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QUASI–SIMILAR k–PARANORMAL OPERATORS

B. P. DUGGAL AND C. S. KUBRUSLY

(Communicated by R. Curto)

Abstract. It is proved in this paper that k-paranormal operators satisfy (Bishop’s) property (β) ;
and also that if S and T are k -paranormal contractions such that the completely non-unitary part
Sc of S has finite multiplicity, then S is quasi-similar to T if and only if their unitary parts are
unitarily equivalent and their completely non-unitary parts are quasi-similar. This generalizes a
result of W.W. Hastings [4] on subnormal operators and P.Y. Wu [11] on hyponormal operators.

1. Introduction

Let B(H ) denote the algebra of operators on an infinite dimensional complex
Hilbert space. An operator T ∈ B(H ) is k -paranormal for some integer k � 1 if

‖Tx‖k+1 � ‖Tk+1x‖

for every unit vector x ∈ H . Let P(k) denote the class of all k -paranormal operators.
T ∈ B(H ) is a quasi-affinity if it is injective and has a dense range; S,T ∈ B(H ) are
quasi-similar, S ∼ T , if there exist quasi-similarities X ,Y ∈ B(H ) such that

SX = XT and TY = YS.

Let Tu denote the unitary part and Tc denote the cnu (completely non-unitary) part of
a contraction T ∈ B(H ) . Nagy–Foiaş classes of contractions, C00 , C01 , C10 and C11

[8, p . 72] are defined as usual. Let σ(T ) , σp(T ), σa(T ) , and σe(T ) stand for spec-
trum, point spectrum, approximate point spectrum, and essential spectrum (or Fredholm
spectrum) of T ∈ B(H ) , respectively. Let N denote the set of non–negative integers.
The ascent asc(T ) and descent dsc(T ) of T ∈B(H ) are given by

asc(T ) = inf{n ∈ N : T−n(0) = T−(n+1)(0)}
and

dsc(T ) = inf{n ∈ N : Tn(H ) = Tn+1(H )}

(if no such integer n exists, then asc(T ) = ∞ , respectively dsc(T ) = ∞). We say
that T has the single valued extension property, or SVEP, at λ ∈ C if for every open
neighborhood U of λ , the only analytic solution f to the equation
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(T − μ) f (μ) = 0

for all μ ∈U is the constant function f ≡ 0; we say that T has SVEP if T has a SVEP
at every λ ∈ C . It is well known that finite ascent implies SVEP; also, an operator
has SVEP at every isolated point of its spectrum (as well as at every isolated point of
its approximate point spectrum). An operator T ∈ B(H ) satisfies (Bishop’s) property
(β ) if, for every open subset U of the complex plane C and every sequence of analytic
functions fn : U → H with the property that

(T −λ ) fn(λ ) → 0 as n → ∞

uniformly on all compact subsets of U , fn(λ )→0 as n→∞ locally uniformly on U .

2. Bishop’s property (β ) for P(k) operators

Recall that operators S ∈ P(k) are normaloid, i.e., ‖S‖ = r(S) .

LEMMA 2.1. ([12, Lemma 2.3 and Corollary 2.6]). If T ∈ P(k) and (0 �=)λ ∈
σp(T ) , then

T =
(
λ T12

0 T22

)(
(T −λ )−1(0)

{(T −λ )−1(0)}⊥
)

,

where T22 ∈ P(k)∩B({(T −λ )−1(0)}⊥) is such that λ /∈ σp(T22) .

LEMMA 2.2. ([3, Corollary 1]). If T ∈ P(k) is a contraction, then it has a de-
composition T = Tu⊕Tc , where Tc ∈C.0 .

LEMMA 2.3. Operators T ∈ P(k) have finite ascent � 1 .

Proof. Since asc(T −λ ) = 0 for every λ ∈ σ(T ) \ σp(T ) , we consider points
λ ∈ σp(T ) . If λ = 0, then the definition of k -paranormality implies that T−(k+1)(0)⊆
T−1(0) ; since T−1(0) ⊆ T−2(0) ⊆ ... , T−(k+1)(0) = T−1(0) . Now let λ �= 0. Then

T −λ =
(

0 T12

0 T22−λ

)(
(T −λ )−1(0)

{(T −λ )−1(0)}⊥
)

.

Recall, [10, Exercise 7, p. 293], that asc(T − λ ) � asc(0) + asc(T22 − λ ) . Since
asc(T22−λ ) = 0, we have that asc(T −λ ) = 1. �

An immediate consequence of Lemma 2.3 is the following:

COROLLARY 2.4. Operators T ∈ P(k) have SVEP.
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Given an open subset U of C , let H(U,H ) denote the Fr échet space of analytic
functions from U to H . Then T ∈ B(H ) satisfies property (β ) precisely when the
operator TU : H(U,H ) → H(U,H ) , (TU f )(λ ) := (T − λ ) f (λ ) , (is injective and)
has closed range [7, Proposition 3.3.5].

Let �∞(H ) denote the space of all bounded sequences of elements of H , and
let c0(H ) denote the space of all null sequences of H . Endowed with the canoni-
cal norm, the quotient space K = �∞(H )/c0(H ) can be made into a Hilbert space
[1], into which H may be isometrically embedded. The Berberian–Quigley extension
theorem, [7, p. 255], says that given an operator T ∈ B(H ) there exists an isomet-
ric ∗ -isomorphism T → To ∈ B(K ) preserving order such that σ(T ) = σ(To) and
σa(T ) = σa(To) = σp(To) . Let [xn] ∈ K denote the equivalence class of the sequence
{xn} ⊂ H . If T ∈ P(k) , then

‖To[x]‖k+1 = ‖Tx‖k+1 � ‖Tk+1x‖‖x‖k = ‖Tok+1[x]‖‖[x]‖k

for each x ∈ H . Hence the Berberian–Quigley extension To of an operator T ∈ P(k)
is again k -paranormal.

THEOREM 2.5. Operators T ∈ P(k) satisfy property (β ) .

Proof. Let U be an open subset of C , and assume that

(T −λ ) fn(λ ) → 0 on H(U,H )

for every λ ∈U . Then

(To −λ Io)[ fn(λ )] = 0 on H(U,K )

for every λ ∈U . Since the k -paranormal operator To has SVEP, [ fn(λ )] = 0 (i.e.,
{ fn} ∈ c0(H )). We claim that fn(λ ) → 0 on H(U,H ) . Start by observing that if
D(λ ;r) = {μ ∈ C : |λ − μ | < r} is such that D(λ ;r) ⊂U , then the analytic sequence
{ fn(λ )} is uniformly bounded on D(λ ;r) ; furthermore, for every ε > 0, there exists a
natural number N and 0 < ρ < r such that

‖ fn(μ)‖ <
ε
2

and ‖ fn(λ )− fn(μ)‖ <
ε
2

for all n > N and μ ∈ D(λ ;ρ) . Indeed, considering fn
1+‖ fn‖ instead of fn if need

be, we may assume that sup| fn| = M < ∞ on D(λ ;r) . The function fn being an-
alytic, fn(μ)− fn(λ ) = ∑∞

m=1 anm(μ−λ )m , and then ‖ fn(λ )− fn(μ)‖ � Mρ
r−ρ for all

μ ∈ D(λ ;ρ) such that 0 < ρ < r . Now choose N and ρ such that | fn(λ )| < ε
4 (recall

that fn(λ ) ∈ c0 ) and Mρ
r−ρ < ε

4 . Then

‖ fn(μ)‖ � ‖ fn(λ )‖+‖ fn(λ )− fn(μ)‖ <
ε
2
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for all n > N and μ ∈ D(λ ;ρ) . Consequently, fn(λ ) → 0 in H(U,H ) , i.e., T satis-
fies property (β ) . �

The conclusion that P(k) operators satisfy property (β ) generalizes an observa-
tion by Uchiyama and Takahashi [9] that paranormal operators (i.e., P(1) operators)
satisfy property (β ) . Property (β ) has a number of consequences: we list below but a
couple of these. Let D denote the closed unit disc in C .

COROLLARY 2.6. If S ∈ P(k) is quasi-similar to an operator T ∈ B(H ) sat-
isfying property (β ) , then σx(S) = σx(T ) , where σx = σ or σe . In particular, if
S ∈ P(k) is quasi-similar to an isometry V ∈ B(H ) , then S is a contraction such that
σx(S) = σx(V ) = D .

Proof. That σx(S) = σx(T ) follows from an application of [7, Theorem 3.7.15].
In the particular case in which T =V , it follows that σx(S) = σx(V ) = D . Hence, since
S is normaloid, r(T ) = ‖T‖ = 1, i.e., S is a contraction. �

A number of the commonly considered classes of operators in B(H ) (for ex-
ample, hyponormal, M -hyponormal, p -hyponormal for 0 < p � 1, w-hyponormal,
(p,k)-quasihyponormal operators for 0 < p � 1 and integers k � 1) are known to
satisfy property (β ) ; Corollary 2.6 applies to operators T belonging to one of these
classes. An operator T on a separable Hilbert space H is said to be supercyclic if the
homogeneous orbit {λTnx : λ ∈ C, n ∈ N∪0} is dense in H for some x ∈ H . It is
known that paranormal operators (i.e., operators in P(1)) are not supercyclic [2]. Does
this extend to operators in P(k) for k � 2?

We have a partial result for invertible k -paranormal operators. Recall that the
inverse of an invertible paranormal is again paranormal. It is, however, an open question
whether the inverse of an invertible k -paranormal operator for k � 2 is k -paranormal
[6].

COROLLARY 2.7. Operators T ∈ P(k) such that T−1 , whenever it exists, is also
a P(k) operator are not supercyclic.

Proof. Suppose that T ∈ P(k) is supercyclic. The class P(k) being closed under
multiplication by non-zero scalars, we may assume that ‖T‖= 1. Since the supercyclic
contraction T satisfies property (β ) , σ(T ) is contained in the boundary ∂D of D [7,
Proposition 3.3.18]. Thus T is invertible, and hence (by hypothesis) T−1 ∈ P(k) . But
then ‖T−1‖= 1 (= ‖T‖ ). Consequently, T is a unitary. Since no unitary on an infinite
dimensional Hilbert space can be supercyclic, we have a contradiction. �

Next, we state a couple of corollaries to Corollary 2.7

COROLLARY 2.8. Invertible operators in P(k) such that their inverse lies in P(k−
1) are not supercyclic.
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Proof. [6, Theorem 1] implies that T−1 ∈ P(k) ; apply Corollary 2.7. �

COROLLARY 2.9. If T ∈ P(k) is invertible, and if

‖Tkx‖k+1 � ‖Tx‖k+1‖Tk+1x‖k−1

for every unit vector x ∈ H , then T is not supercyclic.

Proof. [6, Theorem 2] implies that T−1 ∈ P(k) ; apply Corollary 2.7. �

3. Quasi-similar P(k) operators

The multiplicity μT of an operator T ∈ B(H ) is the minimum cardinality of a set
K ⊆ H such that H =

∨∞
n=0T

nK . Evidently, if S,T ∈ B(H ) and SX = XT for some
operator X ∈ B(H ) with dense range, then μS � μT ; hence, if there exist operators
X ,Y ∈ B(H ) with dense range such that SX = XT and TY =YS , then μS = μT . The
following technical lemma will be required.

LEMMA 3.1. ([11, Theorem 3.7]). If X ∈ B(H ) has dense range and is in the
commutant of a C1. -contraction T ∈ B(H ) , then X is injective.

In the following we shall denote the normal part and the pure part (i.e., completely
non-normal part) of an operator S ∈ B(H ) by Sn and Sp , respectively; if S is a con-
traction, then we shall denote its unitary and cnu parts by Su and Sc , respectively.

THEOREM 3.2. Let S,T ∈ B(H ) be P(k) contractions such that μSc < ∞ . Then
S ∼ T if and only if Su,Tu are unitarily equivalent and Sc ∼ Tc .

Proof. The “if” part being obvious, we prove the “only if” part. Since S and T
have C.0 cnu parts by Lemma 2.2,

S = Su⊕Sc =

⎛
⎝ S11 0 0

0 S22 ∗
0 0 S33

⎞
⎠ and T = Tu ⊕Tc =

⎛
⎝T11 0 0

0 T22 ∗
0 0 T33

⎞
⎠ ,

where S11 = Su , T11 = Tu , S22 and T22 ∈C00 , and S33 and T33 ∈C10 [8, Chapter II,
Theorem 4.1]. Let SX = XT and TY = YS , where X ,Y ∈ B(H ) are quasi-affinities.
Then X and Y have representations X = [Xi j]3i, j=1 and Y = [Yi j]3i, j=1 . Observe that
S11X12 = X12T22 ; since S11 is unitary and T22 ∈C00 ,

‖X12x‖ = ‖Sn
11X12x‖ � ‖X12‖‖Tn

22x‖→ 0

as n→∞ for all x . Hence X12 = 0. A similar argument shows that indeed X21 =
X31 = X32 = 0 = Y12 = Y21 = Y31 = Y32 . Thus X11 and Y11 are injective, and
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X0 =
(

X22 X23

0 X33

)
and Y0 =

(
Y22 Y23

0 Y33

)

have dense range. The equalities S11X11 = X11T11 and T11Y11 = Y11S11 imply that
ranX11 reduces S , ranY11 reduces T , T11 is unitarily equivalent to S11|ranX11

and S11

is unitarily equivalent to T11|ranY11
. Thus, S11 and T11 are unitarily equivalent to direct

summands of each other. Hence, [5], S11 and T11 are unitarily equivalent.

By hypothesis, μSc <∞ . Since ScX0 = X0Tc and TcY0 =Y0Sc , and X0 and Y0 have
dense range, μSc = μTc < ∞ ; this, since μS33 � μSc and μT33 � μTc , implies that both
μS33 and μT33 are finite. Evidently, S33X33Y33 = X33Y33S33 and T33Y33X33 =Y33X33T33 ,
where X33Y33 and Y33X33 have dense range. Applying Lemma 3.1 it follows that X33Y33

and Y33X33 are quasi-affinities; hence X33 and Y33 are quasi-affinities. But then X0 and
Y0 are quasi-affinities; hence Sc ∼ Tc . �

Theorem 3.2 extends a result on hyponormal contractions of Wu [11, Corollary
3.10], see also [4], to k -paranormal contractions. The following corollary extends
[11, Corollary 3.11]. Recall that every isometry V ∈ B(H ) has a decomposition
V = Vu⊕Vc , where Vc ∈C10 is a unilateral shift.

COROLLARY 3.3. Let S ∈ P(k) be such that ( its pure part ) Sp has finite multi-
plicity. Then S ∼V for some isometry V ∈ B(H ) if and only if Sn is unitarily equiva-
lent to Vu and Sp ∼Vc .

Proof. Since every isometry satisfies property (β ) , S ∼V implies that σ(S) =
σ(V ) = D . Consequently, S is a contraction. Decompose S into its normal and pure
parts by S = Sn⊕Sp ; then Sp ∈C.0 . Let V =Vu⊕Vc . If SX = XV and VY =YS , X =
[Xi j]2i, j=1 and Y = [Yi j]2i, j=1 , then ScX21 = X21Vu and VcY21 = Y21Sn . Clearly, X21 = 0.
Applying the Putnam–Fuglede theorem to VcY21 = Y21Sn it is seen that ranY21 reduces
Vc and Vc|ranY21

is unitary. Consequently, Y21 = 0, Y11 is injective and VuY11 = Y11Sn .
Another application of the Putnam–Fuglede theorem to VuY11 = Y11Su now shows that
ranY11 reduces Vu and Sn is unitarily equivalent to Vu|ranY11

. Hence Sn is unitary
(and unitarily equivalent to Vn ). Applying Theorem 3.2, Sp ∼Vc , and the proof is
complete. �
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