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Abstract. We introduce the notion of C -orbit reflexivity and study its properties. An operator on
a finite-dimensional space is C -orbit reflexive if and only if the two largest blocks in its Jordan
form corresponding to nonzero eigenvalues with the largest modulus differ in size by at most
one. Most of the proofs of our results in infinite dimensions are obtained from purely algebraic
results we obtain from linear-algebraic analogs of C -orbit reflexivity.

1. Introduction

The term reflexive for an algebra of operators was coined by P. R. Halmos [17],
but the first theorem about reflexivity was proved earlier by D. Sarason [29]. Since that
time there have been many papers written on the topic, and various notions of reflexivity
(e.g., algebraic reflexivity [12], approximate reflexivity [11], orbit reflexivity [16]) for
linear subspaces, convex sets and other sets of operators, have been studied extensively,
e.g., [1], [3], [4], [6], [7], [9], [22], [23], [28], [30]. In [13] a very general notion
of reflexivity that contained many of these notions as special cases. Orbit reflexivity
was introduced and studied in [16], but it wasn’t until over twenty years later that an
operator was constructed on a Hilbert space that is not orbit reflexive [10] (see also [27]
and [8]). John von Neumann’s classic double commutant theorem [33] can be viewed as
the statement that every von Neumann algebra is reflexive. In fact, many view reflexive
algebras as nonselfadjoint analogues of von Neumann algebras. Nest algebras, i.e.,
reflexive algebras whose lattice of invariant subspaces is a chain, have received a great
deal of attention (see [5]). W. Arveson [2] relates reflexivity to spectral synthesis in
commutative harmonic analysis and remarks that it is appropriate to consider reflexivity
questions as “noncommutative harmonic analysis”. Reflexivity appears in other guises,
often in the form of a “local” property, e.g., local derivations, local automorphisms,
local multiplications [14], [15], [18], [19], [21], [23], [31].

In this paper we introduce a new notion of reflexivity for operators, C-orbit reflex-
ivity, and we also define a linear-algebraic analogue. This notion is related to the notion
of orbit reflexivity [16]. We first prove a number of results in the purely algebraic case,
and we use these to prove several results for operators on a normed space or a Hilbert
space. We also give an easy proof that every subnormal operator is orbit reflexive. In
finite-dimensions a characterization of reflexivity for a single matrix was given [7] in
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terms of the Jordan form, i.e., for each eigenvalue the largest two Jordan blocks differ in
size by at most 1. Every matrix is orbit reflexive [16]. However, C-orbit reflexivity has
a characterization in terms of the Jordan form that is similar to, but quite different from,
the one for reflexivity, i.e., among the nonzero eigenvalues with maximum modulus the
largest two Jordan blocks differ in size by at most 1.

Suppose X is a normed space and A is an algebra of (bounded linear) operators
on X . A (closed linear) subspace M of X is A -invariant if A(M) ⊆ M for every A ∈
A . We let LatA denote the set of all invariant subspaces for A , and we let AlgLatA
denote the algebra of all operators that leave invariant every A -invariant subspace.
The algebra A is reflexive if A =AlgLatA . If the algebra A contains the identity
operator 1, then S ∈AlgLatA if and only if, for every x ∈ X , Sx is in the closure of
A x . This characterization works equally well for linear subspace S of B(X) (the set
of all operators on X ), i.e., we define refS to be the set of all operators A such that,
for every x ∈ X , we have Ax is in the closure of S x , and we say that S is reflexive if
S = refS . If we let T be a single operator and let S = Orb(T ) = {Tn : n � 0} , we
apply the same process to obtain the notion of orbit reflexivity. (Note that in this case
S is not a linear space.) We define OrbRef(T ) to be the set of all operators A such
that, for every vector x, we have Ax is in the closure of Orb(T,x) = Orb(T )x . We say
that T is orbit reflexive if OrbRef(T ) is the closure of Orb(T ) in the strong operator
topology (SOT). For the next notion we allow powers and scalar multiples. We define,
for the field F ∈ {C,R}

F-Orb(T ) = {λTn : n ∈ N,λ ∈ F} ,

and
F-Orb(T,x) = {λTnx : n � 0,λ ∈ F} ,

F-OrbRef(T ) =
{
S ∈ B(H) : Sx ∈ F-Orb(T,x)− for every x ∈ H

}
.

And we say that T is F-orbit reflexive if F-OrbRef(T ) is the strong operator closure
of F-Orb(T ) .

2. Algebraic Results

Throughout this section F will denote an arbitrary field, X will denote a vector
space over F , and L (X) will denote the algebra of all linear transformations on X .
If T ∈ L (X) , we define F-OrbRef0 (T ) to be the set of all S ∈ L (X) such that,
for every x ∈ X , Sx ∈ Orb(T,x) . We say that T is algebraically F-orbit reflexive if
F-OrbRef0 (T ) = F-Orb(T ) .

A transformation T ∈ L (X) is locally nilpotent if X = ∪n�1 ker(Tn) . More
generally T is locally algebraic if, for each x ∈ X , there is a nonzero polynomial
px ∈ F [t] such that px (T )x = 0. If px (t) is chosen to be monic with minimal degree,
we call px a local polynomial for T at x .

THEOREM 1. Every locally nilpotent linear transformation on a vector space X
over field F is algebraically F-orbit reflexive. Moreover, if S∈F-OrbRef0 (T ) , f ∈X ,
β ∈ F , and S f = βTk f �= 0, then S = βTk.
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Proof. Suppose first that X is finite-dimensional and that Jn1 ⊕Jn2⊕·· ·⊕Jnk is the
Jordan form for T with n1 � n2 � · · ·� nk � 1. Suppose S∈ F-OrbRef0 (T ) . Suppose
e is in the domain of Jn1 and Jn1−1

n1 e �= 0. We first assume that Se �= 0. Then, since{
e,Te, . . . ,Tn1−1e

}
is linearly independent, there is a unique m, 0 � m < n1 and a

unique λ ∈ F such that Se = λTme . Suppose g is in the domain of Jn2 ⊕·· ·⊕Jnk . Then
there is an α ∈ F and a j, 1 � j � n1 such that Se+ Sg = S (e+g) = αT j (e+g) =
αT je+αT jg , and by projecting onto the domain of Jn1 , we have Se = αT je which
implies j = m and α = λ . Thus Sg = λTmg for every g in the domain of Jn2 ⊕·· ·⊕
Jnk . A similar argument, considering the coefficient of Tme of S (e+g), shows that
Sg = λTmg if g is any member of the linearly independent set

{
Te,T 2e, . . . ,Tn1−1e

}
.

Hence S = λTm . Repeating the same argument when Se = 0, gives S = 0. Hence S ∈
F-Orb(T ) .

We now move to the general case. Suppose T is locally nilpotent and S ∈ F-
OrbRef0 (T ) . If S = 0, we are done. Suppose f ∈ X and S f �= 0. Choose n � 1 so
that Tn f = 0 and Tn−1 f �= 0. It follows that there is a β �= 0 in F and a k, 0 � k < n
such that S f = βTk f �= 0. Suppose h ∈ X . Since T is locally algebraic, it follows that
sp({Tm f : m � 0}∪{Tmh : m � 0}) =M is a finite-dimensional invariant subspace for
T, and, hence, for S . It follows from our finite-dimensional case that there is an m � 0
and a γ ∈ F such that Sx = γTmx for every x ∈ M. In particular, 0 �= S f = γTm f ,
so γ �= 0 and m < n . We know that

{
f ,T f , . . . ,Tn−1 f

}
is linearly independent, so

we have m = k and γ = β . Thus Sh = βTkh. Since h ∈ X was arbitrary, we have
S = βTk ∈ F-Orb(T ) . �

For infinite fields the next theorem reduces the problem of algebraic F-orbit re-
flexivity to the case of locally algebraic transformations. A key ingredient in the proof
is an algebraic reflexivity result from [12] that says if F is infinite and T ∈L (X) is not
locally algebraic, then, whenever S ∈ L (X) and for every x ∈ X there is a polynomial
px such that Sx = px (T )x , we must have S = p(T ) for some polynomial p .

THEOREM 2. Suppose X is a vector space over an infinite field F , and suppose
T ∈ L (X) is not locally algebraic. Then T is algebraically F-orbit reflexive.

Proof. Suppose S ∈ F-OrbRef0 (T ) . Then Sx ∈ F-Orb(T ) for every x ∈ X . It
follows from [12] that T is algebraically reflexive, so we know there is a polynomial
p ∈ F [t] such that S = p(T ) . Since T is not locally algebraic, there is a vector e ∈ X
such that for every nonzero polynomial q ∈ F [t] , we have q(T )e �= 0. Since S ∈ F-
OrbRef0 (T ) , we know that there is an n∈ N and a λ ∈ F such that Se = λTne. Hence
p(t) = λ tn, and thus S ∈ F-Orb(T ) . �

The following lemma dashes all hope, at least for some fields, that in finite dimen-
sions every transformation is algebraically F-orbit reflexive.

LEMMA 1. Suppose F is a field and T is the linear transformation on F2 defined

by the matrix T =
(

1 1
0 1

)
. The following are equivalent:
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1. T is algebraically F-orbit reflexive

2. F is not isomorphic to Z/pZ for some prime p.

3. Whenever X is a vector space over F and A,S are linear transformations on X ,
v ∈ X such that there is an β ∈ F and there are integers k � 0,m � 2 such that

(a) (A−1)v �= 0,

(b) (A−1)m v = 0,

(c) S ∈ F-OrbRef0 (A)

(d) Sv = βAkv,

then we must have S (A−1)v = βAk (A−1)v.

Proof. (1) =⇒ (2) . Suppose (2) is not true, and let S =
(

0 1
0 1

)
. Suppose(

x
y

)
∈ F2 . If y = 0, then S

(
x
y

)
= 0 = 0T

(
x
y

)
. Assume y �= 0, then there is a

positive integer m such that
ym = 1 mod p

and let n be a positive integer such that

n = (y− x)m mod p.

Then we have

Tn
(

x
y

)
=

(
1 n
0 1

)(
x
y

)
=

(
x+ny

y

)
=

(
x+(y− x)my

y

)
= S

(
x
y

)
.

Hence S ∈ F-OrbRef0 (T ) , but ST �= TS, so (1) is not true.
(2) =⇒ (1) . Suppose (2) is true. Then we can choose w∈F so that w /∈Z1. Sup-

pose S ∈ F-OrbRef0 (T ) . Then S

(
1
0

)
=

(
a
0

)
for some a ∈ F . Hence S =

(
a b
0 c

)

for some b,c ∈ F . Suppose c = 0. Then

(
b
0

)
= S

(
0
1

)
= αTn

(
0
1

)
=

(
αn
α

)
,

so α = b = 0. Now,
(

a
0

)
= S

(
1
1

)
= αTn

(
1
1

)
=

(
α (1+n)

α

)
,

which implies α = 0 = a. Thus c = 0 implies S = 0 ∈ F-Orb(T ) . Hence we can
assume c �= 0.
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We now want to show c = a . Assume, via contradiction, that c−a �= 0. Then, for
some α ∈ F , and some integer n � 0,

(
a cw−b

a−c +b
c

)
= S

(
cw−b
a−c
1

)
= αTn

(
cw−b
a−c
1

)
= α

(
cw−b
a−c +n

1

)
,

which implies that α = c �= 0 and

n =
a
c

cw−b
a− c

+
b
c
− cw−b

a− c
= w,

which contradicts the choice of w . Thus a = c , so S =
(

a b
0 a

)
and a �= 0.

Finally we see that there is an α ∈ F and an integer n � 0 such that
(

b
a

)
= S

(
0
1

)
= αTn

(
0
1

)
=

(
αn
α

)
,

which implies b = na; whence, S = aTn . Hence (1) is true.

(3) =⇒ (1) . Apply (3) to the vector v =
(

0
1

)
, with A = T .

(2) =⇒ (3) . Suppose (2) is true. We can assume that m is the smallest positive
integer for which (A−1)m v = 0. It follows that {(A−1)s v : 0 � s < m} is a linearly
independent set whose linear span Y is an invariant subspace for A. Similarly, the
linear span M of {(A−1)s v : s � 2} is also an invariant subspace for A . Since S ∈ F-
OrbRef0 (A) , we also have S (Y ) ⊆ Y and S (M) ⊆ M . Hence

Ŝ(x+M) = Sx+M and Â(x+M) = Ax+M

define linear transformations Ŝ and Â on Y/M . It is easy to see that Ŝ∈F-OrbRef0
(
Â
)

and the matrix for Â with respect to the basis {(A−1)u+M,u+M} is

(
1 1
0 1

)
. Thus,

by (1) , we know that there is a γ ∈ F and an integer t � 0 such that

Ŝ = γÂt .

Thus,
Ŝ (u+M) = γ (u+M)+ γt ((A−1)u+M) .

But Su = βAku = βu+βk (A−1)u+h with h ∈ M . Therefore,

Ŝ(u+M) = β (u+M)+βk ((A−1)u+M) ,

which implies γ = β and γt = βk . On the other hand,

Ŝ ((A−1)u+M) = γ (A−1)u+M

and, for some α and some n ,

S (A−1)u = αAn (A−1)u = α (A−1)u+h
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with h ∈ M, which implies α = γ . Hence if β = 0, we have Su = 0 = S (A−1)u . If
β �= 0, then t = k and β = γ = α . However, there exist η and q such that

S (u+(A−1)u) = ηAq (A−1)u = ηu+η (q+1)(A−1)u+g

with g ∈ M, which implies

Ŝ (u+(A−1)u+M) = η (u+M)+η (q+1)((A−1)u+M) .

Comparing this with

Ŝ(u+(A−1)u+M)= γÂt (u+(A−1)u+M)= β (u+M)+β (k+1)((A−1)u+M) ,

we see that η = β and q = k. Hence,

S (A−1)u = S (u+(A−1)u)−Su = βAk (u+(A−1)u)−βAku = βAk (A−1)u. �

EXAMPLE 1. Let ωn = e
2πi
n for n � 1. Let Y be a vector space over C with a

basis {e1,e2, . . .} . Define linear transformations A,B : Y → Y by

Ae1 = 0,Aen+1 = en for n � 1,

and
Ben = ωnen for n � 1.

Let T = A⊕B acting on X =Y ⊕Y . Let S = 0⊕1 acting on X . Suppose x ∈ X . Then
there is a positive integer n and scalars a1,b1, . . . ,an,bn ∈ C such that

x =
n

∑
k=1

akek ⊕
n

∑
k=1

bkek.

Then Sx = Tn!x. However, there is no integer N and scalar α such that S = αTN ,
since αTN (eN+1 ⊕ eN+1) �= S (eN+1⊕ eN+1) . Hence T is neither algebraically orbit
reflexive nor algebraically C-orbit reflexive.

The preceding example makes us look at the strict topology on L (X) , where a
basic neighborhood of a transformation T is given by a finite subset E of X , defined
by

U (T,E) = {A ∈ L (X) : Ax = Tx for all x ∈ E} .

It is easy to show that if S and T are as in the preceding example, then Tn → S in the
strict topology. It is also easy to see that F-OrbRef0 (T ) and OrbRef0 (T ) are closed
in the strict topology. It is natural to define a linear transformation T on a vector space
X over a field F to be strictly algebraically F-orbit reflexive if F-OrbRef0 (T ) is the
strict closure of C-Orb(T ) .

THEOREM 3. Suppose X is a finite-dimensional vector space over a field F not
isomorphic to Z/pZ for some prime p. Then every linear transformation on X whose
minimal polynomial splits over F is algebraically F-orbit reflexive.
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Proof. Since the minimal polynomial for T splits over F , we can assume T has
a Jordan canonical form. Moreover, if T is nilpotent, then, by Theorem 1, T is al-
gebraically F-orbit reflexive. Thus we can assume that T has at least one nonzero
eigenvalue λ with largest Jordan block of size m , which we can assume is 1. We can
write

T = (1+ Jm)⊕∑⊕
1�i�s (αi + Jmi)⊕∑⊕

1� j�tJn j

with α1, . . . ,αs nonzero and n1 � · · · � nt , m � m1 � · · · � ms . Suppose S ∈ F-
OrbRef0 (T ) . First suppose there is a nonzero f in the domain of ∑⊕

1� j�tJn j and a β ∈
F and an integer k � 0 such that S f =βTk f . Then, by Theorem 1, this uniquely defines
k and β and uniquely defines S = βTk on the domain of the nilpotent transformation

∑⊕
1� j�t

Jn j . If x is in the domain of (1+ Jm)⊕∑⊕
1�i�s

(αi + Jmi) , then there is an

integer n and a scalar γ such that S (x+ f ) = γTn (x+ f ) . But S (x+ f ) = Sx+S f and
γTn (x+ f ) = γTnx+ γTn f . It follows that Sx = γTnx and S f = γTn , which implies
γ = β and n = k. Hence, Sx = βTkx. Therefore ker

(
S−βTk

)
contains the domains

of both (1+ Jm)⊕∑⊕
1�i�s (αi + Jmi) and ∑⊕

1�i�tJn j , which implies S = βTk .

We now consider the case in which S = 0 on the domain of ∑⊕
1� j�t

Jn j . Choose a

vector g in the domain of Jn1 such that Jn1−1
n1 g �= 0. If m = 1, then m1 = · · · = ms = 1

and (1+ Jm)⊕∑⊕
1�i�s

(αi + Jmi) is a diagonal matrix with eigenvectors u,u1, . . . ,us

and there is a scalar η and an integer r such that

S (u+u1 + · · ·+us +g) = ηT r (u+u1 + · · ·+us +g) ,

which implies that Su = ηTru,Sui = ηT rui (1 � i � s) , and 0 = Sg = ηT rg, which
implies ηT r = 0 on the domain of ∑⊕

1� j�t
Jn j , and, hence, S = ηT r .

We are left with the case where S = 0 on the domain of ∑⊕
1� j�t

Jn j and m � 2.

Let {e1, . . . ,em} be the basis shifted by Jm . Then there is a scalar ρ and an integer
N � 0 such that Se1 = ρTNe1 . It follows from part (3) of Lemma 1 that Se j = ρTNe j

for 1 � j � m . Suppose y is in the domain of ∑⊕
1�i�s (αi + Jmi)⊕∑⊕

1� j�tJn j , then
there is a scalar α and an integer d � 0 such that

Se1 +Sy = S (e1 + y) = αTd (e1 + y) = αTde1 +αTdy,

and it follows that
ρTNe1 = αTde1 and Sy = αTdy.

However, the representation of ρTNe1 with respect to the basis {e1, . . . ,em} is ρe1 +
ρNe2 + · · · and the expansion for αTde1 is αe1 +αde2 + · · · , so α = ρ , and if α =
ρ = 0, then Sy = 0 = ρTNy, and if ρ �= 0, then d = N and Sy = ρTNy. Hence S =
ρTN . �

COROLLARY 1. If X is a finite-dimensional vector space on an algebraically
closed field F , then every linear transformation on X is F-algebraically reflexive.
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Recall from ring theory that if R is a principal ideal domain and M is an R -
module and 0 �= r ∈ R and rM = {0} , then M is a direct sum of cyclic R -modules;
Applying this fact to R = F [t] , we get that any algebraic linear transformation on a
vector space is a direct sum of transformations on finite-dimensional subspaces, and
therefore has a Jordan form when the minimal polynomial splits over F . (See [20] for
details.) This gives us the following corollary.

COROLLARY 2. Suppose X is a vector space over a field F not isomorphic to
Z/pZ for some prime p. Then every algebraic linear transformation on X whose
minimal polynomial splits over F is algebraically F-orbit reflexive.

The next corollary follows from the technique in the last paragraph of the proof
of Theorem 3. Recall from the beginning of Section 2 that if T is locally algebraic
and x is a vector, then the local minimal polynomial for T at x is the unique monic
polynomial p(t) of minimal degree for which p(T )x = 0.

COROLLARY 3. Suppose X is a vector space over a field F that is not isomorphic
to Z/pZ for some prime p, and suppose T is a locally algebraic linear transformation
on X whose local minimal polynomial splits over F . If there is a nonzero λ ∈ F such
that ker(T −λ ) �= ker(T −λ )2 , then T is algebraically F-orbit reflexive.

The next corollary follows from the fact that if T is a locally algebraic linear
transformation and E is any finite set of vectors, then there is a finite-dimensional
invariant subspace M for T that contains E .

COROLLARY 4. Suppose X is a vector space over a field F that is not isomorphic
to Z/pZ for some prime p, and suppose T is a locally algebraic linear transformation
on X whose local minimal polynomials split over F . Then T is strictly algebraically
F-orbit reflexive.

THEOREM 4. If F is an algebraically closed field, then every linear transforma-
tion on a vector space over F is strictly algebraically F-orbit reflexive.

Proof. Since F is algebraically closed, we know F is infinite and is therefore not
isomorphic to Z/pZ for some prime number p . Suppose X is a vector space and T is
a linear transformation on X . If T is not locally algebraic, then T is algebraically F-
orbit reflexive. If T is locally algebraic, then, by Corollary 4, T is strictly algebraically
F-orbit reflexive. �

3. F-orbit reflexivity with F = C or F = R

PROPOSITION 1. Every normal operator is C-orbit reflexive.

Proof. This is an immediate consequence of [16, Proposition 3]. �

The next two results are consequences of Theorem 1.
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THEOREM 5. Suppose T is a bounded linear operator on a normed space X over
the field F∈ {R, C} such that ∪∞

n=1 ker(Tn) is dense in X . Then T is F-orbit reflexive
and F-Orb(T ) is SOT-closed. Moreover, if S ∈ F-OrbRef(T ) , x ∈ ∪∞

n=1 ker(Tn) ,
β ∈ F , k � 0, and Sx = βTkx �= 0 , then S = βTk .

Proof. Suppose S ∈ F-OrbRef(T ) and let M = ∪∞
n=1 ker(Tn) . It is clear that

S (M) ⊆M and T (M)⊆ M and S|M ∈ F-OrbRef(T |M) . But T |M is locally nilpotent,
and if x ∈ M and Tnx = 0, then

F-Orb(T )x = ∪n
k=0FTkx

is norm closed. Hence, F-OrbRef(T |M) = F-OrbRef0 (T |M) , which, by Theorem 1
is F-Orb(T ) . Hence there is a λ ∈ F and an n � 0 such that S|M = λTn|M . However,
M is dense in X , so S = λTn ∈ F-Orb(T ) . �

The preceding theorem implies a stronger version of itself.

COROLLARY 5. Suppose X is a normed space over F ∈ {R,C} , T ∈ B(X) , and
there is a decreasingly directed family {Xλ : λ ∈ Λ} of T -invariant closed linear sub-
spaces such that

1. for every λ ∈ Λ , ∪∞
n=0 (Tn)−1 (Xλ ) is dense in X , and

2. ∩λ∈ΛXλ = {0} .

Then T is F-orbit reflexive.

Proof. Suppose S ∈ F-OrbRef(T ) and S �= 0. Choose e ∈ X such that Se �= 0.
It follows from (2) that both (1) and (2) remain true if we consider only those Xλ
that contain neither e nor Se . Since T (Xλ ) ⊆ Xλ , T̂λ (x+Xλ ) = Tx + Xλ defines a
bounded linear operator T̂λ on X/Xλ . Condition (1) implies that ∪∞

n=1 ker
(
T̂ n
λ
)

is
dense in X/Xλ ; whence T̂λ is F-orbit reflexive. However, S ∈ F-OrbRef(T ) implies
that S (Xλ ) ⊆ Xλ , so Ŝλ (x+Xλ ) = Sx + Xλ defines an operator on X/Xλ such that
Ŝλ ∈ F-OrbRef

(
T̂λ

)
. Hence, by Theorem 5, since Ŝλ (e+Xλ) �= 0, there is a unique

β ∈ F and a unique nonnegative integer n such that Ŝλ (e+Xλ ) = β T̂ n
λ (e+Xλ) , and

for this β and n, we have Ŝλ = β T̂ n
λ . Suppose η ∈Λ . Since the Xλ ’s are decreasingly

directed, there is a σ ∈ Λ such that Xσ ⊆ Xλ ∩Xη . Applying the same arguments we
used on Xλ , there is a unique α ∈F and a unique integer m � 0 such that Ŝσ (e+Xσ) =
αTm

σ (e+Xσ) . However, it follows that

Se−αTne ∈ Xσ ⊆ Xλ ,

which implies Ŝλ (e+Xλ) =αT̂ n
λ (e+Xλ ) , which implies that α = β and m = n. Thus

Ŝσ = β T̂ n
σ , which in turn implies Ŝη = β T̂ n

η . Therefore Ŝη = β T̂ n
η for every η ∈ Λ .

Therefore, for every η ∈ Λ and for every x ∈ X ,

Sx−βTnx ∈ Xη ,
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which, by (2) , implies S = βTn . �

The following corollary applies to operators that have a strictly upper-triangular
operator matrix with respect to some direct sum decomposition.

COROLLARY 6. If a normed space X over F ∈ {R,C} is a direct sum of spaces
{Xn : n ∈ N} such that T (X1) = {0} , and for every n > 1 ,

T (Xn) ⊆
(
∑⊕

k<n
Xk

)−
,

then T is F-orbit reflexive and F-Orb(T ) is SOT-closed.

The preceding corollary has some familiar special cases.

COROLLARY 7. If T is an operator-weighted shift or if T is a direct sum of nilpo-
tent operators on a normed space X over F ∈ {R,C} , then T is F-orbit reflexive.

THEOREM 6. Suppose X is a normed space over F ∈ {R,C} , T ∈ B(X) and
∩∞

n=1T
n (X)− = {0} . Then T is F-orbit reflexive and F-OrbRef(T ) = F-Orb(T ) .

Moreover, if S ∈ F-OrbRef(T ) , f ∈ X , and 0 �= S f = βTk f , then S = βTk .

Proof. We will first show that T is algebraically F-orbit reflexive. If M is a
finite-dimensional invariant subspace for T and T |M is not nilpotent, then there is a
nonzero T -invariant subspace N of M such that ker(T |N) = 0. Thus T (N) = N �= 0,
which violates ∩∞

n=1T
n (X)− = {0} . Thus, either T is not locally algebraic or T is

locally nilpotent. In these cases it follows either from Theorem 2 or Theorem 1 that
T is indeed algebraically F-orbit reflexive. Furthermore, the hypothesis on T implies,
for each x ∈ X , that

∩∞
N=1

{
λTkx : λ ∈ F,k � N

}−SOT
= {0} ,

so F-Orb(T ) is closed in X . Thus F-OrbRef(T ) = F-OrbRef0 (T ) = F-Orb(T ) . For
the last statement suppose f ∈ X , α,β ∈ F, and k,n � 0 are integers, and

0 �= S f = αTn f = βTk f .

Clearly if n = k, then α = β . Suppose k < n . Then M = sp
{

f ,T f , . . . ,Tn−1 f
}

is a
nonzero finite-dimensional invariant subspace for T with dimM � n . Since Tn f �=
0, we know T |M is not locally nilpotent, which, as remarked earlier, contradicts
∩∞

n=1T
n (X)− = {0} . �

This theorem also implies a stronger version of itself.

COROLLARY 8. Suppose X is a normed space over F ∈ {R,C} , T ∈ B(X) , and
there is an increasingly directed family {Xλ : λ ∈ Λ} of T -invariant linear subspaces
such that
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1. for every λ ∈ Λ, ∩∞
n=1T

n (Xλ ) = {0} , and

2. ∪λ∈ΛXλ is dense in X .

Then T is F-orbit reflexive, and F-OrbRef(T ) = F-Orb(T ) . Moreover, if S∈F-
OrbRef(T ) , f ∈ X , and 0 �= S f = βTk f , then S = βTk .

Proof. Suppose 0 �= S ∈ F-OrbRef(T ) . It follows from (2) that there is a λ0 ∈Λ
and an f ∈ Xλ0

such that 0 �= S f . However, we must have S
(
Xλ0

) ⊆ Xλ0
, and S|Xλ0

∈
F-OrbRef

(
T |Xλ0

)
= F-Orb(T ) (by (1) and the preceding theorem). Thus there is a

unique scalar β and an integer k � 0 such that

S|Xλ0
= βTk|Xλ0

.

The same β and k must work for any Xλ that contains Xλ0
. It follows from the fact

that the family is increasingly directed and (2) that S = βTk . �

I. Kaplansky [20] (see also [22], [22] , [26]) proved that a (bounded linear) operator
on a Banach space is locally algebraic if and only if it is algebraic. This immediately
gives us the following result from Corollary 2.

PROPOSITION 2. Suppose X is a Banach space over the field F ∈ {R,C}and
T ∈ B(X) is not algebraic. Then T is algebraically F-orbit reflexive.

If T is an operator on a Banach space, then r (T ) denotes the spectral radius of
T , i.e.,

r (T ) = max{|λ | : λ ∈ σ (T )} .

THEOREM 7. Suppose T ∈ Md (C) and T is not nilpotent. The following are
equivalent.

1. T is C-orbit reflexive

2. Among all the Jordan blocks with eigenvalues having modulus equal to r (T ) > 0,
the two largest blocks differ in size by at most 1 .

Proof. We begin with some basic computations. Suppose Jm is an m×m nilpotent
Jordan block, i.e., there is an orthonormal basis {e0, . . . ,em−1} for the domain of Jm

such that Jmem−1 = 0 and Jmek = ek+1 for 0 � k < m− 1. Note that Jm is lower
triangular with respect to the basis {e0, . . . ,em−1} . Then, for α ∈ C with |α| � 1 and
n � 0, we have from the binomial theorem that

‖(α + Jm)n‖ =

∥∥∥∥∥
n

∑
k=0

(
n
k

)
αn−kJk

m

∥∥∥∥∥ =

∥∥∥∥∥
min(n,m−1)

∑
k=0

(
n
k

)
αn−kJk

m

∥∥∥∥∥ � mnm−1 |α|n−m+1 ,

so if |α| = 1 and N > m−1 or |α| < 1, then

lim
n→∞

1(n
N

) ‖(α + Jm)n‖ = 0.
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Moreover, for 0 � t < m−1, we have

(α + Jm)n et =
m−1

∑
k=0

(
n
k

)
αn−kJk

mJt
me0 =

m−t−1

∑
k=0

(
n
k

)
αn−ket+k,

and, when m � 2, we have

〈(α + Jm)n e0,e0〉 = αn and 〈(α+ Jm)n e0,e1〉 = nαn−1

In particular, if |α| = 1 and 0 � i < m we have

lim
n→∞

1( n
m−i−1

)
αn−m+i+1

(α + Jm)n ei = em−1.

We can assume T is already equal to its Jordan canonical form. By replacing
T with 1

λ T, where λ is an eigenvalue of T with modulus r (T ) > 0 and having the
largest, say m×m , Jordan block among such eigenvalues, we can assume that this
largest block has eigenvalue 1. We write T as

T = (1+ Jm)⊕∑⊕
1�i�s (αi + Jmi)⊕A

with each |αi| = 1, and m � m1 � · · · � ms , and the modulus of every eigenvalue of A
less than 1. It follows that An → 0 as n → ∞ . Note that we allow the possibility that
s = 0 or A is not present.

(1) =⇒ (2) . Assume m1 � m− 2, i.e., the second largest Jordan block for the
eigenvalues with modulus r (T ) differs from m by more than 1. In this case m � 2.
Let {e0, . . . ,em−1} be the orthonormal basis above. Define a linear transformation S in
terms of the inner product 〈,〉 on Cn by

Sx = [〈x,e0〉+ 〈x,e1〉]em−1.

Note that
(T −1)Se0 = Jmem−1 = 0,

but
S (T −1)e0 = Se1 = em−1 �= 0.

Hence ST �= TS, so S is not in the SOT-closure of C-Orb(T ) . However, we will show
that S ∈ C-OrbRef(T ) . If x is a vector and Sx = 0, then Sx = 0 ·T 1x ∈ C-Orb(T,x) .
If Sx = βem �= 0, then either 〈x,e0〉 �= 0 or both 〈x,e0〉 = 0 and 〈x,e1〉 �= 0. In case
〈x,e0〉 �= 0, we have

Sx = lim
n→∞

β
〈x,e0〉

1( n
m−1

)Tnx ∈ C-Orb(T,x)− .

In case 〈x,e0〉 = 0 and 〈x,e1〉 �= 0, we have

Sx = lim
n→∞

β
〈x,e1〉

1( n
m−2

)Tnx ∈ C-Orb(T,x)− .
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Both of the above two formulas hold because

lim
n→∞

1( n
m−2

) ‖(αi + Jmi)
n‖ = 0

for 1 � i � s since either mi � m−2 and An → 0.
(2) =⇒ (1) . Let { f0, . . . , fm1−1} be the orthonormal basis shifted by Jm1 . Sup-

pose S ∈ C-OrbRef(T ) . Relative to the direct sum decomposition for T above, we
can write

S = S0⊕S1⊕·· ·⊕Sr ⊕B.

In order to prove S ∈ C-Orb(T )−SOT , we consider each of the following cases.

Case 1. m = 1. Then T = 1⊕U⊕A with U unitary. Write S = λ ⊕D⊕B .
Subcase 1.1. λ = 0. Suppose x is in the domain of U ⊕ A . Then there is a

sequence {cn} in C and a sequence {kn} of integers such that

Se0⊕Sx = S (e0⊕ x) = lim
n→∞

cnT
kn (e0⊕ x) =

lim
n→∞

cne0⊕ lim
n→∞

cn (U ⊕A)kn x.

Thus cn → 0, and, since
{∥∥∥(U ⊕A)kn

∥∥∥}
is bounded, Sx = 0. Hence, S = 0.

Subcase 1.2. B = 0, so S = λ⊕D⊕0. It is well-known that if α ∈C and |α|= 1,
then there is a sequence {kn}→∞ such that αkn → 1. Thus there is a sequence {kn}→
∞ such that Ukn → 1. Thus Tkn+1 → 1⊕U ⊕ 0. Since 1⊕U is normal, λ ⊕D ∈ C-
Orb(1⊕U)−SOT . Hence S ∈ C-Orb(T )−SOT .

Subcase 1.3. B �= 0, λ �= 0. Then, for every x ∈DomA , there are sequences {cn}
and {kn} such that

λe0⊕0⊕Bx = S (e0⊕0⊕ x) = limcnT
kn (e0⊕0⊕ x),

which implies , cn → λ . By choosing a subsequence, we can assume kn → ∞ or kn →
k <∞ . If kn → ∞ , then Bx = 0. If kn → k , then Bx = λAkx. Hence

Dom(B) = kerB∪
∞⋃

n=0

ker(B−λAn) ,

which implies, by the Baire Category theorem, that B ∈ {
0,λ ,λA,λA2, . . .

}
. Since

B �= 0, there is a k � 0 such that B = λAk . Since 1−At is invertible for t � 1, and
Ak = 1

λ B �= 0, the integer k is unique. Applying the same technique with e0 replaced
with an eigenvector for U, we get D = λUk . Thus, S = λTk .

Case 2. m � 2. Then m1 � m−1 � 1. Write S = S0⊕S1⊕·· ·⊕Ss⊕B .
Subcase 2.1. B �= 0. As in Subcase 1.3, S = λTk .
Subcase 2.2. Se0 = 0. Suppose x is orthogonal to the domain of S0 . Then

S (e0⊕ x) = lim
n→∞

cnT
kne0⊕ cnT

kne0x
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implies that

lim
n→∞

cn

(
kn

m−1

)
= 0,

which implies

lim
n→∞

cn

∥∥∥((1+ Jm)⊕ (α1 + Jm1)⊕·· ·⊕ (αr + Jmr)⊕A)kn
∥∥∥ → 0.

This, in turn, implies Sx = 0. Thus S1⊕·· ·⊕Sr⊕B = 0. Applying the same idea with
e0 replaced with f0 and x replaced with any of e1, . . . ,em−1 , we conclude that S0 = 0.
Hence S = 0.

Subcase 2.3. Se0 = λTke0 �= 0. Suppose x is orthogonal to the domain of S0 and

S (e0 + x) = lim
n→∞

cnT
kn (e0 + x) .

We then get

lim
n→∞

cn = lim
n→∞

〈
cnT

kne0,e0

〉
= 〈Se0,e0〉 = λ ,

and

lim
n→∞

kn = lim
n→∞

1
cn

〈
cnT

kne0,e1

〉
=

〈
1
λ

Se0,e1

〉
= k.

Hence Sx = λTkx for every x orthogonal to the domain of S0 . In particular

S1 = λ (α1 + Jm1)
k .

If m1 � 2, we can make the same argument with e0 replaced with f0 to get that S0 =
λ (1+ Jm)k , implying S = λTk . If m1 = 1, then m = 2, and we need only show that
Se1 = λTke1; but we know that Te1 = e1 . Suppose Se1 = λβe1 and β �= 1. Choose
y = 1

2(β−1) ; we can write

λe0 +(λk+λβy)e1 = S (e0 + ye1) = lim
n→∞

dnT
jn (e0 + ye1) = lim

n→∞
dne0 +(dn jn + y)e1,

which implies that
dn → λ ,

and

jn − k → (β −1)y =
1
2
,

which is impossible. Thus Se1 = λe1, and S = λTk .
Subcase 2.4. Se0 = limcnT kne0 �= 0 with nk → ∞ . Using the ideas in the proof

of Subcase 2.3, we get B = 0, and S j = 0 when mj < m, and S j|ran
(
Jmj

)
= 0 when

mj = m . If m1 = m, we can apply the same reasoning to ei ⊕ f0 for 1 � i < m to get
Sei = 0, and then applying S to a sum of e0 ⊕ f0 ⊕ h2 ⊕ ·· · ⊕ ht ⊕ 0, where mj = m
and h j ∈ kerJ∗mj

for 1 � j � t , we conclude that there are sequences {dn} and { jn}
such that S = limn→∞ dnT jn and limn→∞ jn = ∞ . If m1 = m− 1, then S f0 = 0, and
we can still look at S (ei ⊕ f0) for 1 � i < m to get Sei = 0. In this case we get
S = limn→∞ cnT kn .

Hence in all of the possible cases, S ∈ C-Orb(T )−SOT . Thus T is C-orbit reflex-
ive. �
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4. Orbit Reflexivity

We conclude with a few results on orbit reflexivity, most of which appeared in
[25]. A key ingredient in the results of this section comes from [16, Theorem 5 (1)],
which uses a simple Baire category argument to show, for an operator T on a Banach
space, that if Orb(T,x) is closed for every x in a nonempty open set, then T is orbit
reflexive.

LEMMA 2. Suppose X is a normed space, T ∈ B(X) , λ is an eigenvalue of the
adjoint T # of T with unit eigenvector α ∈ X# and |λ | > 1 . Then T is orbit reflexive.

Proof. Suppose f ∈ X and 〈 f ,α〉 = α ( f ) �= 0. Then

‖Tn f‖ � |〈Tn f ,α〉| = ∣∣〈 f ,(Tn)∗α
〉∣∣ = |λ |n |〈 f ,α〉| → ∞

as n → ∞ . Since { f ∈ X : 〈 f ,α〉 �= 0} is an open set, it follows from [16, Theorem 5
(1)] that T is orbit reflexive. �

COROLLARY 9. Suppose X is a functional Hilbert space on a set E , and f :
E → C is a multiplier of X such that

∥∥Mf
∥∥ = sup{| f (t)| : t ∈ E} . Then Mf is orbit-

reflexive.

Proof. Suppose t ∈ E and let et ∈ X# be the evaluation functional at t. Then, for
every h ∈ X , we have

(
M#

f (et)
)
h = et

(
Mf h

)
= et ( f h) = f (t)et (h) .

Thus M#
f et = f (t)et for every t ∈ E . If | f (t)|> 1 for some t ∈ E , then it follows from

Lemma 2 that Mf is orbit reflexive. Otherwise,
∥∥Mf

∥∥ � 1, which, by [16], implies Mf

is orbit reflexive. �

In [25] the third author used the preceding corollary and a result of J. E. Thom-
son [32] concerning bounded point evaluations for cyclic subnormal operators to show
that every cyclic subnormal operator is a multiplication on a functional Hilbert space,
implying that every cyclic subnormal operator is orbit reflexive. Here we give a more
elementary proof that every subnormal operator is orbit reflexive.

THEOREM 8. Suppose H is a Hilbert space and T ∈ B(H) is subnormal. Then
T is orbit reflexive.

Proof. Suppose f ∈H and ‖ f‖= 1. Let Ef = {p(T ) f : p ∈ C [t]}− be the cyclic
invariant subspace for T generated by f . We know (see [4]) that there is a probability

measure μ whose support is σ
(
T |Ef

)
and a unitary operator U from Ef onto the

closure P2 (μ) of the set of polynomials in L2 (μ) such that U f = 1 and UT |Ef U
∗
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is the multiplication operator Mz on P2 (μ) . Since the norm of a subnormal operator
equals it spectral radius and

‖Tn f‖2 =
∫
σ

(
T |Ef

) ∣∣z2n
∣∣dμ

for each n � 1, we have that

{Tn f} is bounded⇔
∥∥∥T |Ef

∥∥∥ � 1 ⇔ sup
n�1

‖Tn f‖ � ‖ f‖ ,

and ∥∥∥T |Ef

∥∥∥ > 1 ⇔ lim
n→∞

‖Tn f‖ = ∞.

It follows that { f ∈ H : {Tn f} is bounded} is closed and the set

U =
{

f ∈ H : lim
n→∞

‖Tn f‖ = ∞
}

is open. If U = ∅ , then ‖T‖ � 1, which implies T is orbit reflexive [16]. On the other
hand if U �= ∅ , then it follows from [16, Theorem 5 (1)] that T is orbit reflexive. �
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