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THE DENSITY OF THE RANGE OF
X — AX —XB WITH A, B* M-HYPONORMALS

VASILE LAURIC

(Communicated by H. Bercovici)

Abstract. We extend a result of L. A. Fialkow concerning the density of the range and the injec-
tivity of the operator X — AX — XB with A, B* M -hyponormal operators with no holes in the
essential spectrum of negative Fredholm index.

1. Introduction

Let ¢ be a complex, separable, infinite dimensional Hilbert space, and let £ (5¢)
denote the algebra of all linear bounded operators on 7. For operators A, B € £ (),
let Ayp denote the (generalized) derivation associated with A and B, that is the linear
operator defined on the Banach space .Z (") by Asp(X) = AX — XB. For an operator
T e L), let 6,(T), 0.(T), 6r(T), 01.(T) denote the point spectrum, essential
spectrum, right essential spectrum, and left essential spectrum, respectively. We also
denote by (€,(A),||-||p), p =1 the Schatten p-class and by 6oo(7#) the set of finite
rank operators.

The operator Agp has been extensively studied by many authors, but we mention
only just a few papers such as, Davis-Rosenthal [2], Bhatia-Rosenthal [1], L. Fialkow
[3, 4, 5] in which the injectivity and the density of the range of A4p have been studied.
In [5], Fialkow established amongst other results the following.

THEOREM A ([5], Prop. 4.2). Let A,B € £ () be normal operators. The
following are equivalent:

(1) Aap has dense range;

(2) A and B satisfy [H]: 0,,(A)N01(B) =0 & [H,]: 6,(A*)*N0,(B) =0;

) If Y € L(H) and € > 0, then there exists X € L () such that Y — App(X)
belongs to 6oo(H) and ||Y —Aap(X)||1 < €.

In this case Ayp and Apy are injective. Moreover, if (7, ||-|| ) is a normed ideal,
Ye 7, and € >0, then there exists X € ¢ such that Y — Apyp(X) € €oo() and
HY_AAB(X)H/ < E.

The above theorem was proved by making use of a general characterization of the
density of the range of Ayp, result that we will need to apply later.
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THEOREM B ([5], Theorem 1.1). Let A, B € £ (). The following are equiva-
lent:
(1) Aap has dense range;
(2) A, B satisfy
[Hi]: 6(A)N0(B)=0 & [Fol: Ker(Aga) N6 (22)\ {0} =0.

Spectral conditions [H;], [H,] were first introduced by D. Herrero who raised
the question whether they are necessary and sufficient for the density of the range of
a generalized derivation Asp. In [5], Fialkow showed that these conditions are not
sufficient by providing examples of operators that satisfy conditions [H;] and [H»],
but which do not satisfy [F]. Since these conditions seem to have been used first time
in [5], we denoted them by [F ] (in Theorem B) and [F ], [F,] (see Theorem 1 below),
respectively.

2. The density of the range

It is the purpose of this note to extend the above result to a larger class of deriva-
tions Agp in which A, B* are M -hyponormal operators.
For an operator T € (%) and non-negative integers m,n, let

Hypn(T) ={A € C\ 0,(T)| dim Ker(T —1) =m & dim Ker(T* —A) =n},

andlet H_(T) = U< Hun(T).
An operator T € £(5) is M-hyponormal if there exists a positive number m
such that

[[(T —A)*x|| < m||(T — A)x]|, forallx € 5 and all A € C.

Let Hy (7¢) denote the set of M -hyponormal operators in .Z(.7¢) and let
Hy () ={T € Hu())| H-(T) = 0}.

It is obvious that for T € Hy (%), dim Ker(T —2) < dim Ker(T* —A), and that
the hyponormal operators (i.e., T*T > TT*) are M-hyponormal with m = 1. Thus,
H ]?4(% ) denotes the class of those M -hyponormal operators whose holes of the essen-
tial spectrum (if any) are associated with equally dimensional kernel and co-kernel.

In proving the main result (Theorem 1), we need the following lemmas.

LEMMA 1. If T is an M-hyponormal operator, then
(1) 04(T) C 6,(T), thus 6,(T) = 0,(T), and
(2) o(T)=0,(T*)"Uo.(T).

Proof. Let T be an M -hyponormal operator and let A € 0} (T). It is well known
that A € 05,(T) is equivalent to the existence of an orthonormal sequence {f,}, so
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that (T —A)f, — 0 as n — oo. Since T is M-hyponormal, then (T —A)*f,, — O,
thatis A € 05.(T*), which is equivalent to A € 0,.(T). To prove (2), first observe that
the inclusion o(T) 2 6,(T*)* U0y (T) is obvious. If A ¢ (0,(T*)*U0G.(T)), then
according to the above (T — A ) is a Fredholm operator. Since T is an M -hyponormal
operator, dim Ker(T —A) < dim Ker(T* —A), and since A ¢ 0,(T*)*, Ker(T —
A)=Ker(T —A)* = (0) and thus T — A is invertible. [J

LEMMA 2. If T € Hy(5) and 0,.(T) is an infinite set, then there is an or-
thonormal sequence {f,}n so that (T —Ay)fn —> 0 as n — eo.

Proof. Let A, — Ao be a sequence with A, € 0;,(T). Since 0},(T) is a closed
set, then Ay € 05,(T) and thus there exists an orthonormal sequence {f;}, such that
(T —A0)fu — 0, and therefore (T —A,)f, — 0. O

THEOREM 1. Let A, B* € HY)(). Then the following are equivalent:

(1) Aap has dense range;

(2) A, B satisfy the following four conditions:

[Hil: Gre(A) N 0w(B) = 0, [Hal: 0,(A%)* N 0,(B) =0,
[Fil: 0,(A*)*N 0y (B) is a finite set, &  [F2]: 0r.(A) N0y (B) is a finite set;

() If Y€ L() and € > 0, then there exists X € L () suchthat Y —Asp(X) €
%00(%) and HY_AAB(X)HI <E.

In this case Ayp and Apy are injective. Moreover, if (_Z,||-|| ) is a normed
ideal, Y € ¢, and € >0, then there exists X € _# such that Y — App(X) € Goo(H)
and HY_AAB(X)H/ < E.

The proof of Theorem 1 uses the same circle of ideas developed in [5] adjusted to
the class of M -hyponormal operators, but first some remarks are in order.

REMARK 1. There exist operators A, B* € Hy () that satisfy [H1], [H2], [F1],
[F» 1, and the range of Aap is not dense.

Let A=U and B* = UD, where U is the unilateral shift and D is a diagonal
operator with diagonal entries {04, }, such that || \, 0. It is well known (and easy to
verify) that A, B* are hyponormal operators and 0,(A*) =D, 0,.(A) =T, 0,(B)=
0, 0.(B) = {0}, and consequently [H, ], [H21, [F1], [F2] are all satisfied. On the
other hand, let X be the rank-one projection on the first vector of the canonical basis
with respect to which the U and D have their standard matrix representation. Then
BX = XA =0 and thus X € Ker(Aga) N%1(2¢)\ {0}, which according to Theorem B
implies that the range of A4p is not dense.

A natural question that arises is whether the set Hy; () contains anything else
besides normal operators. Let N(#) denote the set of all normal operators in . (7).
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REMARK 2. HY () \N(H) # 0.

Proof. Indeed, if X is a closed set of positive planar Lebesgue density at each
point, that is, any nonempty intersection of an open disc and the set £ has nonzero
planar Lebesgue measure, then according to a result of Pincus [7] there exists a pure
hyponormal operator of rank one self-commutator whose spectrum is the set . Fur-
thermore, if the set X is a “swiss-cheese” type of set (that is a planar Cantor set), then
each point of the spectrum is an accumulation point of boundary points of the spectrum
itself. Consequently, (cf [6]), the spectrum and the essential spectrum are equal sets,
and therefore the arising hyponormal operator belongs to HY () \N(¢). O

Proof Theorem 1. First, we will prove implication “(1)=-(2)”. The density of
the range of Asp implies [H;] according to Theorem B. To prove that [H,] holds,
assume that A € 0,(A*)* N0, (B), thus there are vectors e, f € 7 with ||e|| =||f]| =1
so that (A* —A)e =0 and (B—A)f =0. Let x,y € # be such that Ae = ote +x,
B*f=Bf+y, (e,x) =0, and (f,y) =0. Then o = A = 3. Define an operator X
in Z(s¢) by Xe=f and Xg =0 for (g,e) =0. Then X is a nonzero trace-class
operator that belongs to Ker(Aga ), which, according to Theorem B, is a contradiction.
Indeed, XAe =X (Ae+x) =X(Ae)+0=AXe=Af and BXe =Bf = A f, On the other
hand, if (g,e) = 0, then BXg =0 and XAg = 0 since (Ag,e) = (g,A*e) = (g,Ae) = 0.
To prove that [F; ] holds, assume that there exist a sequence of distinct values {A,},
in 0,(A*)* N0} (B). According to Lemma 2, there exists and orthonormal sequence
{fu}n sothat oy, :=||(B—Ay)fn]| — 0. Since A is an M -hyponormal operator, (A) =
0,(A*)* U 0re(A) and since [H;] holds, then {A,} C 6,(A*)*\ 0, (A), thatis A —
Ay is a Fredholm operator. Since A € HY (), each A, belongs to a hole Hy, , (A)
with k, > 0. Thus, for each n, we can choose ¢, of norm one so that (A —24,)e, =
0, and since A is M-hyponormal, then (A* — A,)e, = 0, thus the sequence {e,}, is
orthonormal. We can now define an operator Y by Y f, = e, for each n, and Yg =
0 when (g, f,) =0 for all n’s. The operator Y satisfies ||¥ —Asp(X)|| > 1, which
contradicts (1). Indeed,

1Y = Aap(X)[| > upl[Y f = (A = An)X fu + X(B = An) ul| >

= sup(|len — (A = An)X ful| — ol IX])

and since

llen — (A—2An) ful P =1 - 2Re({(A — A) e, X fi)) +[|(A = )X ful | =
=1+ (A= W)X ful P > 1,

the inequality above is proved. The implication of condition [F, ] is similar to the above
proof with the role of A replaced by B*.

To prove implication “(2)=>(3)”, we use again the fact that for M -hyponormal
operators A and B*, 0(A) = 0,(A*)*U0r(A), 6(B) = 0,(B)U0i(B). Assume that
0,(A*)* N0 (B) is {A1,...,An} and 6,(B)N 0w (A) is {ui,..., U, }. According to the
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above spectral properties and since 6,.(A) N0y, (B) =0 and 0,(A*)*N0o,(B) =0, we

have

{1 Am} = (6p(A7)"\ 0 (4)) N (01 (B) \ 0(B))
and

{u1,-. .t} = (0p(B)\ 01(B)) N (07 (A) \ 6,(A")").
Thus, A —A; is a Fredholm operator, and since A € Hy (), that is H_(A) = 0,
dimKer(A — A;) = dimKer(A — A;)* > 0. The case Ker(A —A;) = Ker(A —A;)* =
(0) is excluded since otherwise A — 4; is invertible. Similarly, dimKer(B* — ;) =
dimKer(B— ;) > 0, for all j =1,...,n. Let 54 = \/I_ | Ker(A—X;), 76 = A+
and ¢ = \/"_, Ker(B* — W), J, = J;*. Since a point A € 6,,(A*)*\ 0,(A) is an
isolated point of 6(A), then relative to the decomposition of J# = 4 @ 54, we can
write A = A; @Ay with 0(A;) = {A1,..., Ay} and 0(A2) = 0(A)\ 0(A). Similarly,
relative to the decomposition 7 = J#] ©. %5, B= B ® B, with o(B1) = {t1,..., U}
and o(B;) = o(B)\ o(By).

Let Y € Z() and € > 0. The construction of an operator X € .Z(J¢) so that

Y — Asp(X) € Goo(#) and ||Y — Aap(X)||1 < € is similar to that used in [5] and we
include it here for reader’s convenience. Let

(Y 11 Y 12)

1 Yoo

be the matrix representation of Y as an operator from %] & %, into S & 7. Since
the pair of sets o(4;), o(B;) is disjoint, Ay, is an invertible operator, and thus there
exists X;; € L (;, ) so that V;; = Aap,(Xii), i = 1,2. To construct an operator X1,
let {fi,...,fn} bean orthonormal basis of %] so that Bj f; :ﬁ];-fj, j=1,...,N. Each
Ay — u;‘ is invertible and thus it has dense range. Let x; € 74 so that

[1(A— ) = Yau il < ~

Define X»; : J#1 — 56 by Xo1f;j =xj, j=1,...,N. Thus
||A2Xa1 — X21B1 — V2|1 < 2 (A2Xp1 — X21B1 — Yar1) fjl|

(A2 — u§)Xa1 fj — Xa1 (B — ub) fj — Yar fjl] < €.

HMZ |

Similarly, using an orthonormal basis {e,...,ey} of J# such that Aje; = /likeh one
can construct Xy, € (5, 74) so that [|X[,AT — B3X{, —Y}5||1 < &, and thus, the
operator X = (X“ Xi2 ) satisfies ¥ — AqpX € Goo(S7) and ||Y — AppX||1 < 2e.
Xo1 X2

Implication “(3)=>(1)” is obvious since ||Q|| < ||Q||:-

Concerning the last part of the theorem, we only mention that the proof in [5, p
122-123] functions for any operators A, B that can be decomposed as A = A $A; and
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B = B @ B, relative to decompositions of J# as 4 & 5% and | & J#; with J4
1 the properties that were seen in the proof of implication “(2)=-(3)”. O
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