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INDEFINITE BOUNDARY VALUE PROBLEMS ON GRAPHS

SONJA CURRIE AND BRUCE A. WATSON

Abstract. We consider the spectral structure of indefinite second order boundary-value problems
on graphs. A variational formulation for such boundary-value problems on graphs is given and
we obtain both full and half-range completeness results. This leads to a max-min principle and
as a consequence we can formulate an analogue of Dirichlet-Neumann bracketing and this in
turn gives rise to asymptotic approximations for the eigenvalues.

1. Introduction

Let G be an oriented graph with finitely many edges, say K , each of unit length,
having the path-length metric. Suppose that n of the edges have positive weight, 1 , and
K−n of the edges have negative weight, −1. We consider the second-order differential
equation

ly := −d2y
dx2 +q(x)y = λBy, (1.1)

on G , where q is real valued and essentially bounded on G and By(x) = b(x)y(x) with

b(x) :=
{

1, for x on edges with positive weight.
−1, for x on edges with negative weight.

At the vertices or nodes of G we impose formally self-adjoint boundary condi-
tions, see [6] for more details regarding the self-adjointness of boundary conditions.

A variational formulation for a class of indefinite self-adjoint boundary-valueprob-
lems on graphs is given, see [4] and [9] for background on Sturm-Liouville problems
with indefinite weight, and [5] concerning variational principles in Krein spaces. We
then study the nature of the spectrum of this variational problem and obtain both full and
half-range completeness results. A max-min principle for indefinite Sturm-Liouville
boundary-value problems on directed graphs is then proved which enables us to develop
an analogue of Dirichlet-Neumann bracketing for the eigenvalues of the boundary-value
problem and consequently to obtain eigenvalue asymptotics.

In parallel to the variational aspects of boundary-value problems on graphs studied
here and on trees in [21], the work of Pokornyi and Pryadiev, and Pokornyi, Pryadiev
and Al-Obeid, in [17] and [18], should be noted for the extension of Sturmian oscillation
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theory to second order operators on graphs. The idea of approximating the behaviour
of eigenfunctions and eigenvalues for a boundary-value problem on a graph by the
behaviour of associated problems on the individual edges, used here, was studied in the
definite case in [2], [11] and [22].

An extensive survey of the physical systems giving rise to boundary-value prob-
lems on graphs can be found in [15] and the bibliography thereof. Second order
boundary-value problems on finite graphs arise naturally in quantum mechanics and
circuit theory, [3, 12]. Multi-point boundary-value problems and periodic boundary-
value problems can be considered as particular cases of boundary-value problems on
graphs, [7].

In Section 2, the boundary-value problem, which forms the topic of this paper, is
stated and allowable boundary conditions discussed. An operator formulation is given
along with definitions of the various function spaces used. A variational reformula-
tion of the boundary-value problem together with the definition of co-normal (elliptic)
boundary conditions is given in Section 3. Here we also show that a function is a vari-
ational eigenfunction if and only if it is a classical eigenfunction. In Section 4, we
study the spectrum of the variational problem. The main result of this section is that an
eigenfunction is in the positive cone, with respect to the B (indefinite inner product),
if and only if the corresponding eigenvalue is positive and similarly for the negative
cone. Following the approach used by Beals in [4] we prove both full and half-range
completeness in Section 5, see Theorem 5.3 and Theorem 5.5. In Section 6, a max-
min characterization of the eigenvalues of the boundary value problem is given which
is then used in Section 7 to obtain a variant of Dirichlet-Neumann bracketing of the
eigenvalues. Hence eigenvalue asymptotics are found. Dirichlet-Neumann bracketing
for elliptic partial differential equations can be found in [8].

2. Preliminaries

Denote the edges of the graph G by ei for i = 1, . . . ,K . As ei has length 1, ei can
be considered as the interval [0,1] , where 0 is identified with the initial point of ei and
1 with the terminal point.

We recall, from [11], the following classes of function spaces:

L 2(G) :=
K⊕

i=1

L 2(0,1),

H m(G) :=
K⊕

i=1

H m(0,1), m = 0,1,2, . . . ,

H m
o (G) :=

K⊕
i=1

H m
o (0,1), m = 0,1,2, . . . ,

C ω (G) :=
K⊕

i=1

C ω(0,1), ω = ∞,0,1,2, . . . ,
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C ω
o (G) :=

K⊕
i=1

C ω
o (0,1), ω = ∞,0,1,2, . . . .

The inner product on H m(G) and H m
0 (G) , denoted (·, ·)m , is defined by

( f ,g)m :=
K

∑
i=1

m

∑
j=0

∫ 1

0
f |( j)

ei g|( j)
ei dt =:

m

∑
j=0

∫
G

f ( j) g( j) dt. (2.1)

Note that L 2(G) = H 0(G) = H 0
0 (G) . For brevity we will write (·, ·) = (·, ·)0 ,

‖ f‖2
m = ( f , f )m and ‖ f‖ = ‖ f‖0 .
The differential equation (1.1) on the graph G can be considered as the system of

equations

−d2yi

dx2 +qi(x)yi = λbi(x)yi, x ∈ [0,1], i = 1, . . . ,K, (2.2)

where qi , bi and yi denote q|ei , b|ei and y|ei .
As in [11], the boundary conditions at the node ν are specified in terms of the

values of y and y′ at ν on each of the incident edges. In particular, if the edges which
start at ν are ei, i ∈ Λs(ν) , and the edges which end at ν are ei, i ∈ Λe(ν) , then the
boundary conditions at ν can be expressed as

∑
j∈Λs(ν)

[
αi jy j +βi jy

′
j

]
(0)+ ∑

j∈Λe(ν)

[
γi jy j + δi jy

′
j

]
(1) = 0, i = 1, . . . ,N(ν), (2.3)

where N(ν) is the number of linearly independent boundary conditions at node ν . For
formally self-adjoint boundary conditions N(ν) = �(Λs(ν))+�(Λe(ν)) and ∑ν N(ν) =
2K , see [6, 16] for more details.

The boundary conditions (2.3) considered over all nodes ν , after possible relabel-
ing, may be written as

K

∑
j=1

[αi jy j(0)+ γi jy j(1)] = 0, i = 1, . . . ,J, (2.4)

K

∑
j=1

[αi jy j(0)+βi jy
′
j(0)+ γi jy j(1)+ δi jy

′
j(1)] = 0, i = J +1, . . . ,2K, (2.5)

for some J , where all possible Dirichlet-like terms are in (2.4), i.e. if (2.5) is written in
matrix form then Gauss-Jordan reduction will not allow any pure Dirichlet conditions
linearly independent of (2.4) to be extracted.

The boundary-value problem (2.2)–(2.3) on G can be formulated as an operator
eigenvalue problem in L 2(G) , [1, 6, 20], for the closed densely defined operator BL ,
where

L f := − f ′′ +q f (2.6)

with domain

D(L) = { f | f , f ′ ∈ AC,L f ∈ L 2(G), f obeying (2.3) }. (2.7)
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The formal self-adjointness of (2.3) relative to L ensures that L is a closed densely
defined self-adjoint operator in L 2(G) , see [13, 16, 23], and that BL is self-adjoint in
HK where HK is L 2(G) with indefinite inner product [ f ,g] = (B f ,g) .

From [11] we have that the operator L is lower semibounded in L 2(G) .

3. Variational Formulation

In this section, we give a variational formulation for the boundary-value problem
(2.2)–(2.3) or equivalently for the eigenvalue problem associated with the operator BL .

DEFINITION 3.1. (a) Let D(F) = {y ∈ H 1(G) | y obeys (2.4)} , where

∫
∂G

ydσ :=
K

∑
i=1

[yi(1)− yi(0)] =
∫

G
y′ dt.

(b) We say that the boundary conditions on a graph are co-normal or elliptic with
respect to l if there exists f defined on ∂G , such that x ∈ D(F) has∫

∂G
( f x+ x′)ydσ = 0, for all y ∈ D(F)

if and only if x obeys (2.5).
(c) If the boundary conditions are co-normal and f is as in (b) and D(F) is as in

(a), then we define the sesquilinear form F(x,y) for x,y ∈ D(F) by

F(x,y) :=
∫
∂G

f xydσ +
∫

G
(x′y′ + xqy)dt. (3.1)

We note that ‘Kirchhoff’, Dirichlet, Neumann and periodic boundary conditions
are all co-normal, but this class does not include all self-adjoint boundary-value prob-
lems on graphs.

The following lemma shows that a function is a variational eigenfunction if and
only if it is a classical eigenfunction.

LEMMA 3.2. Suppose that (2.4)–(2.5) are co-normal boundary conditions with
respect to l of (1.1). Then u ∈ D(F) satisfies F(u,v) = λ (Bu,v) for all v ∈ D(F) if
and only if u ∈ H 2(G) and u obeys (1.1), (2.4)–(2.5).

Proof. Assume that u ∈ H 2(G) and u obeys (1.1), (2.4)–(2.5). Then for each
v ∈ D(F)

F(u,v) =
∫
∂G

f uvdσ +
∫
G
(u′v′ +quv)dt

=
∫
∂G

f uvdσ +
∫
G
((u′v)′ −u′′v+quv)dt

=
∫
∂G

f uvdσ +
∫
G
(u′v)′ dt +λ (Bu,v)
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=
∫
∂G

( f u+u′)vdσ +λ (Bu,v).

The assumption that (2.4)–(2.5) are co-normal boundary conditions with respect to l
gives that u ∈ D(F) and∫

∂G
( f u+u′)vdσ = 0, for all v ∈ D(F),

completing the proof this in case.
Now assume u∈D(F) satisfies F(u,v)= λ (Bu,v) for all v∈D(F) . As C ∞

o (G)⊂
D(F) , it follows that

F(u,v) = λ (Bu,v), for all v ∈ C ∞
0 (G).

Hence F(u, ·) can be extended to a continuous linear functional on L 2(G) . In partic-
ular, since q ∈ L ∞(G) , this gives that

∂u′ ∈ L 2(G) ⊂ L 1
loc(G)

where ∂ denotes the distributional derivative. Then, by [20, Theorem 1.6, page 44],
u′ ∈ AC and u′′ ∈ L 1

loc(G) allowing integration by parts. Thus

lu = −u′′+qu ∈ L 1
loc(G)

and consequently lu = λBu ∈ L 2(G) . Now q ∈ L ∞(G) and D(F) ⊂ L 2(G) , giving
u,u′′ ∈ L 2(G) and hence u ∈ H 2(G) .

The definition of D(F) ensures that (2.4) holds. Integration by parts gives∫
∂G

( f u+u′)y dσ = 0, for all y ∈ D(F),

which, from the definition of f and the constraints on the class of boundary conditions,
is equivalent to u obeying (2.5). �

4. Nature of the spectrum

The operator L is self-adjoint in L 2(G) with spectrum consisting of pure point
spectrum and accumulating only at +∞ . In addition, we assume that L is positive
definite, thus the spectrum of L may be denoted 0 < ρ1 � ρ2 � . . . where limn→∞ρn =
∞ . Since L is positive definite and the spectrum consists only of point spectrum, L−1

exists and is a compact operator see, [10, p.24], moreover

L−1y(t) =
∫

G
g(t,τ)y(τ)dτ, (4.1)

where g(t,τ) is the Green’s function of L . Thus L−1B is a compact operator. Consider
the eigenvalue problem

μy = L−1By, y ∈ L 2(G),
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where μ = 1
λ . Since L−1B is compact it has only point spectrum except possibly at

μ = 0 and the only possible accumulation point is μ = 0. In addition, μ = 0 is not
an eigenvalue of L−1B since 0 is not an eigenvalue of L−1 . Thus L−1B has countably
infinitely many eigenvalues, all non-zero, but accumulating at 0. From (4.1) it follows
that

L−1By(t) =
∫

G
g(t,τ)By(τ)dτ =

∫
G

g̃(t,τ)y(τ)dτ,

where g̃(t,τ) = g(t,τ)b(τ) . Hence BL has discrete spectrum only, with possible accu-
mulation point at ∞ in the complex plane. The spectrum is also countably infinite and,
as 0 is not an eigenvalue of L , 0 is also not an eigenvalue of BL .

LEMMA 4.1. The space D(F) is a Hilbert space with inner product F . The
norm generated by F on D(F) is equivalent to the H1(G) norm, making D(F) a
closed subspace of H1(G) .

Proof. By (3.1), [11, Preliminaries] and the trace theorem, see [1, p. 38] we have
that there exist constants K,c > 1 such that

1
c
||x||2H1(G) � F(x,x)+K||x||2 � c||x||2H1(G). (4.2)

Thus the sesquilinear form F(x,y)+K(x,y) is an inner product on D(F) . From (4.2)
we get directly that

1
c
(F(x,x)+K||x||2) � ||x||2H1(G) � c(F(x,x)+K||x||2),

making F(x,y)+K(x,y) and (x,y)H1(G) equivalent inner products on D(F) .
We now show that F(x,y) is an inner product on D(F) and is equivalent to the

inner product F(x,y)+K(x,y) on D(F) . As ρ1 is the least eigenvalue of L on L 2(G) ,

(Ly,y) � ρ1(y,y) = ρ1||y||2,

for all y ∈ D(L) ⊂ D(F) . Since F(y,y) = (Ly,y) , for all y ∈ D(L) , we get

F(y,y) � ρ1||y||2,

for y ∈ D(L) .
Now, D(L) is dense in D(F) for D(F) with norm |||x|||2 := F(x,x)+K(x,x) .

Thus, by continuity,
||y||2F := F(y,y) � ρ1||y||2,

for all y ∈ D(F) , showing that || · ||F is a norm on D(F) and that F(x,y) is an inner
product on D(F) . In addition(

1+
K
ρ1

)
||y||2F = F(y,y)+

K
ρ1

F(y,y) � F(y,y)+K(y,y) � F(y,y) = ||y||2F ,
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where K is as given above. Thus F(x,y) + K(x,y) and F(x,y) are equivalent inner
products on D(F) and since F(x,y) + K(x,y) and (x,y)H1(G) are equivalent inner
products on D(F) we have that F(x,y) and (x,y)H1(G) are equivalent inner products
on D(F) .

We now show that, with the F inner product, D(F) is a Hilbert space. For this,
we need only show that D(F) is closed in H1(G) . The map T̂ : H1(G)→ CJ given by

T̂ : y →
(

K

∑
j=1

[αi jy j(0)+ γi jy j(1)]

)
i=1,...,J

,

is continuous by the trace theorem, see [1], and thus the kernel of T̂ , Ker(T̂ ) = D(F)
is closed. �

THEOREM 4.2. The spectrum of (1.1), (2.4)–(2.5) is real and all eigenvalues are
semi-simple.

Proof. As D(L) is dense in D(F) , L is a densely defined operator in D(F) . Now
F(x,y) := (Lx,y) for all x ∈ D(L) and y ∈ D(F) .

Let L̃ := L−1B , then L̃ : L 2(G) → D(L) and is thus a map from D(F) to D(L) .
Since B and L are self adjoint in L 2(G) we get

F(L̃x,y) = F(L−1Bx,y)
= (Bx,y)
= (x,By)
= (By,x)

= F(L̃y,x)
= F(x, L̃y).

for x,y ∈ D(F) .
So L̃ is self adjoint in D(F) (with respect to F ). Thus, in D(F) , L̃ has only real

spectrum and all eigenvalues are semi-simple. Therefore, by Lemma 3.2, the pencil
Lx = λBx has only real spectrum and all eigenvalues are semi-simple. �

Let

[ f ,g] :=
n

∑
i=1

∫ 1

0
f |ei g|ei dt−

K

∑
i=n+1

∫ 1

0
f |ei g|ei dt = (B f ,g), (4.3)

then L 2(G) , with the indefinite inner product given by (4.3), is a Krein space which
we denote by HK .

We now define the positive, C+ , and negative, C− , cones of HK by

C+ := {y ∈ HK | [y,y] > 0},

C− := {y ∈ HK | [y,y] < 0}.
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THEOREM 4.3. For L positive definite in L 2(G) and y an eigenfunction of (1.1),
(2.4)–(2.5) corresponding to the eigenvalue λ we have y ∈ C+ if and only if λ > 0 ,
and y ∈C− if and only if λ < 0 .

Proof. Let y be an eigenfunction corresponding to λ . Using the fact that any
element, y , of HK may be written in the form y = { f ,g} or y = f ⊕ g , where f =
(y|e1 , . . . ,y|en) has n components and g = (y|en+1 , . . . ,y|eK ) has K−n components, we
get that

C+ = {{ f ,g}| || f ||2L 2(G+) > ||g||2L 2(G−)},
and

C− = {{ f ,g}| || f ||2L 2(G+) < ||g||2L 2(G−)}.
Here G+ denotes the subgraph of G where the weights are positive and G− denotes
the subgraph of G where the weights are negative.

Since L > 0 and y = { f ,g} ,

0 < (Ly,y) = (λBy,y) = λ [y,y] = λ (|| f ||2L 2(G+)−||g||2L 2(G−)).

Hence, y ∈C+ if and only if λ > 0, and y ∈C− if and only if λ < 0. �

5. Full and half-range completeness

In this section we prove both half and full range completeness of the eigenfunc-
tions of (1.1), (2.4)–(2.5). In the case presented here the proof is simpler than that of
Beals [4], but it is assumed that the problem is left definite, i.e. L is a positive operator.

Recall that, by Lemma 4.1, D(F) is a Hilbert space. Define

F̃ [u](v) := F(u,v)

then F̃ : D(F) −→ D(F)′ , where D(F)′ is the conjugate dual of D(F) , i.e. the space
of continuous conjugate-linear maps from D(F) to C .

LEMMA 5.1. F̃ is an isomorphism from D(F) to D(F)′ .

Proof. If F(u1,v) = F(u2,v) , for all v ∈ D(F) , then u1 = u2 since F is an inner
product on D(F) , see Lemma 4.1. Thus F̃ is one to one.

Now, for v̂ ∈ D(F)′ we have that v̂(x) = F(v,x) for some v ∈ D(F) by the The-
orem of Riesz, [19]. So v̂(x) = F̃ [v](x) giving that F̃ [v] = v̂ . Hence F̃ is onto.

Also F̃ and F̃−1 are everywhere defined maps on a Hilbert space and are thus con-
tinuous as a consequence of the principle of uniform boundedness (Banach Steinhaus
theorem), [19].

So F̃ is an isomorphism from D(F) to D(F)′ . �
Define T [u](v) := (Bu,v) for u,v∈D(F) . Then T : D(F)−→D(F)′ is compact

since D(F) is compactly embedded in L 2(G) and Bu ∈ L 2(G) with the mapping
Bu �→ (Bu, ·) from L 2(G) to L 2(G)′ continuous. Thus S := F̃−1T is a compact map
with S : D(F) −→ D(F) .
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LEMMA 5.2. The compact operator S on D(F) is self-adjoint with respect to the
inner product F .

Proof. For u,v ∈ D(F)

F(Su,v) = F̃[Su](v) = T [u](v) = (Bu,v) = (u,Bv).

Similarly
(Bv,u) = F(Sv,u) = F(u,Sv). �

As S is a compact self-adjoint operator on D(F) and as 0 is not an eigenvalue of
S , the eigenfunctions, (un) , of S , with eigenvalues (λ−1

n ) , can be chosen so that (un)
is an orthonormal basis for D(F) .

NOTE. The equation Sun = λ−1
n un is equivalent to the equation Lun = λnBun , in

the sense that if
λnSun = un,

then, by the definition of S ,
λn(F̃−1T )un = un.

Applying F̃ to the above gives
λnTun = F̃un.

Thus
λnT [v](un) = F̃ [v](un),

for all v ∈ D(F) . From the definition of T , this gives

λn(Bv,un) = F̃ [v](un).

Hence
λn(Bv,un) = F(v,un)

for all v ∈ D(F) . Using Lemma 3.2 we we obtain that

λn(Bv,un) = (v,Lun).

Therefore
(v,λnBun−Lun) = 0,

for all v ∈ D(F) , and by the density of D(F) in L 2(G) , this yields

Lun = λnBun.

It is easy to show that if Lun = λnBun , then Sun = λ−1
n un .

In summary, we have the following theorem:

THEOREM 5.3. (Full range completeness) The eigenfunctions (yn) of (1.1), (2.4)–
(2.5) form a Riesz basis for L 2(G) and can be chosen to form an orthonormal basis
for D(F) (with respect to the F inner product). In addition (yn) is orthogonal with
respect to [·, ·] .
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Proof. Since S is a compact self-adjoint operator on the Hilbert space D(F) , the
eigenvectors can be chosen to form an orthonormal basis in D(F) . As shown in the note
above the variational eigenfunctions coincide with those of L−1B (with eigenvalues
mapped by λ �→ 1

λ and where 0 is not in the point spectrum). Thus the eigenfunctions
of L−1B can be chosen to form an orthonormal basis for D(F) and as D(F) is dense
in L 2(G) they form a Riesz basis for L 2(G) .

Finally, if (yn) is an orthonormal basis of D(F) of eigenfunctions then

δn,m = F(yn,ym) = (λnByn,ym) = λn(Byn,ym) = λn[yn,ym].

Hence (yn) is orthogonal with respect to [·, ·] . �

Let P± be the positive and negative spectral projections of S . Note that Ker(S) =
{0} . The projections, P± , are then defined by the property

P±un =
{

un, ±λn > 0
0, ±λn < 0

,

hence

|S| = S(P+−P−) = (P+−P−)S.

On D(F) we introduce the inner product (u,v)S = F(|S|u,v) with related norm ||u||S =

(u,u)
1
2
S .
We must now show that this norm is equivalent to the L 2(G) norm, ||u|| =

(u,u)
1
2 .
The operator B is a self-adjoint operator in L 2(G) and B has spectral projections

Q± , where

Q±u(x) =
{

u(x), b(x) = ±1
0, b(x) = ∓1

.

Thus |B| = I = B(Q+ +Q−) = (Q+ +Q−)B is just the identity map, and |T | is
the map from D(F) to D(F)′ induced by |B| , i.e. |T |[u](v) = (u,v) . But T [u](v) :=
(Bu,v) for all u,v ∈ D(F) , and thus can be extended to u,v ∈ L 2(G) , i.e.

T : L 2(G) → L 2(G)′ ↪→ D(F)′.

In this sense TQ± : L 2(G) → D(F)′ is compact.
Also T (Q+ + Q−)[u](v) = (B(Q+ + Q−)u,v) = (u,v) = |T |[u](v) for all u,v ∈

L 2(G) and thus for u,v ∈ D(F) . We now observe that Q′±T : D(F) → D(F)′ ,
using the extension of T to L 2(G) , is well defined as Q′±T [u](v) = T [u](Q±v) =
(Bu,Q±v) = (Q±Bu,v) = (BQ±u,v) making TQ± = Q′±T . Hence

|T | = T (Q+ −Q−) = (Q′
+ −Q′

−)T.

THEOREM 5.4. The norms || · ||S and || · || are equivalent on D(F) .
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Proof. Considered as an operator in the subspace P+(D(F)) , S is a positive op-
erator. Let y ∈D(L) . Since L is a positive operator and D(F) is compactly embedded
in L 2(G) we have that there exists some constant C > 0 such that

(Ly,y) = F(y,y) � C(y,y), (5.1)

for all y ∈ D(L) . Also
||Q+y||2 � ||y||2. (5.2)

Combining (5.1) and (5.2) we obtain that

C||Q+y||2 � C(y,y) � (Ly,y), (5.3)

for y ∈D(L) . Let (yn) be an orthonormal basis of eigenfunctions of S in D(F) where
yn has eigenvalue λn with 0 < λ1 � λ2 � . . . and 0 > λ−1 � λ−2 � . . . . Now

P+(D(F)) = < y1,y2, . . . >,

and Lyn = λnByn for all n = 1,2, . . . .
Let y ∈ P+(D(L)) then y = ∑∞

n=1αnyn where αn ∈ C,n ∈ N . From (5.3) we have
that

||Q+y||2 � 1
C

(Ly,y).

Using the orthogonality of (yn) we get

1
C

(Ly,y) =
∞

∑
n=1

|αn|2 λn

C
(Byn,yn),

thus

||Q+y||2 � λ1

C

∞

∑
n=1

|αn|2(Byn,yn).

But
∞

∑
n=1

|αn|2(Byn,yn) = (By,y),

hence

||Q+y||2 � λ1

C
(By,y)

=
λ1

C
T [y](y)

=
λ1

C
F̃[Sy](y)

=
λ1

C
F(Sy,y)

=
λ1

C
F(|S|y,y).
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So

||Q+y||2 � λ1

C
||y||2S

and setting
√

λ1
C := k > 0 gives

||Q+y|| � k||y||S. (5.4)

Similarly

||Q−y||2 � λ1

C
||y||2S

i.e.
||Q−y|| � k||y||S. (5.5)

Since D(L) is dense in D(F) , (5.4) and (5.5) hold on all P+(D(F)) , so as ||y||2 =
||Q+y||2 + ||Q−y||2 we have ||y|| � √

2k||y||S for all y ∈ P+(D(F)) .
Working on P−(D(F)) yields a similar estimate but with λ1 replaced by −λ−1 .

Thus there exists a constant C1 > 0 so that for all y ∈ D(F) ,

||y|| � C1||y||S. (5.6)

To obtain (5.7), the reverse of (5.6), we observe that

||y||2S = F(|S|y,y) = F((SP+−SP−)y,y).

But SP± = P±S so

||y||2S = F(Sy,P+y−P−y)
= F̃[Sy](P+y−P−y)
= T [y](P+y−P−y)
= |T |[Q+y−Q−y](P+y−P−y).

Using Hölder’s inequality we obtain that

|T |[Q+y−Q−y](P+y−P−y) � ||Q+y−Q−y|| ||P+y−P−y||.
Thus

||y||2S � ||Q+y−Q−y|| ||P+y−P−y|| = ||y|| ||P+y−P−y||.
By (5.6)

||y||2S � C1||y|| ||P+y−P−y||S.
Now

||P+y−P−y||S = F(|S|(P+−P−)y,(P+−P−)y)
= F(Sy,(P+−P−)y)
= F((P+−P−)Sy,y)
= F(|S|y,y),
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giving
||y||2S � C1||y|| ||y||S,

therefore
||y||S � C1||y||. (5.7)

Combining (5.6) and (5.7) gives

1
C1

||y||S � ||y|| � C1||y||S

and thus the two norms are equivalent in D(F) . �
Let HS be the completion of D(F) with respect to || · ||S .

THEOREM 5.5. (Half-range completeness) For Q+ and Q− as previously defined
{Q+yn,λn > 0} is a Riesz basis for L 2(G+) and {Q−yn,λn < 0} is a Riesz basis
L 2(G−) .

Proof. To prove the half-range completeness we show that {Q+yn,λn > 0} and
{Q−yn,λn

< 0} are Riesz bases for Q+P+(HS) and Q−P−(HS) respectively via showing that
V := Q+P+ +Q−P− is an isomorphism from HS to L 2(G) , see [4].

Let u,v ∈ D(F) , then

(Q±u,P±v)S = (Q±u,P±v) (5.8)

and
(Q±u,P∓v)S = −(Q±u,P∓v). (5.9)

To see this, as S is self-adjoint with respect to F so is |S| , we have, for example,

(Q+u,P−v)S = F(|S|Q+u,P−v)
= F(Q+u, |S|P−v)
= F(Q+u,S(P+−P−)P−v)
= F(SQ+u,−P−v)
= −F(SQ+u,P−v)
= −(Q+u,P−v),

because F(SQ+u,P−v)= (BQ+u,P−v) and Q+u(x)= 0 when b(x)=−1 and Q+u(x)=
u(x) when b(x) = 1.

Now, as P± are self-adjoint with respect to [·, ·] ,
||u||2S = F(|S|u,u)

= F((P+−P−)Su,u)
= F(Su,(P+−P−)u)
= (Bu,(P+−P−)u)
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= ((Q+ −Q−)u,(P+−P−)u)
= (Q+u,P+u)+ (Q−u,P−u)− (Q+u,P−u)− (Q−u,P+u).

For u ∈ D(F) ,

||Vu||2 = (Q+P+u,Q+P+u)+ (Q−P−u,Q−P−u)+ (Q−P−u,Q+P+u)+ (Q+P+u,Q−P−u)
= (Q+P+u,Q+P+u)+ (Q−P−u,Q−P−u)
= (Q+(I−P−)u,(I−Q−)P+u)+ (Q−(I−P+)u,(I−Q+)P−u)
= (Q+u,P+u)− (Q+P−u,P+u)+ (Q−u,P−u)− (Q−P+u,P−u)
= ||u||2S +(Q+u,P−u)+ (Q−u,P+u)− (Q+P−u,P+u)− (Q−P+u,P−u).

Setting W := Q+P−+Q−P+ , since Q+−Q− = B and P± are self-adjoint and orthog-
onal with respect to [·, ·] , we obtain

||Vu||2 = ||u||2S +(Q−P+u,Q−P+u)+ (Q+P−u,Q+P−u)
= ||u||2S + ||Wu||2.

As || · || and || · ||S are equivalent norms on D(F) , the above equality holds for
u ∈ HS and shows that the bounded operator V has closed range and kernel (0) .

Equations (5.8) and (5.9) show that, as mappings from HS to L 2(G) , V and W
have adjoints V ∗ = P+Q+ +P−Q− and W ∗ = −P+Q−−P−Q+ . But V ∗ and W ∗ obey,
by the same reasoning as above,

||V ∗u||2S = ||W ∗u||2S + ||u||2. (5.10)

Thus V ∗ is one to one and therefore V is an isomorphism. Hence we have proved the
theorem. �

6. Max-Min Property

In this section we give a maximum-minimum characterization for the eigenvalues
of indefinite boundary-value problems on graphs. We refer the reader to [8, page 406]
and [24] where analogous results for partial differential operators were considered.

In the following theorem {v1, . . . ,vn}⊥ will denote the orthogonal complement
with respect to [·, ·] = (B·, ·) of {v1, . . . ,vn} . In addition, as is customary, it will be as-
sumed that the eigenvalues, λn > 0, n∈ N , of (1.1), (2.4)–(2.5), are listed in increasing
order and repeated according to multiplicity, and that the eigenfunctions, yn , are cho-
sen so as to form a complete orthonormal family in L 2(G)∩C+ . More precisely, as in
Theorem 5.3, (yn) , n ∈ Z \ {0} can be chosen so as to form an orthonormal basis for
D(F) and thus for L 2(G) with respect to B . In particular (yn)n∈N is then an orthonor-
mal basis for L 2(G)∩C+ with respect to B (i.e. [·, ·]). The case of L 2(G)∩C− is
similar, so for the remainder of the paper we will restrict ourselves to L 2(G)∩C+ .
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THEOREM 6.1. Suppose (Lϕ ,ϕ)> 0 for all ϕ ∈D(L)\{0} , and for v j ∈L 2(G)∩
C+, j = 1,2, . . . , let

dn+1(v1, . . . ,vn) = inf

{
F(ϕ ,ϕ)
(Bϕ ,ϕ)

∣∣∣∣ ϕ ∈ {v1, . . . ,vn}⊥ ∩D(F)\ {0},(Bϕ ,ϕ) > 0

}
.

(6.1)
Then

λn+1 = sup{dn+1(v1, . . . ,vn) | v1, . . . ,vn ∈ L 2(G)∩C+}, (6.2)

for n = 0,1, . . . , and this maximum-minimum is attained if and only if ϕ = yn+1 and
vi = yi , i = 1, . . . ,n, where y j is an eigenfunction of L with eigenvalue λ j , and (y j) is
a B-orthogonal family.

Proof. Let v1, . . . ,vn ∈ L 2(G)∩C+ . As span{y1, . . . ,yn+1} is n+1 dimensional
and span{v1, . . . ,vn} is at most n dimensional there exists ϕ in span{y1, . . . ,yn+1} \
{0} having

(Bϕ ,vi) = 0, for all i = 1, . . . ,n.

In particular, this ensures that ϕ ∈ D(F) as each yi is in D(F) .
Denote ϕ = ∑n+1

k=1 ckyk , then

F(ϕ ,ϕ) =
n+1

∑
i,k=1

ci ckF(yi,yk)

=
n+1

∑
i=1

|ci|2F(yi,yi)

=
n+1

∑
i=1

|ci|2(Lyi,yi)

=
n+1

∑
i=1

|ci|2(λiByi,yi)

=
n+1

∑
i=1

|ci|2λi(Byi,yi)

� λn+1

n+1

∑
i=1

|ci|2(Byi,yi)

= λn+1(Bϕ ,ϕ),

thus showing that

dn+1(v1, . . . ,vn) � λn+1 for all v1, . . . ,vn ∈ L 2(G)∩C+.

Hence

sup{dn+1(v1, . . . ,vn) |v1, . . . ,vn ∈ L 2(G)∩C+} � λn+1.
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Now suppose λn+1 > dn+1(y1, . . . ,yn) . Then there exists u ∈ D(F) \ {0} , u ∈
{y1, . . . ,yn}⊥ , such that B(u,u) = 1 and

F(u,u) < dn+1(y1, . . . ,yn)+
1
2

(λn+1−dn+1(y1, . . . ,yn)) . (6.3)

By Theorem 5.3 we can write u = ∑
j �∈{1,...,n}

α jy j . Therefore

F(u,u) = ∑
i, j �∈{1,...,n}

αiα jF(yi,y j)

= ∑
i‘�∈{1,...,n}

|αi|2F(yi,yi)

= ∑
i�∈{1,...,n}

|αi|2(Lyi,yi)

= ∑
i�∈{1,...,n}

|αi|2(λiByi,yi).

Now as λi(Byi,yi) = F(yi,yi) > 0 for all i , we have

F(u,u) = ∑
i>n

|αi|2λi(Byi,yi)+ ∑
i�−1

|αi|2λi(Byi,yi)

� ∑
i>n

|αi|2λi(Byi,yi)

� λn+1∑
i>n

|αi|2(Byi,yi)

= λn+1

(
B∑

i>n
αiyi,∑

j>n
α jy j

)

= λn+1(BP+u,P+u).

Combining the above with (6.3) and noting that (Bu,u) = 1, gives

λn+1− 1
2

(λn+1−dn+1(y1, . . . ,yn)) > λn+1(BP+u,P+u).

Thus

(Bu,u)− λn+1−dn+1(y1, . . . ,yn)
2λn+1

= 1− λn+1−dn+1(y1, . . . ,yn)
2λn+1

> (BP+u,P+u).

Using the self-adjointness of the projections P± with respect to [·, ·] now gives

(BP−u,P−u) >
λn+1−dn+1(y1, . . . ,yn)

2λn+1
> 0.

But P−u ∈C− , so we have a contradiction and therefore λn+1 � dn+1(y1, . . . ,yn) .
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We have shown that λn+1 = dn+1(y1, . . . ,yn) , (6.2) holds and dn+1 attains its
supremum for (y1, . . . ,yn) . Also a direct computation gives F(yn+1,yn+1) =
λn+1(Byn+1,yn+1) .

It remains to be shown that if u ∈ D(F) is such that the maximum or min-
imum is attained for u,y1, . . . ,yn then u is an eigenfunction with eigenvalue λ =
dn+1(y1, . . . ,yn) .

Let u ∈ D(F) with (Bu,u) = 1 and

J(ϕ ,ε) =
F(u+ εϕ ,u+ εϕ)

(B(u+ εϕ),u+ εϕ)
for all ϕ ∈ D(F),ε ∈ R, |ε| small.

Differentiation with respect to ε of J(ϕ ,ε) gives

0 =
∂
∂ε

J(ϕ ,ε)|ε=0 = 2ℜ[F(ϕ ,u)−dn+1(y1, . . . ,yn)(Bϕ ,u)],

for all ϕ ∈ D(F) and (Bu,u) = 1. Since everything in the above expression is real we
obtain that

F(ϕ ,u) = dn+1(y1, . . . ,yn)(Bϕ ,u), (6.4)

for all ϕ ∈ D(F) and (Bu,u) = 1.
Now F(u,u) > 0 therefore dn+1(y1, . . . ,yn)(Bu,u) > 0 which, since (Bu,u) = 1,

gives dn+1(y1, . . . ,yn) > 0. From (6.4), for ϕ ∈ C ∞
0 (G) , we get that

(Lϕ ,u)−dn+1(y1, . . . ,yn)(Bϕ ,u) = 0,

giving

(ϕ ,(l−dn+1(y1, . . . ,yn)B)u) = 0.

Hence, by the proof of Lemma 3.2, u ∈ H2(G)∩D(F) and obeys (1.1) and (2.4).
We must still show that u obeys the boundary condition (2.5).

From the proof of Lemma 3.2 we see that, for ϕ ∈ D(F) ,

F(u,ϕ) =
∫
∂G

( f u+u′)ϕdσ +dn+1(y1, . . . ,yn)(Bu,ϕ).

This together with (6.4) gives that

0 =
∫
∂G

( f u+u′)ϕdσ (6.5)

for all ϕ ∈ D(F) .
As, (6.5) holds for all ϕ ∈ D(F) , u obeys (2.5), giving that u is an eigenfunction

of (1.1), (2.4)–(2.5) with eigenvalue λ = dn+1(y1, . . . ,yn) .
Thus λ = λn+1 and u = yn+1 . As this holds for the case of d1 , the result has been

proved by induction. �
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7. Eigenvalue Bracketing and Asymptotics

If the boundary conditions (2.4)–(2.5) are replaced by the Dirichlet condition y = 0
at each node of G , i.e.

yi(1) = 0 and yi(0) = 0, i = 1, . . . ,K, (7.1)

then the graph G becomes disconnected with each edge ei becoming a component sub-
graph, Gi , with Dirichlet boundary conditions at its two nodes (ends). The boundary
value problem on each sub-graph Gi is equivalent to a Sturm-Liouville boundary value
problem on [0,1] with Dirichlet boundary conditions. Depending on whether the edge
has positive or negative weight the resulting boundary value problem is

−y′′i +qiyi = μyi, i = 1, . . . ,n, (7.2)

or
−y′′i +qiyi = −μyi, i = n+1, . . . ,K, (7.3)

with boundary conditions (7.1).
Let λD

1 � λD
2 � . . . be the eigenvalues (repeated according to multiplicity) of the

system (7.1) with (7.2) and (7.3) for which the eigenvectors are in L 2(G)∩C+ . Let
ΛD

1 < ΛD
2 < .. . be the eigenvalues of the system (7.1) with (7.2) and (7.3) not repeated

by multiplicity. Denote by νD
j the dimension of the maximal positive (with respect to

[·, ·]) subspace of the eigenspace ED
j to ΛD

j .
Observe that if μ is an eigenvalue of the system (7.1) with (7.2) and (7.3), with

multiplicity ν and eigenspace E , then there are precisely ν indices i1, . . . , iν such that
μ is an eigenvalue of

−y′′i +qiyi = biμyi, (7.4)

with boundary conditions (7.1). In particular, if

Y i
j :=

{
0, j �= i,
yi, j = i,

where j ∈ {1, . . . ,K} , then Y i1 , . . . ,Y iν are eigenfunctions to (7.1) with (7.2) and (7.3)
and form a basis for E , which is orthogonal with respect to both (·, ·) and [·, ·] . Hence,
by [14, Corollary 10.1.4], the maximal B-positive subspace of E has dimension

ν+ = #({i1, . . . , iν}∩{1, . . . ,n}).

I.e. ν+ is the multiplicity of μ as an eigenvalue of (7.1) with (7.2).
Hence λD

j is the j th eigenvalue of (7.1) with (7.2), i.e. of (1.1) with (7.1) consid-
ered only on G+ .

Similarly if we consider the equation (2.2) with the non-Dirichlet conditions

y′i(1) = f (1)yi(1) and y′i(0) = f (0)yi(0), i = 1, . . . ,K, (7.5)



INDEFINITE BOUNDARY VALUE PROBLEMS ON GRAPHS 583

where f is given in (3.1), then, as in the Dirichlet case, above, G decomposes into a
union of disconnected graphs G1, . . . ,GK . Again, depending on whether the edge has
positive or negative weight, we have the equation

−y′′i +qiyi = μyi, i = 1, . . . ,n, (7.6)

or
−y′′i +qiyi = −μyi, i = n+1, . . . ,K, (7.7)

with boundary conditions (7.5).
Let λN

1 � λN
2 � . . . be the eigenvalues (repeated according to multiplicity) of the

system (7.5) with (7.6) and (7.7) for which the eigenvectors are in L 2(G)∩C+ . By
the same reasoning as above, λN

j is the j th eigenvalue of (7.5) with (7.6), i.e. of (1.1)
with (7.5) considered only on G+ .

Thus, from Theorem 6.1 and [11] we have that, in L 2(G)∩C+ , the eigenvalues
of (2.2), (2.4)–(2.5) are ordered by

λN
n � λn � λD

n , n = 1,2, . . . . (7.8)

The asymptotics for λN
n and λD

n are well known, in particular, using the results in
[11] for (1.1) on G+ , with (7.1) and (7.5) we obtain the following theorem:

THEOREM 7.1. Let G be a compact graph with finitely many nodes. If the bound-
ary value problem (2.2), (2.4)–(2.5) has co-normal (elliptic) boundary conditions, then
the eigenvalues in L 2(G)∩C+ obey the asymptotic development

√
λn =

nπ
length(G+)

+O(1), as n → ∞.

By formally replacing λ by −λ in (1.1) a similar result is obtained for L 2(G)∩
C− .
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