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ON THE PERTURBATION OF SINGULAR ANALYTIC

MATRIX FUNCTIONS: A GENERALIZATION

OF LANGER AND NAJMAN’S RESULTS

FERNANDO DE TERÁN

Abstract. Given a singular n×n matrix function A(λ) , analytic in a neighborhood of an eigen-
value λ0 ∈ C , and perturbations, B(λ ,ε) , such that B(λ ,0) ≡ 0 and analytic in λ and ε near
(λ0,0) , we provide sufficient conditions on these perturbations for the existence of eigenvalue
expansions of the perturbed matrix A(λ) + B(λ ,ε) near λ0 . We also describe the first order
term of these expansions. This extends to the singular case some results by Langer and Najman.

1. Introduction

An n× n matrix function A(λ ) of the complex scalar variable λ is said to be
regular if detA(λ ) is not identically zero as a function of λ (from now on, this condi-
tion will be denoted by detA(λ ) �≡ 0), and it is singular otherwise. The normal rank
of A(λ ) , denoted by nrankA(λ ) , is the dimension of the largest non-identically zero
minor of A(λ ) , and an eigenvalue of A(λ ) is a number λ0 ∈ C such that

rankA(λ0) < nrankA(λ ) .

This notion extends the well-known definition of eigenvalues of singular matrix pencils,
introduced by Sun in [7], to general singular matrix functions. It also generalizes the
notion of eigenvalues of regular matrix functions to the singular case. Note that if A(λ )
is regular then nrankA(λ ) = n and the eigenvalues of A(λ ) are the solutions of the
equation

detA(λ ) = 0 ,

but, if A(λ ) is singular then this equation becomes an identity, and it is satisfied not
only by the eigenvalues but also by all complex values.

In the present paper we are concerned with the local behavior of a given eigenvalue
λ0 of an n× n singular matrix function A(λ ) , which is analytic in a neighborhood of
λ0 , when this matrix is perturbed by another n×n matrix B(λ ,ε) which is assumed to
be analytic in a neighborhood of (λ0,0) . In other words, we are interested in knowing
whether there are eigenvalues of A(λ )+ B(λ ,ε) approaching λ0 as ε approaches 0
and, in this case, in describing the first order term of the asymptotic expansions. Notice
that, in order to recover the original matrix A(λ ) at ε = 0 we need to impose B(λ ,0)≡
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0 (this condition will be assumed throughout the paper). It is well known that if A(λ )
is regular then λ0 changes continuously with ε and, moreover, the eigenvalues of the
perturbed matrix A(λ )+B(λ ,ε) approaching λ0 as ε tends to zero can be expanded
as a (fractional) power series in ε . In a remarkable series of papers [5, 6], Langer
and Najman obtained the first order term of these expansions under certain generic
conditions.

The behavior of eigenvalues of regular matrix functions described above is in stark
contrast with the one in the singular case. If A(λ ) is singular, there exist arbitrarily
small perturbations placing the eigenvalues anywhere in the complex plane (see [3,
Section 1] for an example in the case of matrix pencils). Nonetheless, in [3] (respec-
tively in [2]) it is shown that in the case of matrix pencils (resp. matrix polynomials of
higher degree) the eigenvalues change continuously, as power series expansions in ε ,
for most perturbations (that is, for all perturbations except those in a subset of Lebesgue
measure zero). Moreover, in [2, 3] sufficient conditions are given on the set of per-
turbations for the continuity of the eigenvalues, and a considerable algebraic effort is
performed to relate these sufficient conditions with relevant subspaces associated with
λ0 and A(λ ) . The procedure followed in these works consists of “regularizing” the
problem (see Section 1 in [2]) and then applying the techniques by Langer and Naj-
man in [6]. In the present paper, the same approach is extended to deal, for the first
time, with singular matrix functions analytic in a neighborhood of an eigenvalue λ0 .
An important difference with the preceding papers is the following: in [3] and [2] the
set of perturbations for which there are eigenvalue expansions and also the first order
terms of these expansions are described using, respectively, reducing subspaces [9] of
the unperturbed matrix pencil and singular spaces at λ0 (introduced in [2]) of the un-
perturbed matrix polynomial. In the case of analytic matrix functions we are not able
to give an analogous description. We just make use of some particular bases of the left
and right null spaces of the matrix A(λ0) associated with the local Smith form at λ0

(see the paragraph following the proof of Theorem 1).
Only in the particular case of semisimple eigenvalues we are able to provide a de-

scription of the first order coefficients in terms of arbitrary bases of the left and right null
spaces of A(λ0) (see Theorem 4). This has been previously done in [4] for the regular
case, and the leading terms of the eigenvalue expansions we obtain when specialized to
a regular matrix function A(λ ) coincide with the ones obtained in [4].

2. The local Smith form

In this section we recall one of the main tools that will be used in the paper: the
local Smith form. We also introduce some definitions related with this canonical form
and some notation.

Given an eigenvalue λ0 of the n×n matrix A(λ ) , which is assumed to be analytic
in a neighborhood of λ0 , there exist positive integers 0 < m1 � . . . � mg and two n×n
matrix functions W (λ ) and V (λ ) , which are analytic and invertible in a neighborhood
of λ0 , such that

W (λ )A(λ )V (λ ) = Δ(λ ), (1)
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where

Δ(λ ) =

⎡
⎢⎢⎢⎢⎢⎣

(λ −λ0)m1

. . .
(λ −λ0)mg

I
0d×d

⎤
⎥⎥⎥⎥⎥⎦ , d = n−nrankA(λ ). (2)

The matrix Δ(λ ) in (2) is known as the local Smith form of A(λ ) at λ0 [1, p. 10].
The numbers m1, . . . ,mg are known as the partial multiplicities at λ0 , and the number
of partial multiplicities, g , is the geometric multiplicity of λ0 . The sum of the partial
multiplicities a := m1 + · · ·+mg is the algebraic multiplicity of λ0 . An eigenvalue λ0

of A(λ ) is said to be semisimple if m1 = . . . = mg = 1 . Notice that if λ0 is semisimple
then the local Smith form of A(λ ) at λ0 simplifies to

Δ(λ ) =

⎡
⎣ (λ −λ0)Ig

I
0d×d

⎤
⎦ , d = n−nrankA(λ ). (3)

Finally, given a complex value μ , we will denote by N (A(μ)) (resp. NT (A(μ)))
the right (resp. left) null space of the matrix A(μ) ∈ C

n×n . The subscript ·T stands for
the fact that its elements are row vectors. From now on, we will follow the convention
of using row vectors for left null spaces and column vectors for right null spaces.

3. Eigenvalue expansions

Let us partition the matrices W (λ ) and V (λ ) transforming A(λ ) into the local
Smith form at λ0 (1) in the form

W (λ ) =

⎡
⎣W1(λ )

�
W2(λ )

⎤
⎦ and V (λ ) =

[
V1(λ ) � V2(λ )

]
,

with
W1(λ ) = (W (λ ))(1 : g , :) , W2(λ ) = (W (λ ))(n−d +1 : n , :) (4)

and
V1(λ ) = (V (λ ))( : , 1 : g) , V2(λ ) = (V (λ ))( : , n−d+1 : n) , (5)

where we use MATLAB’s notation for submatrices. The blocks denoted with � will
not be of interest in our arguments.

The following result provides sufficient conditions for the existence of eigenvalue
expansions near λ0 .

THEOREM 1. Let A(λ ) be an n×n matrix function which is analytic in a neigh-
borhood of an eigenvalue λ0 ∈ C , and whose Smith local form at λ0 is given by (2).
Let W2(λ ) and V2(λ ) be defined as in (4) and (5). Let B(λ ,ε) be another n×n matrix
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function, analytic in some neighborhood of (λ0,0) , with B(λ ,0) ≡ 0 , and such that

det
(
W2(λ ) ∂B

∂ε (λ ,0)V2(λ )
)
�≡ 0 . Then

1. There exists a constant b > 0 such that the matrix function A(λ )+B(λ ,ε) is
regular whenever 0 < |ε| < b.

2. For 0 < |ε| < b the eigenvalues of A(λ )+B(λ ,ε) approaching λ0 as ε tends
to zero are the solutions of the equation in λ

pε(λ ) = 0 ,

where pε(λ ) is analytic near λ0 and the coefficients of the power expansion in λ of
pε(λ ) are functions in ε which are analytic near ε = 0 . In addition, when ε = 0 ,

p0(λ ) = (λ −λ0)a det

(
W2(λ )

∂B
∂ε

(λ ,0)V2(λ )
)

, (6)

where a = m1 + · · ·+mg is the algebraic multiplicity of λ0 as an eigenvalue of A(λ ) .
3. There are at least a eigenvalues {λ1(ε), . . . ,λa(ε)} of A(λ ) + B(λ ,ε) such

that
lim
ε→0

λ j(ε) = λ0 , j = 1, . . . ,a ,

and these can be expanded as a (fractional) power series in ε .

Proof. The proof follows the arguments in the first part of the proof of Theorem 2
in [3]. It is based on the local Smith form (2). First, we consider the transformation to
the local Smith form at λ0 ,

W (λ )(A(λ )+B(λ ,ε))V(λ ) = Δ(λ )+W(λ )B(λ ,ε)V (λ ) ≡ Δ̂(λ )+G(λ ,ε), (7)

where

Δ̂(λ ) =

⎡
⎣D(λ )

0
0d×d

⎤
⎦ and G(λ ,ε) =

⎡
⎣G11(λ ,ε) G12(λ ,ε) G13(λ ,ε)

G21(λ ,ε) I +G22(λ ,ε) G23(λ ,ε)
G31(λ ,ε) G32(λ ,ε) G33(λ ,ε)

⎤
⎦

(with D(λ ) = diag((λ −λ0)m1 , . . . ,(λ −λ0)mg) the “relevant” part of the local Smith
form) are partitioned conformally, and [Gi j(λ ,ε)]3i, j=1 = W (λ )B(λ ,ε)V (λ ) . More-

over, by hypothesis we have B(λ ,ε) = εB̃(λ ,ε) , with B̃(λ ,ε) analytic in a neighbor-
hood of (λ0,0) so, we can write Gi j(λ ,ε) = εG̃i j(λ ,ε) , for i, j = 1,2,3. In particular,

G̃33(λ ,ε) =W2(λ )
(
∂B
∂ε (λ ,ε)+O(ε)

)
V2(λ ) . Therefore,

f (λ ,ε) = det(A(λ )+B(λ ,ε)) = δ (λ )εd f̃ (λ ,ε),

where
f̃ (λ ,ε) = det(Δ̂(λ )+ Ĝ(λ ,ε))

and

Ĝ(λ ,ε) =

⎡
⎣G11(λ ,ε) G12(λ ,ε) G̃13(λ ,ε)

G21(λ ,ε) I +G22(λ ,ε) G̃23(λ ,ε)
G31(λ ,ε) G32(λ ,ε) G̃33(λ ,ε)

⎤
⎦ .
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In addition, the function δ (λ ) is given by δ (λ ) = p(λ )q(λ ) where, det(W (λ )) =
1/p(λ ) and det(V (λ )) = 1/q(λ ) . So δ (λ ) is analytic near λ0 with δ (λ0) �= 0 and
does not depend on the perturbation B(λ ,ε) . These facts imply that, for ε �= 0, the
matrix A(λ )+B(λ ,ε) is regular if and only if f̃ (λ ,ε) �≡ 0. Since

f̃ (λ ,0) = det(D(λ ))det(G̃33(λ ,0)) = (λ −λ0)a det

(
W2(λ )

∂B
∂ε

(λ ,0)V2(λ )
)

,

and, by hypothesis, det
(
W2(λ ) ∂B

∂ε (λ ,0)V2(λ )
)
�≡ 0 , we conclude, by continuity, that

A(λ )+B(λ ,ε) is regular in a punctured disk 0 < |ε| < b . This proves the first claim.
To prove the second one, notice that, when A(λ )+B(λ ,ε) is regular, the eigen-

values of A(λ ) + B(λ ,ε) approaching λ0 as ε tends to zero are those zeros, λ (ε) ,
of f̃ (λ ,ε) whose limit is λ0 . Obviously, f̃ (λ ,ε) is a quotient of functions which are
analytic in λ near λ0 . Moreover, the coefficients of the numerator are functions in ε ,
analytic at ε = 0, and the denominator is precisely δ (λ ) . So, the second claim follows
by taking pε(λ ) := f̃ (λ ,ε) .

Finally, for the third claim we first observe, as in [4, p. 607], that the Weierstrass
preparation theorem allows us to see the equation f̃ (λ ,ε) = 0 locally as a polynomial
equation in λ , ∑k

i=0 bi(ε)(λ −λ0)i = 0, for some k � a , where bi(ε) , for i = 0, . . . ,k ,
are analytic near ε = 0. Now the claim is an immediate consequence of the second one
and some well-know results of the Analytic Function Theory (see, for instance, [8, Th.
5.1]). �

Our aim in the following is to describe the first order term of the eigenvalue ex-
pansions mentioned in the third claim of Theorem 1. To this end, set

W (λ ) =

⎡
⎢⎣

w1(λ )
...

wn(λ )

⎤
⎥⎦ and V (λ ) =

[
v1(λ ) . . . vn(λ )

]
.

Notice that, since W (λ0) and V (λ0) are both nonsingular, the set of vectors{
w1(λ0), . . . ,wg(λ0),wn−d+1(λ0), . . . ,wn(λ0)

}
and {

v1(λ0), . . . ,vg(λ0),vn−d+1(λ0), . . . ,vn(λ0)
}

are bases of, respectively, NT (A(λ0)) and N (A(λ0)) .
Now, we rename the partial multiplicities at λ0 , appearing in the local Smith form

of A(λ ) at λ0 (2), as

{n1, . . . ,n1︸ ︷︷ ︸
r1

, . . . ,nq, . . . ,nq︸ ︷︷ ︸
rq

} ≡ {m1, . . . ,mg}, (8)

where we assume that,
0 < n1 < n2 < · · · < nq. (9)



558 FERNANDO DE TERÁN

Note that the algebraic and geometric multiplicities of λ0 are given, respectively, by

a =
q

∑
i=1

ri ni and g =
q

∑
i=1

ri.

Let us define the sequence

f j =
q

∑
i= j

ri, j = 1, . . . ,q, and fq+1 = 0,

so f1 = g . We consider also the following submatrices of the matrices W (λ0) and
V (λ0)

W1 j = (W (λ0))(g− f j +1 : g , :) and V1 j = (V (λ0))( : , g− f j +1 : g) , for j = 1, . . . ,q,

W2 = W2(λ0) and V2 = V2(λ0) ,

with W2(λ ) and V2(λ ) as in (4) and (5). Note that W11 = W1(λ0) and V11 = V1(λ0) ,
according to the notation introduced in (4) and (5). We will denote this matrices by,
respectively, W1 and V1 . Notice also that, as mentioned above, the rows of [WT

1 WT
2 ]T

(resp. the columns of [V1 V2]) form a very specific basis of NT (A(λ0)) (resp. of
N (A(λ0))). Now, we can build up the matrices

Φ j =
[
W1 j

W2

]
∂B
∂ε

(λ0,0)
[
V1 j V2

]
, j = 1, . . . ,q, and Φq+1 = W2

∂B
∂ε

(λ0,0)V2.

(10)
Notice that

Φ1 =
[
W1

W2

]
∂B
∂ε

(λ0,0)
[
V1 V2

]
,

and that Φ j is the ( f j + d)× ( f j + d) lower right principal submatrix of Φ . Finally,
we define

Ej = diag(Ir j ,0( f j+1+d)×( f j+1+d)) , j = 1, . . . ,q. (11)

The pencils Φ j +ζEj , j = 1, . . . ,q are relevant in obtaining the leading coefficient
of the perturbation expansions. The main property of these pencils relating to this is
given in the first claim of the following lemma.

LEMMA 1. [3, Lemma 6] Let Φ j,Φq+1 and Ej , j = 1, . . . ,q, be the matrices
defined, respectively, in (10) and (11). If the matrix Φ j+1 is nonsingular then

1. The pencil Φ j + ζEj is regular and has exactly r j finite eigenvalues.

2. The finite eigenvalues of Φ j + ζEj are minus the eigenvalues of the Schur com-
plement of Φ j+1 in Φ j .

3. If, in addition, Φ j is nonsingular then the r j finite eigenvalues of Φ j + ζEj are
all different from zero.
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The r j eigenvalues of the pencil Φ j + ζEj (under the assumption detΦ j+1 �= 0
in the statement Lemma 1) will determine the leading coefficients of r j eigenvalue ex-
pansions near λ0 with leading exponent 1/n j . Moreover, the third claim of Lemma 1
provides a sufficient condition for these being the only expansions with leading coeffi-
cient 1/n j . This is part of the main result of this section, which is the generalization to
analytic matrices of [2, Theorem 5], that is valid only for matrix polynomials.

THEOREM 2. Let A(λ ) be an n× n matrix function (singular or not) which is
analytic in a neighborhood of λ0 ∈ C . Assume that λ0 is an eigenvalue of A(λ ) such
that the partial multiplicities at λ0 satisfy (8) and (9). Let B(λ ,ε) be another n× n
matrix which is analytic near (λ0,0) and with B(λ ,0)≡ 0 , and let Φ j , j = 1, . . . ,q+
1 , and Ej , j = 1, . . . ,q, be the matrices defined in (10) and (11). If detΦ j+1 �= 0 for
some j ∈ {1,2, ...,q} , let ξ1, . . . ,ξr j be the r j finite eigenvalues of the pencil Φ j +ζEj ,

and (ξt)
1/n j
s , s = 1, . . . ,n j , be the n j determinations of the n j th root. Then, in a

neighborhood of ε = 0 , the matrix A(λ )+B(λ ,ε) has r jn j eigenvalues satisfying

λ rs
j (ε) = λ0 +(ξt)

1/n j
s ε1/n j +o(ε1/n j) , t = 1,2, ...,r j , s = 1,2, ...,n j , (12)

where ε1/n j is the principal determination of the n j th root of ε . Moreover, the matrix
A(λ )+B(λ ,ε) is regular in the same neighborhood for ε �= 0 . If, in addition, det Φ j �=
0 , then all ξt in (12) are nonzero, and (12) are all the expansions near λ0 with leading
exponent 1/n j .

Proof. The proof of this theorem is a continuation of the proof of Theorem 1.
Recall that the function f̃ (λ ,ε) in that proof may be seen as a function in ε which is
analytic in a neighborhood of ε = 0 and whose coefficients are functions in λ which
are analytic near λ0 . Let us study more carefully this function f̃ (λ ,ε) .

In the first place, note that according to the identity (7) and the definitions (10), we
have

Φ1 =
[

G̃11(λ0,0) G̃13(λ0,0)
G̃31(λ0,0) G̃33(λ0,0)

]
, and Φq+1 = G̃33(λ0,0). (13)

We now make use of the Lemma in [6, p. 799], on determinants of the type det(D+G)
with D diagonal, to expand f̃ (λ ,ε) as

f̃ (λ ,ε) = detĜ(λ ,ε)+∑(λ −λ0)mν1 · · · (λ −λ0)mνr detĜ(λ ,ε)({ν1, . . . ,νr}′) , (14)

where for any matrix C , C({ν1, . . . ,νr}′) denotes the matrix obtained by removing
from C the rows and columns with indices ν1, . . . ,νr . The sum runs over all r ∈
{1, . . . ,g} and all ν1, . . . ,νr such that 1 � ν1 < .. . < νr � g . Finally, note that

detĜ(λ ,ε) = εg(detΦ1 +Q0(λ ,ε)) , (15)

for Q0(λ ,ε) analytic in λ with Q0(λ0,0) = 0, and

detĜ(λ ,ε)({ν1, . . . ,νr}′) = εg−r(detΦ1({ν1, . . . ,νr}′)+Qν1...νr(λ ,ε)) , (16)
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with Qν1...νr analytic in λ and Qν1...νr(λ0,0)= 0. From now on, it suffices to repeat the
arguments in [6, pp. 799-800]. The only remark to be made is that equations (14-15-16)
show that f̃ (λ ,ε) �≡ 0, since detΦ j+1 = detΦ1({1, ...,∑ j

i=1 ri}′) �= 0 is the coefficient
of ε f j+1 (λ −λ0)r1n1+···+r jn j in the two variable Taylor expansion of f̃ (λ ,ε) �

It is worth noticing that that although the algebraic multiplicity of λ0 in A(λ ) is
r1n1 + . . .+ rqnq , the condition detΦ j+1 �= 0 in Theorem 2 only guarantees the exis-
tence of r jn j expansions with the leading exponents and coefficients in (12). We want
also to point out that condition detΦq+1 �= 0 in Theorem 2 implies det(W2(λ ) ∂B

∂ε (λ ,0)
V2(λ )) �≡ 0 of Theorem 1. This follows easily from the definition of Φq+1 in (10). In
particular, detΦq+1 �= 0 not only guarantees the existence of rqnq expansions with first
order term as in (12) (with j = q ), but also the existence of at least a expansions near
λ0 , as stated in Theorem 1.

3.1. Expansions for semisimple eigenvalues

In Section 3 we have obtained sufficient conditions for the existence of expansions
near an arbitrary eigenvalue of A(λ ) , and also formulas for the first order term of these
expansions. In this section we specialize on a given semisimple eigenvalue λ0 of the
singular square matrix function A(λ ) . We will see that, in this case, the corresponding
formulas for the first order terms can be greatly simplified.

We will make use of the following Lemma. Here and hereafter A′(λ ) denotes the
derivative of A(λ ) with respect the variable λ .

LEMMA 2. Let W (λ ) and V (λ ) be the matrices leading A(λ ) to its local Smith
form at λ0 , and assume, in addition, that the eigenvalue λ0 of A(λ ) is semisimple.
Then⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1(λ0)
...

wg(λ0)
wn−d+1(λ0)

...
wn(λ0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

A′(λ0)
[
v1(λ0) . . . vg(λ0) vn−d+1(λ0) . . . vn(λ0)

]
=

[
Ig

0d×d

]
.

Proof. Taking derivatives in the identity W (λ )A(λ )V (λ ) = Δ(λ ) , where Δ(λ ) is
given by (3), we achieve

W ′(λ )A(λ )V (λ )+W(λ )A′(λ )V (λ )+W(λ )A(λ )V ′(λ ) = Δ′(λ ) . (17)

Since wi(λ0)A(λ0) = 0 and A(λ0)vi(λ0) = 0 , for i = 1, . . . ,g,n−d+1, . . . ,n and, from
(3)

Δ′(λ0) =
[

Ig
0d×d

]
,

the result follows from evaluating at λ0 the equation (17). �
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Now, since λ0 is semisimple, the Φ j matrices in (10) reduce to

Φ =
[
W1

W2

]
∂B
∂ε

(λ0,0)
[
V1 V2

]
. (18)

Associated with Φ we introduce the (g+d)× (g+d) matrix pencil

P(ζ ) = Φ+ ζ
[
W1

W2

]
A′(λ0)

[
V1 V2

]
, (19)

and note that, by virtue of Lemma 2,[
W1

W2

]
A′(λ0)

[
V1 V2

]
=

[
Ig

0d×d

]
.

Lemma 3 states some relevant properties of the pencil P(ζ ) needed in the main results
of this subsection. This lemma is the specialization of Lemma 1 to the semisimple case.

LEMMA 3. Let Φ be the matrix defined in (18) and P(ζ ) the pencil in (19).
Then the following statements hold.

1) P(ζ ) is regular and has exactly g finite eigenvalues if and only if the d × d
matrix W2

∂B
∂ε (λ0,0)V2 is nonsingular.

2) If W2
∂B
∂ε (λ0,0)V2 is nonsingular, then the g finite eigenvalues of P(ζ ) are all

different from zero if and only if Φ is nonsingular.

Proof. Let us express

Φ =
[
C11 C12

C21 W2
∂B
∂ε (λ0,0)V2

]
.

By Lemma 2 we have

P(ζ ) = Φ+ ζ
[
W1

W2

]
A′(λ0)

[
V1 V2

]
=

[
C11 + ζ Ig C12

C21 W2
∂B
∂ε (λ0,0)V2

]
.

Therefore,

detP(ζ ) = ζ g det

(
W2

∂B
∂ε

(λ0,0)V2

)
+ ζ g−1bg−1 + · · ·+ ζb1 +detΦ, (20)

where the coefficients bg−1, . . . ,b1 in the previous polynomial are of no interest in this
argument. Now both claims follow easily. �

Now we are in the position to state the main result of this section, which is the
specialization of Theorem 2 to semisimple eigenvalues.
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THEOREM 3. Let A(λ ) be an arbitrary n×n matrix function analytic in a neigh-
borhood of λ0 , which is a semisimple eigenvalue of A(λ ) with geometric multiplic-
ity g. Let B(λ ,ε) be another matrix function with the same dimension, analytic
near (λ0,0) and with B(λ ,0) ≡ 0 . Let W = [WT

1 WT
2 ]T := [W1(λ0)T W2(λ0)T ]T and

V = [V1V2] := [V1(λ0)V2(λ0)] , where W1(λ ),W2(λ ),V1(λ ) and V2(λ ) are the matri-
ces defined in (4) and (5). Let also Φ be the matrix defined in (18) and P(ζ ) be
the pencil defined in (19). If W2

∂B
∂ε (λ0,0)V2 is nonsingular, then the perturbed matrix

A(λ )+B(λ ,ε) is regular and has exactly g eigenvalues in a neighborhood of ε = 0
satisfying

λ j(ε) = λ0 + ζ jε +o(ε) j = 1, . . . ,g , (21)

where ζ1, . . . ,ζg are the finite eigenvalues of the pencil P(ζ ) . If, in addition, Φ is
nonsingular, then ζ1, . . . ,ζg are all nonzero and all the expansions near λ0 have lead-
ing exponent equal to one. If g = 1 , i.e., λ0 is simple, then W1 has only one row vector
and V1 only one column vector, and (21) is equal to

λ (ε) = λ0−
det(W ∂B

∂ε (λ0,0)V )

(W1A′(λ0)V1) ·det(W2
∂B
∂ε (λ0,0)V2)

ε +O(ε2). (22)

Proof. If W2
∂B
∂ε (λ0,0)V2 is nonsingular, condition det

(
W2(λ ) ∂B

∂ε (λ ,0)V2(λ )
)
�≡

0 in Theorem 1 holds, and the equation p0(λ ) = 0, with p0(λ ) as in (6), has exactly g
roots equal to λ0 . Therefore, Theorem 1 guarantees that A(λ )+B(λ ,ε) is regular in
a neighborhood of ε = 0 and has exactly g eigenvalues whose expansions tend to λ0

when ε tends to zero. The expressions for the first order term of these expansions now
follow from Theorem 2.

The expansion (22) when g = 1 follows from (20). The only point to justify is why
o(ε) is replaced by O(ε2) . This follows from the fact that the equation p0(λ ) = 0, with
p0(λ ) as in (6), has only one root equal to zero, so the corresponding root of pε(λ ) is
analytic in ε . �

As mentioned in the paragraph after the proof of Theorem 1, the rows of W and
the columns of V are particular bases of, respectively, NT (A(λ0)) and N (A(λ0)) .
Hence, the sufficient condition stated in Theorem 3 for the expansions near λ0 being
of the form (21) depends on the basis of these vector subspaces. Nonetheless, based
on Lemma 3, we may enunciate a sufficient condition which does not depend on these
bases.

THEOREM 4. Let A(λ ) be an arbitrary n× n matrix function (singular or not)
which is analytic in a neighborhood of a semisimple eigenvalue λ0 having geomet-
ric multiplicity g. Let B(λ ,ε) be another matrix function with the same dimension,
analytic in a neighborhood of (λ0,0) and with B(λ ,0) ≡ 0 . Denote by W a matrix
whose rows form any basis of NT (A(λ0)) and by V a matrix whose columns form any
basis of N (A(λ0)) . Then, if the pencil W ∂B

∂ε (λ0,0)V + ζWA′(λ0)V is regular and
has exactly g finite eigenvalues equal to ζ1, . . . ,ζg , there are exactly g eigenvalues of
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A(λ )+B(λ ,ε) such that

λ j(ε) = λ0 + ζ j ε +o(ε), j = 1, . . . ,g , (23)

as ε tends to zero. If g = 1 , i.e., λ0 is a simple eigenvalue, then o(ε) can be replaced
by O(ε2) in the previous expansions.

Proof. First, notice that the eigenvalues and the regularity of the pencil W ∂B
∂ε (λ0,0)V

+ζWA′(λ0)V are independent on the bases W and V of the left and right null spaces of
A(λ0) , because any change of bases transforms the pencil into a strictly equivalent one.
Hence, we can choose W =

[W1
W2

]
and V =

[
V1 V2

]
be bases as the ones in Theorem

3. With this choice W ∂B
∂ε (λ0,0)V + ζWA′(λ0)V is precisely P(ζ ) in (19). Lemma 3

states that W2
∂B
∂ε (λ0,0)V2 is nonsingular if and only if W ∂B

∂ε (λ0,0)V + ζWA′(λ0)V is
regular with exactly g finite eigenvalues. Now the result follows from Theorem 3 and
Lemma 3. �

If the unperturbed matrix A(λ ) is regular, matrices W2 and V2 in (19) do not
appear and, by Lemma 3, the pencil P(λ ) is always regular and has exactly g finite
eigenvalues. In this case, Theorem 3 is equivalent to the first paragraph of Theorem 6
in [4].

We want to make some final comments about the genericity of the main results
included in the paper. These results, stated in Theorems 1, 2 and 3, hold under certain
sufficient conditions. In Theorem 1, the condition assuring the existence of eigenvalue

expansions near λ0 is det
(
W2

∂B
∂ε (λ0,0)V2

)
�≡ 0, so only those perturbations B(λ ,ε)

for which the previous determinant is identically zero are not covered by this Theorem.
In Theorem 2 the sufficient condition for the expansions near λ0 being of the form (12)
is detΦ j+1 �= 0. Finally, in Theorem 3, the condition reduces to detW2

∂B
∂ε (λ0,0)V2 �= 0.

Then, the set of perturbations not covered by Theorems 2 and 3 are those for which
these determinants vanish. These, and the one of Theorem 1, translate into very specific
conditions on the perturbations, and it seems that the results stated in these Theorems
will be satisfied for most perturbations. In the case of matrix polynomials of degree k �
1 [2] (see also [3] for matrix pencils) such conditions can properly termed as generic,
because the set of perturbations not satisfying them are contained in a proper algebraic
manifold of the set of all perturbations B(λ ,ε) .
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