U,H ) .
We can easily show that the linear operator M of multiplication by z on Wm(U,H )

is continuous and it has a spectral distribution Φ of order m defined by the following
relation; for ϕ ∈ Cm

0 (C) and f ∈ Wm(U,H ) , Φ(ϕ) f = ϕ f . Hence M is a scalar
operator of order m .

3. 2-hyponormal operators

In this section, we will show that some 2-hyponormal operators have scalar exten-
sions. For this, we begin with the following lemmas.

LEMMA 3.1. Let T ∈ L (H ) be a hyponormal operator and let D be a bounded
disk in C . If { fn} is any sequence in Wm(D,H ) (m � 2) such that

lim
n→∞

‖(T − z)∂
i
fn‖2,D = 0

for i = 0,1,2, · · · ,m , then

lim
n→∞

‖∂ i
fn‖2,D0 = 0

for i = 0,1,2, · · · ,m−2, where D0 is a disk with D0 � D and P denotes the orthogonal
projection of L2(D,H ) onto A2(D,H ) .

Proof. Since T is hyponormal, by [17] there exists a constant CD such that

‖(I−P)∂
i
fn‖2,D � CD

(‖(T − z)∂
i+1

fn‖2,D +‖(T − z)∂
i+2

fn‖2,D
)

(1)

for i = 0,1,2, · · · ,m−2. From (1), we have

lim
n→∞

‖(I−P)∂
i
fn‖2,D = 0 (2)

for i = 0,1,2, · · · ,m−2. So, it holds that

lim
n→∞

‖(T − z)P∂
i
fn‖2,D = 0 (3)
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for i = 0,1,2, · · · ,m−2. Since T has the property (β ) , from (3) we have

lim
n→∞

‖P∂ i
fn‖2,D0 = 0 (4)

for i = 0,1,2, · · · ,m−2, where D0 denotes a disk with D0 � D . From (2) and (4), we
get that

lim
n→∞

‖∂ i
fn‖2,D0 = 0

for i = 0,1,2, · · · ,m−2. �

LEMMA 3.2. Let T ∈ L (H ) and let D be a bounded disk in C containing
σ(T ) . Suppose that fn ∈Wm(D,H ) and hn ∈ H are sequences such that

lim
n→∞

‖(T − z)P fn +1⊗hn‖2,D = 0

where P is the orthogonal projection of L2(D,H ) onto A2(D,H ) and 1⊗h denotes
the constant function sending any z ∈ D to h ∈ H . Then limn→∞ ‖hn‖ = 0.

Proof. Let Γ be a curve in D surrounding σ(T ) . Then

lim
n→∞

‖P fn(z)+ (T − z)−1(1⊗hn)(z)‖ = 0

uniformly for all z ∈ Γ . Applying the Riesz-Dunford functional calculus, we obtain
that

0 = lim
n→∞

∥∥∥∥ 1
2π i

∫
Γ
P fn(z) dz+

1
2π i

∫
Γ
(T − z)−1(1⊗hn)(z) dz

∥∥∥∥
= lim

n→∞

∥∥∥∥ 1
2π i

∫
Γ
P fn(z) dz+hn

∥∥∥∥.

But 1
2π i

∫
ΓP fn(z) dz = 0 by the Cauchy’s theorem. Hence limn→∞ ‖hn‖ = 0. �

Recall that an operator T ∈L (H ) is said to be nilpotent of order k if Tk = 0 for
some positive integer k .

LEMMA 3.3. Let A =
(

T1 T2

T3 T4

)
be a 2-hyponormal operator defined on H ⊕

H . For a bounded disk D in C containing σ(A) and a positive integer m , define the
map Vm : H ⊕H → H(D) by

Vmh = 1̃⊗h(≡ 1⊗h+(A− z)⊕2
1W

m(D,H ))

where 1⊗ h denotes the constant function sending any z ∈ D to h ∈ H ⊕H and
H(D) := ⊕2

1W
m(D,H )/(A− z)⊕2

1W
m(D,H ) . Then the following statements hold.

(a) If either T2 or T3 is nilpotent, then V4 is one-to-one and has closed range.
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(b) If T4 is nilpotent and T2 − T3 = ±T1 , then V6 is one-to-one and has closed
range.

(c) If T1 is nilpotent and T2 − T3 = ±T4 , then V6 is one-to-one and has closed
range.

(d) If Tj = γ jT1 for j = 2,3,4 and 1−γ4 =±(γ2−γ3) where γ j ∈C for j = 2,3,4,
then V6 is one-to-one and has closed range.

(e) If T2T3 = 0, then V8 is one-to-one and has closed range.
(f) If T1 +T4 is hyponormal and det(A):= T1T4−T2T3 = 0, then V8 is one-to-one

and has closed range.

Proof. Since every operator both hyponormal and nilpotent is the zero operator,
the proof of (a) follows from [11].

In order to show the others, let hn = (h1
n,h

2
n)

t ∈ H ⊕H and fn = ( f 1
n , f 2

n )t ∈
⊕2

1W
m(D,H ) be sequences such that

lim
n→∞

‖(A− z) fn +1⊗hn‖⊕2
1W

m = 0. (5)

Then from (5) we have{
limn→∞ ‖(T1− z) f 1

n +T2 f 2
n +1⊗h1

n‖Wm = 0

limn→∞ ‖T3 f 1
n +(T4− z) f 2

n +1⊗h2
n‖Wm = 0.

(6)

By the definition of the norm for the Sobolev space, (6) implies that⎧⎨⎩limn→∞ ‖(T1− z)∂
i
f 1
n +T2∂

i
f 2
n ‖2,D = 0

limn→∞ ‖T3∂
i
f 1
n +(T4− z)∂

i
f 2
n ‖2,D = 0

(7)

for i = 1,2, · · · ,m .
(b) Set m = 6 and note that T4 = 0 because T4 is hyponormal and nilpotent. By

(7), we get that

lim
n→∞

‖{(T1±T3)− z}∂ i
f 1
n +(T2∓ z)∂

i
f 2
n ‖2,D = 0 (8)

for i = 1,2, · · · ,6. Since T2 −T3 = ±T1 , from (8) we have

lim
n→∞

‖(T2∓ z)(∂
i
f 1
n ± ∂

i
f 2
n )‖2,D = 0 (9)

for i = 1,2, · · · ,6. Since T2 is hyponormal, we obtain from Lemma 3.1 and (9) that

lim
n→∞

‖∂ i
f 1
n ± ∂

i
f 2
n ‖2,D1 = 0 (10)

for i = 1,2,3,4, where σ(A) � D1 � D (note that the one-to-one correspondence z →
−z on C may be necessary for the case when T2 −T3 = −T1 ). In addition,

‖(T3± z)∂
i
f 1
n ‖2,D1 � ‖T3∂

i
f 1
n − z∂

i
f 2
n ‖2,D1 +‖z(∂ i

f 1
n ± ∂

i
f 2
n )‖2,D1
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for i = 1,2,3,4, which implies together with (7) and (10) that

lim
n→∞

‖(T3± z)∂
i
f 1
n ‖2,D1 = 0 (11)

for i = 1,2,3,4. Since T3 is hyponormal, by Lemma 3.1 and (11) we have

lim
n→∞

‖∂ i
f 1
n ‖2,D2 = 0 (12)

for i = 1,2, where σ(A) � D2 � D1 . Due to (10) and (12),

lim
n→∞

‖∂ i
f 2
n ‖2,D2 = 0

for i = 1,2. Hence, it follows that

lim
n→∞

‖z∂ i
f 1
n ‖2,D2 = lim

n→∞
‖z∂ i

f 2
n ‖2,D2 = 0.

By applying [17], we get that

lim
n→∞

‖(I−P) f 1
n ‖2,D2 = lim

n→∞
‖(I−P) f 2

n ‖2,D2 = 0 (13)

where P denotes the orthogonal projection of L2(D2,H ) onto A2(D2,H ) . (5) and
(13) imply that

lim
n→∞

‖(A− z)P fn +1⊗hn‖2,D2 = 0 (14)

where P fn :=
(P f 1

n
P f 2

n

)
. Therefore, limn→∞ ‖hn‖ = 0 from Lemma 3.2. Thus V6 is one-

to-one and has closed range.
(c) We can show (c) by the same method as in the proof of (b).
(d) Put m = 6. Since 1− γ4 = ±(γ2 − γ3) , from (7) we get that

lim
n→∞

‖{(1±γ3)T1 − z}(∂ i
f 1
n ± ∂

i
f 2
n )‖2,D = 0 (15)

for i = 1,2, · · · ,6. Because (1±γ3)T1 is hyponormal, (15) and Lemma 3.1 imply that

lim
n→∞

‖∂ i
f 1
n ± ∂

i
f 2
n ‖2,D1 = 0 (16)

for i = 1,2,3,4, where σ(A) � D1 � D . Since

‖{(γ3∓γ4)T1±z}∂ i
f 1
n ‖2,D1 � ‖γ3T1∂

i
f 1
n +(γ4T1− z)∂

i
f 2
n ‖2,D1

+‖(γ4T1− z)(∂
i
f 1
n±∂

i
f 2
n )‖2,D1

for i = 1,2,3,4, the equations (7) and (16) induce that

lim
n→∞

‖{(γ3∓γ4)T1±z}∂ i
f 1
n ‖2,D1 = 0 (17)
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for i = 1,2,3,4. Since (γ3∓ γ4)T1 is hyponormal, we obtain from (17) and Lemma 3.1
that

lim
n→∞

‖∂ i
f 1
n ‖2,D2 = 0 (18)

for i = 1,2, where σ(A) � D2 � D1 . Due to (16) and (18),

lim
n→∞

‖∂ i
f 2
n ‖2,D2 = 0

for i = 1,2. Hence, by the same process as (13) and (14), V6 is one-to-one and has
closed range.

(e) Set m = 8. Since T2T3 = 0, multiplying the second equation of (7) by T2 , we
get that

lim
n→∞

‖(T4− z)T2∂
i
f 2
n ‖2,D = 0 (19)

for i = 1,2, · · · ,8. Since T4 is hyponormal, we obtain from (19) and Lemma 3.1 that

lim
n→∞

‖T2∂
i
f 2
n ‖2,D1 = 0 (20)

for i = 1,2, · · · ,6, where σ(A) � D1 � D . By the first equation of (7) and (20), we get
that

lim
n→∞

‖(T1− z)∂
i
f 1
n ‖2,D1 = 0 (21)

for i = 1,2, · · · ,6. Thus, by the hyponormality of T1 , (21) and Lemma 3.1 imply that

lim
n→∞

‖∂ i
f 1
n ‖2,D2 = 0 (22)

for i = 1,2,3,4, where σ(A) � D2 � D1 . From the second equation of (7) and (22), it
holds that

lim
n→∞

‖(T4− z)∂
i
f 2
n ‖2,D2 = 0 (23)

for i = 1,2,3,4. Since T4 is hyponormal, (23) and Lemma 3.1 result in the equation,

lim
n→∞

‖∂ i
f 2
n ‖2,D3 = 0

for i = 1,2, where σ(A) � D3 � D2 . Hence, by the same process as (13) and (14), we
can conclude that V8 is one-to-one and has closed range.

(f) Set m = 8. By (7), we obtain that⎧⎨⎩limn→∞ ‖(T1T3− zT3)∂
i
f 1
n +T2T3∂

i
f 2
n ‖2,D = 0

limn→∞ ‖T1T3∂
i
f 1
n +(T1T4− zT1)∂

i
f 2
n ‖2,D = 0

(24)

for i = 1,2, · · · ,8. Since det(A) = T1T4−T2T3 = 0, (24) implies that

lim
n→∞

‖z(T1∂
i
f 2
n −T3∂

i
f 1
n )‖2,D = 0 (25)
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i = 1,2, · · · ,8. Since the zero operator is hyponormal, by (25) and Lemma 3.1 we can
have

lim
n→∞

‖T1∂
i
f 2
n −T3∂

i
f 1
n ‖2,D1 = 0 (26)

for i = 1,2, · · · ,6, where σ(A) � D1 � D . From (26) and the second equation of (7),
we get that

lim
n→∞

‖(T1 +T4− z)∂
i
f 2
n ‖2,D1 = 0 (27)

for i = 1,2, · · · ,6. Since T1 +T4 is hyponormal, it holds by (27) and Lemma 3.1 that

lim
n→∞

‖∂ i
f 2
n ‖2,D2 = 0 (28)

for i = 1,2,3,4, where σ(A) � D2 � D1 . Thus it can be obtained from (28) and the
first equation of (7) that

lim
n→∞

‖(T1− z)∂
i
f 1
n ‖2,D2 = 0 (29)

for i = 1,2,3,4. Because T1 is hyponormal, by (29) and Lemma 3.1 we can conclude
that

lim
n→∞

‖∂ i
f 1
n ‖2,D3 = 0 (30)

for i = 1,2, where σ(A) � D3 � D2 . So, as in the proof of (b), we obtain from (28)
and (30) that

lim
n→∞

‖(I−P) f 1
n ‖2,D3 = lim

n→∞
‖(I−P) f 2

n ‖2,D3 = 0

where P denotes the orthogonal projection of L2(D3,H ) onto A2(D3,H ) . Hence, by
the same process as (13) and (14), V8 is one-to-one and has closed range. �

Now we are ready to prove that some 2-hyponormal operators have scalar exten-
sions.

THEOREM 3.4. Let A =
(

T1 T2

T3 T4

)
∈ L (H ⊕H ) be a 2-hyponormal operator.

If {Ti}4
i=1 satisfy one of the conditions in Lemma 3.3, then A is a subscalar operator

of order m where m = 4 in the case of (a), m = 6 in the cases of from (b) to (d), and
m = 8 in the cases of (e) and (f) in Lemma 3.3.

Proof. Let D be an arbitrary bounded open disk in C that contains σ(A) and
consider the quotient space

H(D) = ⊕2
1W

m(D,H )/(A− z)⊕2
1W

m(D,H )

endowed with the Hilbert space norm, where m = 4 in the case of (a), m = 6 in the
cases of from (b) to (d), and m = 8 in the cases of (e) and (f) in Lemma 3.3. The class
of a vector f or an operator S on H(D) will be denoted by f̃ , respectively S̃ . Let M
be the operator of multiplication by z on ⊕2

1W
m(D,H ) . Then M is a scalar operator

of order m and has a spectral distribution Φ . Since the range of A− z is invariant
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under M , M̃ can be well-defined. Moreover, consider the spectral distribution Φ :
Cm

0 (C)→L (⊕2
1W

m(D,H )) defined by the following relation; for ϕ ∈Cm
0 (C) and f ∈

⊕2
1W

m(D,H ) , Φ(ϕ) f = ϕ f . Then the spectral distribution Φ of M commutes with
A− z , and so M̃ is still a scalar operator of order m with Φ̃ as a spectral distribution.
Consider the operator Vm : H ⊕H → H(D) given by Vmh = 1̃⊗h with the same
notation of Lemma 3.3, and denote the range of Vm by ran(Vm) . Since

VmAh = 1̃⊗Ah = z̃⊗h = M̃(1̃⊗h) = M̃Vmh

for all h ∈ H ⊕H , VmA = M̃Vm . In particular, ran(Vm) is invariant under M̃ . Fur-
thermore, ran(Vm) is closed by Lemma 3.3, and hence ran(Vm) is a closed invariant
subspace of the scalar operator M̃ . Since A is similar to the restriction M̃|ran(Vm) and

M̃ is a scalar operator of order m , A is a subscalar operator of order m . �

4. Generalizations of 2-hyponormal operators

In this section, we consider the following question in the sense of the completion
problem; given a 2×2 operator matrix A with main diagonal of p -hyponormal opera-
tors, when is A subscalar? We give some solutions for this question (see Theorem 4.2).
The following lemma is the key step to prove that such operator matrices are subscalar.

LEMMA 4.1. Let A be an operator matrix on H ⊕H such that A =
(

T1 T2

T3 T4

)
where Ti are mutually commuting, and T1 and T4 are p -hyponormal. For a bounded
disk D containing σ(A) , define the map Vm : H ⊕H → H(D) as in Lemma 3.3. If
either T2 or T3 is nilpotent of order k , then V12k+8 is one-to-one and has closed range.

Proof. We may assume that T2 is nilpotent of order k (the proof for which T3 is
nilpotent of order k is similar). It suffices to consider only the case of 0 < p < 1

2 . Let
hn = (h1

n,h
2
n)

t ∈ H ⊕H and fn = ( f 1
n , f 2

n )t ∈ ⊕2
1W

12k+8(D,H ) be sequences such
that

lim
n→∞

‖(A− z) fn +1⊗hn‖⊕2
1W

12k+8 = 0. (31)

By (31), we get that{
limn→∞ ‖(T1 − z) f 1

n +T2 f 2
n +1⊗h1

n‖W 12k+8 = 0

limn→∞ ‖T3 f 1
n +(T4− z) f 2

n +1⊗h2
n‖W 12k+8 = 0.

(32)

By the definition of the norm for the Sobolev space, (32) implies that⎧⎨⎩limn→∞ ‖(T1− z)∂
i
f 1
n +T2∂

i
f 2
n ‖2,D = 0

limn→∞ ‖T3∂
i
f 1
n +(T4− z)∂

i
f 2
n ‖2,D = 0

(33)

for i = 1,2, · · · ,12k+8.
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CLAIM. It holds for every j = 0,1,2, · · · ,k that

lim
n→∞

‖Tk− j
2 ∂

i
f 2
n ‖2,Dj = 0 (34)

for i = 1,2, · · · ,12(k− j)+8, where σ(A) � Dk � Dk−1 � · · · � D1 � D0 = D .
To prove the claim, we will apply the induction on j . Since T2

k = 0, (34) holds
obviously when j = 0. Suppose that the claim is true for j = r < k . Then

lim
n→∞

‖Tk−r
2 ∂

i
f 2
n ‖2,Dr = 0 (35)

for i = 1,2, · · · ,12(k− r)+8. By (33) and (35), we get that

lim
n→∞

‖(T1− z)Tk−r−1
2 ∂

i
f 1
n ‖2,Dr = 0 (36)

for i = 1,2, · · · ,12(k− r)+ 8. Let T1 = U1|T1| and T̂1 = V |T̂1| be the polar decom-

positions of T1 and T̂1 , respectively. Since Ŝ|S| 1
2 = |S| 1

2 S holds for every operator
S ∈ L (H ) , we obtain from (36) that⎧⎨⎩limn→∞ ‖(T̂1− z)|T1| 1

2 Tk−r−1
2 ∂

i
f 1
n ‖2,Dr = 0

limn→∞ ‖(T̂1
(2)− z)|T̂1| 1

2 |T1| 1
2 Tk−r−1

2 ∂
i
f 1
n ‖2,Dr = 0

(37)

for i = 1,2, · · · ,12(k− r)+ 8. Since T1 is p -hyponormal, T̂1
(2)

is hyponormal by [1]
or [8]. It follows from (37) and Lemma 3.1 that

lim
n→∞

‖|T̂1| 1
2 |T1| 1

2 Tk−r−1
2 ∂

i
f 1
n ‖2,Dr,1 = 0 (38)

for i = 1,2, · · · ,12(k− r)+ 6, where σ(A) � Dr,1 � Dr . Since T1 = U1|T1| and T̂1 =
V |T̂1| , from (37) and (38) we have

lim
n→∞

‖z|T1| 1
2 Tk−r−1

2 ∂
i
f 1
n ‖2,Dr,1 = 0 (39)

for i = 1,2, · · · ,12(k− r)+6. Applying Lemma 3.1 with T = (0) , we obtain from (39)
that

lim
n→∞

‖|T1| 1
2 Tk−r−1

2 ∂
i
f 1
n ‖2,Dr,2 = 0

for i = 1,2, · · · ,12(k− r)+4, where σ(A) � Dr,2 � Dr,1 , which induces that

lim
n→∞

‖T1T
k−r−1
2 ∂

i
f 1
n ‖2,Dr,2 = 0 (40)

for i = 1,2, · · · ,12(k− r)+4. By (36) and (40), we get that

lim
n→∞

‖zT k−r−1
2 ∂

i
f 1
n ‖2,Dr,2 = 0 (41)
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for i = 1,2, · · · ,12(k− r)+4. Again applying Lemma 3.1 with T = (0) , then we can
conclude from (41) that

lim
n→∞

‖Tk−r−1
2 ∂

i
f 1
n ‖2,Dr,3 = 0 (42)

for i = 1,2, · · · ,12(k− r)+2, where σ(A) � Dr,3 � Dr,2 . From (42) and (33), we have

lim
n→∞

‖(T4− z)Tk−r−1
2 ∂

i
f 2
n ‖2,Dr,3 = 0 (43)

for i = 1,2, · · · ,12(k− r)+ 2. Since T4 is p -hyponormal, by the same method as the
procedure from (36) to (42) we get that

lim
n→∞

‖Tk−r−1
2 ∂

i
f 2
n ‖2,Dr+1 = 0 (44)

for i = 1,2, · · · ,12(k− r−1)+8, where σ(A) � Dr+1 � Dr,3 . Hence we complete the
proof of our claim.

By the claim with j = k , we get that

lim
n→∞

‖∂ i
f 2
n ‖2,Dk = 0 (45)

for i = 1,2, · · · ,8. Combining (45) with (33), we obtain that

lim
n→∞

‖(T1− z)∂
i
f 1
n ‖2,Dk = 0

for i = 1,2, · · · ,8. Since T1 is p -hyponormal, by the same method as the procedure
from (36) to (42) we can show that

lim
n→∞

‖∂ i
f 1
n ‖2,Dk,1 = 0 (46)

for i = 1,2, where σ(A) � Dk,1 � Dk . (45) and (46) imply that

lim
n→∞

‖z∂ i
f 1
n ‖2,Dk,1 = lim

n→∞
‖z∂ i

f 2
n ‖2,Dk,1 = 0

for i = 1,2. Thus it follows from [17] that

lim
n→∞

‖(I−P) f 1
n ‖2,Dk,1 = lim

n→∞
‖(I−P) f 2

n ‖2,Dk,1 = 0 (47)

where P denotes the orthogonal projection of L2(Dk,1,H ) onto A2(Dk,1,H ) . Set

P fn :=
(P f 1

n
P f 2

n

)
. Combining (47) with (31), we have

lim
n→∞

‖(A− z)P fn(z)+1⊗hn‖2,Dk,1 = 0,

which induces by Lemma 3.2 that limn→∞ ‖hn‖ = 0, and so V12k+8 is one-to-one and
has closed range. �
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THEOREM 4.2. Let A =
(

T1 T2

T3 T4

)
∈L (H ⊕H ) be an operator matrix with the

same hypotheses as Lemma 4.1. Then A is a subscalar operator of order 12k+8.

Proof. Let D be an arbitrary bounded open disk in C that contains σ(A) and
consider the quotient space

H(D) = ⊕2
1W

12k+8(D,H )/(A− z)⊕2
1W

12k+8(D,H )

endowed with the Hilbert space norm. The class of a vector f or an operator S on
H(D) will be denoted by f̃ , respectively S̃ . Let M be the operator of multiplication
by z on ⊕2

1W
12k+8(D,H ) . Then M is a scalar operator of order 12k+ 8 and has a

spectral distribution Φ . Moreover, M̃ is a scalar operator of order 12k + 8 with Φ̃
as a spectral distribution. Consider the operator V12k+8 : H ⊕H → H(D) given by

V12k+8h = 1̃⊗h with the same notations as Lemma 4.1, and denote the range of V12k+8
by ran(V12k+8) . Since V12k+8A = M̃V12k+8 , ran(V12k+8) is invariant under M̃ . Hence,
by Lemma 4.1, ran(V12k+8) is a closed invariant subspace of the scalar operator M̃ .
Since A is similar to the restriction M̃|ran(V12k+8) and M̃ is a scalar operator of order
12k+8, A is a subscalar operator of order 12k+8. �

5. Some applications

In this section we give some applications of our main theorems. In particular, the
following corollary gives a partial solution for the invariant subspace problem.

COROLLARY 5.1. Let A be an operator matrix on H ⊕H having one of the
forms in Theorem 3.4 or Theorem 4.2. If σ(A) has nonempty interior in C , then A has
a nontrivial invariant subspace.

Proof. The proof follows from Theorem 3.4 or Theorem 4.2 and [5]. �

Before giving the next corollary, we recall that an operator T ∈ L (H ) is said to

be power regular if limn→∞ ‖Tnx‖ 1
n exists for every x ∈ H .

COROLLARY 5.2. Let A be an operator matrix on H ⊕H with the same as-
sumptions as in Theorem 3.4 or Theorem 4.2. Then

(a) A has the property (β ) , Dunford’s property (C) , and the single-valued exten-
sion property.

(b) A is power regular.

Proof. (a) From section 2, it suffices to prove that A has the property (β ) . Since
the property (β ) is transmitted from an operator to its restrictions to closed invariant
subspaces, we are reduced by Theorem 3.4 or Theorem 4.2 to the case of a scalar
operator order m , where m is taken for each of the cases. Since every scalar operator
has the property (β ) (see [17]), A has the property (β ) .
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(b) From Theorem 3.4 or Theorem 4.2, A is similar to the restriction of a scalar
operator to one of its invariant subspaces. Since a scalar operator is power regular and
the restrictions of power regular operators to their invariant subspaces are still power
regular, A is also power regular. �

Recall that an X ∈ L (H ,K ) is called a quasiaffinity if it has trivial kernel and
dense range. An operator S ∈ L (H ) is said to be a quasiaffine transform of an op-
erator T ∈ L (K ) if there is a quasiaffinity X ∈ L (H ,K ) such that XS = TX .
Furthermore, operators S∈L (H ) and T ∈L (K ) are quasisimilar if there are quasi-
affinities X ∈ L (H ,K ) and Y ∈ L (K ,H ) such that XS = TX and SY = YT .

COROLLARY 5.3. Let A and B be operator matrices on H ⊕H with the same
assumptions as in Theorem 3.4 or Theorem 4.2. If A and B are quasisimilar, then
σ(A) = σ(B) and σe(A) = σe(B) .

Proof. Since A and B satisfy the property (β ) from Corollary 5.2 , the proof
follows from [19]. �

THEOREM 5.4. If A is an operator matrix on H ⊕H with the same notations
as in Theorem 3.4 or Theorem 4.2, then the equality σM̃(Vmh) = σA(h) holds for each
h∈H ⊕H where m is the appropriately chosen integer as in Theorem 3.4 or Theorem
4.2.

Proof. Let h∈H ⊕H be given. If λ0 ∈ ρA(h) , then there is an H ⊕H -valued
analytic function g defined on a neighborhood U of λ0 such that (A−λ )g(λ ) = h for
all λ ∈U . Then

(M̃−λ )Vmg(λ ) = Vm(A−λ )g(λ ) = Vmh

for all λ ∈U . Hence λ0 ∈ ρM̃(Vmh) . That is, σM̃(Vmh) ⊂ σA(h) .
On the other hand, suppose λ0 ∈ ρM̃(Vmh) . Then there exists an H(D)-valued an-

alytic function f̃ on some neighborhood U of λ0 such that (M̃−λ ) f̃ (λ )=Vmh for all

λ ∈U , where H(D)=⊕2
1W

m(D,H )/(A−z)⊕2
1W

m(D,H ) . Let f ∈ O(U,⊕2
1W

m(D,H ))
be a holomorphic lifting of f̃ and let f (λ ,z) = ( f (λ ))(z) for λ ∈U and z ∈ D . Fix
ζ ∈U . Then for z ∈ D ,

h− (z− ζ ) f (ζ ,z) ∈ (A− z)⊕2
1W

m(D,H ).

Note that from Grothendieck theorem in [13],

O(U,⊕2
1W

m(D,H )) = O(U)⊗̂(⊕2
1W

m(D,H ))

where O(U) denotes the Fr échet space of all complex-valued analytic functions on U
(i.e. O(U) := O(U,C)) and ⊗̂ is the complete topological tensor product (see [13] for
more details). Since the dense range property of a Hilbert space operator is preserved
by the topological tensor product with the nuclear space O(U) , there exists a sequence
{gn} ⊂ O(U,⊕2

1W
m(D,H )) satisfying that

lim
n→∞

(
h− (z− ζ ) f (ζ ,z)− (A− z)gn(ζ ,z)

)
= 0 (48)
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with respect to Fr échet space topology of the space O(U,⊕2
1W

m(D,H )) . Let U0 be
a neighborhood of λ0 , relatively compact in U . Let r be the unique continuous linear
extension

r : O(U)⊗̂(⊕2
1W

m(D,H )) →⊕2
1W

m(U0,H )

of the map u⊗ v→ (u · v)|U0 where u ∈ O(U) and v ∈ ⊕2
1W

m(D,H ) . Then

r
(
h− (z− ζ ) f (ζ ,z)− (A− z)gn(ζ ,z)

)
= h− (A− z) fn(z) (49)

where fn(z) := gn(z,z) for z ∈U0 . Hence from the equations (48) and (49), we have

lim
n→∞

‖h− (A− z) fn‖⊕2
1W

m(U0,H ) = 0.

From the applications of the proof in Lemma 3.3 or Lemma 4.1, we obtain that

lim
n→∞

‖(I−P) fn‖2,U1 = 0

where U1 is an open neighborhood of λ0 with U1 � U0 , and so

lim
n→∞

‖h− (A− z)P fn‖2,U1 = 0.

Thus h∈ (A− z)⊕2
1O(U2,H ) where U2 is an open neighborhood of λ0 with U2 �U1 .

Since A has the property (β ) from Corollary 5.2, A− z should have closed range on
⊕2

1O(U2,H ) . Hence h ∈ (A− z)⊕2
1O(U2,H ) , i.e., λ0 ∈ ρA(h) . �

COROLLARY 5.5. If A is an operator matrix on H ⊕H with the same notations
as in Theorem 3.4 or Theorem 4.2, then σ(A) = σ(M̃) .

Proof. Since σA(h) = σM̃(Vmh) for all h ∈ H ⊕H by Theorem 5.4, where m

is the appropriately chosen integer as in Theorem 3.4 or Theorem 4.2, σA(h) ⊂ σ(M̃)
for all h ∈ H ⊕H . Hence

⋃{σA(h) : h ∈ H ⊕H } ⊂ σ(M̃) . Since A has the single
valued extension property by Corollary 5.2, σ(A) =

⋃{σA(h) : h ∈ H } ⊂ σ(M̃) .
Conversely, note that if U ⊂ C is any bounded open set containing σ(A) and M

is the multiplication operator by z on ⊕2
1W

m(U,H ) , then σ(M̃) ⊂ σ(M) ⊂U holds.
From this property, if λ ∈ ρ(A) , then we can choose an bounded open set D so that
M̃− λ is invertible. Since this algebraic property is independent of the choice of D ,
we get σ(M̃) ⊂ σ(A) . �

COROLLARY 5.6. Let A be an operator matrix on H ⊕H with the same nota-
tions as in Theorem 3.4 or Theorem 4.2. If A is quasinilpotent, then it is nilpotent.

Proof. If σ(A) = {0} , then M̃ is nilpotent from [3], say with order k . Since
VmA = M̃Vm and Vm is one-to-one, Ak = 0. �

A closed subspace of H is said to be hyperinvariant for T if it is invariant under
every operator in the commutant {T}′ of T . An operator T ∈ L (H ) is decompos-
able provided that, for each open cover {U,V} of C , there exist closed T -invariant
subspaces Y , Z of H such that H = Y +Z , σ(T |Y ) ⊂U , and σ(T |Z) ⊂V .
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THEOREM 5.7. Let A be an operator matrix on H ⊕H having one of the forms
in Theorem 3.4 or Theorem 4.2 and let A �= zI for all z ∈ C . If S is a decomposable
quasiaffine transform of A , then A has a nontrivial hyperinvariant subspace.

Proof. If S is a decomposable quasiaffine transform of A , there exists a quasi-
affinity X such that XS = AX where S is decomposable. If A has no nontrivial hyper-
invariant subspace, we may assume that σp(A) = /0 and HA(F) = {0} for each closed
set F proper in σ(A) by Lemma 3.6.1 of [14]. Let {U,V} be an open cover of C
with σ(A)\U �= /0 and σ(A)\V �= /0 . If x ∈ HS(U) , then σS(x) ⊂U . So there exists
an analytic H ⊕H -valued function f defined on C \U such that (S− z) f (z) ≡ x
for all z ∈ C \U . Hence (A− z)X f (z) = X(S− z) f (z) = Xx for all z ∈ C \U . Thus
C \U ⊂ ρA(Xx) , which implies that Xx ∈ HA(U) , i.e., XHS(U) ⊂ HA(U) . Similarly,
XHS(V ) ⊂ HA(V ) . Then since S is decomposable,

XH = XHS(U)+XHS(V ) ⊂ HA(U)+HA(V ) = {0}.

But this is a contradiction. So A has a nontrivial hyperinvariant subspace. �

6. Further results

In this section, we consider some properties of 2×2 operator matrices. First we
will consider some spectral properties of 2×2 operator matrices.

PROPOSITION 6.1. Let A =
(

T1 T2

T3 T4

)
be an operator matrix defined on H ⊕H ,

where Tj are mutually commuting operators on H for j = 1,2,3,4.
(a) If T2T3 = 0, then σp(A) ⊂ σp(T1)∪σp(T4) , σap(A) ⊂ σap(T1)∪σap(T4) and

σ(A) ⊂ σ(T1)∪σ(T4) . In this case, σp(A) = σp(T1)∪ σp(T4) when 0 �∈ σp(T2)∪
σp(T3) , and σap(A) = σap(T1)∪σap(T4) when 0 �∈ σap(T2)∪σap(T3) .

(b) If det(A) := T1T4−T2T3 = 0, then σp(A)\{0}⊂σp(T1)∪σp(T1+T4) , σap(A)\
{0} ⊂ σap(T1)∪σap(T1 +T4) , and σ(A)\ {0}= σ(T1 +T4)\ {0} .

Proof. (a) Let T2T3 = 0. If λ ∈ σap(A) , then there exists a sequence {x1
n⊕ x2

n} of
unit vectors in H ⊕H such that

lim
n→∞

‖(A−λ )(x1
n⊕ x2

n)‖ = 0.

From this, we have {
limn→∞ ‖(T1−λ )x1

n +T2x2
n‖ = 0

limn→∞ ‖T3x1
n +(T4−λ )x2

n‖ = 0.
(50)

Since T2T3 = 0, it follows from (50) that

lim
n→∞

‖(T1−λ )T3x
1
n‖ = 0. (51)
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If limn→∞ ‖T3x1
n‖ �= 0, then λ ∈ σap(T1) . Otherwise, it holds by (50) that

lim
n→∞

‖(T4−λ )x2
n‖ = 0.

If limn→∞ ‖x2
n‖ �= 0, then λ ∈ σap(T4) . Suppose that limn→∞ ‖x2

n‖ = 0. Since ‖x1
n‖2 +

‖x2
n‖2 = 1 for all n , limn→∞ ‖x1

n‖ �= 0. In addition limn→∞ ‖(T1 − λ )x1
n‖ = 0, which

implies λ ∈ σap(T1) . Hence we can conclude that σap(A) ⊂ σap(T1)∪σap(T4) . Simi-
larly, we can show that σp(A)⊂ σp(T1)∪σp(T4) . For the last inclusion, let λ ∈ σ(A) .
Then (T1−λ )(T4−λ ) is not invertible by [7]. Thus, at least one of T1−λ and T4−λ
is not invertible, and so σ(A) ⊂ σ(T1)∪σ(T4) .

Now suppose 0 �∈ σap(T2)∪σap(T3) . If λ ∈ σap(T1) , then there is a sequence
{xn} of unit vectors in H such that limn→∞ ‖(T1 −λ )xn‖ = 0. Since T2T3 = 0, we
have

lim
n→∞

∥∥∥∥(A−λ )
(

T2xn

0

)∥∥∥∥ = lim
n→∞

∥∥∥∥(
T2(T1−λ )xn

T2T3xn

)∥∥∥∥ = 0.

Since 0 �∈ σap(T2) , it must hold that limn→∞ ‖T2xn‖ �= 0, and hence λ ∈ σap(A) .
Similarly, if λ ∈ σap(T4) , then we can derive λ ∈ σap(A) by using the assumption
0 �∈σap(T3) . Therefore, σap(A) = σap(T1)∪σap(T4) . By the same way, if 0 �∈ σp(T2)∪
σp(T3) , then we get that σp(A) = σp(T1)∪σp(T4) .

(b) We will first show that σap(A)\{0}⊂ σap(T1)∪σap(T1 +T4) . If λ ∈ σap(A)\
{0} , then we can choose a sequence {x1

n⊕ x2
n} of unit vectors in H ⊕H such that

lim
n→∞

‖(A−λ )(x1
n⊕ x2

n)‖ = 0.

This induces that {
limn→∞ ‖(T1−λ )x1

n +T2x2
n‖ = 0

limn→∞ ‖T3x1
n +(T4−λ )x2

n‖ = 0.
(52)

By (52), we get that {
limn→∞ ‖(T1T3 −λT3)x1

n +T2T3x2
n‖ = 0

limn→∞ ‖T1T3x1
n +(T1T4 −λT1)x2

n‖ = 0.
(53)

Since T1T4 = T2T3 and λ �= 0, we obtain from (53) that

lim
n→∞

‖T1x
2
n−T3x

1
n‖ = 0.

Combining this with (52), we have

lim
n→∞

‖(T1 +T4−λ )x2
n‖ = 0.

If limn→∞ ‖x2
n‖ �= 0, then λ ∈ σap(T1 +T4) . If limn→∞ ‖x2

n‖ = 0, then it follows that
limn→∞ ‖x1

n‖ �= 0 and limn→∞ ‖(T1−λ )x1
n‖= 0. Therefore, λ ∈ σap(T1) . Similarly, we

can prove the case of the point spectrum.
Finally, it remains to show that σ(A)\ {0} = σ(T1 +T4)\ {0} . Let λ ∈ C\ {0} .

From [7], λ ∈ σ(A) is equivalent to the statement that (T1 −λ )(T4 −λ )−T2T3 is not
invertible; that is, T1 +T4 −λ is not invertible, because T1T4 −T2T3 = 0 and λ �= 0.
Hence σ(A)\ {0}= σ(T1 +T4)\ {0} . �
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PROPOSITION 6.2. Let A =
(

T1 T2

T3 T4

)
be an operator matrix defined on H ⊕H ,

where Tj are mutually commuting operators on H for j = 1,2,3,4. If T3 is nilpotent
of order k , then σT4(T

k−1
3 y) ⊂ σA(x⊕ y) for any x⊕ y ∈ H ⊕H . If, in addition, T2

is nilpotent of order m , then σT1(T
m−1
2 x)∪σT4(T

k−1
3 y) ⊂ σA(x⊕ y) for any x⊕ y ∈

H ⊕H .

Proof. Let z0 ∈ ρA(x⊕ y) . Then there exist analytic functions f (z) and g(z) on
some neighborhood U of z0 on which

(A− z)( f (z)⊕g(z)) ≡ x⊕ y.

This implies that {
(T1− z) f (z)+T2g(z) = x

T3 f (z)+ (T4 − z)g(z) = y
(54)

for all z ∈U . Since Tk
3 = 0, we get from (54) that (T4 − z)Tk−1

3 g(z) = Tk−1
3 y , and so

z0 ∈ ρT4(T
k−1
3 y) . Hence, σT4(T

k−1
3 y)⊂ σA(x⊕y) . Similarly, if T2 is nilpotent of order

m , σT1(T
m−1
2 x) ⊂ σA(x⊕ y) . Hence σT1(T

m−1
2 x)∪σT4(T

k−1
3 y) ⊂ σA(x⊕ y) . �

COROLLARY 6.3. Let A =
(

T1 T2

T3 T4

)
be an operator matrix defined on H ⊕H ,

where Tj are mutually commuting operators on H for j = 1,2,3,4. If T2 and T3 are
nilpotent of order m and k , respectively, then (Tm−1

2 ⊕Tk−1
3 )HA(F) ⊂ HT1⊕T4(F) for

any subset F in C .

Proof. If x⊕y∈HA(F) , then σA(x⊕y)⊂F . First we will claim that σT1(T
m−1
2 x)∪

σT4(T
k−1
3 y) = σT1⊕T4(T

m−1
2 x⊕ Tk−1

3 y) . Suppose that there are H -valued analytic
functions f1 and f2 on some open set U in C such that

(T1⊕T4− z)( f1(z)⊕ f2(z)) = Tm−1
2 x⊕Tk−1

3 y

for all z ∈U . This is equivalent to the following; for all z ∈U{
(T1 − z) f1(z) = Tm−1

2 x and

(T4 − z) f2(z) = Tk−1
3 y.

Hence, we can obtain that

ρT1(T
m−1
2 x)∩ρT4(T

k−1
3 y) = ρT1⊕T4(T

m−1
2 x⊕Tk−1

3 y).

That is, σT1(T
m−1
2 x)∪σT4(T

k−1
3 y) = σT1⊕T4(T

m−1
2 x⊕Tk−1

3 y) , and so Proposition 6.2
implies σT1⊕T4(T

m−1
2 x⊕ Tk−1

3 y) ⊂ F . Hence Tm−1
2 x⊕ Tk−1

3 y ∈ HT1⊕T4(F) . Thus
(Tm−1

2 ⊕Tk−1
3 )HA(F) ⊂ HT1⊕T4(F) . �
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THEOREM 6.4. Let A =
(

T1 T2

T3 T4

)
be an operator matrix defined on H ⊕H ,

where Tj are mutually commuting operators on H for j = 1,2,3,4. Suppose that A
has the property (β ) .

(a) If T3 is nilpotent, then T1 has the property (β ) .
(b) If T2 is nilpotent, then T4 has the property (β ) .
(c) If both T2 and T3 are nilpotent, then T1 and T4 have the property (β ) .
Conversely, suppose that T1 and T4 have the property (β ) . If T2 or T3 is nilpotent,

then A has the property (β ) .

Proof. (a) Suppose that A has the property (β ) . Let Tk
3 = 0 and let { fn} be any

sequence of H -valued analytic functions on an open set G in C such that {(T1 −
z) fn(z)} converges uniformly to 0 on every compact subset of G . Let K be any com-
pact subset of G . Then

lim
n→∞

‖(T1− z) fn(z)‖ = 0 (55)

uniformly on K . Since

(A− z)
(

Tk−1
3 fn(z)

0

)
=

(
(T1− z)Tk−1

3 fn(z)
Tk
3 fn(z)

)
=

(
Tk−1
3 (T1− z) fn(z)

0

)
,

from (55) we get that limn→∞ ‖(A− z)(Tk−1
3 fn(z)⊕0)‖ = 0 uniformly on K . Since A

has the property (β ) , we obtain

lim
n→∞

‖Tk−1
3 fn(z)‖ = 0 (56)

uniformly on K . Similarly, since

(A− z)
(

Tk−2
3 fn(z)

0

)
=

(
Tk−2
3 (T1− z) fn(z)

Tk−1
3 fn(z)

)
,

(55) and (56) imply that limn→∞ ‖(A− z)(Tk−2
3 fn(z)⊕0)‖ = 0 uniformly on K . Since

A has the property (β ) , it holds that

lim
n→∞

‖Tk−2
3 fn(z)‖ = 0

uniformly on K . By continuing this procedure, we can conclude { fn(z)} eventually
converges uniformly to 0 on any compact subset K of G . Therefore, T1 has the prop-
erty (β ) .

(b) The proof is analogous to the above.
(c) It follows immediately from (a) and (b).
In order to prove the last statement, assume that T1 and T4 have the property

(β ) and T2 is nilpotent of order k for some positive integer k . Let { fn} and {gn}
be sequences of H -valued analytic functions on an open subset G of C such that
{(A− z)( fn(z)⊕gn(z))} converges uniformly to 0 on every compact subset of G . Let
K be any compact subset of G . Note that

(A− z)
(

fn(z)
gn(z)

)
=

(
(T1− z) fn(z)+T2gn(z)
T3 fn(z)+ (T4− z)gn(z)

)
,
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which implies that {
limn→∞ ‖(T1− z) fn(z)+T2gn(z)‖ = 0

limn→∞ ‖T3 fn(z)+ (T4− z)gn(z)‖ = 0
(57)

uniformly on K . Since Tk
2 = 0, (57) induces that limn→∞ ‖(T1 − z)Tk−1

2 fn(z)‖ = 0
uniformly on K . Since T1 has the property (β ) ,

lim
n→∞

‖Tk−1
2 fn(z)‖ = 0 (58)

uniformly on K . From (58) we obtain that

lim
n→∞

‖(T4− z)Tk−1
2 gn(z)‖ = 0

uniformly on K , as multiplying the second equation of (57) by Tk−1
2 . Since T4 has the

property (β ) , we have
lim
n→∞

‖Tk−1
2 gn(z)‖ = 0 (59)

uniformly on K . Therefore, multiplying the first equation of (57) by Tk−2
2 , it holds

from (59) that
lim
n→∞

‖(T1− z)Tk−2
2 fn(z)‖ = 0

uniformly on K . Since T1 has the property (β ) ,

lim
n→∞

‖Tk−2
2 fn(z)‖ = 0

uniformly on K , which ensures

lim
n→∞

‖(T4− z)Tk−2
2 gn(z)‖ = 0

uniformly on K . Since T4 has the property (β ) , it follows that

lim
n→∞

‖Tk−2
2 gn(z)‖ = 0

uniformly on K . By repeating this procedure, we finally achieve

lim
n→∞

‖ fn(z)‖ = lim
n→∞

‖gn(z)‖ = 0

uniformly on K . Hence { fn ⊕gn} converges uniformly to 0 on any compact subset K
of G , and so A has the property (β ) . The above proof is applicable for the case when
T3 is nilpotent. �

REMARK. Theorem 6.4 still holds even if we replace the property (β ) by the
single-valued extension property.

Recall that for an operator T ∈ L (H ) , we define a spectral maximal space of T
to be a closed T -invariant subspace M of H with the property that M contains any
closed T -invariant subspace N of H such that σ(T |N ) ⊂ σ(T |M ) .
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COROLLARY 6.5. Let A =
(

T1 T2

T3 T4

)
be an operator matrix defined on H ⊕H ,

where Tj are mutually commuting operators on H for j = 1,2,3,4. Suppose that
T1 and T4 have the property (β ) . If T2 or T3 is nilpotent, then HA(F) is a spectral
maximal space of A and σ(A|HA(F)) ⊂ σ(A)∩F for any closed subset F in C .

Proof. Since A has the property (β ) from Theorem 6.4, HA(F) is closed. Hence
the proof follows from [3] or [13]. �

COROLLARY 6.6. Under the same hypothesis as Corollary 6.5, if XB = AX where
X is a quasiaffinity, then B has the single-valued extension property and XHB(F) ⊂
HA(F) for any subset F in C .

Proof. Let f : D → H be an analytic function on an open set D such that (B−
z) f (z) ≡ 0. Then (A− z)X f (z) = X(B− z) f (z) ≡ 0 on D . Since A has the single-
valued extension property be Theorem 6.4, X f (z)≡ 0 on D . Since X is a quasiaffinity,
f (z) ≡ 0 on D . Hence B has the single-valued extension property. To prove the last
conclusion, it suffices to show that σA(Xx) ⊂ σB(x) for any x ∈ H ; in fact, if it holds,
then x ∈ HB(F) implies σA(Xx) ⊂ F , which means that Xx ∈ HA(F) . If z0 ∈ ρB(x) ,
then we can choose an H -valued analytic function f on some neighborhood of z0 for
which (B− z) f (z) ≡ x . Since XB = AX , we have X(B− z) f (z) = (A− z)X f (z) ≡ Xx ,
and so z0 ∈ ρA(Xx) . �

COROLLARY 6.7. Under the same hypothesis as Corollary 6.5, let F be any
closed set in C and x ∈ HA(F) . If f : ρA(x) → H ⊕H is an analytic function such
that (A− z) f (z) ≡ x , then OA(x) ⊂ HA(F) , where OA(x) is the linear closed subspace
generated by all the values f (z) with z ∈ ρA(x) .

Proof. The proof follows from Corollary 6.5 and [3]. �
Recall that an operator T ∈ L (H ) is totally ∗ -paranormal if ‖(T − z)∗x‖2 �

‖(T − z)2x‖‖x‖ for all x ∈ H and all z ∈ C (see [12] for more details). The following
proposition whose proof is based on the method of [22] gives an example of an operator
matrix which has the property (β ) .

PROPOSITION 6.8. Let A =
(

T1 T2

T3 T4

)
be an operator matrix defined on H ⊕H ,

where Tj are mutually commuting operators on H for j = 1,2,3,4. Suppose that T1

and T4 are totally ∗ -paranormal. If T2 or T3 is nilpotent, then A has the property (β ) .

Proof. From Theorem 6.4, it suffices to show that every totally ∗ -paranormal
operator has the property (β ). Suppose that T ∈ L (H ) is totally ∗ -paranormal. Let
G be any open subset of C , and let fn : G → H be a sequence of analytic functions
such that

lim
n→∞

‖(T − z) fn(z)‖ = 0 (60)

uniformly on every compact subset K of G . From now, let K be any compact disk in
G with K = B(z0;R) for some z0 ∈ G and R > 0, and let M = supn ‖ fn‖B(z0;R) < ∞ .
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Then for all n and z ∈ B(z0;r) with 0 < r < R , by Cauchy’s integral formula we get
the following inequality

‖ fn(z)− fn(z0) ‖ =
∥∥∥∥ 1

2π i

∫
|ξ−z0|=R

fn(ξ )
ξ − z

dξ − 1
2π i

∫
|ξ−z0|=R

fn(ξ )
ξ − z0

dξ
∥∥∥∥

� 1
2π

∫
|ξ−z0|=R

| z− z0 | ‖ fn(ξ )‖
| ξ − z || ξ − z0 | | dξ |

� Mr
R− r

. (61)

For all n and all z ∈ B(z0;r) with 0 < r < R , (61) implies that

‖ fn(z0)‖2 = 〈 fn(z0)− fn(z), fn(z0)〉+ 〈 fn(z), fn(z0)〉
� ‖ fn(z0)− fn(z)‖‖ fn(z0)‖+ | 〈 fn(z), fn(z0)〉 |

� M2r
R− r

+ | 〈 fn(z), fn(z0)〉 | . (62)

Also the inequality

‖ fn(z)‖ � ‖ fn(z)− fn(z0)‖+‖ fn(z0)‖ (63)

holds. Choose a sufficiently small r > 0 such that Mr
R−r < ε

2 and M2r
R−r < ε2

8 . Then by
the above inequalities from (61) to (63) we get that{

‖ fn(z0)‖2 < ε2

8 + | 〈 fn(z), fn(z0)〉 |
‖ fn(z)‖ < ε

2 +‖ fn(z0)‖.
(64)

On the other hand, let z1 ∈ B(z0;r)\ {z0} . Then{
limn→∞ ‖(T − z0) fn(z0)‖ = 0

limn→∞ ‖(T − z1) fn(z1)‖ = 0.
(65)

Since T is totally ∗ -paranormal,

lim
n→∞

‖(T − z1)∗ fn(z1)‖ = 0. (66)

Note that

(z0 − z1)〈 fn(z0), fn(z1)〉
= 〈(z0 −T ) fn(z0), fn(z1)〉+ 〈(T − z1) fn(z0), fn(z1)〉
= 〈(z0 −T ) fn(z0), fn(z1)〉+ 〈 fn(z0),(T − z1)∗ fn(z1)〉. (67)

Hence from (65), (66) and (67) we have

lim
n→∞

〈 fn(z0), fn(z1)〉 = 0. (68)
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Thus there exists a positive integer N such that for all n � N

| 〈 fn(z0), fn(z1)〉 | <
ε2

8
. (69)

Combining (64) and (69), we can conclude that ‖ fn(z)‖ < ε for all z ∈ B(z0;r) with
0 < r < R . Hence T has the property (β ) . �

REMARK. From the proof of Proposition 6.8 we observe that every totally ∗ -pa-
ranormal operator has the property (β ) .

Finally, we shall consider the special case of 2×2 operator matrices whose entries
do not commute. For this, recall that for a bounded sequence {αn}∞n=1 in C an operator
W ∈L (H ) is called a (unilateral) weighted shift with weight {αn} if Wen = αnen+1

for n ∈ N .

PROPOSITION 6.9. Let T =
(

W1 W2

W3 W4

)
be an operator matrix in L (H ⊕H )

where Wi are weighted shifts with weights {α(i)
k } for i = 1,2,3,4. Then T has the

property (β ) and the single-valued extension property.

Proof. If T has the property (β ), then it has the single-valued extension property.
Hence we only have to show that T has the property (β ). Let G be any open subset
of C , and let { fn ⊕gn}∞n=1 be a sequence of H ⊕H -valued analytic functions on G
such that

lim
n→∞

‖(T − z)( fn(z)⊕gn(z))‖ = 0 (70)

uniformly on every compact subset K of G . Since

(T − z)( fn(z)⊕gn(z)) =
(

W1− z W2

W3 W4 − z

)(
fn(z)
gn(z)

)
=

(
(W1− z) fn(z)+W2gn(z)
W3 fn(z)+ (W4− z)gn(z)

)
,

from (70) we get that{
limn→∞ ‖(W1− z) fn(z)+W2gn(z)‖ = 0

limn→∞ ‖W3 fn(z)+ (W4− z)gn(z)‖ = 0
(71)

uniformly on every compact subset K of G . For the orthonormal basis {ek}∞k=1 of
H , we set fn(z) = ∑∞

k=1 fn,k(z)ek and gn(z) = ∑∞
k=1 gn,k(z)ek where fn,k : G → C and

gn,k : G → C are analytic functions. For any k ∈ N , from (71) we obtain that{
limn→∞ z fn,1(z) = 0

limn→∞(α(1)
k fn,k(z)− z fn,k+1(z)+α(2)

k gn,k(z)) = 0, and
(72)
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limn→∞ zgn,1(z) = 0

limn→∞(α(3)
k fn,k(z)− zgn,k+1(z)+α(4)

k gn,k(z)) = 0
(73)

uniformly on every compact subset K of G . Since a zero operator is hyponormal and
hyponormal operators satisfy the property (β ) , the equations (72) and (73) imply that
fn,1(z) and gn,1(z) converge uniformly to 0 on every compact subset K of G . Then
from (72) and (73) we get that for all k ∈ N

lim
n→∞

z fn,k+1(z) = lim
n→∞

zgn,k+1(z) = 0 (74)

uniformly on every compact subset K of G . By the hyponormality of a zero operator,
we can apply the property (β ) of hyponormal operators to (74). Then fn,k+1(z) and
gn,k+1(z) converge uniformly to 0 on every compact subset K of G . Thus fn(z) and
gn(z) converge uniformly to 0 on every compact subset K of G . Hence T has the
property (β ) . �
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