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THE HAUSDORFF MEASURE OF NONCOMPACTNESS
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Abstract. In the present paper, we establish some identities or estimates for the operator norms
and the Hausdorff measures of noncompactness of certain matrix operators on the spaces cλ0
and �λ∞ which have recently been introduced in [On the spaces of λ -convergent and bounded
sequences, Thai J. Math. 8(2) (2010) 311–329]. Further, by using the Hausdorff measure of
noncompactness, we characterize some classes of compact operators on these spaces.

1. Background, notations and preliminaries

It seems to be quite natural, in view of the fact that matrix mappings between BK
spaces are continuous, to find necessary and sufficient conditions for the entries of an
infinite matrix to define a compact operator between BK spaces. This can be achieved,
in many cases, by applying the Hausdorff measure of noncompactness (see for example
[3, 5, 6] with references given there). In this section, we give some related definitions,
notations and preliminary results.

1.1. Compact operators and matrix transformations

Let X and Y be Banach spaces. Then, we write B(X ,Y ) for the set of all bounded
(continuous) linear operators L : X → Y , which is a Banach space with the operator
norm given by ‖L‖ = supx∈SX

‖L(x)‖Y for all L ∈ B(X ,Y ) , where SX denotes the unit
sphere in X , that is SX = {x ∈ X : ‖x‖ = 1} . A linear operator L : X → Y is said to be
compact if the domain of L is all of X and for every bounded sequence (xn) in X , the
sequence (L(xn)) has a subsequence which converges in Y . By C (X ,Y ) , we denote
the class of all compact operators in B(X ,Y ) . An operator L ∈ B(X ,Y ) is said to be
of finite rank if dimR(L) < ∞ , where R(L) is the range space of L . An operator of
finite rank is clearly compact.

By w , we shall denote the space of all complex sequences. If x ∈w , then we write
x = (xk) instead of x = (xk)

∞
k=0 . Also, we write φ for the set of all finite sequences that

terminate in zeros. Further, we shall use the conventions that e = (1,1,1, . . .) and e(n)
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is the sequence whose only non-zero term is 1 in the nth place for each n ∈ N , where
N = {0,1,2, . . .} .

Any vector subspace of w is called a sequence space. We shall write �∞ , c and
c0 for the sequence spaces of all bounded, convergent and null sequences, respectively.
Further, by cs and �1 we denote the spaces of all sequences associated with convergent
and absolutely convergent series, respectively.

The β -dual of a subset X of w is defined by

Xβ =
{
a = (ak) ∈ w : ax = (akxk) ∈ cs for all x = (xk) ∈ X

}
.

Throughout this paper, the matrices are infinite matrices of complex numbers. If
A is an infinite matrix with complex entries ank (n,k ∈ N) , then we write A = (ank)
instead of A = (ank)

∞
n,k=0 . Also, we write An for the sequence in the nth row of A ,

that is An = (ank)
∞
k=0 for every n ∈ N . In addition, if x = (xk) ∈ w then we define the

A-transform of x as the sequence Ax = (An(x))∞n=0 , where

An(x) =
∞

∑
k=0

ankxk; (n ∈ N) (1.1)

provided the series on the right converges for each n ∈ N .
For arbitrary subsets X and Y of w , we write (X ,Y ) for the class of all infinite

matrices that map X into Y . Thus A ∈ (X ,Y ) if and only if An ∈ Xβ for all n ∈ N

and Ax ∈Y for all x ∈ X . Moreover, the matrix domain of an infinite matrix A in X is
defined by

XA =
{
x ∈ w : Ax ∈ X

}
.

The theory of BK spaces is the most powerful tool in the characterization of matrix
transformations between sequence spaces.

A sequence space X is called a BK space if it is a Banach space with continuous
coordinates pn : X → C (n ∈ N) , where C denotes the complex field and pn(x) = xn

for all x = (xk) ∈ X and every n ∈ N [1, p.255].
The sequence spaces �∞ , c and c0 are BK spaces with the same sup-norm given

by ‖x‖�∞
= supk |xk| , where the supremum is taken over all k ∈ N . Also, the space �1

is a BK space with the usual �1 -norm defined by ‖x‖�1
= ∑∞

k=0 |xk| [11, p.55].
If X ⊃ φ is a BK space and a = (ak) ∈ w , then we write

‖a‖∗X = sup
x∈SX

∣∣∣∣∣
∞

∑
k=0

akxk

∣∣∣∣∣ (1.2)

provided the expression on the right is defined and finite [1, p.257]; which is the case
whenever a ∈ Xβ [11, Theorem 7.2.9].

An infinite matrix T = (tnk) is called a triangle if tnn �= 0 and tnk = 0 for all k > n
(n ∈ N) . The study of matrix domains of triangles in sequence spaces has a special
importance due to the various properties which they have. For example, if X is a BK
space then XT is also a BK space with the norm given by ‖x‖XT

= ‖Tx‖X for all x∈XT

[4, Lemma 3 (i)].
The following known results are fundamental for our investigation.
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LEMMA 1.1. [4, Lemma 6] Let X denote any of the spaces c0 , c or �∞ . Then,
we have Xβ = �1 and ‖a‖∗X = ‖a‖�1

for all a ∈ �1 .

LEMMA 1.2. [7, Lemma 15 (a)] Let X and Y be BK spaces. Then, we have
(X ,Y ) ⊂ B(X ,Y ) , that is, every matrix A ∈ (X ,Y ) defines an operator LA ∈ B(X ,Y )
by LA(x) = Ax for all x ∈ X .

LEMMA 1.3. [3, Lemma 2.2] Let X ⊃ φ be a BK space and Y be any of the
spaces c0 , c or �∞ . If A ∈ (X ,Y ) , then we have

‖LA‖ = ‖A‖(X ,�∞) = sup
n
‖An‖∗X < ∞.

LEMMA 1.4. [9, Theorem 1.6] Let T be a triangle. Then, we have

(a) For arbitrary subsets X and Y of w, A ∈ (X ,YT ) if and only if B = TA ∈ (X ,Y ) .
(b) Further, if X and Y are BK spaces and A ∈ (X ,YT ) , then ‖LA‖ = ‖LB‖ .

1.2. The Hausdorff measure of noncompactness

Let S and M be subsets of a metric space (X ,d) and ε > 0. Then S is called an
ε -net of M in X if for every x ∈ M there exists s ∈ S such that d(x,s) < ε . Further, if
the set S is finite, then the ε -net S of M is called a finite ε -net of M , and we say that
M has a finite ε -net in X . A subset of a metric space is said to be totally bounded if it
has a finite ε -net for every ε > 0.

By MX , we denote the collection of all bounded subsets of a metric space (X ,d) .
If Q ∈ MX , then the Hausdorff measure of noncompactness of the set Q , denoted by
χ(Q) , is defined by

χ(Q) = inf
{
ε > 0 : Q has a finite ε -net in X

}
.

The function χ : MX → [0,∞) is called the Hausdorff measure of noncompactness [9,
p.2543].

The basic properties of the Hausdorff measure of noncompactness can be found in
[3, p.46] and [7, Lemma 2]. For example, if Q , Q1 and Q2 are bounded subsets of a
metric space X , then we have

χ(Q) = 0 if and only if Q is totally bounded,

Q1 ⊂ Q2 implies χ(Q1) � χ(Q2).

Further, if X is a normed space then the function χ has some additional properties
connected with the linear structure, e.g.

χ(Q1 +Q2) � χ(Q1)+ χ(Q2),

χ(αQ) = |α|χ(Q) for all α ∈ C.

The following result shows how to compute the Hausdorff measure of noncom-
pactness in the BK space c0 .
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LEMMA 1.5. [3, Lemma 3.5] Let Q ∈ Mc0 and Pr : c0 → c0 (r ∈ N) be the
operator defined by Pr(x) = (x0,x1, . . . ,xr,0,0, . . .) for all x = (xk) ∈ c0 . Then, we
have

χ(Q) = lim
r→∞

(
sup
x∈Q

‖(I−Pr)(x)‖�∞

)
,

where I is the identity operator on c0 .

Further, it is known that every sequence z = (zn) ∈ c has a unique representation
z = ze+∑∞

n=0(zn − z)e(n) , where z = limn→∞ zn [7, Lemma 10]. Thus, the operator
Pr : c → c (r ∈ N) , defined by

Pr(z) = ze+
r

∑
n=0

(zn − z)e(n); (r ∈ N) (1.3)

for all z = (zn) ∈ c with z = limn→∞ zn , is called the projector onto the linear span of{
e,e(0),e(1), . . . ,e(r)

}
. In this situation, the following result gives an estimate for the

Hausdorff measure of noncompactness in the BK space c .

LEMMA 1.6. [7, Theorem 5 (b)] Let Q ∈ Mc and Pr : c → c (r ∈ N) be the
projector onto the linear span of

{
e,e(0),e(1), . . . ,e(r)} . Then, we have

1
2
· lim
r→∞

(
sup
x∈Q

‖(I−Pr)(x)‖�∞

)
� χ(Q) � lim

r→∞

(
sup
x∈Q

‖(I−Pr)(x)‖�∞

)
,

where I is the identity operator on c.

Moreover, we have the following result concerning with the Hausdorff measure of
noncompactness in the matrix domains of triangles in normed sequence spaces.

LEMMA 1.7. [2, Theorem 2.6] Let X be a normed sequence space, T a triangle
and χT and χ denote the Hausdorff measures of noncompactness on MXT and MX ,
the collections of all bounded sets in XT and X , respectively. Then χT (Q) = χ(T (Q))
for all Q ∈ MXT .

The most effective way in the characterization of compact operators between the
Banach spaces is by applying the Hausdorff measure of noncompactness. This can be
achieved as follows (see [3, Lemma 3.3]):

Let X and Y be Banach spaces and L ∈ B(X ,Y ) . Then, the Hausdorff measure
of noncompactness of L , denoted by ‖L‖χ , is defined by

‖L‖χ = χ(L(SX )) (1.4)

and we have
L is compact if and only if ‖L‖χ = 0. (1.5)

REMARK 1.8. Let X and Y be BK spaces, T a triangle, A∈ (X ,YT ) and B = TA .
Then, we have Bx = (TA)x = T (Ax) for all x ∈ X . Thus, by combining (1.4) with
Lemmas 1.4 and 1.7, we can reduce the evaluation of ‖LA‖χ to that of ‖LB‖χ (see [9,
Remark 2.4]).
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2. The sequence spaces cλ0 and �λ∞

Throughout this paper, let λ =(λk)
∞
k=0 be a strictly increasing sequence of positive

reals tending to infinity, that is 0 < λ0 < λ1 < · · · and λk → ∞ as k → ∞ .
By using the convention λ−1 = 0, we define the infinite matrix Λ= (λnk)

∞
n,k=0 by

λnk =

⎧⎨
⎩
λk −λk−1

λn
; (0 � k � n),

0 ; (k > n).
(2.1)

Recently, the sequence spaces cλ0 and �λ∞ have been introduced in [8] as the matrix
domains of the triangle Λ in the spaces c0 and �∞ , respectively.

It is obvious that cλ0 and �λ∞ are BK spaces with the same norm given by

‖x‖�λ∞
= ‖Λ(x)‖�∞

= sup
n
|Λn(x)|. (2.2)

Throughout, for any sequence x = (xk) ∈ w , we define the associated sequence
y = (yk) , which will frequently be used, as the Λ-transform of x , i.e., y = Λ(x) and so

yk =
k

∑
j=0

(λ j −λ j−1

λk

)
x j; (k ∈ N). (2.3)

Further, let X be any of the spaces cλ0 or �λ∞ and Y be the respective one of the
spaces c0 or �∞ . If the sequences x and y are connected by the relation (2.3), then
x ∈ X if and only if y∈Y , furthermore if x∈ X , then ‖x‖�λ∞

= ‖y‖�∞ . In fact, the linear
operator LΛ : X → Y , which maps every sequence in X to its associated sequence in
Y , is bijective and norm preserving.

The β -duals of the spaces cλ0 and �λ∞ have been determined and some related
matrix mappings characterized. We refer the reader to [8] for relevant terminology.

Moreover, the following results are essential for our study and we may begin with
the following lemma which is immediate by [2, Theorem 1.6; Remark 1.7] and [8,
Theorem 5.5].

LEMMA 2.1. Let X be any of the spaces cλ0 or �λ∞ . If a = (ak) ∈ Xβ , then ã =
(ãk) ∈ �1 and the equality

∞

∑
k=0

akxk =
∞

∑
k=0

ãkyk (2.4)

holds for every x = (xk) ∈ X , where y = Λ(x) is the associated sequence defined by
(2.3) and

ãk =
( ak

λk −λk−1
− ak+1

λk+1−λk

)
λk; (k ∈ N).

LEMMA 2.2. Let X be any of the spaces cλ0 or �λ∞ . Then, we have

‖a‖∗X = ‖ã‖�1
=

∞

∑
k=0

|ãk| < ∞



478 M. MURSALEEN AND ABDULLAH K. NOMAN

for all a = (ak) ∈ Xβ , where ã = (ãk) is as in Lemma 2.1.

Proof. Let Y be the respective one of the spaces c0 or �∞ , and take any a = (ak)∈
Xβ . Then, we have from Lemma 2.1 that ã = (ãk) ∈ �1 and the equality (2.4) holds for
all sequences x = (xk) ∈ X and y = (yk) ∈Y which are connected by the relation (2.3).
Also, it follows by (2.2) that x ∈ SX if and only if y ∈ SY . Therefore, we derive from
(1.2) and (2.4) that

‖a‖∗X = sup
x∈SX

∣∣∣∣∣
∞

∑
k=0

akxk

∣∣∣∣∣= sup
y∈SY

∣∣∣∣∣
∞

∑
k=0

ãkyk

∣∣∣∣∣= ‖ã‖∗Y .

Further, since ã ∈ �1 , we obtain from Lemma 1.1 that

‖a‖∗X = ‖ã‖∗Y = ‖ã‖�1
< ∞

which concludes the proof. �

Throughout this paper, we shall use the following notation:
For an infinite matrix A = (ank) , we define the associated matrix Ã = (ãnk) by

ãnk =
( ank

λk −λk−1
− an,k+1

λk+1−λk

)
λk; (n,k ∈ N). (2.5)

Then, we have

LEMMA 2.3. Let X be any of the spaces cλ0 or �λ∞ , Y the respective one of the
spaces c0 or �∞ , Z a sequence space and A = (ank) an infinite matrix. If A ∈ (X ,Z) ,
then Ã ∈ (Y,Z) such that Ax = Ãy for all sequences x ∈ X and y ∈ Y which are con-
nected by the relation (2.3) , where Ã = (ãnk) is the associated matrix defined by (2.5) .

Proof. Let x ∈ X and y ∈ Y be connected by the relation (2.3) and suppose that
A∈ (X ,Z) . Then An ∈ Xβ for all n∈ N . Thus, it follows by Lemma 2.1 that Ãn ∈ �1 =
Yβ for all n ∈ N and the equality Ax = Ãy holds, hence Ãy ∈ Z . Since every y ∈ Y is
the associated sequence of some x ∈ X , we deduce that Ã ∈ (Y,Z) . This completes the
proof. �

Finally, we conclude this section with the following result on operator norms.

LEMMA 2.4. Let X be any of the spaces cλ0 or �λ∞ , A = (ank) an infinite matrix
and Ã = (ãnk) the associated matrix. If A is in any of the classes (X ,c0) , (X ,c) or
(X , �∞) , then

‖LA‖ = ‖A‖(X ,�∞) = sup
n

(
∞

∑
k=0

|ãnk|
)

< ∞.

Proof. This is immediate by combining Lemmas 1.3 and 2.2. �

REMARK 2.5. The characterization of matrix classes, considered in this paper,
can be found in [8]. Thus, we shall omit it and only deal with the operator norms
and the Hausdorff measures of noncompactness of some operators which are given by
infinite matrices in such classes.
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3. Compact operators on the spaces cλ0 and �λ∞

In the present section, we establish some identities or estimates for the Hausdorff
measures of noncompactness of certain matrix operators on the spaces cλ0 and �λ∞ .
Further, we apply our results to characterize some classes of compact operators on
those spaces.

We may begin with quoting the following lemma which is immediate by [9, Lemma
3.1].

LEMMA 3.1. Let X denote any of the spaces c0 or �∞ . If A ∈ (X ,c) , then we
have

αk = lim
n→∞

ank exists for every k ∈ N,

α = (αk) ∈ �1,

sup
n

(
∞

∑
k=0

|ank −αk|
)

< ∞,

lim
n→∞

An(x) =
∞

∑
k=0

αkxk for all x = (xk) ∈ X .

Now, let A = (ank) be an infinite matrix and Ã = (ãnk) the associated matrix
defined by (2.5). Then, we have the following result on Hausdorff measures of non-
compactness.

THEOREM 3.2. Let X denote any of the spaces cλ0 or �λ∞ . Then, we have

(a) If A ∈ (X ,c0) , then

‖LA‖χ = limsup
n→∞

(
∞

∑
k=0

|ãnk|
)

. (3.1)

(b) If A ∈ (X ,c) , then

1
2
· limsup

n→∞

(
∞

∑
k=0

|ãnk − α̃k|
)

� ‖LA‖χ � limsup
n→∞

(
∞

∑
k=0

|ãnk − α̃k|
)

, (3.2)

where α̃k = limn→∞ ãnk for all k ∈ N .

(c) If A ∈ (X , �∞) , then

0 � ‖LA‖χ � limsup
n→∞

(
∞

∑
k=0

|ãnk|
)

. (3.3)

Proof. Let us remark that the expressions in (3.1) and (3.3) exist by Lemma 2.4.
Also, by combining Lemmas 2.3 and 3.1, we deduce that the expression in (3.2) exists.

We write S = SX , for short. Then, we obtain by (1.4) and Lemma 1.2 that

‖LA‖χ = χ(AS). (3.4)
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For (a), we have AS ∈ Mc0 . Thus, it follows by applying Lemma 1.5 that

χ(AS) = lim
r→∞

(
sup
x∈S

‖(I−Pr)(Ax)‖�∞

)
, (3.5)

where Pr : c0 → c0 (r ∈ N) is the operator defined by Pr(x) = (x0,x1, . . . ,xr,0,0, . . .)
for all x = (xk) ∈ c0 . This yields that ‖(I −Pr)(Ax)‖�∞ = supn>r |An(x)| for all x ∈ X
and every r ∈ N . Therefore, by using (1.1), (1.2) and Lemma 2.2, we have for every
r ∈ N that

sup
x∈S

‖(I−Pr)(Ax)‖�∞
= sup

n>r
‖An‖∗X = sup

n>r
‖Ãn‖�1

.

This and (3.5) imply that

χ(AS) = lim
r→∞

(
sup
n>r

‖Ãn‖�1

)
= limsup

n→∞
‖Ãn‖�1

.

Hence, we get (3.1) by (3.4).
To prove (b), we have AS∈Mc . Thus, we are going to apply Lemma 1.6 to get an

estimate for the value of χ(AS) in (3.4). For this, let Pr : c→ c (r ∈N) be the projectors
defined by (1.3). Then, we have for every r ∈ N that (I−Pr)(z) = ∑∞

n=r+1(zn − z)e(n)

and hence

‖(I−Pr)(z)‖�∞
= sup

n>r
|zn− z | (3.6)

for all z = (zn)∈ c and every r ∈N , where z = limn→∞ zn and I is the identity operator
on c .

Now, by using (3.4), we obtain by applying Lemma 1.6 that

1
2
· lim
r→∞

(
sup
x∈S

‖(I−Pr)(Ax)‖�∞

)
� ‖LA‖χ � lim

r→∞

(
sup
x∈S

‖(I−Pr)(Ax)‖�∞

)
. (3.7)

On the other hand, it is given that X = cλ0 or X = �λ∞ , and let Y be the respective
one of the spaces c0 or �∞ . Also, for every given x ∈ X , let y ∈ Y be the associated
sequence defined by (2.3). Since A∈ (X ,c) , we have by Lemma 2.3 that Ã∈ (Y,c) and
Ax = Ãy . Further, it follows from Lemma 3.1 that the limits α̃k = limn→∞ ãnk exist for
all k , α̃ = (α̃k) ∈ �1 = Y β and limn→∞ Ãn(y) = ∑∞

k=0 α̃kyk . Consequently, we derive
from (3.6) that

‖(I−Pr)(Ax)‖�∞
= ‖(I−Pr)(Ãy)‖�∞

= sup
n>r

∣∣∣Ãn(y)−
∞

∑
k=0

α̃kyk

∣∣∣
= sup

n>r

∣∣∣ ∞

∑
k=0

(ãnk − α̃k)yk

∣∣∣
for all r ∈ N . Moreover, since x ∈ S = SX if and only if y ∈ SY , we obtain by (1.2) and
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Lemma 1.1 that

sup
x∈S

‖(I−Pr)(Ax)‖�∞
= sup

n>r

(
sup
y∈SY

∣∣∣ ∞

∑
k=0

(ãnk − α̃k)yk

∣∣∣)
= sup

n>r
‖Ãn− α̃‖∗Y

= sup
n>r

‖Ãn− α̃‖�1

for all r ∈ N . Hence, from (3.7) we get (3.2).
Finally, to prove (c) we define the operators Pr : �∞ → �∞ (r ∈ N) as in the proof

of part (a) for all x = (xk) ∈ �∞ . Then, we have

AS ⊂ Pr(AS)+ (I−Pr)(AS); (r ∈ N).

Thus, it follows by the elementary properties of the function χ that

0 � χ(AS) � χ(Pr(AS))+ χ((I−Pr)(AS))
= χ((I−Pr)(AS))
� sup

x∈S
‖(I−Pr)(Ax)‖�∞

= sup
n>r

‖Ãn‖�1

for all r ∈ N and hence

0 � χ(AS) � lim
r→∞

(
sup
n>r

‖Ãn‖�1

)
= limsup

n→∞
‖Ãn‖�1

.

This and (3.4) together imply (3.3) and complete the proof. �

COROLLARY 3.3. Let X denote any of the spaces cλ0 or �λ∞ . Then, we have

(a) If A ∈ (X ,c0) , then

LA is compact if and only if lim
n→∞

(
∞

∑
k=0

|ãnk|
)

= 0.

(b) If A ∈ (X ,c) , then

LA is compact if and only if lim
n→∞

(
∞

∑
k=0

|ãnk − α̃k|
)

= 0,

where α̃k = limn→∞ ãnk for all k ∈ N .

(c) If A ∈ (X , �∞) , then

LA is compact if lim
n→∞

(
∞

∑
k=0

|ãnk|
)

= 0. (3.8)
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Proof. This result follows from Theorem 3.2 by using (1.5). �

It is worth mentioning that the condition in (3.8) is only a sufficient condition for
the operator LA to be compact, where A ∈ (X , �∞) and X is any of the spaces cλ0 or
�λ∞ . More precisely, the following example will show that it is possible for LA to be
compact while limn→∞ (∑∞

k=0 |ãnk|) �= 0. Hence, in general, we have just ‘if’ in (3.8) of
Corollary 3.3 (c).

EXAMPLE 3.4. Let X be any of the spaces cλ0 or �λ∞ and define the matrix A =
(ank) by an0 = 1 and ank = 0 for k � 1 (n ∈ N) . Then, we have Ax = x0e for all x =
(xk) ∈ X , hence A ∈ (X , �∞) . Also, it is obvious that LA is of finite rank which yields
that LA is compact. On the other hand, by using (2.5), it can easily be seen that Ã = A .
Thus Ãn = e(0) and so ‖Ãn‖�1

= 1 for all n ∈ N . This implies that limn→∞ ‖Ãn‖�1
= 1.

Finally, by using the notations of Lemma 1.2, we end this section with the follow-
ing corollary:

COROLLARY 3.5. We have (�λ∞,c0) ⊂ C (�λ∞,c0) and (�λ∞,c) ⊂ C (�λ∞,c) , that is,
for every matrix A ∈ (�λ∞,c0) or A ∈ (�λ∞,c) , the operator LA is compact.

Proof. Let A ∈ (�λ∞,c0) . Then, we have by Lemma 2.3 that Ã ∈ (�∞,c0) which
implies that limn→∞ (∑∞

k=0 |ãnk|) = 0 [10, p.4]. This leads us with Corollary 3.3 (a)
to the consequence that LA is compact. Similarly, if A ∈ (�λ∞,c) then Ã ∈ (�∞,c) and
so limn→∞ (∑∞

k=0 |ãnk − α̃k|) = 0, where α̃k = limn→∞ ãnk for all k . Hence, we deduce
from Corollary 3.3 (b) that LA ∈ C (�λ∞,c) . �

4. Some applications

In this last section, we apply our previous results to derive some identities or esti-
mates for the operator norms and the Hausdorff measures of noncompactness of certain
matrix operators that map any of the spaces cλ0 or �λ∞ into the matrix domains of tri-
angles in the spaces c0 , c and �∞ . Further, we deduce the necessary and sufficient (or
only sufficient) conditions for such operators to be compact.

We assume throughout that A = (ank) is an infinite matrix and T = (tnk) is a
triangle, and we define the matrix B = (bnk) by

bnk =
n

∑
m=0

tnmamk; (n,k ∈ N), (4.1)

that is B = TA and hence

Bn =
n

∑
m=0

tnmAm =

(
n

∑
m=0

tnmamk

)∞

k=0

; (n ∈ N).
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Further, let Ã = (ãnk) and B̃ = (b̃nk) be the associated matrices of A and B ,
respectively. Then, it can easily be seen that

b̃nk =
n

∑
m=0

tnmãmk; (n,k ∈ N), (4.2)

hence

B̃n =
n

∑
m=0

tnmÃm =

(
n

∑
m=0

tnmãmk

)∞

k=0

; (n ∈ N).

Moreover, we define the sequence β̃ = (β̃k)
∞
k=0 by

β̃k = lim
n→∞

(
n

∑
m=0

tnmãmk

)
; (k ∈ N) (4.3)

provided the limits on the right exist for all k ∈ N which is the case whenever A ∈
(cλ0 ,cT ) or A ∈ (�λ∞,cT ) by Lemmas 1.4 (a), 2.3 and 3.1.

Now, by using (4.1), (4.2) and (4.3), we have the following results:

THEOREM 4.1. Let X be any of the spaces cλ0 or �λ∞ , T a triangle and A an
infinite matrix. If A is in any of the classes (X ,(c0)T ) , (X ,cT ) or (X ,(�∞)T ) , then

‖LA‖ = ‖A‖(X ,(�∞)T ) = sup
n

(
∞

∑
k=0

∣∣∣∣∣
n

∑
m=0

tnmãmk

∣∣∣∣∣
)

< ∞.

Proof. This is immediate by combining Lemmas 1.4 (b) and 2.4. �

THEOREM 4.2. Let T be a triangle. If either A ∈ (�λ∞,(c0)T ) or A ∈ (�λ∞,cT ) ,
then LA is compact.

Proof. This result can similarly be proved as the proof of Corollary 3.5 by means
of Lemmas 1.4 (a) and 1.7 and by using Remark 1.8. �

THEOREM 4.3. Let T be a triangle. Then, we have

(a) If A ∈ (cλ0 ,(c0)T ) , then

‖LA‖χ = limsup
n→∞

(
∞

∑
k=0

∣∣∣∣∣
n

∑
m=0

tnmãmk

∣∣∣∣∣
)

and

LA is compact if and only if lim
n→∞

(
∞

∑
k=0

∣∣∣∣∣
n

∑
m=0

tnmãmk

∣∣∣∣∣
)

= 0.
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(b) If A ∈ (cλ0 ,cT ) , then

1
2
· limsup

n→∞

(
∞

∑
k=0

∣∣∣∣∣
n

∑
m=0

tnmãmk − β̃k

∣∣∣∣∣
)

� ‖LA‖χ � limsup
n→∞

(
∞

∑
k=0

∣∣∣∣∣
n

∑
m=0

tnmãmk − β̃k

∣∣∣∣∣
)

and

LA is compact if and only if lim
n→∞

(
∞

∑
k=0

∣∣∣∣∣
n

∑
m=0

tnmãmk − β̃k

∣∣∣∣∣
)

= 0.

(c) If either A ∈ (cλ0 ,(�∞)T ) or A ∈ (�λ∞,(�∞)T ) , then

0 � ‖LA‖χ � limsup
n→∞

(
∞

∑
k=0

∣∣∣∣∣
n

∑
m=0

tnmãmk

∣∣∣∣∣
)

and

LA is compact if lim
n→∞

(
∞

∑
k=0

∣∣∣∣∣
n

∑
m=0

tnmãmk

∣∣∣∣∣
)

= 0. (4.4)

Proof. This is obtained from Theorem 3.2 and Corollary 3.3 by using Lemmas 1.4
(a) and 1.7. �

REMARK 4.4. As we have seen in Example 3.4, it can be shown that the equiva-
lence in (4.4) of Theorem 4.3 (c) does not hold.

Now, it is obvious that Theorems 4.1, 4.2 and 4.3 have several consequences with
any particular triangle T . For instance, let λ ′ = (λ ′

k)
∞
k=0 be a strictly increasing se-

quence of positive reals tending to infinity and Λ′ = (λ ′
nk) be the triangle defined by

(2.1) with the sequence λ ′ instead of λ . Also, let cλ
′

0 , cλ
′
and �λ

′
∞ be the matrix do-

mains of the triangle Λ′ in the spaces c0 , c and �∞ , respectively. Then, the following
corollaries are immediate by Theorems 4.1 and 4.2.

COROLLARY 4.5. Let X be any of the spaces cλ0 or �λ∞ and A an infinite matrix.

If A is in any of the classes (X ,cλ
′

0 ) , (X ,cλ
′
) or (X , �λ

′
∞ ) , then

‖LA‖ = ‖A‖(X ,�λ ′∞ ) = sup
n

(
∞

∑
k=0

∣∣∣∣∣
n

∑
m=0

λ ′
nmãmk

∣∣∣∣∣
)

< ∞.

COROLLARY 4.6. If either A ∈ (�λ∞,cλ
′

0 ) or A ∈ (�λ∞,cλ
′
) , then LA is compact.

Similarly, by using Theorem 4.3, we get some identities or estimates for the Haus-
dorffmeasures of noncompactness of operators given by matrices in the classes (cλ0 ,cλ

′
0 ) ,

(cλ0 ,cλ
′
) , (cλ0 , �λ

′
∞ ) and (�λ∞, �λ

′
∞ ) , and deduce the necessary and sufficient (or only suf-

ficient) conditions for such operators to be compact.
Finally, let bs , cs and cs0 be the spaces of all sequences associated with bounded,

convergent and null series, respectively. Then, we conclude our work with the following
consequences of Theorems 4.1, 4.2 and 4.3.
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COROLLARY 4.7. Let X be any of the spaces cλ0 or �λ∞ and A an infinite matrix.
If A is in any of the classes (X ,cs0) , (X ,cs) or (X ,bs) , then

‖LA‖ = ‖A‖(X ,bs) = sup
n

(
∞

∑
k=0

∣∣∣∣∣
n

∑
m=0

ãmk

∣∣∣∣∣
)

< ∞.

COROLLARY 4.8. If either A ∈ (�λ∞,cs0) or A ∈ (�λ∞,cs) , then LA is compact.

COROLLARY 4.9. We have

(a) If A ∈ (cλ0 ,cs0) , then

‖LA‖χ = limsup
n→∞

(
∞

∑
k=0

∣∣∣∣∣
n

∑
m=0

ãmk

∣∣∣∣∣
)

and

LA is compact if and only if lim
n→∞

(
∞

∑
k=0

∣∣∣∣∣
n

∑
m=0

ãmk

∣∣∣∣∣
)

= 0.

(b) If A ∈ (cλ0 ,cs) , then

1
2
· limsup

n→∞

(
∞

∑
k=0

∣∣∣∣∣
n

∑
m=0

ãmk − b̃k

∣∣∣∣∣
)

� ‖LA‖χ � limsup
n→∞

(
∞

∑
k=0

∣∣∣∣∣
n

∑
m=0

ãmk − b̃k

∣∣∣∣∣
)

and

LA is compact if and only if lim
n→∞

(
∞

∑
k=0

∣∣∣∣∣
n

∑
m=0

ãmk − b̃k

∣∣∣∣∣
)

= 0,

where b̃k = limn→∞ (∑n
m=0 ãmk) for all k ∈ N .

(c) If either A ∈ (cλ0 ,bs) or A ∈ (�λ∞,bs) , then

0 � ‖LA‖χ � limsup
n→∞

(
∞

∑
k=0

∣∣∣∣∣
n

∑
m=0

ãmk

∣∣∣∣∣
)

and

LA is compact if lim
n→∞

(
∞

∑
k=0

∣∣∣∣∣
n

∑
m=0

ãmk

∣∣∣∣∣
)

= 0.
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