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THE DENSITY OF THE RANGE OF

X �→ AX −XB WITH A, B∗ M–HYPONORMALS

VASILE LAURIC

(Communicated by H. Bercovici)

Abstract. We extend a result of L. A. Fialkow concerning the density of the range and the injec-
tivity of the operator X �→ AX −XB with A, B∗ M -hyponormal operators with no holes in the
essential spectrum of negative Fredholm index.

1. Introduction

Let H be a complex, separable, infinite dimensionalHilbert space, and let L (H )
denote the algebra of all linear bounded operators on H . For operators A, B∈L (H ),
let ΔAB denote the (generalized) derivation associated with A and B, that is the linear
operator defined on the Banach space L (H ) by ΔAB(X) = AX −XB. For an operator
T ∈ L (H ), let σp(T ), σe(T ), σre(T ), σle(T ) denote the point spectrum, essential
spectrum, right essential spectrum, and left essential spectrum, respectively. We also
denote by (Cp(H ), || · ||p), p � 1 the Schatten p -class and by C00(H ) the set of finite
rank operators.

The operator ΔAB has been extensively studied by many authors, but we mention
only just a few papers such as, Davis-Rosenthal [2], Bhatia-Rosenthal [1], L. Fialkow
[3, 4, 5] in which the injectivity and the density of the range of ΔAB have been studied.
In [5], Fialkow established amongst other results the following.

THEOREM A ([5], Prop. 4.2). Let A, B ∈ L (H ) be normal operators. The
following are equivalent:

(1) ΔAB has dense range;

(2) A and B satisfy [H1 ]: σre(A)∩σle(B) = /0 & [H2 ]: σp(A∗)∗ ∩σp(B) = /0 ;

(3) If Y ∈ L (H ) and ε > 0, then there exists X ∈ L (H ) such that Y −ΔAB(X)
belongs to C00(H ) and ||Y −ΔAB(X)||1 < ε.

In this case ΔAB and ΔBA are injective. Moreover, if (J , || · ||J ) is a normed ideal,
Y ∈ J , and ε > 0, then there exists X ∈ J such that Y −ΔAB(X) ∈ C00(H ) and
||Y −ΔAB(X)||J < ε.

The above theorem was proved by making use of a general characterization of the
density of the range of ΔAB, result that we will need to apply later.
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THEOREM B ([5], Theorem 1.1). Let A, B ∈ L (H ). The following are equiva-
lent:

(1) ΔAB has dense range;

(2) A, B satisfy

[H1 ]: σre(A)∩σle(B) = /0 & [F0 ]: Ker(ΔBA)∩C1(H )\ {0}= /0.

Spectral conditions [H1 ], [H2 ] were first introduced by D. Herrero who raised
the question whether they are necessary and sufficient for the density of the range of
a generalized derivation ΔAB. In [5], Fialkow showed that these conditions are not
sufficient by providing examples of operators that satisfy conditions [H1 ] and [H2 ],
but which do not satisfy [F0 ]. Since these conditions seem to have been used first time
in [5], we denoted them by [F0 ] (in Theorem B) and [F1 ], [F2 ] (see Theorem 1 below),
respectively.

2. The density of the range

It is the purpose of this note to extend the above result to a larger class of deriva-
tions ΔAB in which A, B∗ are M -hyponormal operators.

For an operator T ∈ L (H ) and non-negative integers m,n, let

Hm,n(T ) = {λ ∈ C\σe(T )| dim Ker(T −λ ) = m & dim Ker(T ∗ −λ) = n},

and let H−(T ) =
⋃

m<n Hm,n(T ).
An operator T ∈ L (H ) is M -hyponormal if there exists a positive number m

such that

||(T −λ )∗x|| � m||(T −λ )x||, for all x ∈ H and all λ ∈ C.

Let HM(H ) denote the set of M -hyponormal operators in L (H ) and let

H0
M(H ) = {T ∈ HM(H ))| H−(T ) = /0}.

It is obvious that for T ∈ HM(H ), dim Ker(T − λ ) � dim Ker(T ∗ − λ ), and that
the hyponormal operators (i.e., T ∗T � TT ∗ ) are M -hyponormal with m = 1. Thus,
H0

M(H ) denotes the class of those M -hyponormal operators whose holes of the essen-
tial spectrum (if any) are associated with equally dimensional kernel and co-kernel.

In proving the main result (Theorem 1), we need the following lemmas.

LEMMA 1. If T is an M-hyponormal operator, then

(1) σle(T ) ⊆ σre(T ), thus σe(T ) = σre(T ), and

(2) σ(T ) = σp(T ∗)∗ ∪σre(T ).

Proof. Let T be an M -hyponormal operator and let λ ∈ σle(T ). It is well known
that λ ∈ σle(T ) is equivalent to the existence of an orthonormal sequence { fn}n so
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that (T −λ ) fn −→ 0 as n −→ ∞. Since T is M -hyponormal, then (T −λ )∗ fn −→ 0,
that is λ ∈ σle(T ∗), which is equivalent to λ ∈ σre(T ). To prove (2), first observe that
the inclusion σ(T ) ⊇ σp(T ∗)∗ ∪σre(T ) is obvious. If λ /∈ (σp(T ∗)∗ ∪σre(T )), then
according to the above (T −λ ) is a Fredholm operator. Since T is an M -hyponormal
operator, dim Ker(T − λ ) � dim Ker(T ∗ − λ ), and since λ /∈ σp(T ∗)∗, Ker(T −
λ ) = Ker(T −λ )∗ = (0) and thus T −λ is invertible. �

LEMMA 2. If T ∈ HM(H ) and σle(T ) is an infinite set, then there is an or-
thonormal sequence { fn}n so that (T −λn) fn −→ 0 as n −→ ∞.

Proof. Let λn −→ λ0 be a sequence with λn ∈ σle(T ). Since σle(T ) is a closed
set, then λ0 ∈ σle(T ) and thus there exists an orthonormal sequence { fn}n such that
(T −λ0) fn −→ 0, and therefore (T −λn) fn −→ 0. �

THEOREM 1. Let A, B∗ ∈ H0
M(H ). Then the following are equivalent:

(1) ΔAB has dense range;

(2) A, B satisfy the following four conditions:

[H1]: σre(A)∩σle(B) = /0, [H2]: σp(A∗)∗ ∩σp(B) = /0,

[F1]: σp(A∗)∗ ∩σle(B) is a finite set, & [F2]: σre(A)∩σp(B) is a finite set;

(3) If Y ∈L (H ) and ε > 0, then there exists X ∈L (H ) such that Y −ΔAB(X)∈
C00(H ) and ||Y −ΔAB(X)||1 < ε.

In this case ΔAB and ΔBA are injective. Moreover, if (J , || · ||J ) is a normed
ideal, Y ∈ J , and ε > 0, then there exists X ∈ J such that Y −ΔAB(X) ∈ C00(H )
and ||Y −ΔAB(X)||J < ε.

The proof of Theorem 1 uses the same circle of ideas developed in [5] adjusted to
the class of M -hyponormal operators, but first some remarks are in order.

REMARK 1. There exist operators A, B∗ ∈HM(H ) that satisfy [H1 ], [H2 ], [F1 ],
[F2 ], and the range of ΔAB is not dense.

Let A = U and B∗ = UD, where U is the unilateral shift and D is a diagonal
operator with diagonal entries {αn}n such that |αn| ↘ 0. It is well known (and easy to
verify) that A, B∗ are hyponormal operators and σp(A∗) = D, σre(A) = T, σp(B) =
/0, σle(B) = {0}, and consequently [H1 ], [H2 ], [F1 ], [F2 ] are all satisfied. On the
other hand, let X be the rank-one projection on the first vector of the canonical basis
with respect to which the U and D have their standard matrix representation. Then
BX = XA = 0 and thus X ∈ Ker(ΔBA)∩C1(H )\{0}, which according to Theorem B
implies that the range of ΔAB is not dense.

A natural question that arises is whether the set H0
M(H ) contains anything else

besides normal operators. Let N(H ) denote the set of all normal operators in L (H ).
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REMARK 2. H0
M(H )\N(H ) �= /0.

Proof. Indeed, if Σ is a closed set of positive planar Lebesgue density at each
point, that is, any nonempty intersection of an open disc and the set Σ has nonzero
planar Lebesgue measure, then according to a result of Pincus [7] there exists a pure
hyponormal operator of rank one self-commutator whose spectrum is the set Σ. Fur-
thermore, if the set Σ is a “swiss-cheese” type of set (that is a planar Cantor set), then
each point of the spectrum is an accumulation point of boundary points of the spectrum
itself. Consequently, (cf [6]), the spectrum and the essential spectrum are equal sets,
and therefore the arising hyponormal operator belongs to H0

1 (H )\N(H ). �

Proof Theorem 1. First, we will prove implication “(1)⇒(2)”. The density of
the range of ΔAB implies [H1 ] according to Theorem B. To prove that [H2 ] holds,
assume that λ ∈σp(A∗)∗∩σp(B), thus there are vectors e, f ∈H with ||e||= || f ||= 1
so that (A∗ − λ )e = 0 and (B− λ ) f = 0. Let x, y ∈ H be such that Ae = αe + x,
B∗ f = β f + y, 〈e,x〉 = 0, and 〈 f ,y〉 = 0. Then α = λ = β . Define an operator X
in L (H ) by Xe = f and Xg = 0 for 〈g,e〉 = 0. Then X is a nonzero trace-class
operator that belongs to Ker(ΔBA), which, according to Theorem B, is a contradiction.
Indeed, XAe = X(λe+x)= X(λe)+0= λXe = λ f and BXe = B f = λ f , On the other
hand, if 〈g,e〉 = 0, then BXg = 0 and XAg = 0 since 〈Ag,e〉 = 〈g,A∗e〉 = 〈g,λe〉 = 0.
To prove that [F1 ] holds, assume that there exist a sequence of distinct values {λn}n

in σp(A∗)∗ ∩σle(B). According to Lemma 2, there exists and orthonormal sequence
{ fn}n so that αn := ||(B−λn) fn|| → 0. Since A is an M -hyponormal operator, σ(A) =
σp(A∗)∗ ∪ σre(A) and since [H1 ] holds, then {λn} ⊆ σp(A∗)∗ \ σre(A), that is A−
λn is a Fredholm operator. Since A ∈ H0

M(H ), each λn belongs to a hole Hkn,kn(A)
with kn > 0. Thus, for each n, we can choose en of norm one so that (A− λn)en =
0, and since A is M -hyponormal, then (A∗ −λ n)en = 0, thus the sequence {en}n is
orthonormal. We can now define an operator Y by Y fn = en for each n, and Yg =
0 when 〈g, fn〉 = 0 for all n′ s. The operator Y satisfies ||Y −ΔAB(X)|| � 1, which
contradicts (1). Indeed,

||Y −ΔAB(X)|| �sup
n
||Y fn − (A−λn)X fn +X(B−λn) fn|| �

�sup
n

(||en− (A−λn)X fn||−αn||X ||)

and since

||en− (A−λn) fn||2 = 1−2Re(〈(A−λn)∗en,X fn〉)+ ||(A−λn)X fn||2 =

= 1+ ||(A−λn)X fn||2 � 1,

the inequality above is proved. The implication of condition [F2 ] is similar to the above
proof with the role of A replaced by B∗.

To prove implication “(2)⇒(3)”, we use again the fact that for M -hyponormal
operators A and B∗, σ(A) = σp(A∗)∗ ∪σre(A), σ(B) = σp(B)∪σle(B). Assume that
σp(A∗)∗ ∩σle(B) is {λ1, . . . ,λm} and σp(B)∩σre(A) is {μ1, . . . ,μn}. According to the



THE DENSITY OF THE RANGE OF X �→ AX −XB WITH A, B∗ M -HYPONORMALS 509

above spectral properties and since σre(A)∩σle(B) = /0 and σp(A∗)∗ ∩σp(B) = /0, we
have

{λ1, . . . ,λm} = (σp(A∗)∗ \σre(A))∩ (σle(B)\σp(B))

and
{μ1, . . . ,μn} = (σp(B)\σle(B))∩ (σre(A)\σp(A∗)∗).

Thus, A − λi is a Fredholm operator, and since A ∈ H0
M(H ), that is H−(A) = /0,

dimKer(A − λi) = dimKer(A− λi)∗ > 0. The case Ker(A − λi) = Ker(A − λi)∗ =
(0) is excluded since otherwise A− λi is invertible. Similarly, dimKer(B∗ − μ j) =
dimKer(B− μ j) > 0, for all j = 1, . . . ,n. Let H1 =

∨m
i=1 Ker(A− λi), H2 = H ⊥

1
and K1 =

∨n
j=1 Ker(B∗ − μ j), K2 = K ⊥

1 . Since a point λ ∈ σp(A∗)∗ \σre(A) is an
isolated point of σ(A), then relative to the decomposition of H = H1 ⊕H2, we can
write A = A1 ⊕A2 with σ(A1) = {λ1, . . . ,λm} and σ(A2) = σ(A)\σ(A1). Similarly,
relative to the decomposition H = K1⊕K2, B = B1⊕B2 with σ(B1) = {μ1, . . . ,μn}
and σ(B2) = σ(B)\σ(B1).

Let Y ∈ L (H ) and ε > 0. The construction of an operator X ∈ L (H ) so that
Y −ΔAB(X) ∈ C00(H ) and ||Y −ΔAB(X)||1 < ε is similar to that used in [5] and we
include it here for reader’s convenience. Let(

Y11 Y12

Y21 Y22

)

be the matrix representation of Y as an operator from K1⊕K2 into H1 ⊕H2. Since
the pair of sets σ(Ai), σ(Bi) is disjoint, ΔAiBi is an invertible operator, and thus there
exists Xii ∈ L (Ki,Hi) so that Yii = ΔAiBi(Xii), i = 1,2. To construct an operator X21,

let { f1, . . . , fN} be an orthonormal basis of K1 so that B∗
1 f j = μk

j f j, j = 1, . . . ,N. Each
A2− μk

j is invertible and thus it has dense range. Let x j ∈ H2 so that

||(A− μk
j )x j −Y21 f j|| < ε

N
.

Define X21 : K1 → H2 by X21 f j = x j, j = 1, . . . ,N. Thus

||A2X21−X21B1−Y21||1 �
N

∑
j=1

||(A2X21−X21B1−Y21) f j||

=
N

∑
j=1

||(A2 − μk
j )X21 f j −X21(B1− μk

j ) f j −Y21 f j|| < ε.

Similarly, using an orthonormal basis {e1, . . . ,eM} of H1 such that A1ei = λ k
i ei, one

can construct X12 ∈ L (K2,H1) so that ||X∗
12A

∗
1 −B∗

2X
∗
12 −Y ∗

12||1 < ε, and thus, the

operator X =
(

X11 X12

X21 X22

)
satisfies Y −ΔABX ∈ C00(H ) and ||Y −ΔABX ||1 < 2ε.

Implication “(3)⇒(1)” is obvious since ||Q|| � ||Q||1.
Concerning the last part of the theorem, we only mention that the proof in [5, p

122-123] functions for any operators A, B that can be decomposed as A = A1⊕A2 and
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B = B1 ⊕B2 relative to decompositions of H as H1 ⊕H2 and K1 ⊕K2 with H1

K1 the properties that were seen in the proof of implication “(2)⇒(3)”. �
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