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ESTIMATING EIGENVALUES OF MATRICES BY INDUCED NORMS

CARSTEN MICHELS

(Communicated by C.-K. Li)

Abstract. A classical result of König in terms of matrices states that for 1 � p < q �∞ the eigen-

values λ1(A), . . . ,λn(A) of an n× n square matrix A satisfy maxk k
1
p − 1

q |λk(A)| � Cq,p‖A‖q,p

for some absolute constant Cq,p > 0 not depending on the matrix A , where ‖A‖q,p denotes the
norm of A viewed as an operator from �n

q into �n
p . We refine this result for 1 � p < q � 2 by

means of interpolation of Banach spaces.

1. Introduction

For K = R or K = C let A = (ai j) ∈ Kn×n be a square matrix. Denote by
λ1(A), . . . ,λn(A) the eigenvalues of A (viewed as a matrix over the field C if necessary)
counted according to their algebraic multiplicity and satisfying |λ1(A)| � |λ2(A)| �
. . . � |λn(A)| , and by s1(A) � s2(A) � . . . � sn(A) � 0 the square roots of the eigenval-
ues of the selfadjoint and positive matrix A

t
A , called the singular values of A . Further-

more, for 1 � r < ∞ we set

Λr(A) :=
( n

∑
k=1

|λk(A)|r
) 1

r
and Λr,∞(A) := max

k=1,...,n
k

1
r |λk(A)|

as well as

σr(A) :=
( n

∑
k=1

sk(A)r
) 1

r
and σr,∞(A) := max

k=1,...,n
k

1
r sk(A).

For 1 � p,q � ∞ we set

‖A‖q,p := sup
x�=0

‖Ax‖p

‖x‖q
and |A|q,p :=

∥∥∥(
‖Ae j‖q

)
j=1,...,n

∥∥∥
p
,

where, as usual, for x1, . . . ,xn ∈ K we denote

‖(x1, . . . ,xn)‖p :=
( n

∑
i=1

|xi|p
) 1

p
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if 1 � p < ∞ , and
‖(x1, . . . ,xn)‖∞ := max

k=1,...,n
|xk|,

e j the j -th standard unit vector in Kn . For 1 � p � ∞ , we then set �n
p := (Kn,‖ · ‖p) .

For 1 � p,q < ∞ , a more explicit expression for |A|q,p is given by

|A|q,p =
( n

∑
j=1

( n

∑
i=1

|ai j|q
) p

q
) 1

p
,

and if 1 � q < ∞ , then |A|q,∞ (which will frequently appear in our formulas) reads as

|A|q,∞ = max
j=1,...,n

( n

∑
i=1

|ai j|q
) 1

q
.

Classical work due to König (see also the surveys [16, Corollary 12] and [17,
Proposition 20], as well as [9] for a recent generalization) gives the following connec-
tions between eigenvalues and induced norms :

THEOREM 1.1. ([15], 2.b.11) For 1 � p < q � ∞ define by α := 1
p − 1

q , and let

A ∈ Cn×n .

(a) If 1 � p � 2 � q � ∞ , then Λ 1
α
(A) � 4‖A‖q,p.

(b) If 1 � p < q = 2, then σ 1
α
(A) �

√
2‖A‖2,p.

(c) If 1 � p < q < 2, then Λ 1
α ,∞(A) � 2e

√
2‖A‖q,p.

Clearly, these estimates are optimal (up to a multiplicative constant) for a wide
class of matrices, in particular for diagonal matrices. However, for other matrices this
is not the case. Take, e.g., the matrix Jn where all entries are equal to 1. It has the
only non-zero eigenvalue n with multiplicity 1, so that the left-hand side in the above
is always of the order n , whereas ‖Jn‖q,p = n1+α . For such a matrix, the following
celebrated result (see also [5] for an elementary approach and [8] for a generalization
within the framework of Orlicz norms, respectively) is more suitable (as usual, we
denote by r′ the conjugate number of r , i.e., 1

r + 1
r′ = 1):

THEOREM 1.2. ([14]) Let 2 � r < ∞ . Then for any matrix A ∈ C
n×n

Λr(A) � |A|r′,r. (1.1)

While giving once again the exact result for diagonal matrices, the obvious disad-
vantage of (1.1) is the fact that this estimate only depends on the modulus of the entries
of the matrix. For instance, for an arbitrary matrix with moduli of its entries all equal to
1 one would get the same estimate as for Jn , although the behaviour of the eigenvalues
may be completely different (take, e.g., a matrix orthogonal up to the factor

√
n , for

which all its eigenvalues have modulus equal to
√

n ).
We would now like to pursue simultaneously the following two different tasks

here:
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(i) Find upper estimates for Λr(A) or Λr,∞(A) in terms of the induced norms ‖A‖q,p

which are better suited for matrices far from diagonal matrices (e.g., matrices for
which the moduli of the entries (almost) all coincide).

(ii) Find upper estimates for Λr(A) or Λr,∞(A) in terms of the induced norms ‖A‖q,p

for all r > 1
α .

Let us briefly describe how our resulting estimates will look like: Using König’s
result and the trivial estimate Λ∞(A) := |λ1(A)| � ‖A‖1,1 = |A|1,∞ , standard interpola-
tion techniques then yield for any r > 1

α

Λr,∞(A) � Λ 1
α ,∞(A)

1
αr Λ∞(A)1− 1

αr � C
1
αr
α ‖A‖

1
αr
q,p |A|1−

1
αr

1,∞ ,

where Cα > 0 is the constant occuring in Theorem 1.1, respectively. We will show that
in the case 1 � p < q � 2 the above can be improved upon in the sense that |A|1,∞ can
be replaced by |A|s(α ,r),∞ , where 1 < s(α,r) � 2 is determined by α and r . More-
over, changing the corresponding exponents on the right-hand side, we will also state a
related estimate where |A|1,∞ will be replaced by |A|s,∞ , 2 < s < ∞ . In the particular
case 1 = p < q = 2, we will derive related estimates for σr(A) , 2 � r � 4.

2. More on induced norms

If A ∈ Rn×n , we sometimes write ‖A‖R
q,p and ‖A‖C

q,p in order to distinguish be-
tween A viewed as a real matrix and A viewed as a complex matrix. In general, one
has ‖A‖R

q,p � ‖A‖C
q,p , whereas the reverse inequality (in its whole generality) only holds

if either q � p or if A is non-negative (see, e.g., [7, p. 347]). For p < q , in general
it holds ‖A‖C

q,p �
√

2‖A‖R
q,p ([20]). Furthermore, for 1 � p � q � 2, the following

improvement is known, where the occuring multiplicative constant is best possible:

LEMMA 2.1. ([6]) Let 1 � p � q � 2. Then for any matrix A ∈ Rn×n it holds

‖A‖C
q,p � (

√
π)

1
p− 1

q

(Γ( q+1
2 )

Γ( q+2
2 )

) 1
q
(Γ( p+2

2 )

Γ( p+1
2 )

) 1
p ‖A‖R

p,q. (2.1)

In order to obtain sharper results as well as smaller multiplicative constants, a
standard tensor product trick will be used. For this, we need to know the behaviour
of ‖ · ‖p,q under taking Kronecker products of matrices. For two square matrices A =
(ai j)∈ Kn×n and B = (bi j) ∈ Km×m we denote their Kronecker/tensor product A⊗B∈
Knm×nm (see [13, 4.2.1]) by

A⊗B :=

⎛
⎜⎝

a11B . . . a1nB
...

...
an1B . . . annB

⎞
⎟⎠ .

LEMMA 2.2. Let 1 � p,q � ∞ . For two matrices A,B ∈ Kn×n let A⊗B be their
Kronecker product. Then the following hold:
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(i) Λr(A)Λr(B) = Λr(A⊗B) for all 1 � r < ∞ .

(ii) ‖A⊗B‖q,p � ‖A‖q,p‖B‖q,p , if either q � p , or A and B are non-negative real
matrices.

(iii) ‖A⊗B‖2,p � Γ
(

p+2
2

)− 1
p ‖A‖2,p‖B‖2,p , if 1 � p < 2 and K = C .

Proof. (ii) can be found in, e.g., [7, p. 80 and p. 87], and (iii) in [2, Proposi-
tion 10.2]. Part (i) is standard (see, e.g., [5, (1.5)] or [8, Lemma 11]), but we give a
sketch for the convenience of the reader. It is easy to see that the set of eigenvalues of
A⊗B equals {λi(A)λ j(B); 1 � i, j � n} and that the multiplicity of each these prod-
ucts is the product of the multiplicities of λi(T ) and λ j(T ) , respectively (see e. g. [13,

4.2.12]). The conclusion then follows by the definition of the norms in �n
r and �n2

r ,
respectively. �

In what follows, we set |A| = (|ai j|) .

LEMMA 2.3. (Tensor product trick) Assume that for 1 � p,q,s, t � ∞ and any
ε > 0 there exists a constant C(ε) > 0 such that

Λr,∞(A) � C(ε)nε‖A‖αq,p‖A‖βt,s
holds for some fixed α,β > 0, 1 � r < ∞ and all A ∈ ⋃

n Kn×n . Then

Λr(A) � ‖|A|‖αq,p‖|A|‖βt,s
for all A ∈ ⋃

n Kn×n . Moreover, if kq,p,kt,s > 0 are constants such that

‖A⊗A‖q,p � kq,p‖A‖2
q,p and ‖A⊗A‖t,s � kt,s ‖A‖2

t,s

for all A ∈ ⋃
n Kn×n , then

Λr(A) � kαq,pk
β
t,s‖A‖αq,p‖A‖βt,s

for all A ∈ ⋃
n Kn×n .

Proof. The proof is standard (see, e.g., [7, p. 464]), but we sketch it for the con-
venience of the reader. However, we only consider the first part of the statement, the
second one is proved similarly.

Fix A ∈ Kn×n and ε > 0. Elementary calculus shows that

Λr(A) � D(ε)nεΛr,∞(A)

for some constant D(ε) > 0 independently of A∈Kn×n . Thus, since ‖A‖q,p � ‖|A|‖q,p

and ‖A‖t,s � ‖|A|‖t,s (an easy exercise), it follows

Λr(A) � E(ε)n2ε‖|A|‖αq,p‖|A|‖βt,s,



ESTIMATING EIGENVALUES OF MATRICES BY INDUCED NORMS 393

where E(ε) = C(ε)D(ε) . Hence, by Lemma 2.2 (i) and (ii) and the obvious equality
|A⊗A|= |A|⊗ |A| it follows that

Λr(A)2 = Λr(A⊗A) � E(ε)n4ε‖|A|⊗ |A|‖αq,p‖|A|⊗ |A|‖βt,s
� E(ε)n4ε‖|A|‖2α

q,p‖|A|‖2β
t,s ,

whence
Λr(A) �

√
E(ε)n2ε‖|A|‖αq,p‖|A|‖βt,s.

Iterating the argument leads to

Λr(A) � E(ε)2−k
n2ε‖|A|‖αq,p‖|A|‖βt,s.

Taking first k → ∞ and then ε → 0 shows the result. �
Furthermore, we will use the following simple observation which shows that some

quantities in the upcoming theorems can be easily calculated:

LEMMA 2.4. For any matrix A ∈ K
n×n and any 1 � p � ∞ it is

‖A‖1,p = |A|p,∞ and ‖A‖p,1 = max
|θi|=1

|At(θ1, . . . ,θn)t |1,p′ � |A|1,p′ .

In particular, if A ∈ Rn×n is non-negative, then ‖A‖p,1 = |A|1,p′ .

Proof. This follows from the Krein-Milman Theorem (see [19]). Indeed, the ex-
tremal points in B�n

1
are all of the form α ei for some |α|= 1 and i ∈ {1, . . . ,n} , hence

‖A‖1,p = sup
‖x‖1�1

‖Ax‖p = sup
|α |=1, j∈{1,...,n}

‖A(α e j)‖p = max
j=1,...,n

‖Aej‖p = |A|p,∞.

Furthermore, the extremal points in B�n
∞ are all of the form (θ1, . . . ,θn) with |θi|= 1 for

all i = 1, . . . ,n . Thus, the remaining formula follows from ‖A‖p,1 = ‖At‖∞,p′ similarly
as in the above. �

3. Interpolation of spaces of operators

In this section, very special concepts from functional analysis will be presented
and exploited. We try to keep this as short as possible, albeit hoping that non-experts in
this field will get an impression about the ideas behind our eigenvalue estimates to be
presented later.

One crucial ingredient will be the theory of complex interpolation of Banach
spaces. For a compatible Banach couple (X0,X1) of complex Banach spaces and
0 < θ < 1 we denote by [X0,X1]θ the resulting complex interpolation space in the
sense of [3]. We do not want to trouble the reader with details on what compatible
means; in this article, we will always consider couples of finite-dimensional spaces
of the same dimension, i.e., X0 = (Cm,‖ · ‖0) and X1 = (Cm,‖ · ‖1) simply being C

m
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equipped with two different norms. We will also use the notation �n
p(X) for the lin-

ear space Xn of all X -valued n -tuples, X a Banach space, equipped with the norm
‖(x1, . . . ,xn)‖�n

p(X) := ‖(‖x1‖, . . . ,‖xn‖)‖p for 1 � p � ∞ and x1, . . . ,xn ∈ X . We will
frequently use the following basic facts (see, e.g., [3]):

LEMMA 3.1. Let (X0,X1) be a compatible Banach couple and 0 < θ < 1.

(i) The complex interpolation functor is of power type θ , i.e., for any x ∈ X0∩X1 it
holds

‖x‖[X0,X1]θ � ‖x‖1−θ
X0

‖x‖θX1
. (3.1)

(ii) For 1 � p0, p1 � ∞ it is
[�m

p0
, �m

p1
]θ = �m

pθ
(3.2)

and
[�m

p0
(X0), �m

p1
(X1)]θ = �m

pθ ([X0,X1]θ ) (3.3)

with equal norms, respectively, where 1
pθ

= 1−θ
p0

+ θ
p1

.

For two Banach spaces X and Y , we denote by L (X ,Y ) the space of all bounded
and linear operators between X and Y , equipped with the usual operator norm ‖T‖ :=
supx�=0

‖Tx‖Y
‖x‖X

(so that ‖A‖q,p for an n×n matrix A simply is the norm of A viewed as
an operator TA : �n

q → �n
p , where TA denotes the standard interpretation of A as a linear

operator from Kn into Kn ).
The following highly non-trivial result about complex interpolation of spaces of

bounded operators is due to [18] (see also [10] and [23] for related work); however, an
analysis of the proof easily shows that the constant given there (which would have been√

8
π ) can be improved upon when we consider operators starting from a Hilbert space.

Note that a more general version of the result below has been exploited in [26] in order
to present an interpolation approach to Hardy–Littlewood inequalities.

LEMMA 3.2. ([18]) Let 1 � p0, p1 � 2. Then for all 0 < θ < 1

‖id : L (�m
2 , �n

pθ
) → [L (�m

2 , �n
p0

),L (�m
2 , �n

p1
)]θ‖ � 2√

π
,

where 1
pθ

= 1−θ
p0

+ 1−θ
p1

.

A crucial tool will be the notion of absolutely summing norms. If X and Y are
Banach spaces and 1 � s � r � ∞ , then for every operator T : X → Y and each m ∈ N

we define

π (m)
r,s (T ) := sup

{( m

∑
k=1

‖Txk‖r
Y

) 1
r
; sup
‖x′‖X ′�1

( m

∑
k=1

|x′(xk)|s
)1/s

� 1
}
.

If πr,s(T ) := supm∈Nπ
(m)
r,s (T ) < ∞ , then T is called absolutely (r,s)-summing. In this

case, we write T ∈Πr,s , and T ∈Πr if r = s . For our purposes here, we will concentrate
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on the case 2 = s � r �∞ . For r =∞ , this definition gives the usual operator norm. See,
e.g., [11], for more information on absolutely summing operators. For our purposes,

we denote by Π(m)
r,2 (X ,Y ) the space L (X ,Y ) equipped with the norm π (m)

r,2 (T ) for an
operator T : X → Y .

The following in the case s = 2 is known as the Little Grothendieck Theorem (see,
e.g., [7, p. 140]) and in the general case due to Kwapień [21] (see also [7, p. 462]):

LEMMA 3.3. Let A ∈ Cn×n and 1 < s < ∞ . Then

πmax(s,s′),2(TA : �n
1 → �n

s ) �
( 2√

π

) 2
max(s,s′) ‖A‖1,s.

Proof. This can be seen exactly as in [21], interpolating between the cases s = 2,
where the Little Grothendieck Theorem states that

π2,2(TA : �n
1 → �n

2) � 2√
π
‖TA : �n

1 → �n
2‖,

and the trivial cases s = 1 and s = ∞ , respectively, where max(s,s′) = ∞ . Here, re-
call that by definition π∞,2(T ) = ‖T‖ for any bounded linear operator T between two
Banach spaces X and Y . �

Complex interpolation of spaces of summing operators is fairly easy when the
domain space is fixed – the following interpolation formula is more involved (we state
a finite-dimensional version only):

LEMMA 3.4. Let 1 � p0, p1 � 2 � r0,r1 � ∞ and 1 � q0,q1 � ∞ . Then for
0 < θ < 1

‖id : [Π(m)
r0,2

(�n
p0

, �n
q0

),Π(m)
r1,2

(�n
p1

, �n
q1

)]θ →Π(m)
rθ ,2(�

n
pθ , �

n
qθ )‖ � 2√

π
,

where 1
tθ

= 1−θ
t0

+ θ
t1

for t ∈ {r, p,q} .

Proof. This is pretty standard, but we state briefly the idea for the convenience of
the reader. It is well-known that

π (m)
r,2 (T : X → Y ) = ‖Φm

T : L (�m
2 ,X) → �m

r (Y )‖,

where Φm
T (S) := ((TS)(ei))i and ei denotes the i-th standard unit vector. Thus, it

suffices to show that

‖Φm : L (�m
2 , �n

pθ
)× [Π(m)

r0,2
(�n

p0
, �n

q0
),Π(m)

r1,2
(�n

p1
, �n

q1
)]θ → �m

rθ
(�n

qθ
)‖ � 2√

π
,

where Φm(S,T ) := ((TS)(ei))i . This now follows from the border cases

‖Φm : L (�m
2 , �n

pi
)×Π(m)

ri,2
(�n

pi
, �n

qi
) → �m

ri (�
n
qi
)‖ = 1,
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i = 0,1 together with (3.3), Lemma 3.2 and the fact that the complex interpolation
functor behaves nicely with respect to bilinear interpolation (see, e.g., [3, 4.4.1]). �

The following now is the crucial result needed for our eigenvalue estimates – see,
e.g., [24], for related work.

PROPOSITION 3.5. Let 1 � p,q � 2 and 1 < s < ∞ . Then for 0 < θ < 1

‖id : [L (�n
q, �

n
p),L (�n

1, �
n
s )]θ →Π(n)

max(s,s′)
θ ,2

(�n
u, �

n
v)‖ �

( 2√
π

)1+ 2θ
max(s,s′) ,

where 1
u = 1−θ

q + θ
1 and 1

v = 1−θ
p + θ

s .

Proof. The claim immediately follows from Lemma 3.4 and Lemma 3.3 (taking
p0 = q , p1 = 1, q0 = p , q1 = s , r0 =∞ , and r1 = s′ (if s � 2) or r1 = s (if s > 2). �

4. Estimates for eigenvalues

The following classical result will now be the link to eigenvalues. The constants in
the statement below – for r > 2 smaller than the constant 2e stated in the cited article
– follow from a short analysis of the proof given there:

LEMMA 4.1. ([17], Corollary 16) Let 2 � r < ∞ and A ∈ Cn×n . Then for any
given norm ‖ · ‖ on Cn and Xn := (Cn,‖ · ‖) it holds

Λr,∞(A) � (2e)
1
r + 1

2 π (n)
r,2 (TA : Xn → Xn). (4.1)

Now we are prepared to take the next crucial step towards our most general result
– essentially, this is now an immediate consequence of Proposition 3.5. Although we
do not want to downplay the role of the parameter s , we would like to point out that the
case s = 2 seems to be the most important one to us.

PROPOSITION 4.2. Let 1 � p < q � 2, 1 < s � 2 and r = 1
α + s′ . Then for all

A ∈ Kn×n

Λr,∞(A) � Cq,p,s‖A‖1− s′
r

q,p |A|
s′
r
s,∞, (4.2)

where

Cq,p,s =

⎧⎪⎪⎨
⎪⎪⎩

(
8e
π

) 1
r + 1

2 � 4.27 if K = C,[(
Γ( q+1

2 )

Γ( q+2
2 )

) 1
q
(
Γ( p+2

2 )

Γ( p+1
2 )

) 1
p
]1− s′

r
(

8e
π

) 1
r + 1

2√π
1
r � 4.75 if K = R.

Proof. Choose 0 < θ < 1 such that 1
u := 1−θ

q + θ
1 = 1−θ

p + θ
s ; this is always

possible by the restrictions on the parameters involved. More precisely, θ := s′
r does
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the job (and is the only possible choice). Then u = v in Proposition 3.5. Thus, the claim
then follows from this by (3.1) (the complex interpolation functor is of power type
θ ), (4.1) (the link from summing norms to eigenvalues), (2.1) (the complexification
procedure), and Lemma 2.4. �

THEOREM 4.3. Let 1 � p < q � 2 < r < ∞ such that 1
r < α := 1

p − 1
q , and let

A ∈ Kn×n . Then

Λr,∞(A) � Cq,p,r‖A‖
1
αr
q,p |A|1−

1
αr

s(α ,r),∞, (4.3)

where

s(α,r) =

{
2 if r � 1

α +2,
αr−1

αr−1−α if r > 1
α +2,

and, if 1
α < r < 1

α +2,

Cq,p,r =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(2e)
1
r + 1

2

(
2√
π

)2− 1
αr � 7.61 if K = C,[(

Γ( q+1
2 )

Γ( q+2
2 )

) 1
q
(
Γ( p+2

2 )

Γ( p+1
2 )

) 1
p
] 1
αr (2e)

1
r + 1

2

(
2√
π

)2− 1
αr √π

1
r

� 8.45 if K = R,

and, if 1
α +2 � r < ∞ ,

Cq,p,r =

⎧⎪⎨
⎪⎩

(
8e
π

) 1
r + 1

2 � 4.27 if K = C,[(
Γ( q+1

2 )

Γ( q+2
2 )

) 1
q
(
Γ( p+2

2 )

Γ( p+1
2 )

) 1
p
] 1
αr

(
8e
π

) 1
r + 1

2 √π
1
r � 4.75 if K = R.

The parameter s(α,r) is best possible as a function depending on α and r .

Proof. The case K = R always follows from the case K = C by the complexifi-
cation procedure, so let K = C .

We start with the case 1
α +2 � r <∞ . An easy calculation shows that s = αr−1

αr−1−α
satisfies r = 1

α + s′ . Thus, (4.3) follows immediately from the preceding proposi-
tion. Coming to the case 1

α < r < 1
α + 2, it is well-known that when taking θ =(

1− 1
αr

)(
1+2α
2α

)
, it holds

‖x‖�n
r,∞ � ‖x‖1−θ

�n
1
α ,∞

‖x‖θ�n
1
α +2,∞

for any x∈Cn (see, e.g., (1.85) on page 167 in [28]). Thus, (4.3) follows from case (iii)
of Theorem 1.1 and the case r = 1

α +2 in (4.3). Note that the constant occuring in (iii)

of Theorem 1.1 can be slightly improved to be (2e)α+ 1
2 2√

π which we have used in the
above formulation; since this slight improvement of the constants is not really essential
here (but nice anyway), we omit the details. The fact that the parameter s(α,r) is best
possible as a function depending on α and r follows from the upcoming examples (ii)
and (iii). �
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REMARK 4.4. Note that due to the tensor product trick, for a non-negative ma-
trix A one can substitute in the above Λr,∞(A) by Λr(A) and Cq,p,r by 1, respectively.
Moreover, if 1

α < r < 1
α + 2, then there exists a constant Kq,p,r > 0 (with Kq,p,r di-

verging to infinity as r → 1
α or as r → 1

α + 2) such that for any square matrix A it
holds

Λr(A) � Kq,p,rCq,p,r‖A‖
1
αr
q,p |A|1−

1
αr

2,∞ . (4.4)

This follows in a way similar to the above from the fact that �n
r can be represented

as the real interpolation space (�n
1
α ,∞

, �n
1
α +2,∞

)θ ,r (same θ as in the above), with an

equivalence of norms constant Kq,p,r not depending on the dimension n (but diverging
to infinity as r → 1

α or as r → 1
α +2), so that it follows that

‖x‖�n
r
� Kq,p,r ‖x‖1−θ

�n
1
α ,∞

‖x‖θ�n
1
α +2,∞

for any x ∈ Cn (see, e.g., [3, 5.3.1] for this fact and more on real interpolation); for
those who do not want to dive even further into interpolation theory we recommend to
take a look at [28], in particular (1.87) on page 167.

Clearly, the upper estimates for Λr,∞(A) in (4.3) can differ from its actual value
with an arbitrarily large error; take, e.g., any upper triangular matrix with zeros in the
diagonal and arbitrarily large entries in the upper triangle. However, the classical upper
bounds stated at the beginning bear the same problem. Down below we will see that for
matrices which are closer to symmetric matrices the occurring error will be significantly
smaller.

EXAMPLE 4.5. (i) Let μ1 � μ2 � . . . � μn � 0 and Dμ be the associated
diagonal matrix. Then the right-hand side in (4.3) (with constant 1) equals

‖μ‖
1
αr
1
α
‖μ‖1− 1

αr∞ � n
1
r − 1

αr2 ‖μ‖r � (1+ logn)
1
r n

1
r − 1

αr2 Λr,∞(Dμ).

Taking μk = k−
1
r , k = 1, . . . ,n , one can see that the maximal (multiplicative) error

for diagonal matrices indeed is at least cn
1
r − 1

αr2 for some universal constant c > 0.
However, it is quite reassuring that the estimate is optimal at least for the identity matrix
En .

(ii) The matrix Jn where all entries are 1 has the only non-zero eigenvalue n with

multiplicity 1. It satisfies ‖Jn‖q,p = n
1
p+ 1

q′ and |Jn|s,∞ = n
1
s (see also [12, Lemma 2]).

Thus, the above inequality (4.3) is optimal for this matrix in case (ii) and all choices of
1 � p < q � 2.

(iii) The Vandermonde matrix of the n roots of unity

Vn :=

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2n−2

...
...

...
...

1 ωn−1 ω2n−2 . . . ω(n−1)2

⎞
⎟⎟⎟⎟⎟⎠ ,
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where ω = e2π i/n , has the property that Vn
t
Vn = nEn , thus |λk(Vn)| = sk(Vn) =

√
n

for all k = 1, . . . ,n . Moreover, this implies ‖Vn‖2,2 =
√

n and ‖Vn‖q,p � n
1
p for all

1 � p � q � 2. Furthermore (see above), |Vn|s,∞ = |Jn|s,∞ = n
1
s . Hence, the above

inequality (4.3) is optimal (up to a constant independent of the dimension) for this
matrix in case (i) for 1 � p < q = 2.

(iv) The matrix Rn where all the entries of its first row are 1 and all other entries
are 0 has the only non-zero eigenvalue 1 with multiplicity 1 and the only non-zero
singular value

√
n with multiplicity 1; clearly the same holds for its transpose which

we denote by Cn . It is ‖Rn‖q,p = n
1
q′ , ‖Cn‖q,p = n

1
p and |Rn|s,∞ = 1, |Cn|s,∞ = n

1
s

(see also [12, Lemma 2]). Hence, the right-hand side in the above inequality (4.3) for

both matrices yields n
1

q′αr which is minimal for p = 1 with value n
1
r . Although this

is still far from the exact value Λr(Jn) = Λr(Cn) = 1, it is for large r also far away (in
the positive sense) from the exact value σr(Rn) = σr(Cn) =

√
n which shows that most

likely the right-hand side in the above might be considerably smaller than σr(A) for a
large class of (non-normal)matrices A . It will become clear in the upcoming section on
singular values, where we derive similar estimates, why this is somewhat remarkable.

REMARK 4.6. As mentioned within the proof of the theorem, examples (ii) and
(iii) in the above show that an inequality of the type

Λr(A) � Cq,p,r ‖A‖
1
αr
q,p |A|1−

1
αr

s(α ,r),∞

(all parameters chosen as in the theorem and s a suitable function of the parameters α
and r ) necessarily implies

s(α,r) =

{
2 if r � 1

α +2,
αr−1

αr−1−α if r > 1
α +2.

Hence, in this sense our estimates are optimal, and, in particular, the breaking point
r = 1

α + 2 in the formulation is not artificial. Furthermore, the exponent 1
αr is also

natural when demanding exactness for the identity matrix En . However, we do not
know what happens (apart from the case q = 2) if one replaces s(α,r) (depending
only on the difference α ) by s(q, p,r) (a function depending on q and p themselves).

Using the tensor product trick stated in Lemma 2.3, the above gives the following
inequality with Λr(A) instead of Λr,∞(A) on the left-hand side and constant 1 on the
right-hand side which seems to be particularly interesting for non-negative real matri-
ces.

COROLLARY 4.7. Let 1 � p < q � 2 < r < ∞ such that 1
r < α := 1

p − 1
q , and let

A ∈ Kn×n . Then

Λr(A) � ‖|A|‖
1
αr
q,p |A|1−

1
αr

s(α ,r),∞, (4.5)
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where

s(α,r) =

{
2 if r � 1

α +2,
αr−1

αr−1−α if r > 1
α +2.

In particular, taking p = 1 it follows for r � q′ +2

(
∑
i
|λi(A)|r

) 1
r �

[
∑
j

(
∑
i
|ai j|

)q′
max

�

(
∑
k

|ak�|
r−q′

r−q′−1

)r−q′−1] 1
r
. (4.6)

Furthermore, using once more the tensor product trick on the above theorem when
q = 2, things also improve a lot – note that here we have ‖A‖2,p instead of ‖|A|‖2,p on
the right-hand side (we leave the calculations to the reader):

COROLLARY 4.8. Let 1 � p < 2 and 2p
2−p < r < ∞ and A ∈ Kn×n . Then

Λr(A) � κp,r ‖A‖
2p

(2−p)r
2,p |A|1−

2p
(2−p)r

s(p,r),∞ , (4.7)

where

s(p,r) =

{
2 if r � 2p

2−p +2,
r(2−p)−2p

r(2−p)−p−2 if r > 2p
2−p +2.

and

κp,r

⎧⎪⎨
⎪⎩
Γ
(

p+2
2

)− 2
(2−p)r � 2√

π 
 1.13 if K = C,(√
π Γ

( p+1
2

)−1
) 2

(2−p)r � 1.26 if K = R.

As seen in the examples above, the accuracy of our upper estimates seems to in-
crease when r tends to infinity. Indeed, when doing so, we recover a well-known (and
easy) estimate for the largest eigenvalue:

COROLLARY 4.9. Let A ∈ Kn×n . Then

|λ1(A)| � inf
α>0

max
j=1,...,n

lim
s→1

( n

∑
i=1

|ai j|s
) α

(α+1)s−1 � |A|1,∞ = ‖A‖1,1.

Proof. Fix 0 < α � 1
2 and choose any 1 � p < q � 2 such that α = 1

p − 1
q . Now

for 1 < s � 2 and r = s′ + 1
α it is s′

r = αs
(α+1)s−1 . Then by (4.2) and Lemma 2.3

Λr(A) � ‖|A|‖
s−1

s(α+1)−1
q,p |A|

αs
(α+1)s−1
s,∞ .

Now letting s tend to 1 (and r therefore tend to infinity), we obtain

|λ1(A)| � max
j=1,...,n

lim
s→1

( n

∑
i=1

|ai j|s
) α

(α+1)s−1
.
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Now taking the infimum over all α , we arrive at the first inequality in the above (note
that infα>0 = limα→0 since the function α �→ α

(α+1)s−1 is increasing). The second

follows immediately from |A|s,∞ � |A|1,∞ and αs
(α+1)s−1 → 1 as s → 1. �

For completeness sake, we state the following inequality resulting from Kwapień’s
theorem in the case where s > 2. Note that the result is optimal for the matrices Jn ;
however, for the matrices Vn and even for En it is not.

PROPOSITION 4.10. Let 1 � p < q � 2, α := 1
p − 1

q , 1
α + 2 � r < ∞ , and let

A ∈ Kn×n . Then

Λr,∞(A) � Dq,p,r‖A‖
r−1
αr+r
q,p |A|

αr+1
αr+r
αr+1
α+1 ,∞

, (4.8)

where

Dq,p,r =

⎧⎪⎨
⎪⎩

(
8e
π

) 1
r + 1

2 � 4.27 if K = C,[(
Γ( q+1

2 )

Γ( q+2
2 )

) 1
q
(
Γ( p+2

2 )

Γ( p+1
2 )

) 1
p
] r−1
αr+r

(
8e
π

) 1
r + 1

2√π
α(r−1)
αr+r � 4.75 if K = R.

Proof. First, analogously to the proof of (4.2), one establishes

Λr,∞(A) � Cq,p,s‖A‖1− s
r

q,p |A|
s
r
s,∞, (4.9)

where

Cq,p,s =

⎧⎪⎨
⎪⎩

(
8e
π

) 1
r + 1

2 � 4.27 if K = C,[(
Γ( q+1

2 )

Γ( q+2
2 )

) 1
q
(
Γ( p+2

2 )

Γ( p+1
2 )

) 1
p
]1− s

r
(

8e
π

) 1
r + 1

2√π
1
r � 4.75 if K = R,

whenever 1 � p < q � 2 < s <∞ and r > s such that α = 1
p − 1

q = s−1
r−s . Then for given

parameters p,q and r determine such a number s , which turns out to be αr+1
α+1 . �

Although the above does not seem to be very accurate for fixed α and r , it is
asymptotically consistent with the trivial estimate |λ1(A)|� ‖A‖p,p for any square ma-
trix A and 1 � p � ∞ :

COROLLARY 4.11. Let A ∈ Cn×n , and for 1 � p < q � 2 denote αq,p := 1
p − 1

q .
Then for fixed 1 < q � 2

|λ1(A)| � C lim
p↑q

‖A‖
1

1+αq,p
q,p � C‖A‖q,q,

and for fixed 1 � p < 2

|λ1(A)| � C lim
q↓p

‖A‖
1

1+αq,p
q,p � C‖A‖p,p.
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In particular,

|λ1(A)| � C min
(

lim
p↑2

‖A‖
2p

2+p
2,p , lim

q↓1
‖A‖

q
2q−1
q,1

)
.

In all of the above, one may choose C =
√

8e
π � 2.64 (and C = 1 if the matrix is

non-negative).

Proof. Fix 1 � p < q � 2, and then let r → ∞ in (4.8). This gives

|λ1(A)| �
√

8e
π

‖A‖
1

1+αq,p
q,p lim

r→∞
|A|

1+rαq,p
r+rαq,p
1+rαq,p
1+αq,p

,∞
.

An elementary calculation shows that if A �= 0 and M := |A|∞,∞ , then

|A|
1+rαq,p
r+rαq,p
1+rαq,p
1+αq,p

,∞
� M

1+rαq,p
r+rαq,p

∣∣∣ A
M

∣∣∣ 1+rαq,p
r+rαq,p
1+rαq,p
1+αq,p

,∞
� M

1+rαq,p
r+rαq,p n

1
r → M

αq,p
1+αq,p

as r → ∞ . Hence,

|λ1(A)| �
√

8e
π

‖A‖
1

1+αq,p
q,p |A|

αq,p
1+αq,p
∞,∞ .

The first inequalities now follow by letting p → q or q → p . Since

‖A‖
1

1+αq,p
q,p � n

α
1+αq,p min(‖A‖q,q,‖A‖p,p)

1
1+αq,p ,

the second inequalities are also clear by letting p → q or q → p . �

EXAMPLE 4.12. (i) Let μ1 � μ2 � . . . � μn � 0 and Dμ be the associated
diagonal matrix. Then

lim
p↑q

‖Dμ‖
1

1+αq,p
q,p � lim

p↑q
μ

1
1+αq,p
1 n

αq,p
1+αq,p = μ1 = |λ1(Dμ)|.

(ii) For the matrix Jn with all entries equal to 1 we obtain straightaway

lim
p↑q

‖Jn‖
1

1+αq,p
q,p = n = |λ1(Jn)|.

(iii) For the Vandermonde matrix Vn we get

lim
p↑2

‖Vn‖
1

1+α2,p
2,p � lim

p↑2
n

1
2 +α2,p
1+α2,p = n

1
2 = |λ1(Vn)|.

(iv) For the matrix Rn the above yields

lim
q↓1

‖Rn‖
1

1+αq,1
q,1 = lim

q↓1
n

αq,1
1+αq,1 = 1 = |λ1(Rn)|.
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5. Estimates for singular values

It seems that (4.7) might be quite appropriate for normal matrices. Indeed, let

A ∈ Cn×n . Then for p < 2 it is ‖A‖2,p � n
1
p− 1

2 ‖A‖2,2 and altogether the right-hand

side in the above less than or equal to κr n
1
r ‖A‖2,2 � κr n

1
r σr(A) . Thus, for A normal

(4.7) is correct up to a multiplicative constant in O(n
1
r ) .

However, what about matrices which are not normal? A result of Le Merdy yields
a direct estimate in the case 2 � r � 4 which is somewhat similar to the above – notice
that for p = 1 and 2 � r � 4, (4.7) reads

Λr(A) � κ2,r‖A‖
2
r
2,1 |A|

1− 2
r

2,∞ .

PROPOSITION 5.1. Let 2 � r � 4 and A ∈ Kn×n . Then

σr(A) � κr ‖A‖
2
r
2,1 |At |1−

2
r

2,∞ , (5.1)

where

κr =

⎧⎪⎨
⎪⎩

(
2√
π

)1− 2
r � 1.07 if K = C,

π
3
r − 1

2

2
5
r −1

� 1.19 if K = R.

Proof. We first establish the case r = 4. Let A ∈ Kn×n . Then

σ4(A) � κ4

√
‖A‖2,1 |At |2,∞, (5.2)

where

κ4 =

{√
2√
π � 1.07 if K = C,

4
√π

2 � 1.12 if K = R.

This can be seen as follows: Denote by S n
r the linear space of all complex n× n

matrices equipped with the Schatten-r -norm σr . The proof of (1) ′ in [22] then shows
that

‖id : [L (�n
2, �

n
1),L (�n

2, �
n
∞)] 1

2
→ S n

4 ‖ �
√

2√
π

.

Thus, (5.2) follows from the fact that the complex interpolation functor is of power type
θ , and from Lemma 2.4: ‖A‖2,∞ = ‖At‖1,2 = |At |2,∞ .

Next observe that by Schur’s (in)equality for matrices and [30, Lemma 2.3] we
have σ2(A) = |A|2,2 � ‖A‖2,1 which settles the case r = 2 and K = C . The remaining
parts now follow from the interpolation formula [S n

2 ,S n
4 ]2− 4

r
= S n

r (cf. [29]) and

once again from the fact that the complex interpolation functor is of power type θ , and
the complexification procedure. �

In contrast to our eigenvalue estimates, the above estimate for singular values can-
not have an arbitrarily large error. Indeed, since ‖A‖2,1 � √

n‖A‖2,2 it follows that the
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right-hand side in the above is less than or equal to κr n
1
r σr(A) ; we do not know if this

really is the asymptotically maximal (multiplicative) error of the right-hand side ap-
proximating σr(A) when using the identity σr(A) = σr(At) (see below for Rn and Cn )
– note that from the observations below one has to expect a maximal error of magnitude

at least max( n
2
r2

− 1
r√

1+logn
,n

2
r − 1

2 ) .

EXAMPLE 5.2. (i) Similarly to our first set of examples, it can be seen that
for μ1 � μ2 � . . . � μn � 0 the right-hand side in the above applied to the diagonal

matrix Dμ is less than or equal to n
2
r2
− 1

r σ4(Dμ) and that the maximal (multiplicative)

error for diagonal matrices indeed is at least c n
2
r2

− 1
r√

1+logn
for some universal constant

c > 0.
(ii) For the matrix Jn the above estimate is only optimal for r = 4:

‖Jn‖
2
r
2,1 |Jt

n|1−
2
r

2,∞ = n
2
r + 1

2 = n
2
r − 1

2σr(Jn).

(iii) For the Vandermonde matrix Vn the above estimate is optimal up to the con-
stant κr :

‖Vn‖
2
r
2,1 |Vt

n |1−
2
r

2,∞ = n
1
r + 1

2 = σr(Vn).

(iv) When considering Rn and Cn , this once again shows that for matrices which
are not normal it might be essential to recall the identity σr(A) = σr(At) :

‖Rn‖
2
r
2,1 |Rt

n|1−
2
r

2,∞ = n
1
2 = σr(Rn),

whereas

‖Cn‖
2
r
2,1 |Ct

n|1−
2
r

2,∞ = n
2
r = n

2
r − 1

2σr(Cn).

REMARK 5.3. Example (iv) also shows that the range of r – in contrast to the
case of eigenvalues – in the proposition above cannot be extended to any value beyond

4. Indeed, let r > 4. Then regardless of 1 � s � ∞ one has ‖Cn‖
2
r
2,1 |Ct

n|1−
2
r

s,∞ = n
2
r <

n
1
2 = σr(Cn) .

The considerations above with regard to (4.7) suggest that the answer to the fol-
lowing question might be affirmative:

PROBLEM 5.4. Let 1 < p < 2 and 2p
2−p � r � 4

2−p . Does the inequality

σr(A) � κp,r ‖A‖
2p

(2−p)r
2,p |At |1−

2p
(2−p)r

2,∞ ,

κp,r as before, hold true for A ∈ Kn×n ?

Note that as in the above this would immediately follow by interpolation from
Theorem 1.1 (ii) and an affirmative answer to the following question:
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PROBLEM 5.5. Let 1 < p < 2. Does

sup
n
‖id : [L (�n

2, �
n
p),L (�n

2, �
n
∞)]1− p

2
→ S n

4
2−p

‖ < ∞

hold true? Note that the calculations made in [24] (where for other choices of the indices
the answer to similar questions very often is negative) do not deny this possibility.

6. Concluding remarks

The estimates in the above might be very interesting from the following computa-
tional point of view:

PROBLEM 6.1. Fix 1 � p � q � ∞ and a matrix A ∈ Kn×n . Does there exist an
efficient algorithm for computing ‖A‖q,p , or at least approximating this quantity up to
a constant factor?

Using a semidefinite programming relaxation, Nesterov [25] (see also [27]) gave
an affirmative answer when 1 � p � 2 � q � ∞ (approximation up to a factor smaller
than 2.3), and very recently Bhaskara and Vijayaraghavan [4] have provided an efficent
algorithm for the general case and non-negative matrices (approximation up to a factor
arbitrarily close to 1). However, the latter have also shown in the case of arbitrary
matrices and 1 � p � q < 2 not simultaneously equal to 1 (or, by duality, 2< p � q�∞
not simultaneously equal to ∞) that approximating ‖A‖q,p up to any constant factor is
NP-hard; moreover, they have even proved inapproximability of almost polynomial
factor (for a precise formulation we refer to their article). For non-negative matrices
and p = q , Bhaskara and Vijayaraghavan applied their results to the oblivious routing
problem. Other applications involve, e.g., robust optimization (see, e.g., [27]).

Thus, our upper estimates (and clearly also the ones due to König) for Λr,∞(A)
(which clearly is efficiently computable) might be used to obtain lower estimates for
‖A‖q,p in these critical cases and compare them with upper estimates coming from
other sources (see, e.g., [27]). As we have already seen, the accuracy of these lower
estimates may vary for particular classes of matrices with respect to the choice of the
parameters q , p and r . With regard to the results for Jn and Vn , respectively, for given
q and p the best choice for r seems to be 1

α +2, which then would give (in the complex
case)

‖A‖q,p �
( π

8e

) 1
2+2( 1

p− 1
q )(∑k |λk(A)| pq

q−p +2

max j∑i |ai j|2
) 1

p− 1
q
.

Moreover, the proof of Corollary 4.11 shows that ‖A‖q,p can be estimated from below
in terms of the largest eigenvalue of A :

‖A‖q,p �
( π

8e

) 1
2 ( 1

p + 1
q′ ) |λ1(A)|

1
p + 1

q′

maxi, j |ai j|
1
p− 1

q

.

A very special and interesting case seems to be q = ∞ and p > 2 which can be
reformulated in the following sense as a Longest Vector Problem: Find the length of the
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longest column of a matrix A . This is somewhat a counterpart to the Shortest Vector
Problem (with integer values) which has received a lot of attention in the cryptography
community; see [4] and the references therein.

Finally, notice that our proofs are based on the so-called Little Grothendieck Theo-
rem in the case K = C , which, in terms of summing operators, reads π2(T ) � 2√

π ‖T‖
for any operator T : �1 → �2 (see, e.g., [7]). Grothendieck’s Theorem in terms of sum-
ming operators reads π1(T ) � KG ‖T‖ for any operator T : �1 → �2 (see, e.g., [7]),
where π

2 � KG � π
2 ln(1+

√
2)

in the real case. This stronger result – also known as

Grothendieck’s inequality – is used in [1] to obtain an efficient randomized 2ln(1+
√

2)
π -

approximation algorithm for approximating ‖A‖∞,1 and thus providing an efficient al-
gorithm which approximates the so-called cut-norm of a matrix up to the same constant
multiplicative factor. This concept plays a major role in the design of efficient approxi-
mation algorithms for dense graph and matrix problems.
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