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QUASI-SIMILAR k-PARANORMAL OPERATORS

B. P. DUGGAL AND C. S. KUBRUSLY

(Communicated by R. Curto)

Abstract. Tt is proved in this paper that k-paranormal operators satisfy (Bishop’s) property (f);
and also that if S and T are k-paranormal contractions such that the completely non-unitary part
S of S has finite multiplicity, then S is quasi-similar to 7 if and only if their unitary parts are
unitarily equivalent and their completely non-unitary parts are quasi-similar. This generalizes a
result of W.W. Hastings [4] on subnormal operators and P.Y. Wu [11] on hyponormal operators.

1. Introduction

Let B(2#) denote the algebra of operators on an infinite dimensional complex
Hilbert space. An operator T € B(#) is k-paranormal for some integer k > 1 if

T < (1T x|

for every unit vector x € 5. Let P(k) denote the class of all k-paranormal operators.
T € B(7) is a quasi-affinity if it is injective and has a dense range; S,T € B(./) are
quasi-similar, S ~ T, if there exist quasi-similarities X,Y € B(.%¢) such that

SX=XT and TY=YS.

Let T, denote the unitary part and 7. denote the cnu (completely non-unitary) part of
a contraction T € B(.¢"). Nagy-Foias classes of contractions, Coo, Co1, Cio and Cj;
[8, p. 72] are defined as usual. Let o(T'), 0,(T), 04(T), and o.(T) stand for spec-
trum, point spectrum, approximate point spectrum, and essential spectrum (or Fredholm
spectrum) of T € B(), respectively. Let N denote the set of non—negative integers.
The ascent asc(T) and descent dsc(T') of T € B(%) are given by

asc(T) = inf{n € N: T7"(0) = T~ "1 (0)}

nd
) dsc(T) = inf{n € N: T" () = T" ()}

(if no such integer n exists, then asc(T) = oo, respectively dsc(T) = o). We say
that T has the single valued extension property, or SVEP, at A € C if for every open
neighborhood U of A, the only analytic solution f to the equation

Mathematics subject classification (2010): Primary 47A45, Secondary 47B20.

Keywords and phrases: Hilbert space operators, k-paranormal operators, quasi-similarity.

© &1€P€N’ Zagreb 417
Paper OaM-05-29



418 B. P. DUGGAL AND C. S. KUBRUSLY

(T —u)f(u)=0

forall u € U is the constant function f = 0; we say that T has SVEP if T has a SVEP
at every A € C. It is well known that finite ascent implies SVEP; also, an operator
has SVEP at every isolated point of its spectrum (as well as at every isolated point of
its approximate point spectrum). An operator T € B(J¢) satisfies (Bishop’s) property
(B) if, for every open subset U of the complex plane C and every sequence of analytic
functions f, : U — ¢ with the property that

(T—A)fa(A)—0 as n—oo

uniformly on all compact subsets of U, f,(A)—0 as n— eo locally uniformly on U .

2. Bishop’s property () for P(k) operators
Recall that operators S € P(k) are normaloid, i.e., ||S|| = #(S).

LEMMA 2.1. ([12, Lemma 2.3 and Corollary 2.6]). If T € P(k) and (0 #)A €
0,(T), then
. (x le) ( (T—2)71(0) )
0Tyn ) \{(T-2)"10)} )"
where Toy € P(k)NB({(T —1)~1(0)}1) is such that A ¢ o,(Tx).

LEMMA 2.2. ([3, Corollary 1]). If T € P(k) is a contraction, then it has a de-
composition T =T, D T, where T, € Cy.

LEMMA 2.3. Operators T € P(k) have finite ascent < 1.

Proof. Since asc(T —A) =0 for every A € o(T) \ 0,(T), we consider points
A € 0,(T). If & =0, then the definition of k-paranormality implies that 7~*+1)(0) C
T-1(0);since T-1(0) CT72(0) C ..., T-**+D(0) =T-(0). Now let A # 0. Then

() ()

Recall, [10, Exercise 7, p. 293], that asc(T — A) < asc(0) +asc(Tr, —A). Since
asc(Tpp —A) =0, we have that asc(T —A)=1. O

An immediate consequence of Lemma 2.3 is the following:

COROLLARY 2.4. Operators T € P(k) have SVEP.
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Given an open subset U of C, let H(U,.¢) denote the Fréchet space of analytic
functions from U to . Then T € B(5¢) satisfies property (f) precisely when the
operator Ty : H(U, %) - H(U, ), (Tyf)(A) = (T —A)f(A), (is injective and)
has closed range [7, Proposition 3.3.5].

Let ¢*() denote the space of all bounded sequences of elements of ¢, and
let ¢o(#¢) denote the space of all null sequences of 7. Endowed with the canoni-
cal norm, the quotient space ¢ = (*(#)/co(#) can be made into a Hilbert space
[1], into which 7 may be isometrically embedded. The Berberian—Quigley extension
theorem, [7, p. 255], says that given an operator T € B(J¢) there exists an isomet-
ric *-isomorphism T — T° € B(.¥") preserving order such that o(T) = o(7T°) and
04(T) = 04(T°) = 0,(T?). Let [x,] € 2 denote the equivalence class of the sequence
{xa} C A . I T € P(k), then

k+1
TR = Tl < I el = (T 1B

for each x € 5. Hence the Berberian—Quigley extension T° of an operator T € P(k)
is again k-paranormal.

THEOREM 2.5. Operators T € P(k) satisfy property (P).

Proof. Let U be an open subset of C, and assume that

(T—A)fa(A)—0 on H(U,?)

forevery A € U. Then
(T° = 20°)[f,(A)] =0 on H(U,.)

for every A € U. Since the k-paranormal operator T° has SVEP, [f,(1)] =0 (i.e.,
{fu} € co(5#)). We claim that f,(1) — 0 on H(U,5#). Start by observing that if
D(A;r) ={u e C:|A—u| <r} is such that D(A;r) C U, then the analytic sequence
{f+(A)} is uniformly bounded on D(A;r); furthermore, for every € > 0, there exists a
natural number N and 0 < p < r such that

Il <3 and  If2) = fulw)] < 5

for all n>N and u € D(A;p). Indeed, considering W instead of f, if need

be, we may assume that sup|f,| =M < e on D(A;r). The function f, being an-
alytic, fu(i) = fu(A) = Z_y dum(i = A)", and then || fu(A) = fu(u)|| < 25 for all

u € D(A;p) such that 0 < p < r. Now choose N and p such that |f,(4)] < § (recall
that f,(A) € co) and %—‘; < £. Then

1A < A+ [152(4) = fa(u)l] < %
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forall n >N and u € D(A;p). Consequently, f,(A) — 0 in H(U,5¢), i.e., T satis-
fies property (8). O

The conclusion that P(k) operators satisfy property () generalizes an observa-
tion by Uchiyama and Takahashi [9] that paranormal operators (i.e., P(1) operators)
satisfy property (f3). Property () has a number of consequences: we list below but a
couple of these. Let D denote the closed unit disc in C.

COROLLARY 2.6. If S € P(k) is quasi-similar to an operator T € B(3) sat-
isfying property (B), then 0x(S) = 0x(T), where ox = G or 0,. In particular, if
S € P(k) is quasi-similar to an isometry V € B(¢), then S is a contraction such that
0,(S) = 0,(V) =D.

Proof. That oy(S) = ox(T) follows from an application of [7, Theorem 3.7.15].
In the particular case in which T =V, it follows that oy(S) = 0,(V) =D. Hence, since
S is normaloid, r(T) = ||T|| =1, i.e., S is a contraction. [

A number of the commonly considered classes of operators in B(.%°) (for ex-
ample, hyponormal, M-hyponormal, p-hyponormal for 0 < p < 1, w-hyponormal,
(p,k)-quasihyponormal operators for 0 < p < 1 and integers k > 1) are known to
satisfy property (f8); Corollary 2.6 applies to operators 7 belonging to one of these
classes. An operator 7 on a separable Hilbert space .77 is said to be supercyclic if the
homogeneous orbit {AT"x: A € C, n € NUO} is dense in ¢ for some x € 2. It is
known that paranormal operators (i.e., operators in P(1)) are not supercyclic [2]. Does
this extend to operators in P(k) for k >27?

We have a partial result for invertible k-paranormal operators. Recall that the
inverse of an invertible paranormal is again paranormal. It is, however, an open question
whether the inverse of an invertible k-paranormal operator for k > 2 is k-paranormal

[6].

COROLLARY 2.7. Operators T € P(k) such that T~"', whenever it exists, is also
a P(k) operator are not supercyclic.

Proof. Suppose that T € P(k) is supercyclic. The class P(k) being closed under
multiplication by non-zero scalars, we may assume that ||T'|| = 1. Since the supercyclic
contraction T satisfies property (), o(T) is contained in the boundary dD of D [7,
Proposition 3.3.18]. Thus T is invertible, and hence (by hypothesis) 7! € P(k). But
then |T~!|| =1 (=||T||). Consequently, T is a unitary. Since no unitary on an infinite
dimensional Hilbert space can be supercyclic, we have a contradiction. [

Next, we state a couple of corollaries to Corollary 2.7

COROLLARY 2.8. Invertible operators in P(k) such that their inverse lies in P(k—
1) are not supercyclic.
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Proof. [6, Theorem 1] implies that T~! € P(k); apply Corollary 2.7. [

COROLLARY 2.9. If T € P(k) is invertible, and if

[ g v o e

for every unit vector x € 7, then T is not supercyclic.

Proof. [6, Theorem 2] implies that 7~ € P(k); apply Corollary 2.7. [

3. Quasi-similar P(k) operators

The multiplicity ur of an operator T € B(.%) is the minimum cardinality of a set
K C 2 suchthat 5 =\/,_oT"K . Evidently, if S,T € B(#) and SX = XT for some
operator X € B(.s¢°) with dense range, then s < ur; hence, if there exist operators
X,Y € B(s¢) with dense range such that SX = X7 and TY =Y, then ug = ur. The
following technical lemma will be required.

LEMMA 3.1. ([11, Theorem 3.7]). If X € B() has dense range and is in the
commutant of a Cy -contraction T € B(¢), then X is injective.

In the following we shall denote the normal part and the pure part (i.e., completely
non-normal part) of an operator S € B(#) by S, and S,, respectively; if S is a con-
traction, then we shall denote its unitary and cnu parts by S, and S., respectively.

THEOREM 3.2. Let S,T € B() be P(k) contractions such that s, < eo. Then
S~ T ifand only if Sy, T, are unitarily equivalent and S; ~ T,.

Proof. The “if” part being obvious, we prove the “only if” part. Since S and T
have C cnu parts by Lemma 2.2,

S110 0 7,0 O
§$=8,0S8. = 0 Sy and T=T,8T. = 0 T = ,
00 833 00 Tx

where S;; =Sy, Ti1 =T, S and Tx € Cy, and S33 and T33 € Cig [8, Chapter 11,
Theorem 4.1]. Let SX = XT and TY =YS, where X,Y € B(J¢) are quasi-affinities.
Then X and Y have representations X = [X;;]? jo1 and ¥ = v:,1; j=1- Observe that
S11X12 = X127y ; since Syq is unitary and T, € Cyo,

[1Xi2x]| = (1871 X12x]| < [[Xual| | T32%]] — O

as n— oo for all x. Hence Xj = 0. A similar argument shows that indeed X;; =
X31 = X32 =0= le = Y21 = Y31 = Y32. Thus XU and Yll are injective, and
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[ X2 X»3 (Y Y3
X() = ( 0 X33 and Y() = 0 Y33
have dense range. The equalities S;;X;; = X11711 and T11Y;; = Y1151 imply that
ranXj; reduces S, ranY;; reduces T, T1; is unitarily equivalent to S 11‘% and Sq;
is unitarily equivalent to T11|——. Thus, S1; and T1; are unitarily equivalent to direct

ranYq;
summands of each other. Hence, [5], S1; and 77, are unitarily equivalent.

By hypothesis, us, < oo. Since S.Xo = Xo1. and T.Yy = YpS., and Xy and Y have
dense range, Us, = Uy, < oo; this, since Us,, < Us, and Ur,, < Ug, , implies that both
Uy and Ury, are finite. Evidently, S33X33Y33 = X33Y33533 and T33Y33X33 = ¥33X33733,
where X33Y33 and Y33X33 have dense range. Applying Lemma 3.1 it follows that X33Y33
and Y33X33 are quasi-affinities; hence X33 and Y33 are quasi-affinities. But then X and
Yy are quasi-affinities; hence S, ~ T.. U

Theorem 3.2 extends a result on hyponormal contractions of Wu [11, Corollary
3.10], see also [4], to k-paranormal contractions. The following corollary extends
[11, Corollary 3.11]. Recall that every isometry V € B(#) has a decomposition
V=V, ®V,, where V. € Cy is a unilateral shift.

COROLLARY 3.3. Let S € P(k) be such that (its pure part) S, has finite multi-
plicity. Then S~V for some isometry V. € B(5¢) if and only if S, is unitarily equiva-
lentto V,, and Sp ~'V..

Proof. Since every isometry satisfies property (), S~V implies that o(S) =
o(V) =D. Consequently, S is a contraction. Decompose S into its normal and pure
partsby S =S5,®S,;then S, €Co. Let V=V, ®V,. If SX =XV and VY =YS, X =
[Xij)7 =1 and Y = [Y;j]7,_,, then ScXa1 = Xp1 Vi, and VeYa; = Y21S,,. Clearly, Xp = 0.
Applying the Putnam—Fuglede theorem to V.Y = Y515, it is seen that ranY>| reduces
V. and Vc\m is unitary. Consequently, Y>; = 0, Y7 is injective and V, Y11 = ¥115,.
Another application of the Putnam—Fuglede theorem to V,,Y1; = Y115, now shows that
ranY]; reduces V, and S, is unitarily equivalent to V,Am. Hence S, is unitary
(and unitarily equivalent to V,). Applying Theorem 3.2, S, ~ V., and the proof is
complete. [
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