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THE ORTHOGONALITY STRUCTURE DETERMINES

A C∗–ALGEBRA WITH CONTINUOUS TRACE

CHUNG-WEN TSAI

(Communicated by B. Magajna)

Abstract. There are four versions of disjointness structures of a C*-algebra: zero product, range
orthogonality, domain orthogonality and doubly orthogonality. Recently, Leung and Wong show
that the linear and zero product structures are sufficient to determine the CCR C*-algebras
with Hausdorff spectrums. In this paper, we investigate the orthogonality structures of the
C*-algebras. More precisely, let θ be a bijective linear map between two C*-algebras with
continuous traces. We prove that θ is automatically continuous whenever it preserves range
(respectively, domain) orthogonal elements in both senses.

1. Introduction

It is a well-known fact that two C*-algebras are isomorphic as C*-algebras if and
only if they are isomorphic as *-algebras. That is, the norm structure of a C*-algebra
can be recovered from its *-algebraic structure. It is further showed by Gardner [14]
(See, e.g., Sakai [20, Theorem 4.1.20]) that two C*-algebras are *-algebraic isomorphic
if and only if they are algebraically isomorphic. Therefore, C*-algebras are completely
determined by their algebraic structures.

C*-algebras also carry the so-called disjointness structures. There are four ver-
sions of disjointness: zero product (ab = 0), range orthogonality (a∗b = 0), domain
orthogonality (ab∗ = 0), and doubly orthogonality (a∗b = ab∗ = 0). Note that all the
four versions of disjointness structures coincide whenever the C*-algebras are abelian.
A linear map θ : A → B between two C*-algebras is said to be

(a) zero product preserving if θ (a)θ (b) = 0 whenever ab = 0,

(b) range orthogonality preserving if θ (a)∗θ (b) = 0 whenever a∗b = 0,

(c) domain orthogonality preserving if θ (a)θ (b)∗ = 0 whenever ab∗ = 0,

(d) doubly orthogonality preserving if θ (a)∗θ (b) = θ (a)θ (b)∗ = 0 whenever a∗b =
ab∗ = 0.
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The starting point of the study in disjointness preserving operators between C*-
algebras is the paper [5], where Arendt established a complete description of all bounded
linear disjointness preservers between C(K) spaces. In [15], Jarosz extended the study
to the setting of linear disjointness preservers (not necessarily continuous) between
abelian C*-algebras. Among the consequences derived from Jarosz result, it follows
that every bijective linear disjointness preserver between C(K) spaces is automatically
continuous.

In the setting of general C*-algebras, the four versions of disjointness preserving
operators need not coincide. In 1994, Wolff [23] classified the symmetric bounded
linear doubly orthogonality preserving operators form a unital C*-algebra into another
C*-algebra. In general, bounded (but not necessarily symmetric) zero-product pre-
servers between (not necessarily unital) C*-algebras were studied in [9, 25], and range
(or domain) orthogonality preservers were studied in [21].

Every C*-algebra A admits a triple product defined by 2{a,b,c} := ab∗c+ cb∗a .
This triple product characterizes orthogonal elements in A . Wong established, in [24],
that a bounded linear operator θ between two C*-algebras is a triple homomorphism
(i.e., it preserves triple products) if and only if θ is doubly orthogonality preserving and
θ ∗∗(1) is a partial isometry in B∗∗ . A complete description of all doubly orthogonality
preserving bounded linear operators between C*-algebras (also between JB*-algebras
and JB*-triples) was obtained by Burgos, Fernández-Polo, Garcés, Martınez-Moreno
and Peralta in [6, 7]. Among the consequences of this description, it follows that a
bounded linear operators between C*-algebras is doubly orthogonality preserving if
and only if it preserves zero-triple-products.

There exists a vast list of contributions to the study of zero-products and (range,
domain, or doubly) orthogonality preserving operators between Banach algebras and
C*-algebras, see for example [1, 3, 8, 9, 10, 13, 15, 16, 18].

Let X be a Banach space. A subalgebra A of the space B(X) of all bounded lin-
ear operators on X is said to be a standard algebra if it contains all finite-dimensional
operators and the identity operator on X . Araujo and Jarosz proved in [4] that ev-
ery bijective linear zero product preserver between two standard operator algebras,
is automatically continuous and a scalar multiple of an algebra isomorphism. They
conjectured that every bijective linear zero product preserver between C*-algebras is
automatically continuous; a conjecture which remains open even for the other three
orthogonality preservers between C*-algebras. See [22] for more discussions.

The Araujo-Jarosz conjecture was recently treated by Leung and Wong [19] in the
setting of CCR C*-algebras with Hausdorff spectrum (for the definition, see Section 2).
They proved that this conjecture is true in this setting. We state their result here.

THEOREM 1. ([19, Theorem 3.3]) Let A and B be CCR C*-algebras with Haus-
dorff spectrum. Let θ : A → B be a bijective linear map such that

ab = 0 in A if and only if θ (a)θ (b) = 0 in B.

Then θ is automatically bounded. Indeed, θ = mΨ where m = θ ∗∗(1) is an invertible
central multiplier of B and Ψ is an algebra isomorphism from A onto B .
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In this paper, we investigate the structure of the linear (range or domain) orthogo-
nality preservers between C*-algebras with continuous traces. More precisely, we will
prove that linear and orthogonality structures are sufficient to determine C*-algebras
with continuous traces.

We would like to express our deep gratitude to the referee for many helpful com-
ments which improve the presentation of this paper.

2. Preliminaries

Let X be a locally compact Hausdorff space, called the base space. Suppose that
for each x in X there is a C*-algebra Ax . A vector field f is an element in the product
space ∏x∈X Ax , that is, f (x) ∈ Ax,∀x ∈ X .

DEFINITION 2. ([11, 12]) A continuous field E = (X ,{Ax},A ) of non trivial C*-
algebras over a locally compact Hausdorff space X is a family {Ax}x∈X of C*-algebras,
with a set A of vector fields, satisfying the following conditions.

1. A is a *-subalgebra of ∏x∈X Ax .

2. For every x in X , the set of all f (x) with f in A is dense in Ax .

3. For every f in A , the function x �→ ‖ f (x)‖ is continuous on X and vanishes at
infinity.

4. Let f be a vector field. Suppose for every x0 in X and every ε > 0, there is a
neighborhood U of x0 and a g in A such that ‖ f (x)− g(x)‖ < ε for all x in
U . Then f ∈ A .

Elements in A are called continuous vector fields. Let f be a vector field, we define
the support, supp f , of f to be the closure of the set {x ∈ X : f (x) �= 0} in X .

If g is a bounded continuous function on X , and f ∈ A , then x �→ g(x) f (x)
defines a continuous vector field g f on X . The set of all f (x) with f in A coincides
with Ax for every x in X . Moreover, for any distinct points x , y in X and any α in
Ax and β in Ay , there is a continuous vector field f such that f (x) = α and f (y) = β
(see, e.g., [12, 17]).

When all Ax equal to a fixed C*-algebra A , and A consists of all continuous
functions from X into A vanishing at infinity, we call E a constant field. In this case,
we write A =C0(X ,A) , or A =C(X ,A) when X is compact, as usual. In general, A
becomes a C*-algebra under the supremum norm ‖ f‖ = supx∈X ‖ f (x)‖ .

Conversely, a C*-algebra A is called a CCR C*-algebra if every irreducible rep-
resentation of A consists of compact operators. The spectrum ˆA of A is the family
of unitary equivalence classes of nonzero irreducible representations under the hull-
kernel topology. This topology is always locally compact, and the spectrum of a CCR
C*-algebra is T1 (compare [11, §3]). Suppose that X = ˆA is Hausdorff. According
to [11, Theorem 10.5.4], we can represent A as a continuous field of C*-algebras
(X ,{Ax},A ) , where for each x in X , Ax is the C*-algebra of all compact operators on
a complex Hilbert space Hx (i.e. an elementary C*-algebra).
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Every C*-algebra with a continuous trace is a CCR C*-algebra with Hausdorff
spectrum and satisfies Fell’s condition, that is, if (X ,{Ax},A ) is a representation sat-
isfying the conditions of the above paragraph, for every x0 in X , there exists a neigh-
borhood U of x0 and a vector field p of (X ,{Ax},A ) , defined and continuous in U ,
such that, p(x) is a projection of rank one for every x in U (compare [11, Proposi-
tion 4.5.3]). Actually, a CCR C*-algebra with Hausdorff spectrum admits a continuous
trace if and only if its representation as continuous field of C*-algebras satisfies Fell’s
condition (cf. [11, Theorem 10.5.8]).

Throughout this paper, we use the following conventions. For a locally compact
Hausdorff space X , we write

X∞ = X ∪{∞},
for its one-point compactification. If X is already compact, then the point ∞ at infinity
is an isolated point in X∞ . Moreover, we identify

C0(X) = { f ∈C(X∞) : f (∞) = 0},
and other similar spaces for those of continuous functions on X vanishing at infinity.
For a continuous field (X ,{Ax},A ) of C*-algebras, associate to each x in X the sets

Ix = { f ∈ A : f vanishes in a neighborhood in X∞ of x},
Mx = { f ∈ A : f (x) = 0}.

In particular,

I∞ = { f ∈ A : f has a compact support},
M∞ = A .

Furthermore, denote by δx the evaluation map at x in X , i.e.,

δx( f ) = f (x), ∀ f ∈ A .

3. Results

THEOREM 3. Let A , B be two C*-algebras with continuous traces. Let θ :
A → B be a bijective linear map. The the following hold.

(a) θ sends elements having orthogonal ranges to elements having orthogonal ranges,
i.e.,

a∗b = 0 in A ⇔ θ (a)∗θ (b) = 0 in B,

if and only if θ = Ψθ ∗∗(1) , where θ ∗∗(1) is an invertible right multiplier of B ,
and Ψ is a *-algebra isomorphism from A onto B .

(b) θ sends elements having orthogonal domains to elements having orthogonal do-
mains, i.e.,

ab∗ = 0 in A ⇔ θ (a)θ (b)∗ = 0 in B,

if and only if θ = θ ∗∗(1)Ψ , where θ ∗∗(1) is an invertible left multiplier of B ,
and Ψ is a *-algebra isomorphism from A onto B .
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(c) θ sends elements having orthogonal ranges to elements having orthogonal do-
mains, i.e.,

a∗b = 0 in A ⇔ θ (a)θ (b)∗ = 0 in B,

if and only if θ = θ ∗∗(1)Ψ , where θ ∗∗(1) is an invertible left multiplier of B ,
and Ψ is an anti-*-algebra isomorphism from A onto B .

(d) θ sends elements having orthogonal domains to elements having orthogonal
ranges, i.e.,

ab∗ = 0 in A ⇔ θ (a)∗θ (b) = 0 in B,

if and only if θ = Ψθ ∗∗(1) , where θ ∗∗(1) is an invertible right multiplier of B ,
and Ψ is an anti-*-algebra isomorphism from A onto B .

In the following, only the first case will be proved. The proofs of the other cases
are similar. We divide the proof into several lemmas as in [19], in which the zero
product preservers are studied. We will complete the proof in the setting of continuous
fields of C*-algebras.

Hereafter, we will regard A and B as the C*-algebras of continuous operator
fields (X ,{Ax},A ) and (Y,{By},B) , where X and Y are (Hausdorff) spectrums of
A and B , respectively. Note that Ax and By are elementary C*-algebras for every x
in X and y in Y .

LEMMA 4. suppθ−1(θ ( f )g) ⊆ supp f for any f in A and g in B .

Proof. For any f in A . Suppose that x0 is not in supp f . Since every locally
compact Hausdorff space is completely regular, there is an open neighborhood U of x0

such that U ∩supp f = /0 . Fix x ∈U and a rank one projection ux⊗ux in Ax , there is a
continuous operator field h such that h(x) = ux ⊗ux and supph ⊆U , that is, h∗ f = 0.
Since θ preserves range orthogonality, we have θ (h)∗θ ( f ) = 0. It is clear that for any
g in B , we have θ (h)∗θ ( f )g = 0. The bijectivity and range orthogonality preserving
property of θ−1 ensures that h∗θ−1(θ ( f )g) = 0. Hence, h(x)∗θ−1(θ ( f )g)(x) = 0 or
ux is not in the range of θ−1(θ ( f )g)(x) . Since ux is arbitrary, θ−1(θ ( f )g)(x) = 0.
This concludes that U ∩ suppθ−1(θ ( f )g) = /0 . �

For every open subset U of X , denote by AU the subalgebra

AU =
{

f ∈ A : f vanishing outside a compact subset of U

}
.

For each y in Y , denote by

Sy =
{

x ∈ X∞ : for every open neighborhoodU of x,

there is an f in AU such that θ ( f )(y) �= 0

}
.

LEMMA 5. Sy is a singleton, for all y in Y .
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Proof. First, we prove that Sy is not empty, for all y in Y . Suppose on the contrary
that Sy = /0 for some y in Y . Then for each x in X∞ there is an open neighborhood Ux

of x in X∞ such that θ ( f )(y) = 0 for all f in AUx . Let Vx be an open neighborhood
of x with compact closure Vx ⊆Ux . By the compactness of X∞ ,

X∞ = Vx0 ∪Vx1 ∪·· ·∪Vxn

for some points x0 = ∞ , x1, . . . ,xn in X∞ . Let

1 = h0 +h1 + · · ·+hn

be a continuous partition of unity such that hi vanishes outside Vxi for i = 0,1, . . . ,n .
For any g in A , observe that

hig ∈ AUxi
implies θ (hig)(y) = 0

and then

θ (g)(y) = θ (
n

∑
i=0

hig)(y) =
n

∑
i=0

θ (hig)(y) = 0, ∀g ∈ A .

This gives a contradiction that y = ∞ .
Before we show that Sy consists of exactly one point for all y in Y , we prove the

following claim.

CLAIM. The cozero sets of θ ( f1) and θ ( f2) are disjoint whenever f1 , f2 ∈ A
have disjoint supports.

Suppose on the contrary that there exist f1 , f2 ∈A and y ∈Y such that supp f1∩
supp f2 = /0 but θ ( f1)(y) �= 0 and θ ( f2)(y) �= 0. Note that g1 = θ ( f1) and g2 =
θ ( f2) have orthogonal ranges since f1 and f2 have. Because B has continuous trace,
there is a neighborhood W of y , and two continuous rank one operator fields u⊗ u
and v⊗ u defined on W , where u(y) and v(y) are eigenvectors of g1(y)∗g1(y) and
g2(y)∗g2(y) associated with nonzero eigenvalues, respectively. Pick any λ ∈ C0(Y )
such that suppλ ⊆W and λ (y) = 1. Define h1,h2 ∈ B \ {0} by

h1(μ) :=
{
λ (μ)‖g2(μ)v(μ)‖g1(μ)(u(μ)⊗u(μ)) μ ∈W,
0 μ /∈W,

and

h2(μ) :=
{
λ (μ)‖g1(μ)u(μ)‖g2(μ)(v(μ)⊗u(μ)) μ ∈W,
0 μ /∈W.

Note that h1 and h2 have orthogonal ranges as g1 and g2 have. Observe that

(h1 +h2)∗(h1−h2) = h∗1h1−h∗1h2 +h∗2h1−h∗2h2

= h∗1h1−h∗2h2

= λ 2‖g2v‖2(u⊗u)g∗1g1(u⊗u)−λ 2‖g1u‖2(u⊗ v)g∗2g2(v⊗u)

= λ 2‖g2v‖2(u⊗g1u)(g1u⊗u)−λ 2‖g1u‖2(u⊗g2v)(g2v⊗u)

= λ 2‖g2v‖2‖g1u‖2(u⊗u)−λ 2‖g1u‖2‖g2v‖2(u⊗u)
= 0
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on W . It is clear that (h1 + h2)∗(h1 − h2) = 0 outside W . This shows that h1 + h2

and h1 − h2 have range orthogonality. Set f ′1 := θ−1(h1) �= 0 and f ′2 := θ−1(h2) �=
0. Because θ−1 is linear and preserves range orthogonality, this ensures the range
orthogonality of f ′1 and f ′2 as well as that of f ′1 + f ′2 and f ′1 − f ′2 . It follows that

0 = ( f ′1 + f ′2)
∗( f ′1 − f ′2) = f ′∗1 f ′1 − f ′∗1 f ′2 + f ′∗2 f ′1 − f ′∗2 f ′2

= f ′∗1 f ′1 − f ′∗2 f ′2,

that is f ′∗1 f ′1 = f ′∗2 f ′2 �= 0 or supp f ′∗1 f ′1 = supp f ′∗2 f ′2 �= /0 . Note that supp f ′1 ⊆ supp f1
and supp f ′2 ⊆ supp f2 by Lemma 4, we have supp f ′1 ∩ supp f ′2 = /0 . Thus supp f ′∗1 f ′1 ∩
supp f ′∗2 f ′2 = /0 , which is a contradiction.

Now we are ready to prove that Sy consists of exactly one point for all y in Y .
Suppose that x1 , x2 ∈ Sy and x1 �= x2 . Let U1 and U2 be disjoint open neighborhoodsof
x1 and x2 , respectively. By the definition of Sy , there exist f1 , f2 ∈ A with supp fi ⊂
Ui and θ ( fi)(y) �= 0 ( i = 1,2) which contradicts the claim. �

Define a map ϕ from Y into X∞ by Sy = {ϕ(y)} .

LEMMA 6. The point ϕ(y) is the unique point in X∞ satisfying the condition that

θ (Iϕ(y)) ⊆ My, ∀y ∈ Y. (1)

Proof. Let f ∈ Iϕ(y) vanish in an open neighborhood U of ϕ(y) . For all x /∈U , by
the definition of Sy there is an open neighborhood Vx of x such that θ (AVx)(y) = {0} .
By compactness, we can write X∞ = U ∪Vx1 ∪·· · ∪Vxn for some x1, . . . ,xn in X∞ \U .
Let 1 = h+ h1 + · · ·+ hn be a corresponding continuous partition of unity. Note that
θ (hig)(y) = 0 for all g in A and i = 1, . . . ,n . Hence, θ (g)(y) = θ (hg)(y) for all g
in A . As f ∗(hg) = 0, we see that θ ( f )(y)∗θ (g)(y) = θ ( f )(y)∗θ (hg)(y) = 0. Since
θ is bijective, θ ( f )(y)∗ = 0 or θ ( f )∗ ∈ My . Therefore, θ ( f )(y) = 0 or θ ( f ) ∈ My .
Finally, the uniqueness assertion follows from the definition of Sy . �

The proofs of the following two lemmas are similar to those in [19], and thus
omitted. It should be noticed that, since θ is a bijection and Ay is non-zero, δy ◦θ �= 0
for every y ∈ Y .

LEMMA 7. ϕ : Y → X∞ is continuous.

LEMMA 8. Let {yn} be a sequence in Y such that ϕ(yn) are distinct points in
X∞ . Then

limsup‖δyn ◦θ‖< +∞.

Proof of Theorem 3. With the above lemmas, we have already constructed a con-
tinuous function ϕ from Y into X∞ , which satisfies the condition

θ (Iϕ(y)) ⊆ My, ∀y ∈ Y.
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Set

Y1 = {y ∈ Y : θ (Mϕ(y)) ⊆ My},
Y2 = {y ∈ Y : θ (Mϕ(y)) � My}.

Then Y∞ = {∞}∪Y1 ∪Y2 is a disjoint union. If y ∈ Y1 , we have θ (Mϕ(y)) ⊆ My and
hence there is a linear operator Hy : Aϕ(y) → By such that

θ ( f )(y) = Hy( f (ϕ(y))), ∀ f ∈ A . (2)

To see Y2 is empty, we first prove that ϕ(Y2) is a finite set of non-isolated points
in X∞ . Let x = ϕ(y) with y in Y2 . Then we have

θ (Ix) ⊆ My but θ (Mx) � My.

This implies the linear operator δy ◦ θ is unbounded, since Ix is dense in Mx by
Uryshon’s Lemma. By Lemma 8, we can have only finitely many of such x ’s. So
ϕ(Y2) is a finite set. Moreover, if x is an isolated point in X∞ then Ix = Mx and thus
x /∈ ϕ(Y2) .

Next we prove that Y2 is open, or equivalently, {∞}∪Y1 is closed in Y∞ . Let
yλ → y with yλ in {∞}∪Y1 . We want to show that y ∈ {∞}∪Y1 . We might assume
yλ ∈ Y1 for all λ and y �= ∞ . By Lemma 7, we see that ϕ(yλ ) → ϕ(y) . In case
there is any subnet of {ϕ(yλ )} consisting of only finitely many points, we can assume
ϕ(yλ ) = ϕ(y) for all λ . Then for all f in A , f (ϕ(y)) = 0 implies f (ϕ(yλ )) = 0,
and thus θ ( f )(yλ ) = 0 for all λ by (2). By continuity, θ ( f )(y) = 0. Consequently,
θ (Mϕ(y)) ⊆ My , and thus y ∈ Y1 . In the other case, every subnet of {ϕ(yλ )} contains
infinitely many points. Lemma 8 asserts that M = limsup‖Hyλ ‖ < +∞ . This gives

‖θ ( f )(y)‖ = lim‖θ ( f )(yλ )‖ = lim‖Hyλ ( f (ϕ(yλ )))‖ � M‖ f (ϕ(y))‖.

Thus, if f (ϕ(y)) = 0 we have θ ( f )(y) = 0. Consequently, y ∈ Y1 .
Now, we are ready to show that Y2 is empty. It follows from (1) that ϕ(Y ) =

ϕ(Y1)∪ϕ(Y2) is dense in X . Since ϕ(Y2) is a finite set of non-isolated points in X , we
see that ϕ(Y1) alone is dense in X . On the other hand, let y ∈ Y1 with ϕ(y) = x in X ,
and ψ(x) = z in Y∞ . Here, the map ψ : X → Y∞ , and the decomposition X = X1 ∪X2

is induced by θ−1 in an analogous way. In particular, we have

θ (Mx) ⊆ My and θ−1(Iz) ⊆ Mx.

Consequently, Iz ⊆ θ (Mx) ⊆ My gives y = z ∈ ψ(X) . In case y ∈ ψ(X1) , we have
θ (Mx)= My . Since ψ(X2) is a finite set of non-isolated points in Y , we have θ (Mϕ(y))=
My for all but at most finitely many y in Y1 . Therefore, the linear map Hy is bijective
for all but at most finitely many y in Y1 , which are non-isolated points in Y . Hence, if
θ ( f ) vanishes in Y1 then f vanishes on the dense set ϕ(Y1) by (2), and thus f = 0.
Therefore, Y1 is dense in Y by the surjectivity of ϕ . The openness of Y2 forces itself
to be empty.
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Now, Y = Y1 and X = X1 imply that ψ = ϕ−1 and thus ϕ is a homeomorphism
from Y onto X . In addition to this, both θ and θ−1 can be written as weighted com-
position operators:

θ ( f )(y) = Hy( f (ϕ(y))), ∀ f ∈ A ,∀y ∈ Y,

θ−1(g)(x) = Tx(g(ψ(x))), ∀g ∈ B,∀x ∈ X .

It is easy to see that the linear map Hy : Aϕ(y) → By has an inverse Ty for every y in Y ,
and thus it is bijective.

Suppose α∗β = 0 in Ax for some x = ϕ(y) . Consider the closed two-sided ideal
I = {c ∈ A : c(x) = 0} of A . Let a,b in A be such that a(x) = α∗,b(x) = β . Then
ab ∈ I . By a result of Akemann and Pedersen [2] (see also [9, Lemma 4.14]), we can
find a′,b′ in A such that a′(x) = α∗ , b′(x) = β and a′b′ = 0. Now θ (a′∗)∗θ (b′) = 0
implies Hy(α)∗Hy(β ) = 0. So each Hy preserves the orthogonality of ranges.

So far we know that Hy : Aϕ(y) → By is a bijective linear map and preserves range
orthogonality in both sense for each y in Y . Note that Aϕ(y) and By are elementary C*-
algebras and hence Aϕ(y) and By consists of compact operators on Hilbert spaces Hϕ(y)
and Ky , respectively. It is showed in [22, Theorem 3] that Hy is bounded and assumes
the following form Hy(a) = UyaSy , where Uy : Hϕ(y) → Ky is a unitary operator and
Sy : Ky → Hϕ(y) is an invertible bounded operator.

Next, we show that sup‖Hy‖ < +∞ . For else, there is a sequence {yn} in Y such
that lim‖Hyn‖ = +∞ . By Lemma 8, we can assume all ϕ(yn) = x in X . Let e ∈ Ax

and f ∈ A such that f (x) = e . Then

‖Hyn(e)‖ = ‖θ ( f )(yn)‖ � ‖θ ( f )‖, n = 1,2, . . . .

It follows from the uniform boundedness principle that sup‖Hyn‖ < +∞ , a contradic-
tion. The inequality

‖θ‖ = sup{‖θ ( f )‖ : f ∈ A with ‖ f‖ = 1}
= sup{‖Hy( f (ϕ(y)))‖ : f ∈ A with ‖ f‖ = 1,y ∈ Y}
� sup{‖Hy‖ : y ∈ Y}

implies that θ is bounded with ‖θ‖ = sup{‖Hy‖ : y ∈Y} .
Finally, we make use of a result of Lee [17, Lemma 2] which asserts that the

multiplier algebras M(A) and M(B) can be represented as families of bounded oper-
ator fields in (X ,{M(Ax)}) and (Y,{M(By)}) , respectively. By restricting the double
dual map of θ to M(A) , we see that the invertible multiplier θ ∗∗(1)(y) = UySy . It is
plain that the *-algebra isomorphism Ψ= θθ ∗∗(1)−1 is given by sending a continuous
operator field { f (x)} to {Uy f (ϕ(y))U∗

y } . �

As a consequence of Theorem 3, the linear and orthogonality structures suffice to
determine a C*-algebras with continuous traces.

THEOREM 9. Two C*-algebras A ,B with continuous traces are *-algebra iso-
morphic (respectively, anti-*-algebra isomorphic) if and only if they have the same
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linear and orthogonality (respectively, reversed orthogonality) structures, i.e. there is
a bijective linear map θ : A → B satisfying Case 1 or Case 2 (respectively, Case 3 or
Case 4) in Theorem 3.

We remark that the only place in our arguments we need to utilize the existence
of a continuous trace for the C*-algebras (i.e., Fell’s condition) is in the verifying of
the Claim in the proof of Lemma 5. It seems to us that one might be able to get rid
of this technical assumption, and extend Theorems 3 and 9 to the wider class of CCR
C*-algebras with Hausdorff spectrum. We hope to finish this task in future.

In the case of doubly orthogonality preservers, we do not need to assume the Fell’s
condition. We thank the referee for suggesting us to include the following result.

THEOREM 10. Two CCR C*-algebras A ,B with Hausdorff spectrum are iso-
morphic as JB*-algebras if and only if they have the same linear and double orthogo-
nality structures. More precisely, let θ : A → B be a bijective linear map such that

a∗b = ab∗ = 0 in A if and only if θ (a)∗θ (b) = θ (a)θ (b)∗ = 0 in B.

Then θ is automatically bounded. Indeed,

θ (·) = θ ∗∗(1)Ψ1(·) = Ψ2(·)θ ∗∗(1),

where θ ∗∗(1) is an invertible central multiple of a unitary in the multiplier algebra of
B , and Ψ1 , Ψ2 are Jordan *-algebra isomorphisms from A onto B .

Proof. As we have already pointed out that the proof of Theorem 3, except for
the part in verifying the Claim in Lemma 5, does not assume Fell’s condition. We can
use similar arguments for the current case. In other words, it suffices to establish that
Sy is a singleton without assuming Fell’s condition in this situation. We will adapt the
arguments in [19, Lemma 2.6] to achieve this goal.

Suppose that Sy contains two distinct points x1,x2 . Let U1,U2 be disjoint open
neighborhoods of x1,x2 , respectively. Let f1, f2 be in AU1 ,AU2 , respectively. So,
f ∗1 f2 = f1 f ∗2 = 0. Thus,

θ ( f1)∗θ ( f2) = 0, ∀ f1 ∈ AU1 ,∀ f2 ∈ AU2 . (3)

Let E1 be the orthogonal complement to the sum of the range spaces of all members in
θ (AU1)(y) . It follows from (3) and the non-triviality of θ (AU2)(y) that E1 is a nonzero
subspace of the underlying Hilbert space Ey on which the elementary C*-algebra By is
acting. Let V be any open set in X with compact closure contained in U1 . For any h in
AV , let g be a continuous scalar function on X∞ such that g = 1 on the support of h and
g vanishes outside V . Then for any f in A , we have f g∈AU1 , and thus θ ( f g)(y)∗ =
0 on E1 . On the other hand, we have h∗( f (1− g)) = h( f (1− g))∗ = 0. This forces
θ (h)(y)θ ( f )∗(y) = θ (h)(y)θ ( f g)∗(y) = 0 on E1 . Note that θ (A)∗ = θ (A ) = B , and
ByE1 = Ey since E1 �= 0. Consequently, θ (h)(y) = 0 for all h in AU1 . This gives a
contradiction to the non-triviality of θ (AU1) at y . Hence, Sy is a singleton.
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Argue as in other parts of the proof of Theorem 3, we will have a field of bijective
linear fiber maps Hy : Aϕ(y) →By such that both Hy and its inverse H−1

y preserve double
orthogonality. By [22, Theorem 3], Hy is bounded, and there exist a nonzero scalar λy ,
a unitary operator Uy : Ey →Ey and Jordan *-isomorphisms Ψ1y,Ψ2y : Aϕ(y) →By such
that

Hy(·) = λyUyΨ1y(·) = λyΨ2y(·)Uy, ∀y ∈ Y.

By a similar argument as in the proof of Theorem 3 again, we will see that θ is bounded,
and θ ∗∗(1) is determined by the field of scalar multiples of unitary operators y �→ λyUy .
By [17], we see that the map y �→ λy determines an invertible central element, and the
map y �→Uy determines a unitary, in the multiplier algebra of B . It is now plain that
Ψ1(·) := θ ∗∗(1)−1θ (·) and Ψ2 := θ (·)θ ∗∗(1)−1 are both Jordan *-isomorphisms from
A onto B . �
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