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Abstract. It is shown that a large class of weighted shift operators T have the property that for
every λ in the interior of the spectrum of T the operator U = T −λ Id is universal in the sense of
Caradus; i.e., every Hilbert space operator has a non-zero multiple similar to the restriction of U
to an invariant subspace. As an application, composition operators induced by power mappings
on the L2 and Sobolev spaces of the unit interval are shown to have the same property: thus a
complete knowledge of their minimal invariant subspaces would imply a solution to the invariant
subspace problem for Hilbert space. A new Müntz-like theorem is proved: this is used to show
that generalized polynomials are cyclic vectors for these operators in the L2 case but not in the
Sobolev case.

1. Introduction

In the field of operator theory, one of the most prominent open problems is the
invariant subspace problem, sometimes optimistically known as the invariant subspace
conjecture. It is the question whether the following statement is true: Given a complex
Hilbert space H of dimension > 1 and a bounded linear operator T : H → H ,
then H has a non-trivial closed T -invariant subspace, i.e., there exists a closed linear
subspace M of H which is different from {0} and H such that TM ⊂ M .

While the general case of the invariant subspace problem is still open, many spe-
cial cases have been settled (see, for example, [3, 6]). If the solution of the invariant
subspace problem is positive, then at first sight it is necessary to prove a theorem that
applies to all Hilbert space operators simultaneously. In fact, the situation is some-
what simplified by the existence of universal operators – these have the property that if
we could describe their lattice of subspaces precisely enough, then we could solve the
invariant subspace problem. Accordingly, we recall the following definition.

DEFINITION 1.1. Let X be a Banach space. Then an operator U ∈ L (X ) is
said to be universal for X , if for each T ∈ L (X ) there is a constant λ �= 0 and an
invariant subspace M for U such that U|M is similar to λT , i.e., λJT = UJ , where
J : X → M is a linear isomorphism.
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This is most useful in the case of a separable Hilbert space, since all its closed
infinite-dimensional subspaces are automatically isometric to the space itself (and we
can then use the terminology “universal for Hilbert space”). Clearly, we have the
fact that if U ∈ L (H ) is a universal operator, then the invariant subspace problem
for Hilbert spaces is equivalent to the assertion that every infinite-dimensional invari-
ant subspace for U contains a nontrivial proper closed invariant subspace. This may
be rewritten in the form “the minimal nontrivial invariant subspaces for U are one-
dimensional”.

We now recall a theorem due to Caradus [2] that will enable us, in the case of
Hilbert space, to show the existence of many “natural” operators that are universal.

THEOREM 1.1. [2] Let H be a separable infinite-dimensional Hilbert space
and U ∈ L (H ) . Suppose that

1. ker(U) is infinite-dimensional; and

2. im(U) is H .

Then U is universal for H .

An obvious example of such a universal operator is a backward shift of infinite
multiplicity, but there are further examples where function theory can be use to obtain
information on the invariant subspace lattice. For example, the Caradus result has been
used by Nordgren, Rosenthal and Wintrobe [4] to show that for the composition opera-
tor Cφ on the Hardy space H2 , where φ is a hyperbolic automorphism of the disc, the
operator Cφ −λ Id is universal for any λ in the interior of the spectrum σ(Cφ ) .

The paper is organized as follows: in Section 2 we discuss bilateral weighted
shifts T on �2(Z,L2((a0,a1))) , providing sufficient conditions on the weight and the
complex number λ so that T −λ Id is universal. Then, in Section 3, as an application of
the previous section, we find some very simple new universal composition operators on
L2((0,1)) and the universality of the adjoints of composition operators on the Sobolev
space W0((0,1)) . Finally, in Section 4, a new Müntz-type theorem is derived, and used
to show the cyclicity of linear combinations of functions of the form x �→ xα for the
composition operator Cφ on L2((0,1)) , where φ is defined on [0,1] by φ(x) = xs

with s < 1, and the non-cyclicity of all linear combinations of these functions for the
composition operator Cφ on W0((0,1)) , where φ is defined on [0,1] by φ(x) = xs with
s > 1.

2. Shift on �2(Z,L2((a0,a1)))

Let a0 < a1 be real, and let T : �2(Z,L2((a0,a1))) → �2(Z,L2((a0,a1))) be the
weighted right bilateral shift defined by (Tx)n = kn−1xn−1 for n ∈ Z where {kn} is a
sequence of positive and continuous functions on [a0,a1] such that

kn
uniformly−→

{
a as n →−∞
b as n → +∞
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where a < b .
We denote by ‖.‖2 the norm ‖.‖L2((a0,a1)) .

THEOREM 2.1. Let T be the bilateral weighted shift defined above. Then, σ(T )=
σ(T ∗) = {z∈ C : a � |z|� b} . If a < |λ |< b, then λ is an eigenvalue of T ∗ of infinite
multiplicity, but T −λ Id is bounded below.

Proof. Suppose that a > 0. Note that if f = ∑m∈Z gmem where {em} is the
standard orthonormal basis of �2(Z) , then

‖T f‖2 � sup
m∈Z

‖km‖∞‖ f‖2.

Let ε > 0,m0 ∈ Z,Aε ⊆ [a0,a1] , μ(Aε) > 0 such that

‖km0‖∞ � sup
m∈Z

‖km‖∞− ε
2
,

and for x ∈ Aε ,

|km0(x)| > ‖km0‖∞−
ε
2
.

Also, if we take f = χAε em0 , then we have

‖T f‖ >
(‖km0‖∞− ε

)√
μ(Aε).

So, we have that ‖T‖ = supm∈Z ‖km‖∞ . By an inductive argument, we obtain that for
n ∈ N∗ , ‖Tn‖ = supm∈Z ‖kmkm+1 . . .km+n−1‖∞ . Since kn converges uniformly to b as
n tends to +∞ , it follows that

sup
m∈Z

‖kmkm+1 . . .km+n−1‖
1
n∞ −→

n→∞
b.

Since T−1 is unitarily equivalent to a bilateral right shift with weights k̃n = k−n
−1 , in

the same way, one can show that ‖T−n‖ 1
n →

n→∞
1/a . As 0 does not lie in the spectrum

of T , σ(T−1) = σ(T )−1 . Hence, we have that σ(T ) ⊆ {z ∈ C : a � |z| � b} ; since
σ(T ∗) = σ(T ) , we obtain that

σ(T ∗) ⊆ {z ∈ C : a � |z| � b}.
Note that if a = 0, then, we have σ(T ∗) ⊆ D(0,b) .

Let λ be such that a < |λ | < b . If f = ∑n∈Z gnen , where for all n ∈ Z , gn is in
L2((a0,a1)) , the equation T ∗ f = λ f gives that

λ
+∞

∑
n=−∞

gnen =
+∞

∑
n=−∞

gnkn−1en−1 =
+∞

∑
n=−∞

gn+1knen

which implies that for all n ∈ Z , λgn = kngn+1 . Setting g0 to be any function of norm
1 in L2(a0,a1) , and defining on (a0,a1) ,

gn =
{
λ ng0/(k0k1 . . .kn−1) for n > 0,
λ ng0knkn+1 . . .k−1 for n < 0,
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we see easily that ∑n∈Z ‖gn‖2
2 converges.

Hence, f =
∞

∑
n=−∞

gnen is an eigenvector of T ∗ and λ ∈ σp(T ∗) with infinite mul-

tiplicity. We conclude that

σ(T ) = σ(T ∗) = {z ∈ C : a � |z| � b}.
It remains to check that for |λ | ∈ (a,b) , T −λ Id is bounded below. Here our method
generalizes some ideas due to Ridge [5]. Suppose towards a contradiction that λ is
an approximate eigenvalue of T . So, for each i ∈ N∗ , there is a unit vector f (i) =
{ f j(i)} j∈Z such that

‖T f (i)−λ f (i)‖ <
1
i
.

• Suppose first that liminfi→∞ ‖ f0(i)‖2 = 0. So, for all ε > 0, there is an index
i such that ‖ f0(i)‖2 < ε and ‖T f (i)−λ f (i)‖ < ε . Denoting by h(i) = f (i)− f0(i)e0

(that is, setting to zero the component corresponding to j = 0), we have

‖Th(i)−λh(i)‖ � ‖T f (i)−λ f (i)‖+‖T f0(i)e0−λ f0(i)e0‖
< ε +(‖T‖+ |λ |)ε

and thus there is an approximate eigenvector h(i) of norm 1 such that h0(i) = 0 and
‖Th(i)−λh(i)‖< ε .

We can write h(i) = l(i)+ r(i) where l(i) is supported on the negative integers
and r(i) is supported on the positive integers. Since their supports are disjoint, Th(i)−
λh(i) is the orthogonal sum of T l(i)−λ l(i) and Tr(i)−λ r(i) . Since h(i) is of norm
1, one of l(i) and r(i) has norm greater than 1

2 and thus, we may find a sequence of
approximate eigenvectors supported entirely on either the positive or negative integers.
We will denote it by p(i) , and may suppose without loss of generality that ‖p(i)‖ = 1
and ‖T p(i)−λ p(i)‖ < 1/i . Now

Tnp(i)−λ np(i) = (Tn−1 +λTn−2 + . . .+λ n−1Id)(T p(i)−λ p(i))

and so ‖Tnp(i)−λ np(i)‖ < Cn/i , where Cn depends on λ and the weights but not on
i . If p(i) = {p j(i)} is supported on the positive integers, then

‖Tnp(i)‖2 =

(
∞

∑
j=1

‖k jk j+1 . . .k j+n−1p j(i)‖2
2

)1/2

�
(

inf
j>0

(
min

u∈[a0,a1]
k j(u)k j+1(u) . . .k j+n−1(u)

)2 ∞

∑
j=1

‖p j(i)‖2
2

)1/2

=
[
inf
j>0

(
min

u∈[a0,a1]
k j(u)k j+1(u) . . .k j+n−1(u)

)]
.

Without loss of generality, one can suppose that b > 1. So, for n sufficiently large, we
have

inf
j>0

(
min

u∈[a0,a1]
k j(u)k j+1(u) . . .k j+n−1(u)

)
> |λ n|+2.
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Choosing i larger than Cn , we obtain a contradiction. Applying similar arguments to
T−1 , we obtain a contradiction when T has an approximate eigenvector supported on
the negative integers.

• Suppose that liminfi→∞ ‖ f0(i)‖2 = d > 0. Since we have an approximate eigen-
vector f (i) = { fn(i)} of norm 1 such that ‖T f (i)−λ f (i)‖< 1

i , then a simple inductive
argument shows that there exist constants {Dn}n�0 independent of i such that∥∥∥∥ fn+1(i)− k0k1 . . .kn

λ n+1 f0(i)
∥∥∥∥

2
� Dn

i
, for n ∈ N.

If ‖ f0(i)‖2 � d/2, then,

‖ fn+1(i)‖2 �
∥∥∥∥k0k1 . . .kn

λ n+1 f0(i)
∥∥∥∥

2
− Dn

i

�
minu∈[a0,a1] k j(u)k j+1(u) . . .k j+n−1(u)

|λ n+1| ‖ f0(i)‖2− Dn

i
.

Since
minu∈[a0,a1] k j(u)k j+1(u) . . .k j+n−1(u)

|λ n+1| →
n→+∞

∞,

we may find an index n such that ‖ fn+1(i)‖2 � 2−Dn/i . But, as f (i) is a vector of
norm 1, if we choose i larger than Dn , we obtain a contradiction. �

COROLLARY 2.1. Let T : �2(Z,L2((a0,a1)))→ �2(Z,L2((a0,a1))) be the weighted
right bilateral shift defined by (Tx)n = kn−1xn−1 for n∈Z where {kn} is a sequence of
positive and continuous functions on [a0,a1] such that kn converges uniformly to b as
n →−∞ and a as n → +∞ where a < b. Then, for any complex number a < |λ | < b,
T −λ Id is a universal operator for Hilbert space. In particular, every operator has an
invariant subspace if and only if the minimal nontrivial invariant subspaces of T are
all one-dimensional.

Proof. T ∗ is unitarily equivalent to a weighted right shift where the weights is a
sequence of positive and continuous functions such that kn tends uniformly to a at −∞
and uniformly to b at +∞ . By Theorem 2.1, it follows that T − λ Id has an infinite
dimensional kernel and, T ∗ − λ Id is bounded below which implies that T − λ Id is
surjective. So, we conclude that T −λ Id is universal for Hilbert space.

The last statement follows immediately from the remarks after Definition 1.1, not-
ing that T and T −λ Id have the same lattice of invariant subspaces. �

REMARK 2.1. Note that, in this case, the point spectrum of T ∗ is empty.



460 J. R. PARTINGTON AND E. POZZI

3. Applications to composition operators

3.1. Composition operators on L2((0,1))

DEFINITION 3.1. A mapping φ : [0,1] → [0,1] will be called L2 -admissible, if
it is strictly increasing and differentiable, with φ(0) = 0 and φ(1) = 1, and has the
properties that φ has no other fixed points, φ(x) � x on [0,1] , φ ′ is continuous on
(0,1) and (φ−1)′ is bounded. We then define the composition operator Cφ by Cφ ( f ) =
f ◦φ .

Such operators have been studied by Spalsbury [7] in the context of C[0,1] and
C1[0,1] , for functions of the form φ(x) = xs , and generalizations of the Müntz theorem
were obtained in order to obtain information on cyclic vectors. Here we work in a
Hilbertian context, and with a more general range of symbols φ .

PROPOSITION 3.1. Let φ be L2 -admissible. Then, Cφ is bounded on L2((0,1))
and its adjoint is given by C∗

φ ( f ) = (φ−1)′( f ◦φ−1) .

Proof. Let f be in L2((0,1)) . Then∫ 1

0
|Cφ ( f )(x)|2 dx =

∫ 1

0
| f (φ(x))|2 dx =

∫ 1

0
| f (u)|2(φ−1)′(u)du

� sup
u∈[0,1]

(φ−1)′(u)‖ f‖2
L2((0,1)).

Thus, ‖Cφ‖ � ‖(φ−1)′‖1/2
∞ .

The computation of the adjoint is elementary, and we omit it. �

Now, fix a0 ∈ (0,1) . Let f be a function in L2((0,1)) . We denote by {an}n∈Z

the sequence {φn(a0)}n∈Z , where for n < 0, φn = (φ−1)−n . If we define gn(u) such
that

gn(u) = f (φn(u)) for n ∈ Z and u ∈ (a0,a1),

then each gn lies in L2((a0,a1)) and we have, writing fn = f|(an,an+1) , that

‖ f‖2
L2((0,1)) = ∑

n∈Z

‖ fn‖2
L2((an,an+1))

= ∑
n∈Z

∫ a1

a0

| fn(φn(u))|2(φn)′(u)du

= ∑
n∈Z

∫ a1

a0

|gn(u)|2(φn)′(u)du

= ∑
n∈Z

∥∥∥gn

√
(φn)′

∥∥∥2

L2((a0,a1))
.

If we consider V : L2([0,1])−→ �2(Z,L2((a0,a1))) defined by V ( f )=
(
gn
√

(φn)′
)

n∈Z

,

then V is a unitary operator.
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Now, if we compose f by the operator Cφ , we have

‖Cφ ( f )‖2
L2((0,1)) = ∑

n∈Z

∫ an+1

an

| f (φ(x))|2 dx

= ∑
n∈Z

∫ a1

a0

|gn+1(u)|2(φn)′(u)du

So, if f = ∑n∈Z gn
√

(φn)′en , where (en)n∈Z is the standard orthonormal basis of
�2(Z) , then,

Cφ ( f ) = ∑
n∈Z

gn+1

√
(φn)′en.

Thus, Cφ maps on L2((0,1)) as a weighted left shift on �2(Z,L2((a0,a1))) with weights

kn =
√

(φn)′
(φn+1)′ = 1√

φ ′◦φn
, for n ∈ Z .

THEOREM 3.1. Let φ be an L2 -admissible function such that for some a0 ∈
(0,1) , the sequence 1√

φ ′◦φn
converges uniformly on [a0,φ(a0)] to a as n→−∞ and b

as n → +∞ where a < b. Then, σ(Cφ ) = {z ∈ C : a � |z| � b} and {z ∈ C : a < |z| <
b} ⊆ σp(Cφ ) . Likewise, for any complex numbers a < |λ |< b, Cφ −λ Id is a universal
operator for Hilbert space.

Proof. Since a weighted left shift with weights {kn}n∈Z is unitarily equivalent to
a weighted right shift with weights {k̃n}n∈Z where k̃n = k−n for n ∈ Z , then, Cφ is
unitarily equivalent to a weighted right shift on �2(Z,L2((a0,a1)) , denoted by Sφ with

weights k̃n = 1√
(φ−1)′◦φ−n

, n ∈ Z such that

k̃n
uniformly−→

{
b as n →−∞
a as n → +∞

Theorem 2.1 implies that σ(Sφ ) = {z ∈ C : a � |z| � b} and σp(Sφ ) = {z ∈ C : a <
|z|< b} . It follows from Corollary 2.1 that for any a < |λ |< b , Sφ −λ Id is a universal
operator for Hilbert space. So, we have the conclusion for Cφ −λ Id. �

REMARK 3.1. If φ satisfies the hypothesis of Theorem 3.1, the point spectrum of
C∗
φ is empty.

We now have an analogous version of Corollary 2.1 for Cφ .

COROLLARY 3.1. Let φ and Cφ be as in Theorem 3.1. Then, every operator has
an invariant subspace if and only if the minimal nontrivial invariant subspaces of Cφ
are all one-dimensional.
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EXAMPLE 3.1. Fix 0 < s < 1. Let φ be the function defined on [0,1] by φ(x) =
xs . Then Cφ is bounded on L2((0,1)) . Note that, for n ∈ Z and x ∈ (0,1) ,

1√
φ ′ ◦φn(x)

=
1√
s
xsn(1−s)/2.

Then we have

1√
φ ′◦φn

uniformly−→
{

0 as n →−∞
1√
s

as n → +∞

It follows from Theorem 3.1 that

σ(Cφ ) = D
(
0,1/

√
s
)

and
{
z ∈ C : 0 < |z| < 1/

√
s
}⊆ σp(Cφ ),

and for any complex number λ such that 0 < |λ | < 1/
√

s , Cφ − λ Id is a universal
operator for Hilbert space. Thus every Hilbert space operator has an invariant subspace
if and only if the minimal nontrivial invariant subspaces of Cφ are all one dimensional.

3.2. Composition operators on Sobolev spaces W0((0,1))

Now let W0(0,1) be the space of absolutely continuous functions f defined on
[0,1] such that f (0) = 0 and f ′ ∈ L2((0,1)) , with norm

‖ f‖W0(0,1) = ‖ f ′‖2.

where ‖.‖2 denotes the norm in L2((0,1)) .

DEFINITION 3.2. A mapping φ : [0,1] → [0,1] will be called W0 -admissible, if
it is a strictly increasing and continuously differentiable function, with φ(0) = 0 and
φ(1) = 1, such that φ(x) � x for x ∈ [0,1] , and φ has no other fixed points. We denote
by Cφ the composition operator induced by φ .

PROPOSITION 3.2. Let φ be W0 -admissible. Then, Cφ is bounded on W0((0,1)) .

Proof. Let f be in W0((0,1)) .

‖Cφ ( f )‖2
W (0,1) =

∫ 1

0
| f ′(φ(x))|2φ ′(x)2 dx =

∫ 1

0
| f (u)|2φ ′(φ−1(u))du

� ‖φ ′‖∞‖ f‖2
W0((0,1)).

Thus, ‖Cφ‖W0(0,1) � ‖φ ′‖1/2
∞ . �

Note that the operator Cφ is also bounded on W (0,1) , the space of absolutely
continuous functions f on [0,1] such that f ′ ∈ L2((0,1)) . As the mapping f �→ f (0)
is bounded on W , then f = ( f − f (0))+ f (0) and Cφ f = Cφ ( f − f (0))+ f (0) .

LEMMA 3.1. Let φ be W0 -admissible. Then Cφ on W0((0,1)) is unitarily equiv-
alent to a weighted composition operator Dφ on L2((0,1)) .
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Proof. Let f be in W0((0,1)) . We denote by F the derivative of f which is in
L2((0,1)) . We have

‖Cφ ( f )‖2
W0((0,1)) =

∫ 1

0
|F(φ(x))|2φ ′(x)2 dx

= ‖φ ′.(F ◦φ)‖2
2

= ‖Dφ (F)‖2

where Dφ is the weighted composition operator on L2((0,1)) defined by

Dφ (g) = φ ′(g ◦φ)

for all g ∈ L2((0,1)) . If D is the mapping from W0((0,1)) onto L2((0,1)) defined by
D( f ) = f ′ for all f ∈W0((0,1)) , then we have the commutative diagram

f
Cφ−−−−→ f ◦φ

D

⏐⏐� D

⏐⏐�
f ′

Dφ−−−−→ φ ′( f ′ ◦φ)

Since D is a unitary operator from W0((0,1)) to L2((0,1)) , we have the conclusion.
�

PROPOSITION 3.3. Let φ be W0 -admissible and suppose that for some a0 ∈
(0,1) , the sequence 1√

(φ−1)′◦φ−n(x)
converges uniformly on [a0,φ−1(a0)] to a as n →

−∞ and b as n → +∞ where a < b. Then σ(Cφ ) = {z ∈ C : a � |z| � b} and
σp(Cφ ) = ∅ . Likewise, for any complex numbers a < |λ | < b, C∗

φ −λ Id is a universal
operator for Hilbert space.

Proof. Note that if F, G ∈ L2((0,1)) , then

〈Dφ (F),G〉2 =
∫ 1

0
φ ′(x)F(φ(x))G(x)dx

=
∫ 1

0
F(u)G(φ−1(u))du

= 〈F,Sφ−1(G)〉2,

where Sφ−1 denotes the composition operator on L2((0,1)) . So, we have D∗
φ = Sφ−1 .

Thus, we deduce by Theorem 3.1 that σ(D∗
φ ) = {z ∈ C : a � |z| � b} and σp(D∗

φ ) =
{z ∈ C : a < |z| < b} . Likewise, for any complex numbers a < |λ | < b , D∗

φ −λ Id is
a universal operator for Hilbert space. By unitary equivalence from Lemma 3.1 and by
Remark 3.1, we have the conclusion. �
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EXAMPLE 3.2. Fix s > 1. Let ψ be the function defined on [0,1] by ψ(x) = xs .
Then, Cψ is bounded on W0((0,1)) . Note that for all x∈ [0,1] , we have ψ−1(x) = x1/s ;
using similar arguments as in Example 3.1, one can prove that ψ satisfies the hypothe-
sis of Proposition 3.3.

It follows that σ(Cψ ) = D
(
0,
√

s
)
, σp(Cψ ) = ∅ and for any complex number λ

such that 0 < |λ | <
√

s , C∗
ψ − λ Id is a universal operator for Hilbert space. Thus,

every operator has an invariant subspace if and only if the minimal nontrivial invariant
subspaces of C∗

ψ are all one-dimensional.

4. Cyclic vectors for Cφ

In the sequel, we will denote by φ the function x �→ xs where 0 < s < 1. Here,
we are interested in cyclic vectors of composition operators induced by φ : in view of
the universality results proved in Section 3, these are of particular significance in their
application to the study of invariant subspaces.

PROPOSITION 4.1. Let p be the function defined on [0,1] by p(x) = cxα , where
c ∈ C\ {0} and 0 �= α > − 1

2 . Then p is a cyclic vector for Cφ in L2((0,1)) .

Proof. Note that span{p(xsk) : k � 0} = span{xλk : k � 0} , where (λk)k�0 is
the infinite sequence of positive and distinct real numbers defined by λk = αsk , for
k = 0,1,2, . . . . By the full Müntz theorem in L2((0,1)) , see [1], we have that

span{xλk ,k � 0} = L2((0,1)) ⇐⇒∑
k

2λk +1
(2λk +1)2 +4

=∞.

Now

2αsk

(2αsk +1)2 +4
∼

k→+∞

2
5
αsk

and
1

(2αsk +1)2 +4
∼

k→+∞

1
5
.

So,
∞

∑
k=0

2αsk +1
(2αsk +1)2 +4

is divergent, and we conclude that

span{p(xsk) : k � 0} = L2((0,1)). �
Using a more complicated method, we now prove that every “generalized polyno-

mial” which maps zero to zero is also cyclic for Cφ .

THEOREM 4.1. Let P be the “generalized polynomial” on [0,1] defined by P(x)=
∑n

k=0 akxrk with 0 < r1 < .. . < rn and the ak non-zero. Then P is cyclic in L2(0,1) for
Cφ .
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Proof. To see this, we consider the isometry between L2(0,1) and L2(0,∞) de-
fined by (J f )(t) = f (e−t)e−t/2 , which takes a function x �→ xr to t �→ e−rt−t/2 .

Then a function f is orthogonal to Cj
φP if and only if the corresponding J f is

orthogonal to

Pj : t �→
n

∑
k=1

ak exp(−s jrkt− t/2).

Taking the Fourier–Laplace transform and using the Paley–Wiener theorem, we arrive
at a function F ∈ H2(C+) , where C+ = {z ∈ C : Im(z) > 0} , such that

n

∑
k=1

akF

(
is jrk +

i
2

)
= 0 ( j = 0,1,2, . . .).

We have the completeness of the iterates Cj
φP if we can show that F is identically zero.

Note that, in the well-known case n = 1, this now implies that F is identically
zero since (is jr1 + i

2 ) j is not a Blaschke sequence, given that r1 > 0 by assumption.
In general, since s jrk → 0 as j → ∞ for all k , we have, writing G(z) = F(i(z+

1/2)) for z in a neighbourhood of 0, that

n

∑
k=1

akG(zrk) = 0,

by the principle of isolated zeroes, and G is holomorphic near 0.
Now G is not a polynomial, unless it is identically zero (since F ∈ H2(C+)) and

so if (gm)m are its Taylor coefficients, then infinitely often we have gm �= 0 and

n

∑
k=1

akr
m
k = 0,

which cannot be true since this is asymptotic to anrm
n as m → ∞ . Hence G must be

identically zero and so the system of iterates is complete. �

For a contrasting result, we now denote by φ the function x �→ xs where s > 1 and
by Dφ the weighted composition operator in L2((0,1)) introduced in Lemma 3.1.

PROPOSITION 4.2. Let P be the function defined on [0,1] by P(x) =
r

∑
i=0

cix
αi ,

where each ci ∈ C and − 1
2 < α0 < α1 < .. . < αr . Then, P is not a cyclic vector for

Dφ in L2((0,1)) . Thus, if Q(x) =
r

∑
i=0

bix
βi , with bi ∈ C and 1

2 < β0 < β1 < .. . < βr ,

then the function Q is not a cyclic vector for Cφ in W0((0,1)) .

Proof. Note that

Dk
φ (P) =

r

∑
j=0

skc jx
skα j+sk−1.
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Now, we have span{Dk
φ ,k � 0} ⊆ span{xλk ,k � 0} where {λk}k is a sequence of pos-

itive and distinct numbers such that there is (i, j) ∈ N×{0, . . . ,r} , λk = siα j + si −1.
So, it follows from the full Müntz theorem in L2((0,1)) that P is not a cyclic vector

for Dφ if and only if ∑
k

r

∑
j=0

2(skα j + sk)−1
(2sk(α j +1)−1)2 +4

converges. Now, for each j , we see

that

skα j + sk

(2sk(α j +1)−1)2 +4
∼

k→+∞

α j +1
4(α j +1)2sk

and
1

(2sk(α j +1)−1)2 +4
∼

k→+∞

1
4(α j +1)2s2k .

We conclude that ∑
k

r

∑
j=0

2(skα j + sk)−1
(2sk(α j +1)−1)2 +4

converges and thus P is not a cyclic

vector for Dφ .
To see that Q is not cyclic for Cφ in W0((0,1)) , we now set P = Q′ and use

Lemma 3.1. �
Let C1([0,1]) := { f ∈ C 1([0,1]), f (0) = 0} .
We then obtain a non-cyclicity result in C1([0,1]) for a special class of functions

which can be written as f (x) = bx+r(x) , where r(x)
x → 0 as x tends to 0 (see Theorem

3 in [7]). Recall that φ(x) = xs for s > 1.

COROLLARY 4.1. Let P be the function defined on [0,1] by P(x) =
r

∑
i=0

cix
αi ,

where each ci ∈ C and 1 � α0 < α1 < .. . < αr . Then, P is not a cyclic vector for Cφ
in C1((0,1)) .

Proof. The non-cyclicity of P follows easily from Proposition 4.2 and the follow-
ing inequalities:

‖ f‖W0((0,1)) := ‖ f ′‖L2((0,1)) � ‖ f‖∞+‖ f ′‖∞ =: ‖ f‖C1([0,1]),

for all f ∈ C1([0,1]) .
�
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