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SELF–INVERSIVE MATRIX POLYNOMIALS WITH

SEMISIMPLE SPECTRUM ON THE UNIT CIRCLE
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Abstract. The spectrum of a class of self-inversive matrix polynomials is studied. It is shown
that the characteristic values are semisimple and lie on the unit circle if the inner radius of an
associated matrix polynomial is greater than 1 .

1. Introduction

The starting point of our paper is the following Eneström-Kakeya type theorem
on self-inversive polynomials. It has an application in the theory of extremal self-dual
codes [7].

THEOREM 1.1. Let

f (z) = a0 +a1z+ · · ·+akz
k +akz

m−k + · · ·+a1z
m−1 +a0z

m

be a real polynomial with m > 2k and

a0 > a1 > · · · > ak > 0.

Then the zeros of f (z) lie on the unit circle.

In this note we deal with matrix polynomials. Let

P(z) = A0 +A1z+ · · ·+Akz
k ∈ C

n×n[z] (1.1)

be nonsingular (i.e. detP(z) �= zero polynomial). We say that λ is a characteristic
value of P(z) if detP(λ ) = 0, and we call

σ(P) = {λ ∈ C; detP(λ ) = 0}
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the spectrum of P(z) . A characteristic value λ is said to be normal if

P(λ )y = 0 ⇔ y∗P(λ ) = 0,

y ∈ Cn . Moreover, λ is called semisimple if the corresponding elementary divisors are
linear. Let

W (P) = {λ ; v∗P(λ )v = 0 for some v ∈ C
n, v �= 0}

be the numerical range of P(z) . Then W (P) is closed [17] and σ(P) ⊆ W (P) . The
number

ri(P) = min{|λ |; λ ∈W (P)}
is the inner radius of P(z) . Let D = {λ ; |λ |< 1} and ∂D = {λ ; |λ |= 1} be the open
unit disc and the unit circle.

A generalization of Theorem 1.1 to matrix polynomials is part (i) of the following
proposition.

PROPOSITION 1.2. Let the coefficients A0, . . . ,Ak of the matrix polynomial

F(z) = A0 +A1z+ · · ·+Akz
k +Akz

m−k + · · ·+A1z
m−1 +A0z

m, (1.2)

m > 2k , be hermitian n×n matrices satisfying

A0 > A1 > · · · > Ak > 0. (1.3)

(i) Then the spectrum of F(z) lies on the unit circle. (ii) All characteristic values of
F(z) are normal and semisimple.

The preceding proposition follows from a general result on self-inversive matrix
polynomials, which we state as Theorem 1.3 below and which is our main result. We
adapt a definition of Marden [21], Sheil–Small [26] and Rahman and Schmeisser [23]
from complex polynomials to matrix polynomials and say that

F(z) = F0 +F1z+ · · ·+Fm−1z
m−1 +Fmzm ∈ C

n×n[z] (1.4)

with F0 �= 0, Fm �= 0, is γ -self-inversive if

F(z) = γ
(
F∗

m +F∗
m−1z+ · · ·+F∗

1 zm−1 +F∗
0 zm)

and |γ| = 1.

To F(z) in (1.4) we associate the conjugate-reverse matrix polynomial

F̂(z) = F∗
m + · · ·+F∗

1 zm−1 +F∗
0 zm. (1.5)

Thus, F(z) is γ -self-inversive if F(z) = γF̂(z) .

THEOREM 1.3. Let P(z) =∑k
j=0 Ajz j ∈ Cn×n[z] be given with Ak �= 0 , A0 �= 0 . If

|γ| = 1 and r � 0 then
F(z) = P(z)+ γzrP̂(z)



SELF-INVERSIVE MATRIX POLYNOMIALS 497

is γ -self-inversive.
(i) If ri(P) � 1 , i.e.

W (P) ⊆ {λ ; |λ | � 1}, (1.6)

then
σ(F) ⊆W (F) ⊆ ∂D, (1.7)

and the characteristic values of F(z) are normal.
(ii) If ri(P) > 1 then the characteristic values of F(z) lie on the unit circle, and

they are normal and semisimple.

The proofs of Proposition 1.2 and Theorem 1.3 will be given in Section 4. They
require a lower bound for the inner radius ri(P) in Section 2 and an auxiliary result on
polynomials in Section 3.

Self-inversive polynomials and matrix polynomials can be found in the literature
under various names including reciprocal [15], self-reciprocal [7], palindromic [30] and
conjugate symmetric [3]. To place our results in a wider context we indicate some of
the recent work in that area. We note that self-inversive polynomials have applications
in numerous areas of engineering. They appear in optimal design of problems governed
by hyperbolic field equations [30], in the study of line spectral pairs in speech coding
[28, Chapter 9.11], in kernel representations of time-reversible systems [22]. Moreover,
such polynomials are used in applied mathematics to deal with stability of periodic or-
bits of autonomous Hamiltonian systems [27, p. 159], and to investigate Lie algebras
for semisimple hypersurface singularities [13]. Self-inversive polynomials with ran-
dom coefficients were studied in the context of quantum chaotic dynamics in [4]. For
many purposes (see e.g. [29, p. 108], [7], [13], [15]), [16]) a subclass of self-inversive
polynomials is important, namely those polynomials which have all zeros on the unit
circle. The study of self-inversive matrix polynomials started with [18]. An interest-
ing example pointed out in [18] is the vibration analysis of railway tracks [11]. Ma-
trix polynomials with self-inversive structure also arise in the solution of discrete-time
linear-quadratic optimal control problems [6]. The papers [20], [1], [14], [19], [12]
are concerned with Smith forms, and computational and algorithmic aspects of self-
inversive matrix polynomials. Self-inversive systems of linear difference equations of
the form (

c 0
0 d

)
x(t +2)−b

(
1 1
1 1

)
x(t +1)+

(
c 0
0 d

)
x(t) = 0, (1.8)

with c,d ∈ C , b ∈ R , arise in the study of discretization schemes for the cubic Schrö-
dinger equation [8, Section 2.2]. First order systems

A∗x(t +1)+Ax(t) = 0 (1.9)

with bounded (and stably bounded) solutions were investigated in [24]. It is known [10]
that stability properties of (1.8) or (1.9) are determined by the characteristic values of
the corresponding matrix polynomials

F(z) =
(

c 0
0 d

)
−b

(
1 1
1 1

)
z+

(
c 0
0 d

)
z2,
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or F(z) = A+A∗z , respectively. In particular, all solutions are bounded if and only if
the spectrum of F(z) lies on the unit circle and the characteristic values are semisim-
ple. In a subsequent paper we study self-inversive difference equations, in particular
generalizations of equations of type (1.8). At this point let us only mention a stability
result which is an immediate consequence of Proposition 1.2.

PROPOSITION 1.4. Let A0,A1, . . . ,Ak be hermitian n×n matrices. Suppose A0 >
A1 > · · · > Ak > 0 . Then the solution x(t) of the difference equation

A0x(t +m)+A1x(t +m−1)+ · · ·+Akx(t +m− k)+
Akx(t + k)+ · · ·+A1x(t +1)+A0x(t) = 0, m > 2k, (1.10)

with initial conditions x(0) = x0, . . . ,x(m− 1) = xm−1 , is bounded for t → ∞ and
t →−∞ .

2. A lower bound for the inner radius

The Eneström–Kakeya theorem is frequently stated in the following form (due in
fact to Eneström).

LEMMA 2.1. (see e.g. [5, p. 12]) Let p(z) = a0 +a1z+ · · ·+akzk be a real poly-
nomial with positive coefficients. Set

α(p) = min
0� j�k−1

(a j/a j+1), β (p) = max
0� j�k−1

(a j/a j+1).

Then the zeros λ of p(z) satisfy

α(p) � |λ | � β (p).

If all eigenvalues of a matrix M ∈ Cn×n are real then λmin(M) shall denote the
smallest eigenvalue of M . Let A and Ã be positive definite n×n matrices. If v ∈ Cn ,
v �= 0, then

v∗Ãv
v∗Av

=
v∗A1/2

(
A−1/2ÃA−1/2

)
A1/2v

v∗A1/2A1/2v
� min

w∈Cn,w �=0

w∗(A−1/2ÃA−1/2
)
w

w∗w
= λmin

(
A−1/2ÃA−1/2) = λmin

(
ÃA−1). (2.1)

In [9, Theorem 2.6] we have a result which extends Lemma 2.1 to matrix polyno-
mials. It is related to the following.

THEOREM 2.2. Let the coefficients A j , j = 0, . . . ,k , of P(z) =∑k
j=0 Ajz j be her-

mitian and positive definite. Set

μ(P) = min
{
λmin(AjA

−1
j+1); j = 0, . . . ,k−1

}
.

Then ri(P) � μ(P) .
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Proof. Let v ∈ Cn , v �= 0. Set pv(z) = v∗P(z)v . Then (2.1) implies

α(pv) = min
0� j�k−1

v∗Ajv

v∗Aj+1v
� min

0� j�k−1
λmin

(
AjA

−1
j+1

)
= μ(P).

Hence, if λ ∈W (P) and pv(λ ) = 0 then μ(P) � α(pv) � |λ | , and therefore μ(P) �
ri(P) . �

COROLLARY 2.3. If A0 > A1 > · · · > Ak > 0 then ri(P) > 1 .

Proof. If Aj > Aj+1 then A−1/2
j+1 AjA

−1/2
j+1 > I . Hence λmin(AjA

−1
j+1) > 1, and

therefore μ(P) > 1. �

3. A theorem of Schur

Let p(z) = a0 +a1z+ · · ·+akzk be a complex polynomial with ak �= 0, a0 �= 0.
In accordance with definition (1.5) we set

p̂(z) = ak + · · ·+a1z
k−1 +a0z

k.

If p(z) = c(z−ω1) · · · (z−ωk) then

p̂(z) = c(−1)kω1 · · ·ωk

(
z− 1

ω1

)
· · ·

(
z− 1

ωk

)
.

Let r � 0 and |γ| = 1. Set

q(z) = γ zr p̂(z) and f (z) = p(z)+q(z).

Then f (z) = γ f̂ (z) . Thus we have f (ε) = 0 if and only if f (ε−1) = 0. To obtain
information on zeros of f (z) we consider the Blaschke product

g(z) =
q(z)
p(z)

= γ cc−1 zr
k

∏
j=1

1− zω j

z−ω j
.

Set

b(ω) =
1− zω
z−ω

.

LEMMA 3.1. If |z| < 1 then

|ω | > 1 ⇔ |b(ω)| < 1, (3.1)

and |ω | = 1 ⇔ |b(ω)| = 1 .
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Proof. The identity |1− zω|2−|z−ω |2 = (1−|z|2)(1−|ω |2) yields

|b(ω)|2−1 =
1−|z|2
|z−ω |2 (1−|ω |2).

Hence sgn(|b(ω)|2 −1) = sgn(1−|ω |2) , if |z| < 1. �

We extend a result of Schur [25, XII].

THEOREM 3.2. (i) If the zeros ω j of p(z) satisfy |ω j|� 1 , j = 1, . . . ,k , then the
zeros of f (z) = p(z)+ γ zr p̂(z) lie on the unit circle.
(ii) If

|ω j| > 1, j = 1, . . . ,k, (3.2)

then all zeros of f (z) are distinct.

Proof. (i) Suppose |ω j| = 1, j = 1, . . . ,k . Then

p̂(z) = cc−1(−1)kω1 · · ·ωk p(z),

and f (z) = (1 + τzr) p(z) for some |τ| = 1. Hence all zeros of f (z) have absolute
value 1. Now, suppose |ω j| > 1 for some j . Let us show that f (z) �= 0 if z ∈ D . If
|z| < 1 then (3.1) implies |g(z)| < 1. Hence |q(z)| < |p(z)| , and therefore

| f (z)| = |p(z)+q(z)| �
∣∣∣|p(z)|− |q(z)|

∣∣∣ > 0.

Let f (ε) = 0. It is impossible that |ε| > 1. Otherwise we would have f (ε−1) = 0 and
|ε−1| < 1. Thus we obtain |ε| = 1 if f (ε) = 0.

(ii) Let f (ε) = 0. Then |ε| = 1. The assumption (3.2) implies p(ε) �= 0. Then
p(ε) = −q(ε) yields

f ′(ε)
p(ε)

=
p′(ε)
p(ε)

− q′(ε)
q(ε)

=
k

∑
j=1

1
ε−ω j

−
k

∑
j=1

1

ε−ω−1
j

− r
ε

=
k

∑
j=1

|ω j|2 −1
|ε−ω j|2(−ε) −

r
ε

= −ε−1 (s+ r),

where s =∑k
j=1(|ω j|2−1)|ε−ω j|−2 . Condition (3.2) implies s > 0. Hence f ′(ε) �= 0,

and therefore the zeros of f (z) are simple. �

4. Proofs

We show first that the unimodular characteristic values of self-inversive matrix
polynomials are normal, but not necessarily semisimple.

LEMMA 4.1. Let F(z) ∈ Cn×n[z] be self-inversive. Then the characteristic values
of F(z) on the unit circle are normal.
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Proof. Suppose F(z) = ∑m
i=0 Fizi , Fm �= 0. Let λ ∈ σ(F) , |λ | = 1, and F(λ )v =

0, v �= 0. Then

0 = v∗F(λ )∗ = γλ−mv∗
[
γ (F∗

m +F∗
m−1λ + · · ·+F∗

0 λ
m
)
]
= γλ−mv∗γ F̂(λ )

= γλ−mv∗F(λ ).

Therefore F(λ )v = 0 is equivalent to v∗F(λ ) = 0, and λ is normal. �

EXAMPLE 4.2. The linear pencil

F(z) =

⎛
⎜⎜⎝

0 0 1+ z 1
0 0 0 1+ z

1+ z 0 0 0
z 1+ z 0 0

⎞
⎟⎟⎠

is self-inversive. We have σ(F) = {−1} and

KerF(−1) = span{(0,1,0,0)T ,(0,0,1,0)T} = KerF(−1)∗.

The Smith form of F(z) is diag
(
(1+ z)2,(1+ z)2,1,1

)
. Hence −1 ∈ σ(F)∩ ∂D is

not semisimple.

Proof of Theorem 1.3. (i) Let λ ∈W (F) and v∗F(λ )v = 0, v �= 0. Set

pv(z) = v∗P(z)v and fv(z) = v∗F(z)v.

Then fv(z) = pv(z)+γzr p̂v(z) . The assumption (1.6) implies that |ω |� 1 if pv(ω) =
0. Hence Theorem 3.2(i) yields λ ∈ ∂D , and we obtain (1.7). Let λ ∈ σ(F) . Then
(1.7) implies |λ | = 1. Hence λ is normal (by Lemma 4.1).

(ii) Suppose λ ∈ σ(F) is not semisimple. Then (see e.g. [2], [10]) there exists a
corresponding Jordan chain of length 2. That is, F(λ )v = 0, v �= 0, and

F ′(λ )v+F(λ )w = 0, (4.1)

for some v,w ∈ Cn . Consider the polynomial pv(z) = v∗F(z)v . Now the stronger
assumption ri > 1 implies |ω | > 1 if pv(ω) = 0. Therefore (by Theorem 3.2(ii))
all zeros of fv(z) = v∗F(z)v are simple. We know that λ is a normal characteristic
value. Hence v∗F(λ ) = 0. Then (4.1) yields f ′v(λ ) = v∗F ′(λ )v = 0, and λ would be
a multiple zero of fv(z) , which is a contradiction. �

Proof of Proposition 1.2. We have F(z) = P(z)+ P̂(z) . The coefficients of P(z)
satisfy (1.3). From Corollary 2.3 we obtain ri(P) > 1. Thus we can apply The-
orem 1.3(ii). �
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