# SVEP AND BISHOP'S PROPERTY FOR *k*\*-PARANORMAL OPERATORS

N. L. BRAHA AND K. TANAHASHI

(Communicated by T. Furuta)

Abstract. A bounded linear operator T on a complex Hilbert space  $\mathscr{H}$  is said to be k\*-paranormal if  $||T^*x||^k \leq ||T^kx||$  for every unit vector  $x \in \mathscr{H}$  where k is a natural number with  $2 \leq k$ . This class of operators is an extension of hyponormal operators and have many interesting properties. We show that k\*-paranormal operators have Bishop's property  $(\beta)$ , i.e., if  $f_n(\lambda)$  is an analytic function on some open set  $\mathscr{D} \subset \mathbb{C}$  such that  $(T-z)f_n(z) \to 0$  uniformly on every compact subset  $\mathscr{H} \subset \mathscr{D}$ , then  $f_n(z) \to 0$  uniformly on  $\mathscr{H}$ . In case of k = 2, this means that \*-paranormal operators have Bishop's property  $(\beta)$ .

## 1. Introduction

Let  $\mathscr{H}$  be a complex Hilbert space and  $B(\mathscr{H})$  the Banach algebra of all bounded linear operators on  $\mathscr{H}$ . Let  $T \in B(\mathscr{H})$ .

Bishop's property ( $\beta$ ) is an important property in the operator theory and it is known that many operators have this property. There are several important Hilbert space operator classes as follows:

(1) hyponormal :  $TT^* \leq T^*T$ .

- (2) paranormal :  $||Tx||^2 \leq ||T^2x||$  for all unit vectors  $x \in \mathcal{H}$ .
- (3) \*-paranormal :  $||T^*x||^2 \leq ||T^2x||$  for all unit vectors  $x \in \mathcal{H}$ where k is a natural number with  $2 \leq k$ .
- (4) *k*\*-paranormal :  $||T^*x||^k \leq ||T^kx||$  for all unit vectors  $x \in \mathcal{H}$ .
- (5) normaloid : ||T|| = r(T) (spectral radius).

Hyponormal operators are paranormal and \*-paranormal. There are no relation for paranormal operators and \*-paranormal operators. Paranormal operators are normaloid and \*-paranormal operators are normaloid. If k = 2, then k\*-paranormal operators means \*-paranormal ([1], [2], [4], [8]).

The class of paranormal operators was defined by Istrăţescu, Saito and Yoshino [4] as class (N) and they proved that class (N) operators are normaloid. Furuta [2] renamed this class from class (N) to paranormal. The class of \*-paranormal operators was defined by S.M. Patel [8]. S.C. Arora and J.K. Thukral [1] proved that if T is \*-paranormal, then ker $(T - \lambda) \subset$  ker $(T - \lambda)^*$  for all  $\lambda \in \mathbb{C}$ . The class of k\*-paranormal operators was defined by M.Y. Lee, S.H. Lee and C.S. Ryoo [6] and they proved that if T is k\*-paranormal, then ker $(T - \lambda) \subset$  ker $(T - \lambda)^*$  for all  $\lambda \in \mathbb{C}$ .

*Keywords and phrases:* \*-paranormal, k\*-paranormal, SVEP, Bishop's property ( $\beta$ ).



Mathematics subject classification (2010): Primary 47A10, 47B20.

To study non-normal operator T, it is important to know that T has single valued extension property (SVEP) and Bishop's property ( $\beta$ ).

*T* is said to have SVEP if f(z) is an analytic vector valued function on some open set  $\mathscr{D} \subset \mathbb{C}$  such that (T-z)f(z) = 0 for all  $z \in \mathscr{D}$ , then f(z) = 0 for all  $z \in \mathscr{D}$ .

*T* is said to have Bishop's property ( $\beta$ ) if  $f_n(z)$  is an analytic vector valued function on some open set  $\mathscr{D} \subset \mathbb{C}$  such that  $(T-z)f_n(z) \to 0$  uniformly on each compact subset  $\mathscr{H} \subset \mathscr{D}$ , then  $f_n(z) \to 0$  uniformly on  $\mathscr{H}$ .

Hence if *T* has Bishop's property ( $\beta$ ), then *T* has SVEP. K.B. Laursen [5] proved that if *T* is totally paranormal, i.e.,  $T - \lambda$  is paranormal for all  $\lambda \in \mathbb{C}$ , then *T* has SVEP. Recently, A. Uchiyama and K. Tanahashi [9] proved that paranormal operators have Bishop's property ( $\beta$ ). Y.M. Han and A.H. Kim [3] proved that if *T* is \*-paranormal, then ker $(T - \lambda) = \text{ker}(T - \lambda)^2$  for all  $\lambda \in \mathbb{C}$  and *T* has SVEP. It is known that if *T* is the unilateral shift on  $\ell^2$ , then  $T^*$  is normaloid and does not have SVEP.

In this paper, we show that k\*-paranormal operators have Bishop's property ( $\beta$ ). In case of k = 2, this means that \*-paranormal operators have Bishop's property ( $\beta$ ).

### 2. Main Results

THEOREM 1. k\*-paranormal operators have Bishop's property ( $\beta$ ).

*Proof.* Let  $\sigma_a(T)$  be the approximate point spectrum of T. Uchiyama and Tanahashi [9] defined the spectral properties (I), (I') and (II) as follows: T has the property

- (I) if  $\lambda \in \sigma_a(T)$  and  $(T \lambda)x_n \to 0$  for some sequence of bounded vectors  $\{x_n\} \subset \mathscr{H}$ , then  $(T \lambda)^* x_n \to 0$ ,
- (I') if  $\lambda \in \sigma_a(T) \setminus \{0\}$  and  $(T \lambda)x_n \to 0$  for some sequence of bounded vectors  $\{x_n\} \subset \mathscr{H}$ , then  $(T \lambda)^* x_n \to 0$ ,
- (II) if  $\lambda$ ,  $\mu \in \sigma_a(T)$  ( $\lambda \neq \mu$ ) and  $(T \lambda)x_n \to 0$ ,  $(T \mu)y_n \to 0$  for some sequence of bounded vectors  $\{x_n, y_n\} \subset \mathscr{H}$ , then  $\langle x_n, y_n \rangle \to 0$ ,

and they proved that

- (1) If T is paranormal, then T has the property (II).
- (2) If T satisfies (II), then T has Bishop's proprty ( $\beta$ ).

Hence paranormal operators have Bishop's property ( $\beta$ ) by (1) and (2).

Let T be a k\*-paranormal operator. We show that T has the property (I). Since (I) implies (II) by Lemma 2.1 of [9], we have that T has Bishop's property ( $\beta$ ).

Let  $(T - \lambda)x_n \rightarrow 0$ . We may assume that  $||x_n|| = 1$ . Since T is k\*-paranormal,

$$||T^*x_n||^k \leq ||T^kx_n||$$

Since

$$T^{k} = (T-\lambda)^{k} + {}_{k}C_{1}\lambda(T-\lambda)^{k-1} + \dots + {}_{k}C_{k-1}\lambda^{k-1}(T-\lambda) + \lambda^{k},$$

we have

$$\|T^*x_n\|^k \leq \|T^kx_n\| \\ \leq \|(T-\lambda)^kx_n\| + {}_kC_1|\lambda|\|(T-\lambda)^{k-1}x_n\| + \cdots \\ + {}_kC_{k-1}|\lambda|^{k-1}\|(T-\lambda)x_n\| + |\lambda|^k$$

and

$$\limsup_{n\to\infty} \|T^*x_n\| \leqslant |\lambda|.$$

Hence

$$\begin{split} \|(T-\lambda)^* x_n\|^2 &= \langle T^* x_n, T^* x_n \rangle - \overline{\lambda} \langle x_n, T^* x_n \rangle - \lambda \langle T^* x_n, x_n \rangle + |\lambda|^2 \\ &= \|T^* x_n\|^2 - \overline{\lambda} \langle T x_n, x_n \rangle - \lambda \langle x_n, T x_n \rangle + |\lambda|^2 \\ &= \|T^* x_n\|^2 - \overline{\lambda} \langle (T-\lambda) x_n, x_n \rangle - \lambda \langle x_n, (T-\lambda) x_n \rangle - |\lambda|^2 \end{split}$$

and

$$\limsup_{n\to\infty} \|(T-\lambda)^* x_n\|^2 \leq |\lambda|^2 - |\lambda|^2 = 0.$$

This implies  $(T - \lambda)^* x_n \to 0$  and thus *T* has the property (I).  $\Box$ 

COROLLARY 2. \*-paranormal operators have Bishop's property ( $\beta$ ).

REMARK 3. S. H. Lee, C. S. Ryoo [7] proved that \*-paranormal operators have the property (I).

### Acknowledgment

The authors would like to express their sincere thanks to the referee and the editor for their helpful comments.

This research was supported by Grant-in-Aid Scientific Research No. 20540184.

#### REFERENCES

- [1] S. C. ARORA AND J. K. THUKRAL, On the class of operators, Glasnik Math., 21 (1986), 381–386.
- [2] T. FURUTA, On the class of paranormal operators, Proc. Japan Acad., 43 (1967), 594-598.
- [3] Y. M. HAN AND A. H. KIM, A note on \*-paranormal operators, Integral Equations and Operator Theory, 49 (2004), 435–444.
- [4] V. ISTRĂŢESCU, T. SAITO AND T. YOSHINO, On a class of operators, Tôhoku Math. J., (2), 18 (1966), 410-413.
- [5] K. B. LAURSEN, Operators with finite ascent, Pacific J. Math., 152 (1992), 323-336.
- [6] M. Y. LEE, S. H. LEE AND C. S. RHOO, Some remarks on the structure of k\*-paranormal operators, Kyungpook Math. J., 35 (1995), 205–211.

- [7] S. H. LEE AND C. S. RHOO, Some properties of certain nonhyponormal operators, Bull. Korean Math. Soc., **31** (1994), 133–141.
- [8] S. M. PATEL, Contributions to the study of spectraloid operators, Ph. D. Thesis, Delhi Univ., 1974.
- [9] A. UCHIYAMA AND K. TANAHASHI, Bishop's property ( $\beta$ ) for paranormal operators, Operators and Matrices, **3** (2009), 517–524.

(Received July 28, 2010)

N.L. Braha Department of Mathematics and Computer Sciences Avenue Mother Theresa 5 Prishtine 100 Kosovo e-mail: nbraha@yahoo.com

> Kotaro Tanahashi Department of Mathematics Tohoku Pharmaceutical University Sendai 981-8558 Japan e-mail: tanahasi@tohoku-pharm.ac.jp

Operators and Matrices www.ele-math.com oam@ele-math.com