THE DENSITY OF THE RANGE OF $X \mapsto AX - XB$ WITH A, B^* *M*-HYPONORMALS

VASILE LAURIC

(Communicated by H. Bercovici)

Abstract. We extend a result of L. A. Fialkow concerning the density of the range and the injectivity of the operator $X \mapsto AX - XB$ with A, B^* *M*-hyponormal operators with no holes in the essential spectrum of negative Fredholm index.

1. Introduction

Let \mathscr{H} be a complex, separable, infinite dimensional Hilbert space, and let $\mathscr{L}(\mathscr{H})$ denote the algebra of all linear bounded operators on \mathscr{H} . For operators $A, B \in \mathscr{L}(\mathscr{H})$, let Δ_{AB} denote the (generalized) derivation associated with A and B, that is the linear operator defined on the Banach space $\mathscr{L}(\mathscr{H})$ by $\Delta_{AB}(X) = AX - XB$. For an operator $T \in \mathscr{L}(\mathscr{H})$, let $\sigma_p(T), \sigma_e(T), \sigma_{re}(T), \sigma_{le}(T)$ denote the *point spectrum, essential spectrum, right essential spectrum,* and *left essential spectrum,* respectively. We also denote by $(\mathscr{C}_p(\mathscr{H}), || \cdot ||_p), p \ge 1$ the Schatten p-class and by $\mathscr{C}_{00}(\mathscr{H})$ the set of finite rank operators.

The operator Δ_{AB} has been extensively studied by many authors, but we mention only just a few papers such as, Davis-Rosenthal [2], Bhatia-Rosenthal [1], L. Fialkow [3, 4, 5] in which the injectivity and the density of the range of Δ_{AB} have been studied. In [5], Fialkow established amongst other results the following.

THEOREM A ([5], Prop. 4.2). Let $A, B \in \mathscr{L}(\mathscr{H})$ be normal operators. The following are equivalent:

- (1) Δ_{AB} has dense range;
- (2) A and B satisfy [H₁]: $\sigma_{re}(A) \cap \sigma_{le}(B) = \emptyset$ & [H₂]: $\sigma_p(A^*)^* \cap \sigma_p(B) = \emptyset$;
- (3) If $Y \in \mathscr{L}(\mathscr{H})$ and $\varepsilon > 0$, then there exists $X \in \mathscr{L}(\mathscr{H})$ such that $Y \Delta_{AB}(X)$ belongs to $\mathscr{C}_{00}(\mathscr{H})$ and $||Y - \Delta_{AB}(X)||_1 < \varepsilon$.

In this case Δ_{AB} and Δ_{BA} are injective. Moreover, if $(\mathcal{J}, ||\cdot||_{\mathcal{J}})$ is a normed ideal, $Y \in \mathcal{J}$, and $\varepsilon > 0$, then there exists $X \in \mathcal{J}$ such that $Y - \Delta_{AB}(X) \in \mathscr{C}_{00}(\mathscr{H})$ and $||Y - \Delta_{AB}(X)||_{\mathscr{J}} < \varepsilon$.

The above theorem was proved by making use of a general characterization of the density of the range of Δ_{AB} , result that we will need to apply later.

© CENN, Zagreb Paper OaM-05-38

Mathematics subject classification (2010): 47B20.

Keywords and phrases: Generalized derivations, hyponormal operators, density of the range. This note is dedicated to the memory of my aunt, Leontina Mateiescu.

THEOREM B ([5], Theorem 1.1). Let $A, B \in \mathscr{L}(\mathscr{H})$. The following are equivalent:

- (1) Δ_{AB} has dense range;
- (2) A, B satisfy

 $[\mathbf{H}_1]: \ \boldsymbol{\sigma}_{re}(A) \cap \boldsymbol{\sigma}_{le}(B) = \emptyset \quad \& \quad [\mathbf{F}_0]: \ Ker(\Delta_{BA}) \cap \mathscr{C}_1(\mathscr{H}) \setminus \{\mathbf{0}\} = \emptyset.$

Spectral conditions $[H_1]$, $[H_2]$ were first introduced by D. Herrero who raised the question whether they are necessary and sufficient for the density of the range of a generalized derivation Δ_{AB} . In [5], Fialkow showed that these conditions are not sufficient by providing examples of operators that satisfy conditions $[H_1]$ and $[H_2]$, but which do not satisfy $[F_0]$. Since these conditions seem to have been used first time in [5], we denoted them by $[F_0]$ (in Theorem B) and $[F_1]$, $[F_2]$ (see Theorem 1 below), respectively.

2. The density of the range

It is the purpose of this note to extend the above result to a larger class of derivations Δ_{AB} in which A, B^* are *M*-hyponormal operators.

For an operator $T \in \mathscr{L}(\mathscr{H})$ and non-negative integers m, n, let

$$H_{m,n}(T) = \{\lambda \in \mathbb{C} \setminus \sigma_e(T) | \dim Ker(T-\lambda) = m \& \dim Ker(T^*-\overline{\lambda}) = n\},\$$

and let $H_{-}(T) = \bigcup_{m < n} H_{m,n}(T)$.

An operator $T \in \mathscr{L}(\mathscr{H})$ is *M*-hyponormal if there exists a positive number *m* such that

$$||(T - \lambda)^* x|| \leq m ||(T - \lambda)x||$$
, for all $x \in \mathscr{H}$ and all $\lambda \in \mathbb{C}$.

Let $H_M(\mathcal{H})$ denote the set of *M*-hyponormal operators in $\mathcal{L}(\mathcal{H})$ and let

$$H^0_M(\mathscr{H}) = \{T \in H_M(\mathscr{H})) \mid H_-(T) = \emptyset\}.$$

It is obvious that for $T \in H_M(\mathscr{H})$, dim $Ker(T - \lambda) \leq \dim Ker(T^* - \overline{\lambda})$, and that the hyponormal operators (i.e., $T^*T \geq TT^*$) are *M*-hyponormal with m = 1. Thus, $H^0_M(\mathscr{H})$ denotes the class of those *M*-hyponormal operators whose holes of the essential spectrum (if any) are associated with equally dimensional kernel and co-kernel.

In proving the main result (Theorem 1), we need the following lemmas.

LEMMA 1. If T is an M-hyponormal operator, then

(1)
$$\sigma_{le}(T) \subseteq \sigma_{re}(T)$$
, thus $\sigma_{e}(T) = \sigma_{re}(T)$, and

(2)
$$\sigma(T) = \sigma_p(T^*)^* \cup \sigma_{re}(T).$$

Proof. Let T be an M-hyponormal operator and let $\lambda \in \sigma_{le}(T)$. It is well known that $\lambda \in \sigma_{le}(T)$ is equivalent to the existence of an orthonormal sequence $\{f_n\}_n$ so

that $(T - \lambda)f_n \longrightarrow 0$ as $n \longrightarrow \infty$. Since *T* is *M*-hyponormal, then $(T - \lambda)^* f_n \longrightarrow 0$, that is $\overline{\lambda} \in \sigma_{le}(T^*)$, which is equivalent to $\lambda \in \sigma_{re}(T)$. To prove (2), first observe that the inclusion $\sigma(T) \supseteq \sigma_p(T^*)^* \cup \sigma_{re}(T)$ is obvious. If $\lambda \notin (\sigma_p(T^*)^* \cup \sigma_{re}(T))$, then according to the above $(T - \lambda)$ is a Fredholm operator. Since *T* is an *M*-hyponormal operator, dim $Ker(T - \lambda) \leq \dim Ker(T^* - \overline{\lambda})$, and since $\lambda \notin \sigma_p(T^*)^*$, $Ker(T - \lambda) = Ker(T - \lambda)^* = (0)$ and thus $T - \lambda$ is invertible. \Box

LEMMA 2. If $T \in H_M(\mathscr{H})$ and $\sigma_{le}(T)$ is an infinite set, then there is an orthonormal sequence $\{f_n\}_n$ so that $(T - \lambda_n)f_n \longrightarrow 0$ as $n \longrightarrow \infty$.

Proof. Let $\lambda_n \longrightarrow \lambda_0$ be a sequence with $\lambda_n \in \sigma_{le}(T)$. Since $\sigma_{le}(T)$ is a closed set, then $\lambda_0 \in \sigma_{le}(T)$ and thus there exists an orthonormal sequence $\{f_n\}_n$ such that $(T - \lambda_0)f_n \longrightarrow 0$, and therefore $(T - \lambda_n)f_n \longrightarrow 0$. \Box

THEOREM 1. Let $A, B^* \in H^0_M(\mathscr{H})$. Then the following are equivalent:

- (1) Δ_{AB} has dense range;
- (2) *A*, *B* satisfy the following four conditions:

$$\begin{split} & [\mathrm{H}_1]: \ \sigma_{re}(A) \cap \sigma_{le}(B) = \emptyset, \\ & [\mathrm{H}_2]: \ \sigma_p(A^*)^* \cap \sigma_p(B) = \emptyset, \\ & [\mathrm{F}_1]: \ \sigma_p(A^*)^* \cap \sigma_{le}(B) \ is \ a \ finite \ set, \\ & \& \\ & [\mathrm{F}_2]: \ \sigma_{re}(A) \cap \sigma_p(B) \ is \ a \ finite \ set; \end{split}$$

(3) If $Y \in \mathscr{L}(\mathscr{H})$ and $\varepsilon > 0$, then there exists $X \in \mathscr{L}(\mathscr{H})$ such that $Y - \Delta_{AB}(X) \in \mathscr{C}_{00}(\mathscr{H})$ and $||Y - \Delta_{AB}(X)||_1 < \varepsilon$.

In this case Δ_{AB} and Δ_{BA} are injective. Moreover, if $(\mathcal{J}, || \cdot ||_{\mathscr{J}})$ is a normed ideal, $Y \in \mathcal{J}$, and $\varepsilon > 0$, then there exists $X \in \mathcal{J}$ such that $Y - \Delta_{AB}(X) \in \mathscr{C}_{00}(\mathscr{H})$ and $||Y - \Delta_{AB}(X)||_{\mathscr{J}} < \varepsilon$.

The proof of Theorem 1 uses the same circle of ideas developed in [5] adjusted to the class of M-hyponormal operators, but first some remarks are in order.

REMARK 1. There exist operators $A, B^* \in H_M(\mathcal{H})$ that satisfy $[H_1], [H_2], [F_1], [F_2], and the range of <math>\Delta_{AB}$ is not dense.

Let A = U and $B^* = UD$, where U is the unilateral shift and D is a diagonal operator with diagonal entries $\{\alpha_n\}_n$ such that $|\alpha_n| \searrow 0$. It is well known (and easy to verify) that A, B^* are hyponormal operators and $\sigma_p(A^*) = \mathbb{D}$, $\sigma_{re}(A) = \mathbb{T}$, $\sigma_p(B) = \emptyset$, $\sigma_{le}(B) = \{0\}$, and consequently [H₁], [H₂], [F₁], [F₂] are all satisfied. On the other hand, let X be the rank-one projection on the first vector of the canonical basis with respect to which the U and D have their standard matrix representation. Then BX = XA = 0 and thus $X \in Ker(\Delta_{BA}) \cap \mathscr{C}_1(\mathscr{H}) \setminus \{0\}$, which according to Theorem B implies that the range of Δ_{AB} is not dense.

A natural question that arises is whether the set $H^0_M(\mathscr{H})$ contains anything else besides normal operators. Let $N(\mathscr{H})$ denote the set of all normal operators in $\mathscr{L}(\mathscr{H})$. Remark 2. $H^0_M(\mathscr{H}) \setminus N(\mathscr{H}) \neq \emptyset$.

Proof. Indeed, if Σ is a closed set of positive planar Lebesgue density at each point, that is, any nonempty intersection of an open disc and the set Σ has nonzero planar Lebesgue measure, then according to a result of Pincus [7] there exists a pure hyponormal operator of rank one self-commutator whose spectrum is the set Σ . Furthermore, if the set Σ is a "swiss-cheese" type of set (that is a planar Cantor set), then each point of the spectrum is an accumulation point of boundary points of the spectrum itself. Consequently, (cf [6]), the spectrum and the essential spectrum are equal sets, and therefore the arising hyponormal operator belongs to $H_1^0(\mathcal{H}) \setminus N(\mathcal{H})$.

Proof Theorem 1. First, we will prove implication " $(1) \Rightarrow (2)$ ". The density of the range of Δ_{AB} implies [H₁] according to Theorem B. To prove that [H₂] holds, assume that $\lambda \in \sigma_p(A^*)^* \cap \sigma_p(B)$, thus there are vectors $e, f \in \mathcal{H}$ with ||e|| = ||f|| = 1so that $(A^* - \overline{\lambda})e = 0$ and $(B - \lambda)f = 0$. Let $x, y \in \mathcal{H}$ be such that $Ae = \alpha e + x$, $B^*f = \beta f + y$, $\langle e, x \rangle = 0$, and $\langle f, y \rangle = 0$. Then $\alpha = \lambda = \overline{\beta}$. Define an operator X in $\mathscr{L}(\mathscr{H})$ by Xe = f and Xg = 0 for $\langle g, e \rangle = 0$. Then X is a nonzero trace-class operator that belongs to $Ker(\Delta_{BA})$, which, according to Theorem B, is a contradiction. Indeed, $XAe = X(\lambda e + x) = X(\lambda e) + 0 = \lambda Xe = \lambda f$ and $BXe = Bf = \lambda f$. On the other hand, if $\langle g, e \rangle = 0$, then BXg = 0 and XAg = 0 since $\langle Ag, e \rangle = \langle g, A^*e \rangle = \langle g, \overline{\lambda}e \rangle = 0$. To prove that [F₁] holds, assume that there exist a sequence of distinct values $\{\lambda_n\}_n$ in $\sigma_p(A^*)^* \cap \sigma_{le}(B)$. According to Lemma 2, there exists and orthonormal sequence $\{f_n\}_n$ so that $\alpha_n := ||(B - \lambda_n)f_n|| \to 0$. Since A is an M-hyponormal operator, $\sigma(A) =$ $\sigma_p(A^*)^* \cup \sigma_{re}(A)$ and since [H₁] holds, then $\{\lambda_n\} \subseteq \sigma_p(A^*)^* \setminus \sigma_{re}(A)$, that is $A - \sigma_p(A^*)^* \cup \sigma_{re}(A)$ λ_n is a Fredholm operator. Since $A \in H^0_M(\mathscr{H})$, each λ_n belongs to a hole $H_{k_n,k_n}(A)$ with $k_n > 0$. Thus, for each n, we can choose e_n of norm one so that $(A - \lambda_n)e_n =$ 0, and since A is M-hyponormal, then $(A^* - \overline{\lambda}_n)e_n = 0$, thus the sequence $\{e_n\}_n$ is orthonormal. We can now define an operator Y by $Y f_n = e_n$ for each n, and Y g =0 when $\langle g, f_n \rangle = 0$ for all n's. The operator Y satisfies $||Y - \Delta_{AB}(X)|| \ge 1$, which contradicts (1). Indeed,

$$||Y - \Delta_{AB}(X)|| \ge \sup_{n} ||Yf_{n} - (A - \lambda_{n})Xf_{n} + X(B - \lambda_{n})f_{n}|| \ge$$
$$\ge \sup_{n} (||e_{n} - (A - \lambda_{n})Xf_{n}|| - \alpha_{n}||X||)$$

and since

$$||e_n - (A - \lambda_n)f_n||^2 = 1 - 2\operatorname{Re}(\langle (A - \lambda_n)^*e_n, Xf_n \rangle) + ||(A - \lambda_n)Xf_n||^2 = 1 + ||(A - \lambda_n)Xf_n||^2 \ge 1,$$

the inequality above is proved. The implication of condition $[F_2]$ is similar to the above proof with the role of A replaced by B^* .

To prove implication "(2) \Rightarrow (3)", we use again the fact that for *M*-hyponormal operators *A* and *B*^{*}, $\sigma(A) = \sigma_p(A^*)^* \cup \sigma_{re}(A)$, $\sigma(B) = \sigma_p(B) \cup \sigma_{le}(B)$. Assume that $\sigma_p(A^*)^* \cap \sigma_{le}(B)$ is $\{\lambda_1, \ldots, \lambda_m\}$ and $\sigma_p(B) \cap \sigma_{re}(A)$ is $\{\mu_1, \ldots, \mu_n\}$. According to the

above spectral properties and since $\sigma_{re}(A) \cap \sigma_{le}(B) = \emptyset$ and $\sigma_p(A^*)^* \cap \sigma_p(B) = \emptyset$, we have

$$\{\lambda_1,\ldots,\lambda_m\}=(\sigma_p(A^*)^*\setminus\sigma_{re}(A))\cap(\sigma_{le}(B)\setminus\sigma_p(B))$$

and

$$\{\mu_1,\ldots,\mu_n\}=(\sigma_p(B)\setminus\sigma_{le}(B))\cap(\sigma_{re}(A)\setminus\sigma_p(A^*)^*).$$

Thus, $A - \lambda_i$ is a Fredholm operator, and since $A \in H^0_M(\mathscr{H})$, that is $H_-(A) = \emptyset$, dim $Ker(A - \lambda_i) = \dim Ker(A - \lambda_i)^* > 0$. The case $Ker(A - \lambda_i) = Ker(A - \lambda_i)^* =$ (0) is excluded since otherwise $A - \lambda_i$ is invertible. Similarly, dim $Ker(B^* - \overline{\mu}_i) =$ dim $Ker(B-\mu_j) > 0$, for all j = 1, ..., n. Let $\mathscr{H}_1 = \bigvee_{i=1}^m Ker(A-\lambda_i), \ \mathscr{H}_2 = \mathscr{H}_1^{\perp}$ and $\mathscr{K}_1 = \bigvee_{i=1}^n Ker(B^* - \overline{\mu}_i), \ \mathscr{K}_2 = \mathscr{K}_1^{\perp}$. Since a point $\lambda \in \sigma_p(A^*)^* \setminus \sigma_{re}(A)$ is an isolated point of $\sigma(A)$, then relative to the decomposition of $\mathscr{H} = \mathscr{H}_1 \oplus \mathscr{H}_2$, we can write $A = A_1 \oplus A_2$ with $\sigma(A_1) = \{\lambda_1, \dots, \lambda_m\}$ and $\sigma(A_2) = \sigma(A) \setminus \sigma(A_1)$. Similarly, relative to the decomposition $\mathscr{H} = \mathscr{K}_1 \oplus \mathscr{K}_2$, $B = B_1 \oplus B_2$ with $\sigma(B_1) = \{\mu_1, \dots, \mu_n\}$ and $\sigma(B_2) = \sigma(B) \setminus \sigma(B_1)$.

Let $Y \in \mathscr{L}(\mathscr{H})$ and $\varepsilon > 0$. The construction of an operator $X \in \mathscr{L}(\mathscr{H})$ so that $Y - \Delta_{AB}(X) \in \mathscr{C}_{00}(\mathscr{H})$ and $||Y - \Delta_{AB}(X)||_1 < \varepsilon$ is similar to that used in [5] and we include it here for reader's convenience. Let

$$\begin{pmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{pmatrix}$$

be the matrix representation of Y as an operator from $\mathscr{K}_1 \oplus \mathscr{K}_2$ into $\mathscr{H}_1 \oplus \mathscr{H}_2$. Since the pair of sets $\sigma(A_i)$, $\sigma(B_i)$ is disjoint, $\Delta_{A_iB_i}$ is an invertible operator, and thus there exists $X_{ii} \in \mathscr{L}(\mathscr{K}_i, \mathscr{H}_i)$ so that $Y_{ii} = \Delta_{A_iB_i}(X_{ii}), i = 1, 2$. To construct an operator X_{21} , let $\{f_1, \ldots, f_N\}$ be an orthonormal basis of \mathscr{K}_1 so that $B_1^* f_j = \overline{\mu}_i^k f_j$, $j = 1, \ldots, N$. Each $A_2 - \mu_i^k$ is invertible and thus it has dense range. Let $x_j \in \mathcal{H}_2$ so that

$$||(A-\mu_j^k)x_j-Y_{21}f_j|| < \frac{\varepsilon}{N}$$

Define $X_{21}: \mathscr{H}_1 \to \mathscr{H}_2$ by $X_{21}f_j = x_j, j = 1, \dots, N$. Thus

$$\begin{split} ||A_2X_{21} - X_{21}B_1 - Y_{21}||_1 &\leq \sum_{j=1}^N ||(A_2X_{21} - X_{21}B_1 - Y_{21})f_j|| \\ &= \sum_{j=1}^N ||(A_2 - \mu_j^k)X_{21}f_j - X_{21}(B_1 - \mu_j^k)f_j - Y_{21}f_j|| < \varepsilon. \end{split}$$

Similarly, using an orthonormal basis $\{e_1, \ldots, e_M\}$ of \mathscr{H}_1 such that $A_1e_i = \lambda_i^k e_i$, one can construct $X_{12} \in \mathscr{L}(\mathscr{K}_2, \mathscr{H}_1)$ so that $||X_{12}^*A_1^* - B_2^*X_{12}^* - Y_{12}^*||_1 < \varepsilon$, and thus, the operator $X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}$ satisfies $Y - \Delta_{AB}X \in \mathscr{C}_{00}(\mathscr{H})$ and $||Y - \Delta_{AB}X||_1 < 2\varepsilon$. Implication "(3) \Rightarrow (1)" is obvious since $||Q|| \leq ||Q||_1$.

Concerning the last part of the theorem, we only mention that the proof in [5, p 122-123] functions for any operators A, B that can be decomposed as $A = A_1 \oplus A_2$ and

 $B = B_1 \oplus B_2$ relative to decompositions of \mathscr{H} as $\mathscr{H}_1 \oplus \mathscr{H}_2$ and $\mathscr{H}_1 \oplus \mathscr{H}_2$ with \mathscr{H}_1 \mathscr{H}_1 the properties that were seen in the proof of implication "(2) \Rightarrow (3)". \Box

REFERENCES

- [1] R. BHATIA AND P. ROSENTHAL, *How and why to solve the operator equation* AX XB = Y, Bull. London Math. Soc., **29** (1997), 1–21.
- [2] C. DAVIS AND P. ROSENTHAL, Solving linear operator equations, Canadian J. Math., 26 (1994), 1384–1389.
- [3] L. A. FIALKOW, A note on the operator $X \mapsto AX XB$, Trans. Amer. Math. Soc., **243** (1978), 147–168.
- [4] L. A. FIALKOW, A note on norm ideals and the operator $X \mapsto AX XB$, Israel J. Math., **32** (1979), 331–348.
- [5] L. A. FIALKOW, A note on the range of the operator $X \mapsto AX XB$, Illinois J. Math., **75** (1981), 112–124.
- [6] C. M. PEARCY, Some recent developments in operator theory, Amer. Math. Soc., Providence, R. I., 1977.
- [7] J. D. PINCUS, Commutators and systems of singular integral equations. I, Acta Math, 121 (1968), 219–249.

(Received February 12, 2010)

Vasile Lauric Department of Mathematics Florida A&M University Tallahassee, FL 32307 e-mail: vasile.lauric@famu.edu