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SVEP AND BISHOP’S PROPERTY FOR k∗–PARANORMAL OPERATORS
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(Communicated by T. Furuta)

Abstract. A bounded linear operator T on a complex Hilbert space H is said to be k∗ -
paranormal if ‖T ∗x‖k � ‖Tkx‖ for every unit vector x ∈ H where k is a natural number with
2 � k . This class of operators is an extension of hyponormal operators and have many interesting
properties. We show that k∗ -paranormal operators have Bishop’s property (β ), i.e., if fn(λ) is
an analytic function on some open set D ⊂ C such that (T − z) fn(z) → 0 uniformly on every
compact subset K ⊂ D , then fn(z) → 0 uniformly on K . In case of k = 2 , this means that
∗ -paranormal operators have Bishop’s property (β ).

1. Introduction

Let H be a complex Hilbert space and B(H ) the Banach algebra of all bounded
linear operators on H . Let T ∈ B(H ) .

Bishop’s property (β ) is an important property in the operator theory and it is
known that many operators have this property. There are several important Hilbert
space operator classes as follows:

(1) hyponormal : TT ∗ � T ∗T .
(2) paranormal : ‖Tx‖2 � ‖T 2x‖ for all unit vectors x ∈ H .
(3) ∗ -paranormal : ‖T ∗x‖2 � ‖T 2x‖ for all unit vectors x ∈ H

where k is a natural number with 2 � k .
(4) k∗ -paranormal : ‖T ∗x‖k � ‖Tkx‖ for all unit vectors x ∈ H .
(5) normaloid : ‖T‖ = r(T ) (spectral radius).

Hyponormal operators are paranormal and ∗ -paranormal. There are no relation for
paranormal operators and ∗ -paranormal operators. Paranormal operators are normaloid
and ∗ -paranormal operators are normaloid. If k = 2, then k∗ -paranormal operators
means ∗ -paranormal ([1], [2], [4], [8]).

The class of paranormal operators was defined by Istrăţescu, Saitō and Yoshino
[4] as class (N) and they proved that class (N) operators are normaloid. Furuta [2]
renamed this class from class (N) to paranormal. The class of ∗ -paranormal operators
was defined by S.M. Patel [8]. S.C. Arora and J.K. Thukral [1] proved that if T is ∗ -
paranormal, then ker(T −λ )⊂ ker(T −λ )∗ for all λ ∈ C . The class of k∗ -paranormal
operators was defined by M.Y. Lee, S.H. Lee and C.S. Ryoo [6] and they proved that if
T is k∗ -paranormal, then ker(T −λ )⊂ ker(T −λ )∗ for all λ ∈ C .
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To study non-normal operator T , it is important to know that T has single valued
extension property (SVEP) and Bishop’s property (β ).

T is said to have SVEP if f (z) is an analytic vector valued function on some open
set D ⊂ C such that (T − z) f (z) = 0 for all z ∈ D , then f (z) = 0 for all z ∈ D .

T is said to have Bishop’s property (β ) if fn(z) is an analytic vector valued func-
tion on some open set D ⊂ C such that (T − z) fn(z) → 0 uniformly on each compact
subset K ⊂ D , then fn(z) → 0 uniformly on K .

Hence if T has Bishop’s property (β ), then T has SVEP. K.B. Laursen [5] proved
that if T is totally paranormal, i.e., T − λ is paranormal for all λ ∈ C , then T has
SVEP. Recently, A. Uchiyama and K. Tanahashi [9] proved that paranormal opera-
tors have Bishop’s property (β ). Y.M. Han and A.H. Kim [3] proved that if T is
∗ -paranormal, then ker(T −λ ) = ker(T − λ )2 for all λ ∈ C and T has SVEP. It is
known that if T is the unilateral shift on �2 , then T ∗ is normaloid and does not have
SVEP.

In this paper, we show that k∗ -paranormal operators have Bishop’s property (β ).
In case of k = 2, this means that ∗ -paranormal operators have Bishop’s property (β ).

2. Main Results

THEOREM 1. k∗ -paranormal operators have Bishop’s property (β ).

Proof. Let σa(T ) be the approximate point spectrum of T . Uchiyama and Tana-
hashi [9] defined the spectral properties (I) , (I′) and (II) as follows: T has the property

(I) if λ ∈ σa(T ) and (T −λ )xn → 0 for some sequence of bounded

vectors {xn} ⊂ H , then (T −λ )∗xn → 0,

(I′) if λ ∈ σa(T )\ {0} and (T −λ )xn → 0 for some sequence of bounded

vectors {xn} ⊂ H , then (T −λ )∗xn → 0,

(II) if λ , μ ∈ σa(T ) (λ �= μ) and (T −λ )xn → 0,(T − μ)yn → 0 for

some sequence of bounded vectors {xn,yn} ⊂ H , then 〈xn,yn〉 → 0,

and they proved that

(1) If T is paranormal, then T has the property (II).

(2) If T satisfies (II), then T has Bishop’s proprty (β ).

Hence paranormal operators have Bishop’s property (β ) by (1) and (2).
Let T be a k∗ -paranormal operator. We show that T has the property (I). Since

(I) implies (II) by Lemma 2.1 of [9], we have that T has Bishop’s property (β ).
Let (T −λ )xn → 0. We may assume that ‖xn‖ = 1. Since T is k∗ -paranormal,

‖T ∗xn‖k � ‖Tkxn‖.
Since

Tk = (T −λ )k + kC1λ (T −λ )k−1 + · · ·+ kCk−1λ k−1(T −λ )+λ k,
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we have

‖T ∗xn‖k � ‖Tkxn‖
� ‖(T −λ )kxn‖+ kC1|λ |‖(T −λ )k−1xn‖+ · · ·

+ kCk−1|λ |k−1‖(T −λ )xn‖+ |λ |k

and
limsup

n→∞
‖T ∗xn‖ � |λ |.

Hence

‖(T −λ )∗xn‖2 = 〈T ∗xn,T
∗xn〉−λ〈xn,T

∗xn〉−λ 〈T∗xn,xn〉+ |λ |2
= ‖T ∗xn‖2−λ〈Txn,xn〉−λ 〈xn,Txn〉+ |λ |2
= ‖T ∗xn‖2−λ〈(T −λ )xn,xn〉−λ 〈xn,(T −λ )xn〉− |λ |2

and
limsup

n→∞
‖(T −λ )∗xn‖2 � |λ |2−|λ |2 = 0.

This implies (T −λ )∗xn → 0 and thus T has the property (I). �

COROLLARY 2. ∗ -paranormal operators have Bishop’s property (β ).

REMARK 3. S. H. Lee, C. S. Ryoo [7] proved that ∗ -paranormal operators have
the property (I).
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