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ON A COMMUTATIVE WJ∗–ALGEBRA OF D+
1 –CLASS

AND ITS BICOMMUTANT

VLADIMIR STRAUSS

Abstract. We study different properties of a commutative WJ∗ -algebra in a Krein space that has
a maximal non-negative subspace represented as a direct sum of its one-dimensional isotropic
subspace and a uniformly positive one. In particulary we give a criteria for the equality between
of a WJ∗ -algebra of this class and its bicommutant.

Introduction

A well-known theorem of J. von Neumann says that the bicommutant of an arbi-
trary W ∗ -algebra (all definitions can be found below) coincides with the algebra. If we
replace a W ∗ -algebra by a WJ∗ -algebra, the corresponding result is false even for a
finite-dimensional Pontryagin space with the index of indefiniteness equal one (i.e. for
a finite-dimensional space Π1 ). On the other hand, if we consider only commutative
WJ∗ -algebras, then for the Pontryagin space Π1 (including infinite-dimensional case)
an analog of J. von Neumann’s Theorem is true, but this result cannot be extended even
for the case of the space Π2 . Here we study different properties of a commutative
WJ∗ -algebra in a Krein space that has a maximal non-negative subspace represented as
a direct sum of its one-dimensional isotropic subspace and a uniformly positive one. In
particulary we give a criteria for the equality between of a WJ∗ -algebra of this class
and its bicommutant. Section 1 contains some known results and definitions with an
exception of Subsection 1.3, where some ideas are shown using the simple case of a
single operator. In Section 2 a complete model representation for a commutative WJ∗ -
algebra of D+

1 -class is given (Theorems 44, 45 and 46) and Section 3 is devoted to the
bicommutant problem.

1. Definitions and previous results

1.1. Main objects

In what follows the term “Krein space” means a (complex) vector space H with a
Hermitian sesquilinear indefinite form [·, ·] if for H there is at least one scalar product
(·, ·) that converts H to a Hilbert space and

[x,y] = (Jx,y), x,y ∈ H , J = J−1. (1.1)
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The operator J is called a canonical symmetry. By the definition of the canonical sym-
metry J we have J = P+−P− , where P+ and P− are ortho-projections P++P− = I and
H+ = P+H , H− = P−H . If at least one of the eigen-subspaces of J (corresponding
to the eigenvalues +1 and −1, respectively) is finite, then the Krein space is said to
be a Pontryagin space (a space Πκ , κ = min{dimH+, dimH−} ). The decomposition
H = H+⊕H− is called a canonical decomposition. Here and everywhere below the
symbol ⊕ means the orthogonal sum with respect to the scalar product (·, ·) from (1.1),
that will be called the canonical scalar product. Let us note that there exist different
canonical scalar products, canonical symmetries and canonical decompositions on the
same Krein space, but if we fix one of these elements then the other two canonical ele-
ments would be uniquely defined via the corresponding formulae. Let us observe also
that all canonical scalar products define the same topology on H . In the present work
we shall consider the case of separable H only and in what follows this condition will
not be mentioned.

In this paper we shall use the terminology from [2]. This remark concerns the nat-
ural definitions of positive, negative, definite and neutral vectors or lineals, uniformly
positive lineals, maximal non-negative subspaces, regular subspaces, J -orthogonal vec-
tors, J -self-adjoint (J -s.a.) operators, etc. The set of all maximal non-negative sub-
spaces of the Krein space H is denoted M+(H ) .

A subspace L is called pseudo-regular ([11]) if it can be presented in the form
L = L̂

.
+L1 ,where L̂ is a regular subspace and L1 = L ∩L [⊥] (i.e. L1 is the

isotropic part of L ), [⊥] is the symbol of J -orthogonality.

PROPOSITION 1. ([3]) Let:

• L+ be a pseudo-regular subspace belonging to M+(H );

• L1 be the isotropic subspace of L+ ;

• (·, ·)′ be a scalar product on L1 , such that the norm
√

(x,x)′ is equivalent to the
original one;

• L− = L
[⊥]
+ ;

and let
L+ = L̂+

.
+L1, L− = L̂−

.
+L1, (1.2)

where L̂+ and L̂− are uniformly definite subspaces. Then one can define on H a
canonical scalar product (·, ·) such that:

a) on L1 : (·, ·) ≡ (·, ·)′
b) L1 ⊥ L̂+ , L1 ⊥ L̂−
c) on L̂+ : (·, ·) = [·, ·]
d) on L̂− : (·, ·) = −[·, ·]

⎫⎪⎪⎬⎪⎪⎭ (1.3)

DEFINITION 2. If a canonical scalar product of a Krein space H has the prop-
erties (1.3), it is said to be compatible with Decomposition (1.2) and the choice of the
scalar product (·, ·)′ on L1 .



ON A COMMUTATIVE ALGEBRA AND ITS BICOMMUTANT 587

Define a special case of pseudo-regular subspaces: a non-negative (non-positi-
ve) subspace L is called a subspace of the class h+ ( h− ) if it is pseudo-regular and
dim(L ∩L [⊥]) < ∞ . In Pontryagin spaces every subspace is pseudo-regular and every
semi-definite subspace belongs to class h+ or h− .

Here the term ”operator” means ”bounded linear operator”. If Y is an operator
family then the symbol Y′ refers to the commutant of Y , i.e. to the algebra of all
operators B such that AB = BA for every A ∈ Y . The algebra Y′′ = (Y′)′ is said to be
a bicommutant of Y . An algebra A is called reflexive if A′′ = A .

By the symbol B# we denote the operator J -adjoint (J -a.) to an operator B . An
operator algebra A is said to be WJ∗ -algebra if it is closed in the weak operator topol-
ogy, J -symmetric and contains the identity I . The symbol AlgY means the minimal
WJ∗ -algebra which contains Y .

DEFINITION 3. A J -symmetric operator family Y belongs to the class D+
κ if

there is a subspace L+ in H , such that

• L+ is Y-invariant,

• L+ ∈ M+(H )∩h+ ,

• dim(L+∩L
[⊥]
+ ) = κ .

1.2. Some function spaces

Assume that σ(t) is a non-decreasing function defined on the segment [−1;1] ,
continuous in the points −1 and 1, continuous (at least) from the left in all other
points of the segment and having an infinite number of growth points, where zero is
one of these points. The mentioned function generates on [−1;1] the Lebesgue-Stieltjes
measure μσ and spaces (L2

σ , L∞σ , etc.) of complex-valued functions. At the same time
we shall consider also some spaces of vector-valued functions so from time to time we
shall note after a symbol of a space a symbol of a range for the functions forming this
space, for instance, L2

σ (C) . Let us pass to some notation relating to direct integrals
of Hilbert spaces and corresponding model descriptions of self-adjoint operators (see
[20], §41; [8], Chapter 7; [9], Chapter 4.4; [21], Chapter VII). We shall use definitions
close to the ”coordinate notation“ given in [20]. A difference between [20] and the
definitions that follow is related to the fact that direct integrals here will be used not
only for a resolution of Hilbert spaces but also for a resolution of Krein spaces. Let
E be some separable Hilbert space (E can be finite-dimensional), let {d j}α1 be an
orthonormalized basis of this space, let σ(t) be be the same as above. Let {ρ j(t)}α1 be
a system of non-negative μσ -measurable functions defined almost everywhere (a.e) on
the segment [−1;1] and such that every function of the system is the indicator of some
set of non-zero measure and μσ{t : ρ j(t) = 0, j = 1,2, . . . ,α} = 0. Denote

d�σ(t)=
α

∑
j=1

d jρ j(t)dσ(t). (1.4)
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In this case the sum in the right part of the formula is considered as a formal expression
without any suggestion of its convergence or divergence.

Here the space M�σ (E ) means the space of vector-valued functions { f (t)} defined
a.e. (with respect to μσ ) on the segment [−1;1] and taking values in E under the
conditions

f (t) =
α

∑
j=1

β j(t)d j,

where β j(t) runs the set of all μσ -measurable a.e. finite scalar functions, such that

a) β j(t) = ρ j(t)β j(t) , j = 1,2, . . .α ;

b) a.e. ‖ f (t)‖2
E = ∑α

j=1 |β j(t)|2 < ∞ .

}
(1.5)

The topology on M�σ (E ) is introduced by a base for neighborhoods of zero, where
any neighborhood of the base is defined by a couple of positive numbers ε and δ
(the couples are different for the different neighborhoods) and contains all functions
satisfying the condition μσ{t : ‖ f (t)‖2

E � δ} < ε . Next, the symbol L2
�σ (E ) means

here a Hilbert space of functions f (t) ∈ M�σ (E ) , such that
∫ 1
−1 ‖ f (t)‖2

E dσ(t) < ∞ .
The spaces M�σ (E ) and L2

�σ (E ) are said to be a standard space of measurable
functions and a standard Hilbert space respectively.

Next, let spaces L2
�σ+

(E+) and L2
�σ−(E−) be based (in the sense (1.4)) on monotonous

scalar functions σ+(t) and σ−(t) , such that

σ+(t) =
∫ t
−1ρ+(λ )dσ(λ ), σ−(t) =

∫ t
−1ρ−(λ )dσ(λ ), ρ2

+(λ ) = ρ+(λ ),
ρ2−(λ ) = ρ−(λ ), σ(t) =

∫ t
−1

(
ρ+(λ )+ρ−(λ )−ρ+(λ )ρ−(λ )

)
dσ(λ ).

(1.6)

Put
E = E+⊕E− , J -L2

�σ (E ) : = L2
�σ+

(E+)⊕L2
�σ−(E−)

and
[ f ,g] =

∫ 1
−1

[
f (t),g(t)

]
E
dσ(t) : =∫ 1

−1

((
f+(t),g+(t)

)
E+

− ( f−(t),g−(t)
)
E−

)
dσ(t),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (1.7)

where f (t),g(t) ∈ L2
�σ (E ) , f+(t),g+(t) ∈ L2

�σ+
(E+) and f−(t),g−(t) ∈ L2

�σ+
(E−) . Thus,

J -L2
�σ (E ) is a Krein space. In what follows it is called a standard Krein space. As a

slight abuse of the previous notation put also

M�σ (E ) : = M�σ+(E+)⊕M�σ−(E−). (1.8)

Next, let us consider a slightly different construction. Let additionally σ(t) be
continuous in zero and G(t) be a μσ -measurable function defined a.e. on [−1;1] and
such that

• a.e. G(t) � 1,

• ∫−τ−1 G(t)dσ(t) < ∞ ,
∫ 1
τ G(t)dσ(t) < ∞ for every τ ∈ (0;1] ,
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• ∫ 1
−1 G(t)dσ(t) = ∞ .

Set

ν(τ) =

⎧⎪⎨⎪⎩
∫ τ
−1 G(t)dσ(t), if τ ∈ [−1;0);

−∫ 1
τ G(t)dσ(t), if τ ∈ (0;1].

η(τ) =
∫ τ
−1(1/G(t))dσ(t) for τ ∈ [−1;1].

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(1.9)

The function ν(t) is non-decreasing in both segments [−1;0) and (0;1] but it is un-
bounded in neighborhoods of zero. Define for it a corresponding function space. Let
f (t) and g(t) be arbitrary functions continuous in [−1;1] and vanishing in some neigh-
borhoods (different in the general case for f (t) and g(t)) of zero. Then the integral∫ 1
−1 f (t)g(t)dν(t) is well defined and generates a structure of pre-Hilbert space on the

set of all such functions. The completion of the space will be denote L2
ν (or L2

ν (C)).
In a similar way one can define the space L1

ν . At the same time the function η(t) is
non-decreasing on the whole interval [−1;1] , hence η(t) defines on this interval the
ordinary Lebesgue-Stieltjes measure μη that is absolutely continuous with respect to
μσ . Thus, the space L2

η and others are defined as usual.
Note that due to (1.9) the spaces L∞σ and L2

ν , as well as the spaces L1
σ and L2

η ,
form compatible pairs or Banach pairs (for details see [7] or [15]). Thus, the spaces
L1
σ +L2

η and L∞σ ∩L2
ν are well defined. In particular, the standard norm on L1

σ +L2
η is

given by the formula
‖ f‖ = inf

f1+ f2= f
{‖ f1‖L1

σ
+‖ f2‖L2

η
}.

The space L∞σ ∩ L2
ν can be considered as adjoint to the space L1

σ + L2
η if the duality

between these space is given by the formula 〈 f (t),g(t)〉 =
∫ 1
−1 f (t)g(t)dσ(t) , where

f (t) ∈ L1
σ +L2

η and g(t) ∈ L∞σ ∩L2
ν .

Let us pass to some notations relating to direct integrals of Hilbert spaces and
corresponding model descriptions of self-adjoint operators (see [20], §41; [8], Chapter
7; [9], Chapter 4.4; [21], Chapter VII). Let E be some separable Hilbert space (E can
be finite-dimensional), let σ(t) be as above. Consider a mapping t �→ Et , t ∈ [−1;1] ,
where Et ⊂ E , dim(Et) is a μσ -measurable (but not necessarily finite a.e.) function,
and if dim(Et1) = dim(Et2) , then Et1 = Et2 . Denote by M�σ (E ) the space of the vector-
valued functions f (t) : t �→ Et μσ -measurable in the weak sense, defined a.e. and finite
a.e. on the segment [−1;1] . Next, the symbol L2

�σ (E ) means here a Hilbert space of

functions f (t) ∈ M�σ (E ) , such that
∫ 1
−1‖ f (t)‖2

E dσ(t) < ∞ .
Introduce some notation related with multiplication operators by scalar function.

Everywhere below we assume a scalar function ϕ(t) to be defined a.e. on [−1;1] ,
μσ -measurable and a.e. bounded. For f (t) ∈ M�σ (E ) set

(Φ f )(t) = ϕ(t) f (t). (1.10)

It is clear that (Φ f )(t) ∈ M�σ (E ) , so equality (1.10) defines on M�σ (E ) the continuous
operator Φ (= the multiplication operator by the function ϕ(t)). If ϕ(t) satisfies some
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additional conditions one can consider the operator Φ as acting simultaneously on dif-
ferent spaces. If, for instance, ϕ(t) is continuous then the operator Φ is well defined
on every space Mσ (E ) independently of �σ(t) and E . If ϕ(t) ∈ L∞σ (C) then L2

�σ (E )
can also be taken as a domain of Φ . So, if it is necessary, we’ll mention simultaneously
the operator Φ and its domain using the notation {Φ,D(Φ)} , say, {Φ,L2

�σ (E )} .

REMARK 4. ([26], Remark 2.8; cf. [7], Theorem 5.2.1) Let

x1(t) =

{
x(t), if |x(t)| < G(t);
G(t) · eiargx(t), if |x(t)| � G(t);

x2(t) = x(t)− x1(t).

Then x(t) ∈ L1
σ +L2

η if and only if simultaneously x1(t) ∈ L2
η and x2(t) ∈ L1

σ .

1.3. Some remarks for a single operator

In this subsection we study an operator A = A# ∈ D+
1 with real spectrum. Thus,

there is a subspace L+ in H , such as in Definition 3. Let L− = L
[⊥]
+ . Set

L1 = L+∩L−,L2 = L+�L1,L3 = L−�L1,L0 = JL1. (1.11)

As the subspaces L2 and L3 are uniformly definite we can suppose that our scalar
product is compatible with (1.11), so

H = L0⊕L1⊕L2⊕L3. (1.12)

Next, the spaces L0 and L1 are one-dimensional, so the space L1 is an eigen-space
for A . With no loss of generality we can assume that the corresponding eigen-value
of A is equal zero, so with respect to the decomposition (1.12) the operator A has the
following representation:

A =

⎛⎜⎜⎝
0 0 0 0

A10 0 A12 A13

A20 0 A22 0
A30 0 0 A33

⎞⎟⎟⎠ , (1.13)

where A22=A∗
22 , A33 = A∗

33 . We omit other relations among the elements of the rep-
resentation (1.13). Since the operators A22 and A33 are self-adjoint in the ordinary
Hilbert sense, they can be described as a multiplication operator by independent vari-
able acting in suitable spaces. With no loss of generality we can assume that ‖A22‖< 1
and ‖A33‖< 1, so we identify the operators A22 and A33 as operators of multiplication
operators by independent variable acting in spaces L2

�σ+
(E+) and L2

�σ−(E−) respectively.

Here E+ and E− are some Hilbert (maybe finite-dimensional) spaces, �σ+(t) and �σ−(t)
can be discontinuous in zero. Then

H = C⊕C⊕L2
�σ+

(E+)⊕L2
�σ−(E−), (1.14)
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and the operators from (1.13) have the following representation

A22 : L2
�σ+

(E+) �→ L2
�σ+

(E+), f (t) �→ t f (t),

A33 : L2
�σ−(E−) �→ L2

�σ−(E−), f (t) �→ t f (t),

A12 : L2
�σ+

(E+) �→ C, f (t) �→
∫ 1

−1
( f (t),a12(t))E+d�σ+(t) ,

A13 : L2
�σ−(E−) �→ C, f (t) �→

∫ 1

−1
( f (t),a12(t))E−d�σ−(t) ,

A20 : C �→ L2
�σ+

(E+), 1 �→ a12(t) ,

A30 : C �→ L2
�σ−(E−), 1 �→ −a13(t) ,

A10 : C �→ C, 1 �→ α , α = α

A direct calculation shows that the resolvent Rξ (A) can be defined for values
ξ ∈ C. \[−1;1] and has the following form

Rξ (A) =

⎛⎜⎜⎝
R00 0 0 0
R10 R11 R12 R13

R20 0 R22 0
R30 0 0 R33

⎞⎟⎟⎠ , (1.15)

where

R00 : C �→ C, 1 �→ − 1
ξ

,

R11 : C �→ C, 1 �→ − 1
ξ

,

R10 : C �→ C, 1 �→ 1
ξ 2

{
−α+

∫ 1

−1

‖a12(t)‖2
E+

t− ξ
d�σ+(t)−

∫ 1

−1

‖a13(t)‖2
E−

t − ξ
d�σ−(t)

}
,

R12 : L2
�σ+

(E+) �→ C, f (t) �→ 1
ξ
·
∫ 1

−1

( f (t),a12(t))E+

t − ξ
d�σ+(t) ,

R13 : L2
�σ−(E−) �→ C, f (t) �→ 1

ξ
·
∫ 1

−1

( f (t),a13(t))E−
t − ξ

d�σ−(t) ,

R20 : C �→ L2
�σ+

(E+), 1 �→ 1
ξ (t− ξ )

·a12(t) ,

R22 : L2
�σ+

(E+) �→ L2
�σ+

(E+), f (t) �→ 1
t− ξ

· f (t),

R30 : C �→ L2
�σ−(E−), 1 �→ − 1

ξ (t− ξ )
·a13(t) ,

R33 : L2
�σ−(E−) �→ L2

�σ−(E−), f (t) �→ 1
t− ξ

· f (t) .
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Using these formulas and the standard improper contour integral one can calculate the
spectral resolution EA

λ of A for every λ ∈ [−1;0)∪ (0;1] . In particular, for every
interval Δ = [a;b) ⊂ [−1;0)∪ (0;1] with b �= 0 we have

EA(Δ) = EA
b −EA

a =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0

EA
10(Δ) 0 EA

12(Δ) EA
13(Δ)

EA
20(Δ) 0 EA

22(Δ) 0

EA
30(Δ) 0 0 EA

33(Δ)

⎞⎟⎟⎟⎟⎟⎠ , (1.16)

where

EA
10(Δ) : C �→ C, 1 �→

{∫ b

a

‖a12(t)‖2
E+

t2
d�σ+(t)−

∫ b

a

‖a13(t)‖2
E−

t2
d�σ−(t)

}
,

EA
12(Δ) : L2

�σ+
(E+) �→ C, f (t) �→

∫ b

a

( f (t),a12(t))E+

t
d�σ+(t) ,

EA
13(Δ) : L2

�σ−(E−) �→ C, f (t) �→
∫ b

a

( f (t),a13(t))E−
t

d�σ−(t) ,

EA
20(Δ) : C �→ L2

�σ+
(E+), 1 �→ 1

t
·a12(t) · χΔ(t) ,

EA
22(Δ) : L2

�σ+
(E+) �→ L2

�σ+
(E+), f (t) �→ f (t) · χΔ(t) ,

EA
30(Δ) : C �→ L2

�σ−(E−), 1 �→ −1
t
·a13(t) · χΔ(t) ,

EA
33(Δ) : L2

�σ−(E−) �→ L2
�σ−(E−), f (t) �→ f (t) · χΔ(t) .

It is evident that EA
λ can be bounded or unbounded. It depends of the functions a12(t)

t

and a13(t)
t . If a12(t)

t ∈ L2
�σ+

(E+) and a13(t)
t ∈ L2

�σ−(E−) , then EA
λ is bounded, if at

least one of these conditions is not fulfilled, EA
λ is unbounded. If EA

λ is bounded,
then A is a spectral operator (see [10] and an explanation below) and the projection
EA({0}) = EA

+0−EA
0 is correctly defined. If under the latter condition AEA({0}) �= 0,

the operator A has a non-trivial nilpotent part. In the case of unbounded spectral
resolution the representations of A and EA

λ given above contain a simple idea for a
model representation of these objects: one can take into account not only the Hilbert
spaces L2

�σ+
(E+) and L2

�σ−(E−) but also the functions a12(t)
t and a13(t)

t improper for

these spaces. The latter idea was developed for operator families of D+
κ -class in [28],

here we use this approach to study the problem of reflexivity for commutative algebras
in the specific case of D+

1 -class. As a preliminary step let us consider the structure of
the space

⋂
ε>0 EA([−ε,ε])H .
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LEMMA 5. Let an operator A be under the same conditions as in the beginning
of this subsection and let its spectral resolution be unbounded. Then in the terms of
Representations (1.12) and (1.16) we have⋂

ε>0

EA([−ε,ε])H = L1⊕E22({0})L2⊕E33({0})L3 ,

where E22({0}) and E33({0}) have the usual sense.

Proof. By (1.16) we have

E([−ε,ε]) =

⎛⎜⎜⎜⎜⎜⎝
I0 0 0 0

−EA
10(Xε) I1 −EA

12(Xε ) −EA
13(Xε)

−EA
20(Xε) 0 I2−EA

22(Xε) 0

−EA
30(Xε) 0 0 I3−EA

33(Xε)

⎞⎟⎟⎟⎟⎟⎠ ,

where Xε = [−1,−ε)∪ (ε,1] . In virtue of the latter formulae it is evident that L1 ⊕
E22({0})L2⊕E33({0})L3 ⊆ ⋂ε>0 EA([−ε,ε])H , so we need only to prove that the
vector e1 : = 0⊕ 1 ⊕ 0 ⊕ 0 (see (1.14)) belongs to the closure of the linear mani-
fold

⋃
ε>0 EA(Xε )H . Since EA

λ is unbounded, at least a12(t)
t �∈ L2

�σ+
(E+) or a13(t)

t �∈
L2

�σ−(E−) . Let, for instance, a12(t)
t �∈ L2

�σ+
(E+) . Then in terms of Representation (1.14)

we have
χXε (t) ·a12(t)

t
⊕ e1 ·

(∫ −ε

−1
+
∫ 1

ε

)‖a12(t)‖2
E+

t2
d�σ+(t) =

χXε (t) ·a12(t)
t

⊕ e1 ·
∥∥∥χXε (t) ·a12(t)

t

∥∥∥2

L2
�σ+

(E+)
∈ EA(Xε)H .

The rest is straightforward. �

1.4. Spectral functions with peculiarities

The following notion is a particular case of the notion introduced in [4] (see also
[26] and [28]). Let R0 be the family {X} of all Borel subsets of R such that ∂X ∩
{0} = /0 , where ∂X is the boundary of X in R . Let E : X �→ E(X) be a countably
additive (with respect to weak topology) function, that maps R0 to a commutative
algebra of projections in a Hilbert space H , where E([−ε,+ε]) �= 0 for every ε > 0
and, moreover, E(R) = I . E(X) is called a spectral function (on R) with the peculiar
spectral point 0, the mention of 0 can be omitted. The symbol Supp(E) means the
minimal closed subset S of R , such that E(X) = 0 for every X : X ⊂R\S and X ∈R0 .
Note that always 0 ∈ Supp(E) . Besides the symbol E we shall use also as a notation
for a spectral function the symbol Eλ , λ ∈ R , where Eλ = E((−∞,λ )) . Note that the
notion of peculiar point has no any direct connection with the behavior of the spectral
function and it means only that point 0 on R is distinguished. See below Definition 10



594 V. STRAUSS

for some explanations. In what follows the symbol let R
(0)
0 means the collection of all

numerical subsets X such that X ∈ R0 and X ∩Λ= /0 .
A spectral function E that acts in a Krein space, is said to be J -orthogonal (J -

orth.sp.f.) if E(X) is a J -ortho-projection for every X ∈ R0 .
Let us recall the definition of a scalar spectral operator with real spectrum ([10]).

An operator A acting in a Hilbert space is said to be a scalar spectral operator if there
exists a spectral function E which has not any peculiar spectral points and such that for
every Borel set X ∈ R : E(X)A = AE(X) , σ(A|E(X)H ) ⊂ X and AE(X) =

∫
X ξE(dξ )

in the weak sense.
Now let E be a spectral function with peculiar spectral point 0 . A scalar function

f (ξ ) is said to be defined almost everywhere (with respect to E ), to have finite value
almost everywhere, etc., if the corresponding property holds almost everywhere in the

weak sense on an arbitrary set X ∈R
(0)
0 . We shall assume that the function f (ξ ) is not

defined at 0. The following theorem represents a partial case of the theorem that was
announced in [24] and proved in [4] (see also [2], § III.5).

THEOREM 6. Let Y ∈ D+
1 be a commutative family of J -s.a. operators with real

spectra and at least one operator of Y is not a scalar spectral operator. Then there
exists a J -orth.sp.f. E with peculiar spectral point 0 , such that the following conditions
hold

a) Eλ ∈ AlgY for all λ ∈ R\{0};
b) ∃ L+ : L+ corresponds to Definition 3, E(Δ)L+[

.
+]E(Δ)L− =

E(Δ)H , Δ being any closed segment satisfying Δ ∈ R
(0)
0 ;

c) ∀A ∈ Y, ∃ a defined almost everywhere function φ (λ ), such

that for every interval Δ ∈ R
(0)
0 the descomposition AE(Δ) =∫

Δ φ(λ )E(dλ ) is valid;

d) H̃ : = CLin
Δ∈R

(0)
0

{E(Δ)H } is pseudo-regular or regular and its iso-

tropic part is one-dimensional or trivial;

e) ∀A ∈ A the set σ(A|Hr), where Hr =
⋂

0∈Δ∈R(0)
E(Δ)H , is a sin-

gletone {λA}; moreover, there is a natural number n � 3 (the
same for all A) such that (A−λAI)nHr = {0};

f ) neither limsup
λ→0

‖Eλ‖ = ∞ or at least for one A ∈ Y the operator

A|Hr is not a scalar spectral operator.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.17)

A spectral function E with a peculiar spectral point 0 satisfying Conditions (1.17)
are called an eigen spectral function (e.s.f.) of the operator family Y .

REMARK 7. E.s.f. of Y is not uniquely determined but the space Hr depends
only of Y (see [29] for details).
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Note that the restriction that all operators from Y have real spectra is not very
strong due to the following remark.

REMARK 8. If Y∈D+
1 is a commutative family of J -s.a. operators and σ(A0)\R �=

/0 at least for one A0 ∈ Y , then H = H ′
max[+̇]H ′′

min , where H ′
max and H ′′

min are Y-
invariant subspaces, σ(A|H ′

max
) ⊂ R for all A ∈ Y , J -orthoprojection P′

max onto H ′

belongs to AlgY , dim(H ′′
min) = 2 and the family Y|H ′

max
belongs to the class D+

0 .

DEFINITION 9. Let Eλ be an e.s.f. of an operator family Y and let an operator
A ∈ Y and a function φ(λ ) be connected by the system of equalities from (1.17c).
Then the function φ(λ ) is said to be the portrait of the operator A and the operator A
is said to be the original of φ(λ ) in Y (with respect to Eλ ).

DEFINITION 10. Let a sp. function E with a peculiar spectral point 0 be an e.s.f.
of Y . The peculiarity is called regular if limsup

λ→0
‖Eλ‖ < ∞ , otherwise it is called

singular.

LEMMA 11. Let a sp. function E with a peculiar spectral point 0 be an e.s.f. of
a WJ∗ -algebra A . Then there is an operator D ∈ A and an increasing scalar function
φ(t) such that:

• μ(−1) = −1, μ(0) = 0, μ(1) = 1,

• Eλ = ED
φ(λ ) ,

where ED
λ is the e.s.f. of D.

Proof. The statement of Lemma is trivial if 0 is regular peculiarity, because in this
case it is enough to put D : =

∫ 1
−1λ dEλ , so let us consider the case limsup

λ→0
‖Eλ‖ =

∞ . Due to the definition of sp. function with peculiar point at zero for every fixed

closed interval Δ ∈ R
(0)
0 and arbitrary function f (t) continuous on Δ the integral∫

Δ f (λ )dEλ is well defined and there is a constant cΔ > 0 such that ‖∫Δ f (λ )dEλ‖ �
cΔ ·maxt∈Δ{| f (t)|} (see [10]). Thus, for the intervals Δ j = [ 1

j+1 ; 1
j ] we can find con-

stants c j , such that ‖∫Δ j
f (λ )dEλ‖ � c j ·maxt∈Δ j{| f (t)|} , j = 1,2, . . . . Let us choose

a sequence {γ j}∞j=1 such that

• γ1 = 1, γ j � γ j+1 > 0, j = 1,2, . . . ,

• ∑∞
j=1 c jγ j < ∞ .

Put ψ(t) = −γ j · j · (1− ( j +1)t)+ γ j+1 · ( j +1) · (1− t j) for t ∈ Δ j , j = 1,2, . . . . It
is evident that the integral

∫ 1
0 ψ(λ )dEλ is well defined as an improper integral with

a singular point at zero. By a similar way we can introduce ψ(t) for t ∈ [−1;0) and
finally put ψ(0) = 0. The operator D : =

∫ 1
−1ψ(λ )dEλ and the function φ(λ ) inverse

to ψ(λ ) are as desired. �
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REMARK 12. Even in the case of of a WJ∗ -algebra A from the D+
1 -class the

equality Eλ = EA
φ(λ ) does not mean that A = Alg(A) because A did not bring a main

part of information concerning the nilpotent part of A .

REMARK 13. If a spectral function Eλ satisfies Conditions (1.17), it easy to
show (using the corresponding result for spectral resolutions in Hilbert spaces [1]) that
there is two vectors uμ , vμ ∈ H̃ such that the function σuμ ,vμ (λ ) : = [Eλuμ ,vμ ] is
real, bounded, non-decreasing and the property of functions with respect to Lebesgue-
Stieltjes measure generated by σuμ ,vμ (λ ) are the same that the corresponding properties
with respect to Eλ . Note also that σuμ ,vμ (λ ) can be defined by continuity at 0 .

Now we discuss the spectrum multiplicity of the family Eλ . Recall that a subspace
L is said to be cyclic with respect to Ẽλ : = Eλ |H̃ if CLin

λ∈[−1;1]\{0}
{EλL} = H̃ .

DEFINITION 14. In what follows a non-peculiar multiplicity of J -orth.sp.f. Eλ
means the minimal dimension of all cyclic subspaces with respect to Ẽλ .

2. Description of commutative D+
1 -families

2.1. Models for a J -orth.sp.f. with a singular peculiarity

We assume that J -oth.sp.f. Eλ ∈ Dκ with the peculiar spectral point 0 satisfies
the conditions

E−1 = 0, E+1 = I, E−1 = E−1+0 (2.1)

and:
sup

λ∈[−1;1]\{0}
{‖Eλ‖} = ∞. (2.2)

Introduce some notation. Let (see (1.17))

H1 = H̃ ∩ H̃ [⊥], H2 = H ⊥
1 ∩ H̃ , H0 = JH1 ,

H3 =
(
H̃ ⊕H0

)[⊥]
, Pj be an orthoprojection (in the

sense of Hilbert spaces) onto H j , j = 0,1,2,
Ẽλ : = Eλ |H̃ .

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.3)

REMARK 15. By Condition (2.2) the inequality H1 �= {0} holds. Moreover,
Lemma 11 and Representation (1.16) yield H1 = L1 , so dim(H1) = 1.

In addition to (2.3) set

H̃ ↑ = H0 ⊕H2, Ẽλ = Eλ |H̃ , Ẽ↑
λ = (P0 +P2)Eλ |H̃ ↑ . (2.4)

It is necessary to take into account that, generally speaking, the subspace H2 is in-
definite. Since J -orth.sp.f. Eλ belongs to the class D+

κ , there is an Eλ -invariant pair
of J -orthogonal maximal semi-definite pseudo-regular subspaces L+ and L− with
finite-dimensional isotropic part, moreover by Condition (1.17b) we can assume that
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for every closed interval Δ⊂ [−1;1]\{0} the subspace (E(Δ)H )∩L+ is positive and
the subspace (E(Δ)H )∩L− is negative. Thanks to the last hypothesis the following
subspaces are well defined

H̃+ = CLin
Δ⊂[−1;1]\{0}

{E(Δ)L+}, H̃− = CLin
Δ⊂[−1;1]\{0}

{E(Δ)L−}. (2.5)

One of these subspaces can be trivial (for instance, H̃+ = {0} ) or finite-dimensional.
This case simplifies the main part of constructions below, so we usually will assume

dimH̃+ = ∞ and dimH̃− = ∞ . (2.6)

REMARK 16. Let subspaces H +
2 and H −

2 be such that

a) H +
2 and H −

2 are, respectively, uniformly positive and
uniformly negative subspaces;

b) the subspaces H1 �H +
2 and H1 �H −

2 are A -invariant;

c) H2 = H +
2 [+]H −

2 ;

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.7)

where H2 is defined by (2.3). In particular, one can take

H +
2 = P2H̃+, H −

2 = P2H̃− . (2.8)

In what follows we assume that a canonical scalar product on H is such that, first,

H
[⊥]

3 = H ⊥
3 and, second, on the subspace H̃ ⊕H0 it is compatible (see Definition

2) with Decompositions (2.7). Thus, with respect to the decomposition

H = H0 ⊕H1⊕H2⊕H3 (2.9)

we have

J =

⎛⎜⎜⎝
0 V−1 0 0
V 0 0 0
0 0 J2 0
0 0 0 J3

⎞⎟⎟⎠ , (2.10)

where the operator V : H0 �→ H1 is isometric, J2 and J3 are canonical symmetries of
the form [·, ·] on H2 and H3 respectively. Since the subspace H1 is one-dimensional,
we can fix a vector

e1 ∈ H1 with ‖e1‖ = 1 and put e0 = V−1e1, (2.11)

identify e0 with e1 and, finally, treat H0 and H1 as C and V as the identical operator.
Now let E+

λ : = P+
2 Eλ |H +

2
and E−

λ : = P−
2 Eλ |H −

2
, where P+

2 and P−
2 are the

ortho-projections onto the corresponding subspaces. Since the canonical scalar product
is compatible with (2.8), (·, ·)|H +

2
= [·, ·]|H +

2
and (·, ·)|H −

2
= −[·, ·]|H −

2
, thus E+

λ and

E−
λ are orthogonal spectral resolutions in the corresponding Hilbert spaces. So, there
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are Hilbert spaces L2
�σ+

(E+) and L2
�σ−(E−) such that the operator-valued functions E+

λ
and E−

λ are similar to the multiplication operator by indicator function χ[−1;λ )(t) act-
ing on L2

�σ+
(E+) and L2

�σ−(E−) respectively with corresponding isometric operators of

similarity W+
2 : L2

�σ+
(E+) �→ H +

2 and W−
2 : L2

�σ−(E−) �→ H −
2 . Since the functions σ+

and σ− can be chosen within the class of functions generated equivalent measures, we
can assume that for σ+ and σ− Conditions (1.6) are fulfilled. Now let us define the
standard Krein space J -L̃2

�σ (E ) as in (1.7). It is clear that by the construction the bloc(
E+
λ 0
0 E−

λ

)
is similar to the multiplication operator by indicator function χ[−1;λ )(t) acting on

J -L̃2
�σ (E ) , and the corresponding operator of similarity W2 : J -L2

�σ (E ) �→ H2 , W2 =
W+

2 ⊕W−
2 is simultaneously an isometry between Hilbert and Krein spaces. Next, if

for an interval Δ : Δ ∈ R
(0)
0 , then with respect to the decomposition (2.9) the operator

E(Δ) has the representation

E(Δ) =

⎛⎜⎜⎝
0 0 0 0

E10(Δ) 0 E12(Δ) 0
E20(Δ) 0 E22(Δ) 0

0 0 0 0

⎞⎟⎟⎠ , (2.12)

Note that the operator E12(Δ) can be treated as a boundary linear functional acting on
the Krein space H2 , so due to Riesz Theorem on bounded linear functionals and the
equality

(
E(Δ)

)2 = E(Δ) there is a function g̃(t)∈M�σ (E ) , such that E12(Δ)W−1
2 f (t)=∫

Δ
[
f (t), g̃(t)

]
E
dσ(t) . Note that the functional E12(Δ) is bounded for a fixed inter-

val Δ ∈ R
(0)
0 , but the whole family {E12(Δ)}

Δ∈R
(0)
0

is unbounded, so χΔ(t) · g̃(t) ∈
J -L̃2

�σ (E ) , but g̃(t) �∈ J -L̃2
�σ (E ) . So, let us go to the following construction.

Let J -L2
�σ (E ) be a standard Krein space. Let g̃(t) ∈ M�σ (E ) be such that

χΔ(t) · g̃(t) ∈ J -L̃2
�σ (E ) for every interval Δ ∈ R

(0)
0 , but g̃(t) �∈ J -L2

�σ (E ). (2.13)

In what follows we say that g̃(t) is an improper function for J -L2
�σ (E ) . Denote by

J -L̃2
�σ (E )⊂M�σ (E ) the linear span generated by the space J -L2

�σ (E ) and the function

g̃(t) . Define on J -L̃2
�σ (E ) structures of Hilbert and Krein spaces in the following way:

on J -L2
�σ (E ) both structures coincide with the original structures, the function g̃(t) is

by definition positive (as an element of the Krein space), normalized and J -normalized,
orthogonal and J -orthogonal to J -L2

�σ (E ) . The space J -L̃2
�σ (E ) is said to be the

expansion of J -L2
�σ (E ) (generated by the function g̃(t)). Thus, we proved above the

following theorem (e.g. with Subsection 1.3)

THEOREM 17. If a J -orth.sp.f. Eλ satisfies Condition (2.2) and a scalar product
on H is compatible with (2.7), then there are, first, a subspace J -L2

�σ (E ) and a
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function g̃(t) ∈ M�σ (E ) under Condition (2.13) forming together the space J -L̃2
�σ (E )

and, second, a J -isometric operator W |L2
�σ (E ) : WL2

�σ (E ) = H2 , such that for every

Δ ∈ R
(0)
0 ⎛⎜⎜⎝

0 0 0 0
E10(Δ) 0 E12(Δ) 0
E20(Δ) 0 E22(Δ) 0

0 0 0 0

⎞⎟⎟⎠= U

⎛⎜⎜⎝
0 0 0 0

E( f )
10 (Δ) 0 E( f )

12 (Δ) 0

E( f )
20 (Δ) 0 E( f )

22 (Δ) 0
0 0 0 0

⎞⎟⎟⎠U−1,

where

U :

⎛⎜⎜⎝
C

C

J -L̃2
�σ (E )

H3

⎞⎟⎟⎠ �→

⎛⎜⎜⎝
H0

H1

H2

H3

⎞⎟⎟⎠ , U =

⎛⎜⎜⎝
U0 0 0
0 U1 0 0
0 0 W2 0
0 0 0 I3

⎞⎟⎟⎠ ,

U0 : 1 �→ e0, U1 : 1 �→ e1, E( f )
10 : 1 �→

∫
Δ
[g̃(t), g̃(t)]E dσ(t), E( f )

12 :

f (t) �→
∫
Δ
[ f (t), g̃(t)]E dσ(t), E( f )

20 : 1 �→ χΔ(t) · g̃(t), E( f )
22 : f (t) �→ χΔ(t) · f (t).

REMARK 18. By the hypothesis in Theorem 17 the scalar product on H is com-
patible with (2.7), so g̃(t) = g̃+(t)⊕ g̃−(t) , where:

• g̃+(t) ∈ M�σ+(E+) and g̃−(t) ∈ M�σ+(E−) ,

• the Hilbert spaces L2
�σ+

(E+) and L2
�σ−(E−) are related with the standard Krein

space J -L̃2
�σ (E ) as in (1.7),

• W2L2
�σ+

(E+) = H +
2 and W2L2

�σ−(E−) = H −
2 ,

• at least g̃+(t) �∈ L2
�σ+

(E+) or g̃−(t) �∈ L2
�σ−(E−) ,

• E( f )
10 : 1 �→ ∫Δ ‖g̃+(t)‖2

E+
dσ+(t)− ∫Δ ‖g̃−(t)‖2

E−dσ−(t) .

Passing from E(Δ) to Eλ one can obtain a following result that is a particular case
of Theorem 6.19 from [28].

THEOREM 19. If a J -orth.sp.f. Eλ satisfies Condition (2.2) and a scalar prod-
uct on H is compatible with (2.7), then there are, first, a space J -L2

�σ (E ) and a

function g̃(t) ∈ M�σ (E ) under Condition (2.13) forming together the space J -L̃2
�σ (E )

and, second, an isometric operator W : J -L̃2
�σ (E ) �→ H̃ with J -isometric restriction

W2 = W |J -L2
�σ (E ) : WL2

�σ (E ) = H2 , such that for every λ ∈ [−1;1]

Ẽλ = W ·X#
λ · (W )−1, W ↑ = (I2 ⊕V)W, Ẽ↑

λ = W ↑ ·Xλ · (W ↑)−1, (2.14)

where I2 is the identical operator on the space H2 and Xλ = {Xλ , J -L̃2
�σ (E )} is the

multiplication operator by the indicator χ[−1,λ )(t) of the interval [−1,λ ) .
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REMARK 20. If Condition (2.6) is not hold, the space J -L2
�σ (E ) in Theorems 17

and 19 must be replaced by a Hilbert or Pontryagin space.

DEFINITION 21. If for Decomposition (2.3), (2.8) a relation between a J -orth.sp.f.
Eλ satisfying Condition (2.2) and a space J -L̃2

�σ (E ) is given by Formulae (2.14), then

J -L̃2
�σ (E ) is said to be a basic model space for Eλ (compatible with (2.3), (2.4), (2.7))

and the operator W is said to be an operator of similarity corresponding to this space.

If a function γ(t) is such that γ(t) f (t) ∈ J -L̃2
�σ (E ) for every f (t) ∈ J -L̃2

�σ (E ) ,
then the multiplication operator Γ = {Γ, J -L̃2

�σ (E )} by the function γ(t) is well de-
fined. Let us note the following fact.

PROPOSITION 22. ([28],[26]) The relation

ΓJ -L̃2
�σ (E ) ⊂ J -L2

�σ (E ) (2.15)

holds if and only if
γ(t) ∈ L∞σ ∩L2

ν , (2.16)

where ν is defined by (1.9) and

G(t) = 1+‖g̃(t)‖2
E . (2.17)

THEOREM 23. ([27]) Assume that a J -orth.sp.f. Eλ satisfies Condition (2.2), a
scalar product on H is compatible with (2.7) and J -L̃2

�σ (E ) is a basic model space for
Eλ . If a J -s.a. operator C and a function γ(t) are such that CE(Δ) =

∫
Δ γ(t)E(dt)for

every interval Δ ∈ R{0}, 0 �∈ Δ , then

a) a.e. γ(t) = γ(t);
b) CH̃ ⊂ H̃ ;
c) for γ(t) the condition ΓJ -L̃2

�σ (E ) ⊂ J -L̃2
�σ (E ) holds;

d) C̃ = W ·Γ# ·W−1, C̃↑ = W ↑ ·Γ · (W↑)−1,

where C̃ = C|
H̃

, C̃↑ = (P0 +P2)C|H̃ ↑ , operators W and W ↑ are from (2.14).

COROLLARY 24. Assume that a J -orth.sp.f. Eλ satisfies Condition (2.2), a scalar
product on H is compatible with (2.7) and J -L̃2

�σ (E ) is a basic model space for Eλ .
Let a J -s.a. operator C and a function γ(t) be such that CE(Δ) =

∫
Δ γ(t)E(dt) for

every interval Δ ∈ R{0}, 0 �∈ Δ . Then C|H1 = 0 if and only if γ(t) ∈ L∞σ ∩L2
ν .

We start to consider the problem of the functional description of a commutative
WJ∗ -algebra A ∈ D+

1 . In this stage we assume that all J -self-adjoint operators in A
have real spectra and an e.s.f. Eλ of A has zero as a singular peculiar point. An
immediate consequence of this hypothesis is the relation H1 : = H̃ ∩H̃ [⊥] �= {0} .
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As a first step we describe an operator subalgebra of A that can be directly calcu-
lated through Eλ . Let ϕ(t) be a continuous scalar function vanishing near 0. Set

Aϕ =
∫ 1

−1
ϕ(t)dEλ , (2.18)

where the improper integral has the obvious meaning.
Denote A(sc) the weak closure of the operator set {Aϕ} generated by (2.18). The

definition of A(sc) is valid independently of the fact if zero is a singular or regular pe-
culiarity. We introduce the following notation: Gϕ(Eλ ) means the totality of operators
from A(sc) which are originals of the function ϕ(t) .

PROPOSITION 25. ([26]) Gϕ(Eλ ) �= /0 if and only if ϕ(t) ∈ L∞σ ∩L2
ν .

THEOREM 26. Let the J -self-adjoint operators of a family Y ∈ D+
1 have real

spectra, let an e.sp.f. Eλ of Y be unbounded and let J -L̃2
�σ (E ) be its basic model

space. Then for every A = A# ∈ A : = Alg(Y) there is a real number α and a real
function γ0(t) ∈ L∞σ ∩L2

ν such that

A = αI +C+Q, (2.19)

where Q∈A is a nilpotent operator, Q|
H̃

= Q#|
H̃

= 0 , C∈A(sc) , CE(Δ)=
∫
Δ γ0(λ )dEλ

for every interval Δ ∈ R
(0)
0 .

Proof. If A= A# ∈Y , then the representation AE(Δ)=
∫
Δ γ(λ )dEλ and the equal-

ity Ae1 = αe1 with α = α follow directly from Properties (1.17c,e) and, since the al-
gebra A is generated by Y , the same is true for A = A# ∈ A . Next, Proposition 22
and Theorem 23 yield γ0(t) : = (γ(t)−α) ∈ L∞σ ∩ L2

ν . Thus, we need to prove that
there is C ∈ A0 with the portrait γ0(t) . Let us note (see Theorem 17) that the strong
limit s− lim ε→+0

(∫ −ε
−1 +

∫ 1
ε
)
γ0(t)dEt does not exist if and only if the improper inte-

gral
∫ 1
−1 γ0(t)[g̃(t), g̃(t)]E dσ(t) diverges, so we need to consider the latter case, that

(see Subsection 1.2) means

[g̃(t), g̃(t)]E �∈ L1
σ +L2

η . (2.20)

Let Ω be a set of all functions ω(t) ∈ L∞σ ∩L2
ν vanishing near zero. Then the linear

functional θ : θω : =
∫ 1
−1ω(t)[g̃(t), g̃(t)]E dσ(t) is well defined on Ω but at the same

time unbounded on this linear manifold with respect to the norm of L∞σ ∩L2
ν . Since the

kernel of an unbounded linear functional is dense on its domain, there is a sequence
{ω j(t)}∞j=1 ⊂ Ker(θ ) , such that lim j→∞ ‖γ0(t)−ω j(t)‖L∞σ∩L2

ν
= 0. It is evident that∫ 1

−1ω j(t)dEt ∈ A0 . Since the limit s− lim j→+0
∫ 1
−1ω j(t)dEt exists, we can put C =

s− lim j→+0
∫ 1
−1ω j(t)dEt . the rest is straightforward. �
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REMARK 27. If (2.20) holds, the operator C in (2.19) is defined by γ0(t) not
uniquely but up to the summand ξ ·S0 , where ξ = ξ and the operator S0 is defined as

S0x : = [x ,e1] · e1 . (2.21)

Indeed, one can replace the sequence {ω j(t)}∞j=1 ⊂ Ker(θ ) from the proof of Theorem
26 by a sequence {ψ j(t)}∞j=1 ⊂Ω , θψ j = ξ for all j . See [26] for details.

REMARK 28. Represenation (2.19) remains valid if H1 = {0} . It follows directly
from the theory of spectral operators (see [10]).

Let us again consider Decomposition (2.9) together with Condition (2.2). Then
for an operator A = A# ∈ A with A |H1= 0 the representation

A =

⎛⎜⎜⎝
0 0 0 0

A10 0 A12 A13

A20 0 A22 0
A30 0 0 A33

⎞⎟⎟⎠
holds. Since H̃ [⊥] = H1 ⊕H3 , we have

A|
H̃ [⊥] =

(
0 A13

0 A33

)
,

but σ(A|
H̃ [⊥] ) is a singleton, so σ(A33) = {0} . On the other hand due to the represen-

tation (see Lemma 5 and Lemma 11)

H3 =
(
L̃+∩H3

)⊕ (L−∩H3
)

the operator A33 can be consider as a usual self-adjoint operator. So, A33 = 0 and

A =

⎛⎜⎜⎝
0 0 0 0

A10 0 A12 A13

A20 0 A22 0
A30 0 0 0

⎞⎟⎟⎠ . (2.22)

Finally, applying to A Theorem 26 we have

LEMMA 29. Let the J -self-adjoint operators of a family Y ∈ D+
1 have real spec-

tra, let an e.sp.f. Eλ of Y be unbounded and let J -L̃2
�σ (E ) be its basic model space.

Then for every A = A# ∈A with A |H1= 0 and for C and Q from (2.19) Decomposition
(2.9) yields the following representation

C =

⎛⎜⎜⎝
0 0 0 0

Ã10 0 A12 0
A20 0 A22 0
0 0 0 0

⎞⎟⎟⎠ and Q =

⎛⎜⎜⎝
0 0 0 0

Â10 0 0 A13

0 0 0 0
A30 0 0 0

⎞⎟⎟⎠ ,

where Ã10 : C �→ C, 1 �→ ζ , ζ = ζ with arbitrary ζ if Condition (2.20) holds and
ζ =

∫ 1
−1 γ0(t)[g̃(t), g̃(t)]E dσ(t) in the opposite case.
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DEFINITION 30. In what follows the operators C and Q from (2.19) are called
respectively scalar and nilpotent parts of an operator A = A# ∈ A with A |H1= 0. The
subalgebra of all nilpotent parts of A will be denote by A(nil) .

REMARK 31. If Condition (2.20) holds, A(nil)∩A(sc) �= {0} because the operator
S0 defined by (2.21) belongs to both subalgebras.

2.2. Some remarks on the nilpotent part of an algebra

Here we reproduce some constructions from [25].
Let A be such that

a) A is a WJ∗ -algebra (maybe non-commutative);

b) A ∈ D+
1 ;

c) every A ∈ A can be represented in the form A = αI + A0 ,
where A0 is a nilpotent operator.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.23)

Let us recall that A(nil) means the subset of the algebra A , that contains all nilpotent
operators and only them. In this subsection the codimension of A(nil) with respect to
A is equal one. Let us assume that our algebra is not trivial, i.e.

A(nil) �= {0}. (2.24)

Let as before L+ be a maximal non-negative invariant subspace of the algebra A ,
that is a direct sum of a uniformly positive subspace and a one-dimensional neutral
subspace. Let L− , L0 and L1 be as in (1.11). Then AL1 = {0} for every A ∈ A(nil)

and, conversely, if A ∈ A and AL1 = {0} , then A ∈ A(nil) . Let e1 ∈ L1 be a fixed
vector with unit norm. Put

e0 = Je1, Q = L
[⊥]
1 ∩L⊥

1 = (L0 ⊕L1)[⊥]. (2.25)

Note that this definition does not contradict Formulae (2.11) because in Subsection 2.1
H1 = L1 . Since Lin{e0,e1} is invariant with respect to J , the equality JQ = Q holds.

Consider a structure of an arbitrary operator A ∈ A(nil) . First, we have AL+ ⊂
L1 and AL0 ⊂ L

[⊥]
1 (alongside with [25] see the reasoning related to Representation

(2.22)). So for the operator A there are vectors a,a# ∈ Q and a number α , such that

Ae0 = a+αe1; Ax = [x,a#]e1, where x ∈ Q; Ae1 = 0. (2.26)

Representation (2.26) implies that A(nil) is a subalgebra of A . Next, the direct calcula-
tions show that

A#e0 = a# +αe1; A#x = [x,a]e1, where x ∈ Q; A#e1 = 0. (2.27)

So, if A = A# , then a = a# and α ∈ R .
Note that a choice of the subspaces L0 and Q was based on a choice of the canon-

ical symmetry J and therefore we can simplify (if necessary) the operator structure of
A(nil) altering J .

Let S0 be the same operator as in (2.21).
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PROPOSITION 32. If there is at least one definite vector a: a = Ae0 , where A =∈
A(nil) , then S0 ∈ A .

Let AQ be a set of all operators A0 ∈ A(nil) , such that

Ae0 ∈ Q. (2.28)

If S0 ∈ A , then AQ has linear co-dimension with respect to A(nil) equal one.

PROPOSITION 33. If S0 �∈ A(nil) , then there is a choice of a fundamental symmet-
ry J such that A(nil)e0 ⊂ Q .

Let a ∈ Q be a vector, such that there exists an operator A = A# ∈ A(nil) related
with a through Representations (2.26) and (2.27). The set of all a under this condition
is said to be the shadow of e0 (with respect to A ) and is denoted by shA(e0) , i.e.

shA(e0) = {x : x = Ae0− [Ae0,e0]e1, A = A# ∈ A(nil)}. (2.29)

Note that shA(e0) is a closed subset and for all vectors a,b ∈ shA(e0) and for all
numbers α,β ∈ R the relationship αa+βb∈ shA(e0 ) holds.

Recall that Q is a complex Hilbert space. Let E be its certain subset that is a
closed real linear space, i.e. if x,y∈E , α,β ∈R , then αx+βy∈ E and, if lim j→∞x j =
x , x j ∈ E , then x ∈ E . In what follows a subset under this condition is said to be real
subspace (with respect to Q ).

Let us note, that for x,y ∈ E the inequality (x,y) �= (y,x) is possible, i.e. a Hilbert
structure, defined on Q , may not induce on E a structure of a real Hilbert space.
Indeed, one can define on E a structure of Euclidean space with the topology equal to
the norm topology, generated on E by the topology of Q , but, generally speaking, in
this case a new scalar product would be defined on E .

If E is a real subspace, then the subset iE = {ix}x∈E is a real subspace too. In
general iE �= E .

DEFINITION 34. A real subspace E is said to be purely real, if Q∩ iQ = {0} .

DEFINITION 35. Let E be a real subspace with respect to J -space Q . Let us
denote as E [b] a real subspace, that is formed by all vectors y ∈ Q such that [x,y] ∈ R

for every x ∈ E . Then E [b] is said to be the J -dual subspace to E .

LEMMA 36. Under Conditions (2.23) the algebra A is commutative if and only

if shA(e0) ⊂
(
shA(e0)

)[b]
.

2.3. Commutative algebras of general type

Everywhere in this subsection the symbol A means an arbitrary commutative
WJ∗ -algebra of D+

1 -class, i.e. Conditions (2.23a,c) for A are not assumed.
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In this context let us exclude some trivial cases. If A∈D+
0 , then A can be consider

as W ∗ -algebra, therefore A′′ = A . Thus, this case doesn’t need any special consider-
ation. Next, if at least for one operator A = A# ∈ A the condition σ(A) ⊂ R is not
fulfilled, then H = Hi[+]Hr , where Hi and Hr are invariant subspaces of the al-
gebra A , the subspace Hi is two dimensional, and the algebra A|Hr is an algebra of
D+

0 -class, so A′′ = A . Thus, we need to analyze only the algebras A , such that A �∈D+
0

and for every A = A# ∈ A the relation σ(A) ⊂ R fulfilled. Below in this subsection
we assume that these conditions are fulfilled without any additional remarks. Let us
assume also that Eλ (i.s.f. of A) has a unique spectral singularity in zero. In that fol-
lows we will maintain Notations (1.14), (2.3) and (2.25). Since the vectors e1 and e0

will play some important role, we need to consider an ambiguousness in the choice of
them. Since the subspace L1 is one-dimensional, the vectors e1 and e0 are defined up
to a scalar multiple with the absolute value equal to one, but the subspace L1 is not,
generally speaking, uniquely determined. The following example was given in [25] for
a different case.

EXAMPLE 37. Assume that the space H is formed by an orthonormalized basis
{e j}4

1 , the fundamental symmetry J is given by the equalities Je0 = e1,Je1 = e0,Je2 =
e3,Je3 = e2, and a WJ∗ -algebra A is generated by the identical operator and the fol-
lowing operators

A1: A1e0 = e2,A1e1 = 0,A1e2 = 0, A1e3 = e1;

A2: A2e0 = ie2,A2e1 = 0,A2e2 = 0, A2e3 = −ie1;

The operators A1 and A2 are J -s.a., A2
1 = A2

2 = A1A2 = 0. As a first non-negative
invariant subspace for this family we can take Lin{e1, e2 + e3} and as a second one it
can be used Lin{e0 + e1, e2} .

Let us pass to cases of uniqueness for L1 . The operator S0 is defined by (2.21).

PROPOSITION 38. If e.s.f. Eλ of A is unbounded, then L1 = H1 .

This propositions follows from Lemmas 5 and 11. Let us note that H1 depends
directly of A and doesn’t depend of the choice of Eλ (see [29] for details).

PROPOSITION 39. If S0 ∈ A , then the subspace L1 is uniquely defined.

Proof. Let L̂+ be some another non-negative pseudo-regular subspace with one-
dimensional isotropic part invariant with respect to A and L̂1 = L̂+∩ L̂− �= L1 . Under

the hypothesis S0L̂+ ⊂ L̂+ and S0L̂
[⊥]
+ ⊂ L̂

[⊥]
+ . Since simultaneously S0H = L1 and

L1∩ L̂+ = L1∩ L̂
[⊥]
+ = {0} , we have S0L̂+ = S0L̂

[⊥]
+ = {0} . The latter brings S0H ⊂

(CLin{L[⊥]
+ , L̂+})[⊥] = L̂+ ∩ L̂

[⊥]
+ . It is a contradiction. �

Here by the symbol A(nil) we denote the set of all nilpotent operators A∈A . Note
that

if A ∈ A(nil) then A|
H̃

= 0. (2.30)
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PROPOSITION 40. If A(nil) �= {0} , then L1 ⊂ ∩0 �=A=A#∈A(nil)AH .

Instead of a proof we can note that operators from A(nil) have Representation
(2.26), where (e.g. with Definition 30)

a) if H1 �= {0} , then Q = H̃ [⊥] ∩H ⊥
1 ;

b) if H1 = {0} , then Q = H̃ [⊥] ∩ (L1 ⊕L0)⊥ .

⎫⎬⎭ (2.31)

REMARK 41. Example 37 represents in some sense an exceptional case. Indeed,
the subspace L1 must belong to the range of every operator A = A# ∈ A(nil) , A �= 0,
from the other side this range is one- or two-dimensional and if S0 �∈ A(nil) there are
no more then two J -s.a. linear independent operators with the same range. Thus, a
non-uniqueness of L1 can occur only if the sub-algebra A(nil) is spanned by one or two
J -s.a. operators with the same range.

Let us re-define A(sc) by a manner which is not connected directly with a choice
of e.sp.f. of A . So, A(sc) is the weak closure of all scalar spectral operators from A
annulated on L1 . Remark 41 shows that the re-definition is correct. See also [29].

Let us go to a simplification option.

LEMMA 42. Let e.s.f. of the algebra A be unbounded and let its basic model
space J - L̃2

�σ (E) compatible with the given scalar product and spanned by a standard
J -space J −L2

�σ (E) and an improper function g̃(t) be such that

[g̃(t), g̃(t)] ∈ L1
σ +L2

η . (2.32)

Then one can define on H a new canonical scalar product with a new canonical
symmetry J′ , such that for A there is a new basic model space J - Ľ2

�σ (E) spanned by
the same space J -L2

�σ (E) and an unbounded element (compatible with the new scalar
product) ǧ(t) with the properties

a) Hilbert structure on the subspace H̃ [⊥] is the same;
b) Ae1 = AJ′e1 for every A ∈ A(nil);
c) [ǧ(t), ǧ(t)]E ≡ 0.

⎫⎬⎭ (2.33)

Proof. First, let us note that Relation (2.32) is equivalent the following property
(see Remark 31)

A(nil)∩A(sc) = {0} (2.34)

and therefore isn’t connected with any choice of a basic model space. Moreover, Prop-
erty (2.33) also can be reformulated in a form independent of the choice of a basic
model space. For instance, (2.33) is equivalent to the following condition

[E(Δ)e0,e0] = 0 for every segment Δ⊂ R
(0)
0 . (2.35)



ON A COMMUTATIVE ALGEBRA AND ITS BICOMMUTANT 607

Fulfillment of Condition (2.35) depends (in difference with Condition (2.34)) of the
choice of a canonical scalar product. Indeed, e0 = Je1 .

The above reasoning and Proposition 6.24 from [28] show that if a transition from
a space J - L̃2

�σ (E) to a space J - Ľ2
�σ (E) with Property (2.33) is realized for some

basic standard J -space J -L2
�σ (E) , then there is a transition for every basic model

space of J -orth.sp.f. Eλ . Taking into account this remark we choose a standard J -
space J -L2

�σ (E) by a special way.

Let semi-definite subspaces H̃+ and H̃− are the same, that in (2.5). At least one
of these subspaces contains the isotropic part that must be the same as H1 . Let, for
instance, H1 ⊂ H̃+ . Then (e.g.(2.8)) H +

2 = H̃+ ∩H ⊥
1 . With no loss of generality

we can assume that the canonic scalar on H +
2 product is equal [·, ·] . Next, the spectral

function Eλ |H̃+
can be consider as a restriction of J -orth.sp.f defined in a Pontryagin

space Π1 (in our case it is the space H̃+ ⊕H0) , so we can apply to it Proposition 5.3
from [28]. Due to this proposition the non-peculiar multiplicity of Eλ |H̃+

(Definition

14) is equal one or there is a decomposition H +
2 = H +

2,1 ⊕H +
2,2 , where the subspace

H +
2,2 is invariant with respect to Eλ and the non-critical multiplicity of the spectral

function Eλ |H +
2,1⊕H1

is equal one (if the first case takes place, we put for a simplicity

in formulae below H +
2,1 = H +

2 ).

Let us pass to Eλ |H̃− . First, H1 ⊂ H̃− . Indeed, Remark 18 jointly with Condi-

tion (2.32) show that if
∫
Δ ‖g̃+(t)‖2

E+
dσ+(t) = ∞ then

∫
Δ ‖g̃−(t)‖2

E−dσ−(t) = ∞ too,

but in terms of Theorem 17 and Remark 18 the equality
∫
Δ ‖g̃+(t)‖2

E+
dσ+(t) =∞ yields

H1 ⊂ H̃+ and the equality
∫
Δ ‖g̃−(t)‖2

E−dσ−(t) = ∞ yields H1 ⊂ H̃− . Next, a rea-
soning, similar to the reasoning above, shows that or the non-critical multiplicity of
Eλ |H̃− or there is a representation H −

2 = H −
2,1 ⊕H −

2,2 , where H −
2,2 is an invariant

subspace for Eλ and the non-peculiar multiplicity of the spectral function Eλ |H −
2,1⊕H1

is equal one (in the first case we put H −
2,1 = H −

2 ).

Let us pass to a construction of J − L2
�σ (E). Let σ(t) be a non-decreasing

function defined on [−1;1] and satisfying the conditions of Remark 13 (i.e. σ(t) =
σuμ ,vμ (t)) . Let L2

�σ+
(E+) be a model space for P+

2 Eλ |H +
2

, where P+
2 is the orthogonal

projection on H +
2 , where the scalar function σ+(t) has the form σ+(t) =∫ t

−1ρ+(λ )dσ(λ ) with ρ+(λ ) = ρ2
+(λ ) . We denote by W+

2 the corresponding op-
erator of similarity assuming that for x ∈ H +

2,1 the representation (W+
2 )−1x = α(t) ·

d+ , takes place, where d+ is a fixed basis vector from E+ and α(t) is some func-
tion. By the analogous way for the spectral function P−

2 Eλ |H −
2

we introduce a model

space L2
�σ−(E−) together with an operator of similarity W−

2 satisfying the condition

(W−
2 )−1x = α(t)d− for x ∈ H −

2,1 . As a next step we put J − L2
�σ (E) = L2

�σ+
(E+)⊕

L2
�σ−(E−) , W2 =W+

2 ⊕W−
2 , J f (t)= f+(t)− f−(t) , f+(t)∈L2

�σ+
(E+) , f−(t)∈L2

�σ−(E− )

and define as a basic model space for Eλ , compatible with the decomposition H̃ =
H1 ⊕ H +

2 ⊕H −
2 the space J - L̃2

�σ (E) that is the linear span of J -L2
�σ (E) and

the corresponding improper function g̃(t) . It is clear that g̃(t) has the form g̃(t) =
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β+(t)d+ +β−(t)d− . With no loss of generality we can assume that β+(t) � 0, β−(t) �
0, because in the opposite case one can substitute the operators W+

2 and W−
2 by the

operators ei·argβ+(t) ·W+
2 and ei·argβ−(t) ·W−

2 respectively. The above assumptions give
G(t) = 1 + β 2

+(t)+ β 2−(t) , [g̃(t), g̃(t)] = β 2
+(t)− β 2−(t) . Thus, by virtue of (2.32) we

have
β 2

+(t)−β 2
−(t) ∈ L1

σ +L2
η . (2.36)

Since, evidently, |β 2
+(t)−β 2−(t)|< G(t) , then by Remark 4 Condition 2.36 is equivalent

to the condition β 2
+(t)−β 2−(t) ∈ L2

η , i.e.

∫ 1

−1

(β 2
+(t)−β 2−(t))2

1+β 2
+(t)+β 2−(t)

dσ(t) < ∞.

The latter gives ∫ 1

−1
(β+(t)−β−(t))2dσ(t) < ∞. (2.37)

Next, d�σ+(t )=d+ ·ρ+(t)dσ(t)+ . . . ; d�σ−(t )=d− ·ρ−(t)dσ(t) and without loss of gen-
erality (see the proof of Proposition 6.3. from [28]) we can assume that

ρ+(t) =

{
1, β+(t) �= 0,

0, β+(t) = 0,
ρ−(t) =

{
1, β−(t) �= 0,

0, β−(t) = 0.

Set

δ+(t) =
(2−ρ−(t))β+(t)−ρ+(t)β−(t)

2
,

δ−(t) =
(2−ρ+(t))β−(t)−ρ−(t)β+(t)

2
.

It is easy to check that
δ+(t),δ−(t) ∈ L2

σ (C). (2.38)

Indeed, (1−ρ−(t))β−(t) ≡ 0, so by (2.37)∫ 1

−1
(1−ρ−(t))2β 2

+(t)dσ(t) =
∫ 1

−1
(1−ρ−(t))2(β+(t)−β−(t))2dσ(t) < ∞,

∫ 1

−1
(β+(t)− ρ+(t)β−(t))2dσ(t) =

∫ 1

−1
ρ+(t)(β+(t)− β−(t))2dσ(t) < ∞ etc. More-

over, the equalities

δ+(t)ρ+(t) = δ+(t), δ−(t)ρ−(t) = δ−(t). (2.39)

are true. Now, let ǧ(t) = β+(t)+β−(t)
2 ρ−(t)ρ+(t)(d+ +d− ). A direct verification shows

that g̃(t) = h(t)+ ǧ(t) , where h(t) = δ+(t)d+ + δ−(t)d− . By conditions (2.38) and
(2.39) we have h(t)∈J −L2

�σ (E) , so the spaces J − L̃2
�σ (E) and J − Ľ2

�σ (E) , formed
by joining to the same space J −L2

�σ (E) the unbounded elements g̃(t) and ǧ(t) re-
spectively, coincide as linear manifolds in M�σ (E). This fact and Theorem 5.28 from
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[28] yield that not only the space J − L̃2
�σ (E) but also the space J − Ľ2

�σ (E) are ba-
sic model spaces for Eλ . Let us find directly the new operator of similarity W̌ . Let
f (t) ∈ J −L2

�σ (E) , x = W f (t) ∈ H2 . Then by Definition 21

Ẽ(Δ)x = Ẽ(Δ)W f (t) = W
(

f (t) · χΔ(t)+ g̃(t) ·{∫
Δ
[ f (t),h(t)+ ǧ(t)]E dσ(t)

})
=

(
E22(Δ)x⊕ e1 ·

{∫ 1

−1
[ f (t)χΔ(t),h(t)]E dσ(t)

})⊕ e1 ·
{∫ 1

−1
[ f (t)χΔ(t), ǧ(t)]E dσ(t)

}
.

Thus, W̌ can be introduce by the following way:

W̌2 f (t) =
(
x⊕ e1 ·

{∫ 1

−1
[ f (t),h(t)]E dσ(t)

})
, W̌ ǧ(t) = e1 .

If we redefine the operator of similarity by the above way, the subspace H2 must be

replaced by the space Ȟ2 =
{

x⊕ e1 ·
{∫ 1

−1[ f (t),h(t)]E dσ(t)
}}

x=W f (t) f (t)∈J−L2
�σ (E)

and the vector e0 must be replaced, for instance, by the vector ě0 = e0 −W2h(t)−
1
2

∫ 1
−1[h(t),(t)]E dσ(t) ·e1 . Note that by construction [ǧ(t), ǧ(t)] = 0 and Ae0 = Aě0 for

every A ∈ A(nil) . �

REMARK 43. Reasonings used during the proof of Lemma 42 show that the be-
havior of J -orth.sp.f. Eλ from D+

1 -class can be more or less completely analyzed on
the base of spectral functions with non-peculiar multiplicity equal two. At the same
time the case (2.32) cannot be modeled by the non-peculiar multiplicity equal one.

Summarizing the above results one can say that there are three types of commuta-
tive WJ∗ -algebras of D+

1 -class.

THEOREM 44. If a commutative WJ∗ -algebra A ∈ D+
1 is such that σ(A) �⊂ R at

least for one operator A = A# ∈ A , then A is similar to the algebra acting in a Krein
space that is a J -orthogonal sum of two A -invariant subspaces. First of them is two-

dimensional subspace, say C2 , with J|C2 =
(

0 1
1 0

)
and A|C2 =

{(α 0
0 β

)}
α ,β∈C

. The

second one is a standard Krein space J − L2
�σ (E) and A|J−L2

�σ (E) is the algebra of

multiplication operators by functions from L∞σ .

THEOREM 45. If a commutative WJ∗ -algebra A ∈ D+
1 is such that σ(A) ⊂ R

for every operator A = A# ∈ A and all operators of A are spectral, then A is similar
to the algebra acting in a Krein space that is a J -orthogonal sum of two A -invariant
subspaces Hr and H̃ . First of them Hr is in turn the J -orthogonal sum of two
subspaces: a two-dimensional subspace, say C

2 and a Krein space Q with a funda-

mental symmetry JQ and a real linear manifold shA ⊂ Q such that shA ⊂ (shA

)[b]
.

With respect to the sum C⊕C⊕Q the fundamental symmetry J has the form J =
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1 0 0
0 0 JQ

⎞⎠ and the algebra A|Hr is generated by the identical operator and operators

A =

⎛⎝0 0 0
0 0 [·,a]
a 0 0

⎞⎠ , where a ∈ shA and, maybe, operator S0 =

⎛⎝0 0 0
1 0
0 0 0

⎞⎠ . The second

space H̃ is a standard Krein space J − L2
�σ (E) and A|J−L2

�σ (E) is the algebra of

multiplication operators by functions from L∞σ .

THEOREM 46. If a commutative WJ∗ -algebra A ∈ D+
1 is such that σ(A) ⊂ R

for every operator A = A# ∈ A and at least one operator of A is not spectral, then
the subspace L1 from (1.11) is uniquely determined and A is similar to an algebra
acting in a Krein space that is a J -orthogonal sum of three J -invariant subspaces: a

two-dimensional subspace, say C2 , with J|C2 =
(

0 1
1 0

)
, a Krein space Q with a fun-

damental symmetry JQ and a real linear manifold shA ⊂Q such that shA ⊂ (shA

)[b]
,

and a standard Krein space J − L2
�σ (E) , moreover within this model the subspace

L1 = H1 corresponds to the subspace {0}×C ⊂ C2 . The algebra A contains the
identical operator, A(nil) and A(sc) . The subspace C2 ⊕Q is invariant to the subal-
gebra corresponding to A(nil) and is organized on this subspace as in subsection 2.2,
the same subalgebra is annulated on J −L2

�σ (E) . The subspace C2 ⊕J −L2
�σ (E) is

invariant to the subalgebra corresponding to A(sc) and is organized on this subspace
as in Theorem 19 including the creation of an improper function g̃(t) , the same subal-
gebra is annulated on the subspace Q .

3. On a bicommutant structure

3.1. Some commutant properties

Everywhere in this subsection the symbol A means an arbitrary commutative
WJ∗ -algebra of D+

1 -class. Here we start to analyze only the algebras A , such that
A �∈ D+

0 and for every A = A# ∈ A the relation σ(A) ⊂ R fulfilled. Below in the sub-
section we assume that these conditions are fulfilled without any additional remarks.
Let us recall also that Eλ (e.s.f. of A) has a unique spectral singularity in zero. In
that follows we will maintain Notations (2.3). We assume that H3 ⊥ (H̃ ⊕H0

)
. In

this case H3 is an invariant subspace for J and with respect to Decomposition (2.9)
Representations (2.10) and (2.12) hold. Now let A = A# ∈ A and A |H1= 0. Then A
has the representation (2.22). Now let us go to a description for the commutant A′ of
the algebra A . Let B = B# ∈ A′ . Since E(X) ∈ A , E(X) commutes with B , so the
subspace E(X)H is invariant with respect to B . Thus, the subspaces H̃ , H̃ [⊥] and
H1 are also invariant with respect to B . If B |H1= 0, then B has the representation
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similar to (2.22):

B =

⎛⎜⎜⎝
0 0 0 0

B10 0 B12 B13

B20 0 B22 0
B30 0 0 B33

⎞⎟⎟⎠ . (3.1)

REMARK 47. Due to Theorem 26 one can study the structure of B ∈ A′ using
only scalar and nilpotent parts of operators from A . If B |H1= 0, a simple calculation
shows that commutation relations for B in the case of scalar parts involve only the blocs
B12 , B22 and B22 of (3.1) and the commutation relations in the case of nilpotent parts
involve the blocs B13 , B30 and B33 . Thus, there are no conditions for the bloc B10 and
bloc-operators ⎛⎜⎜⎝

0 0 0 0
B10 0 B12 0
B20 0 B22 0
0 0 0 0

⎞⎟⎟⎠ and

⎛⎜⎜⎝
0 0 0 0
0 0 0 B13

0 0 0 0
B30 0 0 B33

⎞⎟⎟⎠
also belong to A′ and can be studied separately.

This Remark and Lemma 2.19 from [25] yield the following result.

LEMMA 48. Let B = B# and Be1 = 0 . Put b = Be0− [Be0,e0]e1 . Then B ∈ A′ if
and only if the following conditions

a) there is a J -self-adjoint operator BQ : Q → Q , such that
Bx = [x,b]e1 +BQx for all x ∈ Q ;

b) b ∈ (shA(e0))[b] ;

c) BQ(shA(e0)) = {0} , BQQ ⊂ shA(e0)[⊥] ;

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.2)

hold.

3.2. Function representation of the bicommutant

Within this subsection WJ∗ -algebra A ∈ D+
1 is commutative, Eλ is its e.s.f. with

a peculiar point in zero and there are no more restrictions on A .

LEMMA 49. In Properties (1.17) one can replace A by A′′ .

Proof. Since A ⊂ A′′ , we need only to check that the corresponding modification
of Properties (1.17c,e) is valid for Eλ and A′′ . By virtue of (1.17a) (A|E(Δ)H )′′ =

(A)′′|E(Δ)H for every interval Δ ∈ R
(0)
0 , so the modified Property (1.17c) follows from

the corresponding theorem of von Neuman ([1]).
Now let us pass to Property (1.17e). The condition of the type (1.17e) can be

transformed to the following condition:

∀B ∈ A′′ the representation B = β I +B0 holds , (3.3)
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where β is a scalar (depended of B) and B0|H̃ [⊥] is a nilpotent operator.
Let A0 be the collection of the operators A ∈ A , such that σ(A|

H̃ [⊥] ) = {0} .
Note that by Theorem 26 the codimension of A0 in A is equal one. Take KerA0 =⋂
A∈A0

KerA ⊃ H1 . It is clear that KerA0 is an invariant subspace for A′′ .

In order to prove (3.3) let us show, first, that for every B∈A′′ there is β ∈C , such
that

B|KerA0 = β I|KerA0 (3.4)

Let us assume the contrary. Then there is a vector x ∈ KerA0 , such that the vectors
y : = Bx and x are linearly independent. Let us set Z : H �→ H , Zu = [u,x] ·x . Since
H , there is a vector v ∈ H , such that [v,x] = 1, Z �= 0. On the other hand AH [⊥
] KerA0 if A ∈ A0 . Thus, for every A ∈ A0 the equalities ZAu = [Au,x] · x = 0 and
AZu = [u,x]Ax = 0 hold, Z ∈ A′ but, from the other hand, y = BZv �= ZBv = [Bv,x] ·x .
It is the contradiction.

Thus, (3.4) is proved and with no loss of generality we can assume

B|KerA0 = 0. (3.5)

Next, Ker(A0 ×A0) is a B-invariant subspace and Equality (3.5) yields BKer(A0 ×
A0) ⊂ KerA0 . The analogous reasoning gives BKer(A0 ×A0×A0) ⊂ Ker(A0 ×A0) ,
but by Lemma 29 (the matrix representation for Q) Ker(A0×A0×A0) = H̃ [⊥] . �

COROLLARY 50. Let A ∈ D+
1 be a commutative WJ∗ -algebra and let Eλ be its

unbounded e.s.f. Then for every operator B = B# ∈ A′′ the representation

B = β I +Q+C (3.6)

holds, where Q = Q# ∈ A′′ is a nilpotent operator, Q|
H̃

= 0 , C ∈ Asc , CE(Δ) =∫
Δ γ0(λ )dEλ for every interval Δ ∈ R

(0)
0 , β = β , γ0(t) = γ0(t) .

Proof. By Property (1.17c), Theorem 19 and 23 a basic model space J -L̃2
�σ (E )

for Eλ is simultaneously a basic model space for Ã′′ . Since H1 is an invariant sub-
space for B , we need only to prove that β = β and γ0(t) : = (γ(t)−β ) ∈ L∞σ ∩L2

ν .
Let us take g̃(t) from J -L̃2

�σ (E ) for Eλ . Thus
∫ 1
−1 ‖g̃(t)‖2dσ(t) = ∞ . We assume

that the scalar product on H is compatible with Representations (2.7) end (2.9). Then
the operator J2 from (2.10) commutes with the projection E22(Δ) from (2.12), with the
spectral function P2Eλ |H2 and with the operator B22 : = P2B|H2 . Thanks to these rela-

tions of commutativity for the functions hΔ(t) : = W−1
2 J2W2χΔ · g̃(t) , where Δ ∈ R

(0)
0 ,

there is the function h̃(t) ∈ M�σ (E ) , such that for every Δ ∈ R
(0)
0 : hΔ(t) = χΔ · h̃(t)

and
∫
Δ ‖g̃(t)‖2

E dσ(t) =
∫
Δ ‖h̃(t)‖2

E dσ(t) =
∫
Δ[g̃(t), h̃(t)]E dσ(t) . Taking into account

Theorem 19 we have E(Δ)WhΔ(t) = WhΔ(t)⊕ (
∫
Δ[h̃(t), g̃(t)]E dσ(t)) · e1 = WhΔ(t)⊕

(
∫
Δ ‖g̃(t)‖2

E dσ(t)) · e1 . Let xε =(∫
[−1;−ε]∪[ε;1]

‖g̃(t)‖2
E dσ(t)

)−1{
E([−1;−ε])Wh[−1;−ε](t)+E([ε;1])Wh[ε;1](t)

}
,
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where ε ∈ (0;1) . Then limε→0 xε = e1 , so limε→0 Bxε = β · e1 . On the other hand
Bxε = (∫

[−1;−ε]∪[ε;1]
‖g̃(t)‖2

E dσ(t)
)−1{

W
(
γ(t) · (h[−1;−ε](t)+h[ε;1](t))

)⊕
(
∫

[−1;−ε]∪[ε;1]
γ(t) · ‖g̃(t)‖2

E dσ(t)) · e1

}
.

But (
∫
[−1;−ε]∪[ε;1] γ(t) · ‖g̃(t)‖2

E dσ(t)) ∈ R , so β = β . �

REMARK 51. Representation (3.6) shows that the bicommutant of a commutative
WJ∗ -algebra of D+

1 -class has a structure like a structure of the original algebra, but it
does not mean that A and A′′ coincide or even A′′ ∈ D+

κ for some κ < ∞ . The corre-
sponding example was given in [25] (Remark 2.24). At the same time Representation
(3.6) means that scalar parts of A and A′′ coincide, so only (A′′)(nil) can be larger than
A(nil) .

3.3. The bicommutant for J -symmetric nilpotent algebras

This Subsection is a continuation of Subsection 2.2, so the algebra A is under
Conditions (2.23).

PROPOSITION 52. ([25]) If S0 �∈ A , then the linear codimension of (A′)0 with
respect to A′ is equal two, and if S0 ∈ A , then the same codimension is equal one.

Let us only mentione a non-identical operator that is not in (A′)0 in the case
S0 �∈ A . By Proposition 32 the real linear subspace shA(e0) is neutral, so its complex-
ification cshA(e0) : = CLin{shA(e0), ishA(e0)} is neutral too. Next, since cshA(e0)
is neutral, we have cshA(e0) ⊂ KerA(nil) , therefore the subspaces L0 ⊕ cshA(e0) and
J(cshA(e0))⊕L1 are invariant with respect to the algebra A . Thus for an C , described
by the conditions

Cx = −ix for x ∈ L0⊕ cshA(e0);

Cx = ix for x ∈ J(cshA(e0))⊕L1 ;

Cx = 0 for x[⊥]L0 ⊕ cshA(e0)⊕ J(cshA(e0))⊕L1;

⎫⎪⎪⎬⎪⎪⎭ (3.7)

we have C ∈ A′ . Now let B = B# ∈ A′ and Be1 = (α +β i)e1 . Then B−αI−βC ∈
(A′)0 . This proves what we wanted for the first part.

THEOREM 53. ([25]) Let an algebra A satisfy Conditions (2.23), L+ be the cor-

responding invariant subspace of A and let 0 �= e1 ∈ L+ ∩L
[⊥]
+ be an arbitrary fixed

vector. Let e0 be a arbitrary fixed neutral vector such that [e1,e0] = 1, and let the oper-
ator S0 and the set shA(e0) correspond Formulae (2.25), (2.21) and (2.29). If S0 �∈ A ,
then A = A′′ . If S0 ∈ A , then A = A′′ if and only if the set shA(e0) is a purely real
subspace.



614 V. STRAUSS

REMARK 54. Now we can describe the characteristic of shA(e0) , that defines the
structure of A′′ : it is a property of shA(e0) to be or not to be a purely real linear
subspace.

Theorem 53 shows not only a criteria for the reflexivity of the corresponding al-
gebra but a possibility of an extension of the initial algebra within the same class. See
[25] for details.

3.4. A pass to the general case

LEMMA 55. Let a canonical symmetry J be compatible with the decomposition
(see (2.8))

H̃ = H1 ⊕H +
2 ⊕H −

2 (3.8)

and let WJ∗ -algebra A be such that S0 �∈ A and sh(e0) ⊂ Q , where the subspace Q
is defined by (2.31). Then there is a J -normal projection P ∈ H ′ , such that

a)]Pe0 = e0; b)Psh(e0) = sh(e0); c)P(Jsh(e0)⊕H1)[⊥] = {0}. (3.9)

Proof. Proposition 52 and Equality (2.30) cover in fact the case of bounded J -
orth.sp.f. Eλ , so we need to consider only the case sup{‖Eλ‖} = ∞ . Additionally
let us assume that the canonical symmetry on H is such that (2.35) holds. The lat-
ter is possible by Lemma 42. Set H4 : = CLinΔ⊂[−1;1]\{0}{E(Δ)e0} , H5 = JH4 . By
Theorem 17, Remark 18 and Condition (2.35) the subspace H4 is neutral, H4 ⊂ H2

and H4 is invariant with respect to A . Next, since the canonical symmetry J is com-
patible with (3.8), in terms of Theorem 17, Remark 18 we have E(Δ1)JE(Δ2)e0 =
E(Δ1)JU

(
χΔ2(t) · (g̃+(t) ⊕ g̃−(t)

))
= E(Δ1)U

(
χΔ2(t) · (g̃+(t) ⊕ (−g̃−(t))

))
=

U
(
χΔ1(t) ·χΔ2(t) ·

(
g̃+(t)⊕ (−g̃−(t))

)⊕ e1 ·
∫
Δ1∩Δ2

(‖g̃+(t)‖2
E+

+‖g̃−(t)‖2
E−)dσ(t)

)
=

J
(
E(Δ1 ∩Δ2)e0

)⊕ (∫Δ1∩Δ2
(‖g̃+(t)‖2

E+
+ ‖g̃−(t)‖2

E−)dσ(t)
) · e1 . Thus, the subspace

H5 ⊕H1 is invariant with respect to E(Δ) and, hence, to A . So, the subspace H0 ⊕
csh(e0)⊕ Jcsh(e0)⊕H1 ⊕H4 ⊕H5 is projectionally complete and invariant with re-
spect to A , therefore the J -orthogonal projection onto this subspace belongs to A′ and
without loss of generality we can assume that

H = H0 ⊕ csh(e0)⊕ Jcsh(e0)⊕H1⊕H4⊕H5.

Next, the projection P , that maps H onto the subspace H0⊕csh(e0)⊕H4 and annu-
lates the subspace H1⊕Jcsh(e0)⊕H5 , commutes with A . A simple calculation shows
that P# is the projection which maps H onto the subspace H1 ⊕ Jcsh(e0)⊕H5 and
annulates the subspace H0⊕csh(e0)⊕H4 . Since PP# = P#P = 0, the operator P (and
P# also) is J -normal. �

REMARK 56. The operator P given in the proof of Lemma 55 is such that C =
C# : = iP− iP# ∈ A′ . E.g this result with Proposition 52 and Formulae (3.7).
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3.5. Main Theorem for the bicommutant.

THEOREM 57. Let A be commutative and A ∈ D+
1 . Then the equality A = A′′

holds if and only if at least one of the following conditions

a) there is at least one operator A = A# ∈ A with σ(A)\R �= /0 ;

b) S0 �∈ A ;

c) sh(e0) is purely real subspace

is fulfilled.

Proof. If A = A# ∈ A and σ(A)\R �= /0 , the space H can be presented in the
form H = Him[+]Hre , where Him is a two-dimensional subspace, the J -orthogonal
projection on Him belongs to A′ and the restriction A|Hre is similar to a commuta-
tive W ∗ -algebra, thus this case is trivial. So, let σ(A) ⊂ R for all A = A# ∈ A . By
Corollary 50 and Remark 51 the algebra A′′ can be larger than A in its nilpotent part
only. Simultaneously Proposition 52, Lemma 55 and Remark 56 mean that any op-
erator from (A(nil)|H ∩H ⊥

2
)′ can be extended as an operator belonging to A′ , so the

nilpotent part of A′′ restricted on H ∩H ⊥
2 coincides with the nilpotent part of the

algebra (A(nil)|H ∩H ⊥
2

)′′ . The rest follows from Theorem 53. �

COROLLARY 58. If A = AlgA,A = A# ∈ D+
1 , then A = A′′ .

Proof. If σ(A) ⊂ R and A �∈ D+
0 , then the subset sh(e0) is a zero-dimensional or

one-dimensional real subspace, so it is a pure real subspace. Another cases, as it was
noted in above, are trivial. �

COROLLARY 59. Let H be a space Π1 . Then A = A′′ .

Proof. As above we consider the non-trivial case only. Let the subspace Q be
defined by (2.31). Then Q is positive or trivial subspace. Thus, it is a pure real sub-
space. �

4. Closing remarks

A complete model for a commutative WJ∗ -algebra of D+
1 -class is given here for

the first time. At the same time there are some works on model representations for self-
adjoint operators and algebras in Pontryagin spaces (the majority of them consider the
case with the rank of indefiniteness 1) [19], [18], [30], [17], [14] (see also [12] for more
references), [16], [13]. A theorem on the equality A′′ = A for an algebra generated by
a single J -s.a. operator in a space Π1 was announced by author during IX School on
Operator Theory in Functional Spaces (Ternopol, Ukraine, 1984), the same result with
a complete proof was published in [23]. A generalization of the theorem for a case of
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an algebra generated by a single J -s.a. operator of the class D+
1 contains in [22]. Next,

S.N.Litvinov and co-authors ([17] and [5],[6]) proved the corresponding theorem for an
arbitrary commutative WJ∗ -algebra in Π1 . Theorem 53 was announced by author in
1990 during XV School on Operator Theory in Functional Spaces (Uliyanovsk, Russia),
its proof was published in [25].

RE F ER EN C ES

[1] N. I. AKHIEZER, I. M. GLAZMAN, Theory of linear operators in Hilbert space, Pitman: London,
1981.

[2] T. YA. AZIZOV, I. S. IOKHVIDOV, Foundation of the Theory of Linear Operators in Spaces with
Indefinite Metric, Nauka, Moskow, 1986 (in Russian); Linear Operators in Spaces with Indefinite
Metric, Wiley, New York, 1989.

[3] T. YA. AZIZOV, V. A. STRAUSS, Spectral decompositions for special classes of self-adjoint and
normal operators on Krein spaces, Spectral Theory and its Applications, Proceedings dedicated to the
70-th birthday of Prof. I.Colojoară, Theta 2003, 45–67.

[4] T. YA. AZIZOV, V. A. STRAUSS, On a spectral decomposition of a commutative operator family in
spaces with indefinite metric. MFAT 11, 1 (2005), 1–20.

[5] O. YA. BENDERSKY, S. N. LITVINOV AND V. I. CHILIN, A description of commutative symmetric
operator algebras in a Pontryagin space Π1 , Preprint, Tashkent 1989 (Russian).

[6] O. YA. BENDERSKY, S. N. LITVINOV AND V. I. CHILIN, A description of commutative symmetric
operator algebras in a Pontryagin space Π1 , Journal of Operator Theory 37, 2 (1997), 201–222.
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