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HYPERINVARIANT SUBSPACES FOR

OPERATORS HAVING A NORMAL PART

HYOUNG JOON KIM

(Communicated by H. Radjavi)

Abstract. Let T be a nonscalar operator of the form
(

A ∗
0 B

)
. It is well known ([5], [6]) that if

both A and B are normal operators, then T has a nontrivial hyperinvariant subspace. In this
paper, it is shown that if A is a nonscalar normal operator, then either

(
A C
0 B

)
or

(
A 0
D B

)
has a

nontrivial hyperinvariant subspace.

1. Introduction

Let H be a separable infinite dimensional complex Hilbert space and L (H)
be the algebra of all bounded linear operators acting on H . The commutant of T ,
denoted by {T}′ , is the algebra of all operators X in L (H) such that XT = TX . A
subspace M ⊂ H is called a nontrivial hyperinvariant subspace for T if {0} �= M �= H
and XM ⊆ M for each X ∈ {T}′ . In particular, if TM ⊆ M , then the subspace M
is called a nontrivial invariant subspace for T . The hyperinvariant subspace problem
is the question of whether every operator in L (H)\C has a nontrivial hyperinvariant
subspace. An operator T ∈ L (H) is called normal if T ∗T = TT ∗ . It is well known
that every normal operator in a Hilbert space has a nontrivial hyperinvariant subspace.
Moreover, [3, Theorem 1.4] says that if T = A⊕B , where A is normal, then T has a
nontrivial hyperinvariant subspace.

Now, let T ∈ L (H) be an operator which has a normal part, that is, T is an

operator of the form

(
A C
0 B

)
, where A is a normal operator. In this paper we examine

the following question.

Does T have a nontrivial hyperinvariant subspace if C is nonzero ? (1)

In 1971, H. Radjavi and P. Rosenthal [5], [6] showed that the answer of the ques-
tion (1) is true if B is also normal. Moreover, in 1972, R.G. Douglas and C. Pearcy [3]
showed that if A and B are similar, then T has a nontrivial hyperinvariant subspace.

In Section 2, we show that if the spectrum of B does not contain the spectrum
of A , then the answer of the above question (1) is affirmative and that consider the
notion of extremal vectors and introduce some lemmas. In Section 3, we show that if
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A is normal, then either

(
A C
0 B

)
or

(
A 0
D B

)
has a nontrivial hyperinvariant subspace

and then provide a sufficient condition and a nontrivial example that the answer of the
above question (1) is affirmative.

2. Normal operators and extremal vectors

We first introduce a result due to H. Radjavi and P. Rosenthal.

THEOREM 2.1. ([5], [6, Theorem 6.22]) Let T be an operator in the upper tri-
angular form

T :=

⎛
⎜⎜⎜⎝

A11 ∗ · · · ∗
0 ∗ · · · ∗
...
0 0 Ann

⎞
⎟⎟⎟⎠ ,

where the spectra of A11 and Ann are disjoint, then T has a nontrivial hyperinvariant
subspace.

Let T ∈ L (H) be an operator of the form

(
A C
0 B

)
M
M⊥ , where A is a normal op-

erator. To find a nontrivial hyperinvariant subspace, we can assume that A is nonscalar,
since every eigenspace of A is a nontrivial hyperinvariant subspace. Denote by σ(T )
the spectrum of T . By Theorem 2.1, if σ(A)∩σ(B) = /0 , then T has a nontrivial hy-
perinvariant subspace. The following corollary is a sufficient condition of the question
(1) introduced by H. Radjavi and P. Rosenthal ([6]).

COROLLARY 2.2. ([6, Corollary 6.23]) With the above notation, if B is normal
then T has a nontrivial hyperinvariant subspace.

Let A ∈ L (M) be a normal operator. Then there exists a unique spectral measure
E on the Borel subsets of σ(A) such that

A =
∫

zdE(z).

If G is a nonempty relatively open subset of σ(A) , then N := E(G)M is a nontrivial
reducing subspace for A . Let A′ := A|N . Then A′ is also normal and the spectrum of
A′ is contained in G . Therefore we have:

PROPOSITION 2.3. With the above notation, if σ(A) � σ(B) , then T has a non-
trivial hyperinvariant subspace.

Proof. Choose a vector x0 in σ(A)\σ(B) . Then since σ(B) is closed, there exists
an open set S containing x0 such that S and σ(B) are disjoint. Since G := S∩σ(A)
is relatively open and nonempty, N := E(G)M is a nontrivial reducing subspace for A .
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Write A1 := A|N and A2 := A|N⊥ . Then we can write A = A1⊕A2 satisfying σ(A1) =
G and σ(B) are disjoint. Therefore T has a nontrivial hyperinvariant subspace by
Theorem 2.1. �

An operator T is called a normaloid operator if r(T ) = ‖T‖ , where r(T ) is the
spectral radius of T . The typical example of normaloid operators is a normal operator.
Proposition 2.3 gives the following corollary.

COROLLARY 2.4. With the above notation, if either B is compact or ‖B‖< ‖A‖ ,
then T has a nontrivial hyperinvariant subspace.

Proof. First, suppose B is compact. Since every eigenspace of B is a hyperin-
variant subspace, we can assume that B is a quasinilpotent operator, i.e., σ(B) = {0} .
Since A is nonzero and normal, we have r(A) = ‖A‖> 0 = r(B) . If instead ‖B‖< ‖A‖ ,
then r(B) � ‖B‖ < ‖A‖ = r(A) . Since the fact r(B) < r(A) implies σ(A) � σ(B) , T
has a nontrivial hyperinvariant subspace by Proposition 2.3. �

Before we proceed, we introduce the notion of extremal vectors by P. Enflo [1].
Assume that T has dense range. Choose a unit vector x0 ∈ H and 0 < ε < 1. If
F = {y ∈ H : ‖Ty− x0‖ � ε} , then F is a nonempty, norm closed and convex set. So
there exists a unique minimal vector y0 = y0(x0,ε) ∈F . We say that y0 is the extremal
(minimal) vector for T,x0,ε . In this case, ‖Ty0− x0‖ = ε . In [1], Enflo established an
important equation on extremal vectors called “Orthogonality Equation”

LEMMA 2.5. (Orthogonality equation) If y0 is the extremal vector for T,x0,ε ,
then

T ∗(x0 −Ty0) = δy0, for some δ > 0.

Moreover, by the minimality of extremal vectors, it is easy to show that

‖x0‖(‖x0‖− ε) < 〈Ty0,x0〉 � ‖x0‖2− ε2 (2)

Let yn be the extremal vector for Tn,x0,ε . Then since the sequence {Tnyn} is uni-
formly bounded, it follows from (2) that there exists a subsequence of {Tnyn} , which
converges to a nonzero vector weakly. In particular, if T is a normal operator, then the
sequence {Tnyn} converges in norm.

LEMMA 2.6. ([2, Proposition 2.1]) Let T ∈ L (H) be a normal operator with
dense range. For each x0 ∈ H and ε , let yn be the extremal vector for Tn,x0,ε . Then
the sequence {Tnyn} converges in norm.

The following lemmas are needed to show the main result in next section.

LEMMA 2.7. ([4, Lemma 3.3]) Let x0 ∈ M ⊆ H and y0 be the extremal vector
for T,x0,ε . If M reduces T , then y0 ∈ M.
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LEMMA 2.8. Let y0 be the extremal vector for T,x0,ε . Then

‖y0‖ >
‖x0‖(‖x0‖− ε)

‖T ∗x0‖ � ‖x0‖− ε
‖T‖

Proof. Immediate from the first inequality of (2). �
For given r > 0, we will denote Dr by an open disk of radius r centered at zero

throughout this paper. Then we have:

LEMMA 2.9. Let T ∈ L (H) be a normal operator. If σ(T )∩Dr = /0 for some
r > 0 , then ‖T−1‖ � 1

r , so that ‖Tx‖ � r‖x‖ for all x ∈ H .

Proof. By the spectral mapping theorem, σ(T−1) = { 1
λ : λ ∈ σ(T )} , so that

r(T−1) � 1
r . Moreover since T−1 is also normal, it follows that ‖T−1‖= r(T−1) � 1

r .
Therefore for each x ∈ H , ‖Tx‖ � r‖T−1‖‖Tx‖ � r‖T−1Tx‖ = r‖x‖ . �

3. Operators having a normal part

Our main result is as follows:

THEOREM 3.1. Suppose M is a nontrivial subspace of H . Let A ∈ L (M) and

B ∈ L (M⊥) . If A is a nonscalar normal operator, then either

(
A C
0 B

)
or

(
A 0
D B

)
has

a nontrivial hyperinvariant subspace.

Proof. Since every eigenspace of an operator is clearly a nontrivial hyperinvariant
subspace, we can assume that both A and B have dense ranges. Since the spectrum of
A is not singleton, by translation and scalar multiplication, we can assume that A is not
invertible and ‖A‖ = r(A) > 1. Choose a unit vector x1 ∈ M⊥ , and 0 < ε < 1. Let zn

be the extremal vector for Bn,x1,ε . There are two cases to consider.

(Case 1) There exists c > 0 such that ‖zn‖ � c for all n .
Since A is not invertible, it follows that G := Dr ∩ σ(A) for some 0 < r < 1 is a
nonempty proper subset of σ(A) . Hence N := E(G)M is a nontrivial reducing sub-
space for A by the spectral theorem of normal operators. Write A1 := A|N and A2 :=
A|N⊥ . Then we can write A = A1⊕A2 , where σ(A1)⊆ Dr . Moreover, since A1 is also
normal, it follows that ‖A1‖ = r(A1) � r . Choose a unit vector x0 ∈ N , and 0 < ε < 1.
Let yn be the extremal vector for An,x0,ε . By Lemma 2.7 we have yn ∈ N for each n .
Indeed, yn is the minimal vector satisfying

‖An
1yn − x0‖ = ε,

so that yn is also the extremal vector for An
1,x0,ε by the uniqueness of the extremal

vector. We now claim

lim
n→∞

‖zn‖
‖yn‖ = 0. (3)
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Indeed, by Lemma 2.8, we have

‖yn‖ >
1− ε
‖An

1‖
� 1− ε

rn .

Therefore ‖zn‖
‖yn‖ < Krn, K =

c
1− ε

,

so that the sequence { ‖zn‖
‖yn‖} converges to zero as n → ∞ . By Lemma 2.6 the sequence

{Anyn} converges to t0 in norm. Choose a subsequence {nk} such that {Bnkznk} con-
verges to s0 weakly. Then by the inequality (2), we can easily show that s0 and t0 are

nonzero. Write sk := Bnkznk ∈M⊥ , tk := Ankynk ∈ M and T :=
(

A 0
D B

)
. We now claim

that
〈Xsk,x0− tk〉 → 0 for each contraction X ∈ {T}′. (4)

Let
Xznk := αkynk +ωk, where ωk ⊥ ynk .

Then
‖znk‖2 � |αk|2‖ynk‖2 +‖ωk‖2,

which gives

|αk| � ‖znk‖
‖ynk‖

→ 0 (5)

by (3). On the other hand,

〈Xsk,x0 − tk〉 = 〈αkynk ,T
∗nk(x0 − tk)〉+ 〈ωk,T

∗nk(x0− tk)〉.
By the orthogonality equation in Lemma 2.5, we have T ∗nk(x0 − tk) = A∗nk(x0 − tk) =
δnkynk for some δnk > 0, and hence 〈ωk,T ∗nk(x0− tk)〉 = 0. Therefore

〈Xsk,x0− tk〉 = 〈αkynk ,T
∗nk(x0− tk)〉 = αk〈Ankynk ,x0 − tk〉.

But since ‖Ankynk‖ < 1 and ‖x0− tk‖ = ε , it follows from (5) that

|〈Xsk,x0 − tk〉| � ε|α| → 0

which proves (4). Moreover, since tk = Ankynk → t0 in norm, the sequence {x0 − tk}
converges to x0− t0 in norm. Then by (4) we have

〈Xs0,x0− t0〉 = 0 for all X ∈ {T}′.
Note that x0− t0 is a nonzero vector. Indeed, we obtain

ε2 = ‖x0− tk‖2 = 〈x0,x0 − tk〉− 〈tk,x0− tk〉,
so that 〈x0,x0− tk〉= ε2 +δnk‖ynk‖2 > 0 for each k . Also, since s0 is a nonzero vector,

L ≡ cl{T}′s0 is a nontrivial hyperinvariant subspace for T =
(

A 0
D B

)
.
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(Case 2) There exists a subsequence {n j} such that

‖zn j‖→ ∞. (6)

Since A is a normaloid operator, that is, r(A) = ‖A‖ > 1, it follows that σ(A)\D is
nonempty. For given z∈σ(A)\D , let Δ be an open disk of radius r = |z|−1 centered at
z . Then S := Δ∩σ(A) is a nonempty proper subset of σ(A) such that S∩D = /0 . Since
N′ := E(S)M is also a nontrivial reducing subspace for A , we can write A3 := A|N′ and
A4 := A|(N′)⊥ . Then A3 is also normal and σ(A3)∩D = /0 . Choose a unit vector
x0 ∈ N′ , and 0 < ε < 1. Let yn be the extremal vector for An,x0,ε . By the same
argument in (Case 1), yn is also the extremal vector for An

3,x0,ε . Since D = D1 , it
follows from Lemma 2.9 that

‖yn‖ � ‖A3yn‖ � · · · � ‖An
3yn‖ < 1.

Therefore by (6) we have

lim
j→∞

‖yn j‖
‖zn j‖

= 0.

Choose a subsequence {n jk} of {n j} such that {Bnjk zn jk
} converges to nonzero s0

weakly. Write sk := Anjk yn jk
∈ M , tk := Bnjk zn jk

∈ M⊥ and T :=
(

A C
0 B

)
. Then by

Theorem 2.6 the sequence {sk} converges to nonzero t0 in norm. By the same argu-
ment in (Case 1) we have

〈Xsk,x1− tk〉 → 0 for each contraction X ∈ {T}′. (7)

Since the sequence {sk} converges in norm and x1− t0 is nonzero, it follows from (7)
that

〈Xs0,x1 − t0〉 = 0.

Since s0 is a nonzero vector, L ≡ cl{T}′s0 is a nontrivial hyperinvariant subspace for

T =
(

A C
0 B

)
. This completes the proof. �

In Theorem 3.1, the “nonscalar” of A is a condition only to avoid a trivial case.
Indeed, if A = B = αI for some α > 0 and C = D = 0, then the operator matices
are a scalar operator αI which has no nontrivial hyperinvariant subspace. Now, the
following corollaries give partial solutions of the question (1).

COROLLARY 3.2. Let T be a nonscalar operator of the form

(
A ∗
0 B

)
, where A

is a normal operator with ‖A‖ > 1 . If there exists a subsequence {nk} such that the
sequence {‖B∗nkx0‖} is uniformly bounded for some unit vector x0 ∈ M⊥ , then T has
a nontrivial hyperinvariant subspace.
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Proof. To avoid the trivial case, we assume that T is injective and has dense range.
Then both A and B have dense ranges since A is normal. Since r(A) = ‖A‖ > 1, it
follows that σ(A)\Dr is nonempty for some 1 < r < ‖A‖ . For given λ ∈ σ(A)\Dr , let
Δ be an open disk of radius |λ |− r centered at λ . Then S := Δ∩σ(A) is a nonempty
proper subset of σ(A) such that S∩Dr = /0 . Write N := E(S)M and A′ := A|N . Then
A′ is also normal and σ(A′)∩Dr = /0 . Choose a unit vector x1 ∈ N , and 0 < ε < 1.
Let yn be the extremal vector for An,x1,ε . By the same argument as (Case 2) of proof
in Theorem 3.1, it follows from Lemma 2.9 that

‖yn‖ � 1
r
‖A′yn‖ � 1

r2 ‖A′2yn‖ � · · · � 1
rn ‖A′nyn‖ <

1
rn , r > 1. (8)

On the other hand, let zn be the extremal vector for Bn,x0,ε . Since {‖B∗nkx0‖} is
uniformly bounded, it follows from Lemma 2.8 that

‖znk‖ >
1− ε

‖B∗nkx0‖ � (1− ε)K (9)

for some K > 0. Therefore by (8) and (9) we have

lim
k→∞

‖ynk‖
‖znk‖

= 0.

Then by the same argument as (Case 2) of proof in Theorem 3.1, L ≡ cl{T}′s0 is a

nontrivial hyperinvariant subspace for T =
(

A ∗
0 B

)
. �

Here we note that if ‖B‖� 1, then T has a nontrivial hyperinvariant subspace, but
σ(A) � σ(B) so that this condition satisfies the hypothesis of Proposition 2.3. In this
viewpoint, it is interesting to find an example of the case of σ(A)⊆σ(B) . We conclude
the paper with giving a nontrivial example which Corollary 3.2 can be applied.

EXAMPLE 3.3. Let A be a normal operator with ‖A‖ = 3
2 . Define a bilateral

sequence {αn} by

αn :=
{

1
n if n > 0
2 if n � 0.

Let B be a bilateral weighted shift defined by the equation Ben =αnen−1 (n∈Z) , where
{en} is the orthonormal basis of H := �2(Z) . We now claim σ(A)⊆ σ(B) . Indeed, for
each n ,

‖Bn‖ = sup
l

∣∣∣ n

∏
i=1

αl+i

∣∣∣ = 2n, (10)

so that B is bounded and r(B) = lim‖Bn‖ 1
n = 2. Moreover, since the bilateral sequence

{αn} converges to 0 as n→∞ and 2 as n→−∞ , thus σ(B) = D2 . On the other hand,
r(A) = ‖A‖= 3

2 which implies σ(A)⊆D 3
2
, and so σ(A)⊆ σ(B) . By a straightforward

calculation, we have for each n ,

‖Bne0‖ =
1
n!

� 1.
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This implies operators A and B satisfy the hypothesis in Corollary 3.2, and hence every

nonscalar operator of this form

(
A ∗
0 B

)
has a nontrivial hyperinvariant subspace.
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