
Operators
and

Matrices
Volume 5, Number 4 (2011), 649–664

NON–DEFINITE STURM–LIOUVILLE

PROBLEMS FOR THE p–LAPLACIAN

PAUL A. BINDING1 , PATRICK J. BROWNE2 AND BRUCE A. WATSON3

Abstract. For a weighted Sturm-Liouville-type problem of the form

−Δpy = (p−1)(λr−q)sgny|y|p−1 , on (0,1)

with Sturmian-type boundary conditions (Δp being the p -Laplacian), we examine the structure,
asymptotics and parametric dependence of the eigenvalues, together with properties of the eigen-
functions such as oscillation and interlacing of zeros. We discuss definitions and consequences
of left and right (semi-) definiteness, and also the fully indefinite case.

1. Introduction

We shall discuss a weighted Sturm-Liouville-type problem of the form

−Δpy = (p−1)(λ r−q)[y]p−1, on (0,1) (1.1)

where p > 1, [y]p−1 = |y|p−1sgny,Δp is the p -Laplacian given by Δpy = ([y′]p−1)′ and
r,q are in L1(0,1) so (1.1) is taken a.e. (in the Carathéodory sense). Equation (1.1)
will be subjected to boundary conditions

y′( j)sinα j = y( j)cosα j, j = 0,1, (1.2)

where α0 ∈ [0,π) , α1 ∈ (0,π ] and λ is an eigenvalue if (1.1), (1.2) admit an eigen-
function y which is not identically zero.

Sturmian properties for problems of this type which are right definite (RD), i.e.,
with a positive (or negative) weight function r, have been studied in several publica-
tions, e.g., [5, 13, 22]. Indeed the work here can be considered as a sequel to parts
of [5]. On the other hand “weighted” p -Laplacian problems have usually referred to
those which are not RD, and we shall concentrate on such situations here. Our primary
aims are to discuss the structure, asymptotics and parametric dependence of the eigen-
values, together with properties of the eigenfunctions such as oscillation and interlacing
of zeros.

Multiplying (1.1) by y, integrating over (0,1) and applying (1.2), we obtain an
equation of the form

�q[y] = λ r[y] (1.3)
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where r[y] =
∫ 1
0 r |y|p and �q[y] (which is also a p th power form) will be specified

in Section 2. If �q[y] > 0 for all nonzero y ∈ W 1
p (0,1), then (1.1), (1.2) is termed

left definite (LD) while left semidefinite (LSD) means �q[y] � 0. Also (1.1) is right
semidefinite (RSD) if r does not take both signs.

Several authors have discussed the special case q = 0, often with a leading term

of the form
(
[sy′]p−1

)′
(involving a positive coefficient s) instead of Δpy in (1.1).

Since the modified Sturm transformation t(x) =
∫ x
0 s

1
1−p effectively converts s to 1 (cf.

[5, 12]) we shall continue to use equation (1.1) as stated. Most authors studying q = 0
have also imposed boundary conditions of Dirichlet or Neumann type. In the Dirichlet
case (α0 = 0,α1 = π), it is easily seen that the problem is LD, and in the Neumann
case (α j = π/2) it is LSD, but we emphasize that for general boundary conditions,
LSD fails even for q = 0. Similarly even Dirichlet and Neumann problems may fail
LSD if there is a potential q. Such problems have been discussed in, e.g., [6, 10, 11].

The first investigation of Sturmian properties for (1.1), (1.2) that we know was by
Elbert [13] who treated the case of q = 0 and continuous r � 0 with Dirichlet con-
ditions, so his problem was both LD and RSD. Elbert obtained a sequence of positive
eigenvalues λ0 < λ1 < λ2 · · · accumulating at +∞, λn having oscillation count n, i.e.,
with eigenfunctions vanishing n times in (0,1). Similar results (but without positivity
of λn ) were obtained for (1.1) with continuous q and r > 0 in [22] and for L1 coef-
ficients in [5]. Several authors have obtained two eigenvalue sequences λ±

n →±∞ as
n → ∞ for q = 0, indefinite r and Dirichlet conditions, e.g., in [14] for r piecewise
differentiable (and satisfying other conditions) and in [1] for r ∈ L∞.

Our principal tool is the Prüfer angle θ (x,λ ) as extended by Elbert [13]. The
main properties we need are developed in Section 2. For example, (1.2) can be written
in the form

(sinpβ j)y′ ( j) =
(
sin′pβ j

)
y( j) , j = 0,1, (1.4)

for angles β j explicitly dependent on α j, sinp being Elbert’s p -trigonometric func-

tion [13]. Here β0 ∈ [0,πp) , β1 ∈ (0,πp] and πp = 2
(
π
p

)
/sin

(
π
p

)
. Eigenvalues λn

with oscillation count n are then characterized via θ (0,λ ) = β0, θ (1,λ ) = nπp +β1.
Thus as for the standard RD case with p = 2, they are easily determined once enough
information about θ (1,λ ) is available, but some of that information is less clear when
p �= 2. We note that θ (1,λ ) also relates to the R(S)D, L(S)D classification as follows.
If ±r > 0 on a positive measure set E±, then θ (1,λ ) → +∞ as λ →±∞. Conversely
if RSD holds, i.e., if no such E+ (or E− ) exist, then θ (1,λ ) has a nonnegative limit
(which is zero under RD) as λ →+∞ (or −∞). Moreover LD (resp. LSD) holds if and
only if θ (1,0) < (resp. � ) β1. There is also a useful generalisation TL(S)D involving
a translation of λ to λ − μ , i.e., of �q [y] in (1.3) to �q−μr [y] for certain μ , and this
will be explored below.

The study of fully indefinite (i.e., neither LSD nor RSD) problems goes back at
least to Richardson (e.g., in [20], for analytic coefficients and Dirichlet conditions) for
p = 2. Since then such problems have been generalised in several directions, but there
seems little for p �= 2. In Section 3 (if RSD fails) we shall establish the existence of two
sequences λ±

n , n � m, where m is the minimal oscillation count which is connected
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with translation of λ to λ − μ , λ = μ being a minimiser of θ (1,λ ) . We also obtain
an asymptotic for θ (1,λ ) with leading term

∫ 1
0 (λ r±)1/p as λ →±∞ , providing eigen-

value asymptotics generalising those of [5, 13] for definite cases, and of [3] for p = 2.
More accurate asymptotics, under stronger conditions on the coefficients, can be found
in [7, 9, 14]. Finally, monotonic dependence of the eigenvalues on the problem data is
also examined. As far as we know, this has been discussed previously only for definite
cases with p = 2.

RSD problems also have a long history for p = 2, but some of the results in print
are incorrect. We cite [2, 4, 7, 15] for correct results, all proved by different methods.
In Section 4 we obtain a single eigenvalue sequence, say λn for n � m, accumulating
at +∞ if r � 0, and at −∞ if r � 0, provided that r is non-zero on a set of posi-
tive measure. This corresponds to one of the two sequences from Section 3, but now
one can say more. The minimal oscillation number m corresponds to the infimum of
θ (1,λ ) (this is no longer attained, but can be calculated explicitly in terms of the prob-
lem data). Moreover the λn are unique for each n � m, they increase strictly with n and
are algebraically simple in the sense that ∂θλ (1,λn)/∂λ �= 0. (It is well known, and
easily proved via the Elbert-Prüfer transformation, that the λn are geometrically sim-
ple, i.e., all eigenfunctions y are proportional, regardless of definiteness conditions).
Continuous and differentiable dependence of eigenvalues on the problem data is also
established. This was studied in several papers by Zettl and colleagues (see [24] for
references) for p = 2, but their methods used analyticity of the characteristic function
in λ and the Lagrange identity, neither of which seem clear for p �= 2. We have instead
adapted an earlier approach in [4] based on the Prüfer angle for p = 2. Finally, we
show that the zeros of the eigenfunctions interlace for different eigenvalues.

In Section 5 we treat LD and LSD cases, together with translated versions via
λ → λ − μ . In such cases the minimal oscillation number m is zero (in fact this is
equivalent to TLSD). For brevity we outline the right indefinite case here. Then μ is
the minimiser (in this case attained and unique) of θ (1,λ ) . There are two sequences
λ±

n , each with properties similar to those in Section 4. For example, they are unique for
each n, and ±λ±

n increase with n. In the TLD case, they are algebraically simple, while
if TLD fails but TLSD holds, then λ−

0 = λ+
0 is nonsimple but the other eigenvalues are

simple (algebraically). Finally, the classical L(S)D cases occur when q � 0 a.e. and
α0 � π

2 �α1. These include the Dirichlet/Neumann cases with q = 0 referenced earlier.
Then one can use a modified Elbert-Prüfer angle, simplifying the arguments and also
yielding additional properties such as parametric dependence of the eigenvalues and
interlacing of eigenfunction zeros. In fact we have not seen our interlacing results
before even for p = 2.

We should point out that some of the citations above deal with more general prob-
lems, e.g., non-definite s, Fučı́k spectra, and higher dimensional cases. Also we have
concentrated on topics for which the Elbert-Prüfer transformation seems well suited.
There is a number of extra Sturmian properties for p = 2 (particularly in the fully in-
definite case) that our methods do not recover, and we hope to use alternative (e.g.,
eigencurve and variational) methods elsewhere to discuss such questions.

Before proceeding, we note that if r=0 a.e. on (0,1) then (1.1), (1.2) either has a
nontrivial solution y (in which case every λ is an eigenvalue) or there is no such y (in
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which case there are no eigenvalues λ ). In what follows we avoid these trivial cases by
assuming that

∫ 1
0 |r| > 0.

2. Generalized Prüfer Angle

We start with Elbert’s trigonometric functions. For further details see [5, 12]. We
define y = sinp x as the solution of (1.1) with q = 0,λ r = 1 and the initial conditions
y(0) = 0,y′(0) = 1. It follows that sin′p(0) = 1, and sinp(x) = 0 if and only if x =

kπp,k ∈ Z, where πp = 2
(
π
p

)
/sin

(
π
p

)
. Moreover

|sinp x|p + |sin′p x|p = 1, (2.1)

for all x .

We write cotp = sin′p /sinp , noting that cotp decreases strictly over (0,πp) from
+∞ to −∞ . Then we define β j ∈ [0,πp] by cotpβ j = cotα j , with β0 = 0 if α0 = 0
and β1 = πp if α1 = π .

Next we define Elbert’s modification of Prüfer’s transformation via

y = ρ sinp θ , y′ = ρ sin′p θ . (2.2)

For any non-zero solution y of (1.1)-(1.2), θ and ρ are functions of (x,λ ,β0) although
some or all of these arguments may be suppressed as appropriate.

Proceeding in a well known fashion, one obtains

θ ′ = 1+(λ r−q−1)|sinp θ |p := f (θ ,λ ), (2.3)

ρ ′ = ρ sin′pθ [sinp θ ]p−1(1+q− rλ ), (2.4)

from (1.1), and θ and ρ are Carathéodory solutions of the initial value problem given
by θ (0) = β0, ρ(0) = (|y(0)|p + |y′(0)|p)1/p which follow from (1.2) and (2.1). From
(2.2) we see that θ (1,λ ) is finite, and so the same is true of each oscillation count.
From (2.4) it follows that ρ(x) is either zero for all x or nonzero for all x , and in
particular, we can scale the eigenfunctions y of (1.1)-(1.2) so that

ρ(1) = 1. (2.5)

We next discuss the dependence of θ (x,λ ,β0) on x and β0 for an arbitrary solu-
tion of (2.3) with initial value β0 , not necessarily corresponding to an eigenpair λ ,y .
For continuous r , these results are well known but perhaps less so for general r ∈ L1 ,
so we present explicit statements and some details of proofs.
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LEMMA 2.1. For each λ , θ (x,λ ,β0) is

(i) absolutely continuous, and strictly increasing through non-negative integer mul-
tiples of πp , in x ,

(ii) C1 and strictly increasing in β0 .

Proof. (i) This follows from [5, Lemma 2.1]; the requisite “Lipschitz differential
inequality theory” can be obtained from, e.g., [23, Theorem XXI].

(ii) The first contention follows from standard theory of Carathéodory solution de-
pendence – see [21, Section II.4]. If the second fails then we violate solution uniqueness
(with x reversed) and this follows from (2.3). �

We turn now to the dependence of θ on λ and a further parameter z , say. Let θ̃
correspond to (2.3) with λ ,r replaced by λ̃ , r̃ (but with the same q ).

LEMMA 2.2. (i) Assume that (a,b) ⊂ (0,1) and θ (a) = θ̃ (a) . If λ r � λ̃ r̃ on
(a,b) then θ � θ̃ on [a,b] , and if

∫ b

a
λ r >

∫ b

a
λ̃ r̃ (2.6)

then θ (b) > θ̃ (b) .

(ii) For each x , θ (x,λ ) is C1 in λ and the derivative θλ := ∂θ/∂λ satisfies the
initial value problem

θ ′
λ = p(λ r−q−1)sin′p θ [sinp θ ]p−1θλ + r|sinp θ |p, θλ (0) = 0. (2.7)

(iii) If f of (2.3) is C j dependent on a further parameter z, where j = 0 or 1 , then
θ (x,λ ) is also C j in z.

Proof. (i) The first contention follows from [23, Theorem XXI]. For the second,
assume that θ (b) = θ̃ (b) . Then f (θ ,λ ) = f (θ̃ , λ̃ ) so λ r = λ̃ r̃ a.e. on (a,b) by
(2.3) and Lemma 2.1(i). Integrating over (a,b) , we contradict (2.6), so we must have
θ (b) > θ̃ (b) .

(ii) This follows from standard theory of Carathéodory solution dependence – see
[21, Section II.4].

(iii) For j = 0, see [21, Theorem II.3.9]; the case j = 1 follows as for (ii). �

In view of Lemma 2.2, we can make the following

DEFINITION 2.3. An eigenvalue λ of (1.1), (1.2) is said to be algebraically sim-
ple if y �= 0 and θλ (1,λ ) �= 0.
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It is well known and follows from the initial condition θ (0) = β0 , (2.3) and (2.4)
that every eigenvalue is geometrically simple, i.e., if (1.1), (1.2) has a solution y = y0 �=
0 for given λ , then all other solutions y of (1.1), (1.2) are proportional to y0 .

Next we connect θλ with the pth power forms of (1.3). For the remainder of this
section, we assume that θ corresponds to an eigenpair λ ,y .

Define cot∗p γ = 0 if γ is an integer multiple of πp and cot∗p γ = sin′p γ/sinp γ
otherwise. Multiplying (1.1) by y and integrating, we obtain the formulae

lq[y] =
∫ 1

0
(|y′|p +q|y|p)−|y(1)|p[cot∗α1]p−1 + |y(0)|p[cot∗α0]p−1,

(2.8)

r[y] =
∫ 1

0
r|y|p.

LEMMA 2.4. For all λ and y satisfying (1.1)-(1.2),

θλ (1) = r[y], λθλ (1) = lq[y]. (2.9)

Proof. From (2.4) and (2.7) we have

(ρ pθλ )′ = ρ pr|sinp θ |p, ρ pθλ (0) = 0.

Then (2.2) gives

(ρ pθλ )(1) =
∫ 1

0
r|y|p,

and (2.9) now follows from (2.5) and (1.3). �

3. Right indefinite case

Our basic asymptotic result, which does not in fact require right indefiniteness, is
as follows.

THEOREM 3.1. For r,q ∈ L1(0,1) with
∫ 1
0 r+ dt > 0 , we have

θ (1,λ )−θ (0,λ ) = λ 1/p
∫ 1

0
r1/p
+ +o(λ 1/p) (3.1)

as λ → +∞ .

Proof. Let δ > 0 and u be a polynomial with
∫ 1
0 |r−u| < δ . Set

H = {t ∈ [0,1]|u(t) � 0},
I = {t ∈ [0,1]|u(t) < 0},

Then H is a disjoint union of closed intervals H1 = [a1,b1], . . . ,Hn = [an,bn] and I is
a disjoint union of intervals I1, . . . , Im, open in [0,1] , where I j has endpoints c j < d j .
Note that m and n depend on δ .
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By Lemma 2.1, θ (d j,λ )−θ (c j,λ ) > −π̂p , giving

θ (1,λ )−θ (0,λ ) > −mπ̂p +
n

∑
j=1

(θ (b j,λ )−θ (a j,λ )). (3.2)

For t ∈ I , −u(t) > 0, so |r−u| � r+ on I , and, by Hölder’s inequality, we have

∫
I
r1/p
+ �

∫ 1

0
|r−u|1/p � δ 1/p. (3.3)

Thus it remains only to consider the behaviour of θ on each interval Hj .
Let h = (u+ δ )1/p so

∫
H |r−hp| < 2δ . Moreover h � δ 1/p and so

∫
H

∣∣∣ r
hp−1 −h

∣∣∣ =
∫

H

∣∣∣∣ r−hp

hp−1

∣∣∣∣ �
∫

H

|r−hp|
δ (p−1)/p

� 2δ 1/p. (3.4)

On H , since hp � 0, |r−hp| � |r+ −hp| , giving
∫

H
|r+−hp| < 2δ . (3.5)

We define a modified Prüfer angle ϕ on each Hj by

sinpϕ
sin′pϕ

=
sinp θ

hλ 1/p sin′pθ
.

From [5] with f = 1/(hλ 1/p), ϕ satisfies the first order differential equation

ϕ ′ −λ 1/pr1/p
+ = λ 1/p(h− r1/p

+ )+λ 1/p
( r

hp−1 −h
)
|sinpϕ |p +Q, (3.6)

where

Q =
h′

h
[sin′pϕ ]p−1 sinpϕ−qh1−pλ (1−p)/p|sinpϕ |p,

and there is a constant K(δ ) > 0 such that
∫

H
|Q| � K(δ ) for all λ > 1. (3.7)

Now |a1/p−b1/p| � |a−b|1/p for a,b � 0, so by Hölder’s inequality and (3.5),

∫
H
|r1/p

+ −h|�
∫

H
|r+ −hp|1/p �

(∫
H
|r+−hp|

)1/p

� 2δ 1/p. (3.8)

Integrating (3.6) over each of the intervals Hj , summing and using inequalities (3.3),
(3.4), (3.7) and (3.8) we obtain∣∣∣∣∣

n

∑
j=1

λ−1/p(ϕ(b j)−ϕ(a j))−
∫ 1

0
r1/p
+

∣∣∣∣∣ � 5δ 1/p +λ−1/pK(δ ). (3.9)
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Now |ϕ(t)−θ (t)|< πp/2 so from the above bound and (3.2),

λ−1/pθ (1,λ )−
∫ 1

0
r1/p
+ � −5δ 1/p−λ−1/p(K(δ )+ (m+n+1)πp+α0).

Let ε > 0. Choosing δ > 0 so that 5δ 1/p < ε/2 and subsequently taking λ > 1 so
large that λ−1/p(K(δ )+ (m+n+1)πp+α0) < ε/2 we find that

λ−1/pθ (1,λ ) >

∫ 1

0
r1/p
+ − ε.

We now repeat the argument with r replaced by r+ , θ by θ+ , and with u � 0 as
a C1 function satisfying

∫ 1
0 |r+−u|< δ . Then H = [0,1] , so m = 0,n = 1 and we can

treat (3.9) as before, leading to

λ−1/pθ+(1,λ ) �
∫ 1

0
r1/p
+ + ε

for sufficiently large λ > 1. The result now follows because θ � θ+ , by Lemma
2.2. �

For the remainder of this section we assume that r is indefinite, i.e.,
∫ 1
0 r± > 0.

Then Theorem 3.1 implies that θ (1,λ ) → +∞ as λ →±∞ , while Lemma 2.2 shows
that θ (1,λ ) is continuous (even C1 ) in λ . Thus θ (1,λ ) attains its global minimum
θ∗ at μ , say (θ∗ is unique but μ may not be). Note that θ∗ is positive by Lemma
2.1(i) and define M as the least integer such that θ∗ � Mπp +β1 . Let Sn be the set of
eigenvalues of (1.1)-(1.2) with oscillation count n (see Section 1). Recalling Definition
2.3, we have the following

THEOREM 3.2. Assume that r,q ∈ L1(0,1) with
∫ 1
0 r± > 0 .

(i) If θ∗ < Mπp +β1 , then Sn is empty for each n < M, and for each n � M, there
exist (perhaps non-unique) eigenvalues λ+

n > μ and λ−
n < μ in Sn .

(ii) If θ∗ = Mπp +β1 , then the conclusions of (i) hold for each n �= M. Moreover,
μ ∈ SM and any λ ∈ SM is algebraically non-simple.

(iii) For any choice of λ±
n as above,

(±λ±
n )1/p =

nπ̂p∫ 1
0 r1/p

±
+o(n)

as n → ∞ .

Proof. Most of the conclusions of (i) and (ii) follow from the condition λ ∈ Sn ⇔
θ (1,λ ) = nπp +β1 and the remarks in the previous paragraph. Minimality of M and
Lemma 2.2(ii) give the non-simplicity contention. For (iii), we write

(±λ±
n )1/p

∫ 1

0
r1/p
± = nπp + εn
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and deduce from Theorem 3.1 and λ r = (−λ )(−r) that εn = o(n) . �
It should be noted that the above theorem makes no claims about the number of

possible λ±
n nor about the extent of possible interlacing of the λ+

n or the λ−
n with

respect to n (although it is possible to choose such sequences which are monotonic in
n ).

We conclude this section with a monotonic dependence result. We compare the
eigenvalues of (1.1-1.2) with those of a similar problem distinguished by tildes, and we
regard λ+

n as increasing in q if for q̃ � q (resp. � q ) and λ+
n ∈ Sn there is λ̃+

n � λ+
n

(resp. � λ+
n ) with λ̃+

n ∈ S̃n , etc.

COROLLARY 3.3. Assume the above notation and convention. Then, provided
that θ∗ � nπp + β1 throughout, ±λ±

n increases in q and also increases (resp. de-
creases) in r , if ±λ±

n � 0 (resp. � 0 ).

Proof. Assume that λ+
n � 0,r � r̃ and θ̃∗ � nπp +β1 . Then

θ̃ (1, μ̃) � nπp +β1 = θ (1,λ+
n ) � θ̃ (1,λ+

n )

from Lemma 2.2(i) and Theorem 3.2. Thus θ̃ (1, λ̃ ) = nπp +β1 for some λ̃ ∈ [μ̃ ,λ+
n ] .

The other cases are similar. �
There are similar results if the monotonicity is strict, or with respect to β j ( j = 0

or 1) or s of Section 1. Cj dependence results are possible at simple eigenvalues, but
not in general, and we shall return to this below.

4. Right semi-definite cases

LEMMA 4.1. Assume r � 0, r ∈ L1(0,1) with
∫ 1
0 r > 0 . Then θ (1,λ ) increases

strictly with λ ∈ R and, at an eigenvalue λ , θλ (1,λ ) > 0 .

Proof. Let λ < λ̃ ,θ ′ = f (θ ,λ ), θ̃ ′ = f (θ̃ , λ̃ ) and θ (0) = θ̃(0) = α0 . Thus, by
Lemma 2.2(i) with a = 0, b = 1 and r̃ = r , θ (1) < θ̃ (1) .

Thus θ (1,λ ) increases with λ , so θλ (1,λ ) � 0 for all λ . If θλ (1,λ ) = 0 at an
eigenvalue λ then r[y] = 0 by (2.9), so y vanishes on a set of positive measure. By
Lemma 2.1(i), every zero of y is isolated, so y can vanish only on a set of measure
zero. This contradiction completes the proof. �

It follows from Lemmas 2.1 and 4.1 that the structure of the set of eigenvalues of
(1.1), (1.2) depends entirely on the behaviour of θ (1,λ ) as λ →±∞ .

The case λ → +∞ is covered by Theorem 3.1, so we turn to the case λ →−∞ .
Let S be the set of maximal intervals I ⊂ [0,1] for which

∫
I r = 0, i.e., r = 0 a.e. on

I , and let U be the union of all points in such intervals. On each interval I = [a,b] ∈
S we define a function θ∞ satisfying the same differential equation (2.3) (which is
independent of λ since r = 0) as θ but with initial condition given by θ∞(a) = β0 if
a = 0 and θ∞(a) = 0 if a > 0. Then θ∞(b) ∈ [kπp,(k+1)πp) for some integer k , and
we write θ∞(I) = kπp if b < 1 and θ∞(I) = θ∞(1) if b = 1.
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We also denote by S∗ the set of those I ∈ S such that θ∞(I) � πp , and by U∗ the
corresponding union. Note that |θ ′

∞| � 1+ |q| on each I ∈ S , so S∗ is a finite set.

LEMMA 4.2. Under the above conditions

lim
λ→−∞

θ (1,λ ) = L := ∑
I∈S∗

θ∞(I).

Proof. This result is given (in different notation) in [8, Theorem 3.2] for p = 2.
Even though the argument carries over to the present case, we shall present a simplified
version for the convenience of the reader.

From Lemma 4.1 we can define

l(x) := lim
λ→−∞

θ (x,λ )

for all x ∈ [0,1] .
Evidently the complement C∗ of U∗ in [0,1] also consists of finitely many (say

N ) intervals. If N = 0 then [0,1] is the only interval in S∗ and clearly l(1) = θ∞(1) =
θ∞(I) . If N > 0, let J be the left hand interval in C∗ , with endpoints c < d , and let
θ∞(c) ∈ [kπp,(k+1)πp) . (If c = 0 then k = 0 since β0 < πp , but if c > 0 then k > 0
since by construction [0,c] ∈ S∗ ).

Then it can be shown that for all x ∈ J , l(x) = θ∞(x) if x ∈ U , and l(x) = kπp

otherwise. If d = 1 then we set x = d to establish the result in this case. If d < 1 then
we repeat the above argument over [d,1] instead of [0,1] , and so on. �

We are now ready to discuss the eigenvalue structure in right semidefinite cases.
Recall Definition 2.3 and let M be the least integer satisfying

L < Mπp +β1

with L from Lemma 4.2. We remark that L , and hence M , depend only on β0 and the
values of q where r = 0.

THEOREM 4.3. If r � 0 and
∫ 1
0 r > 0 , then M is the minimal oscillation number

for (1.1), (1.2). Indeed, there is exactly one eigenvalue λm for each m � M, and it is
simple (algebraically). Moreover

λ 1/p
m =

mπp∫ 1
0 r1/p

+o(m)

as m → ∞ .

Proof. By Lemmas 4.1 and 4.2, θ (1,λ ) increases strictly and continuously from
an unattained asymptote L as λ → −∞ and to +∞ as λ → +∞ , and thus takes the
value mπp+β1 for exactly one λ , for each m � M . From Lemma 4.1, we see that every
eigenvalue of (1.1), (1.2) is (algebraically) simple. The asymptotic estimate follows as
for Theorem 3.2. �
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It follows that the set of eigenvalues λm accumulates exactly at +∞ under the
above semidefiniteness condition. If instead r � 0 with

∫ 1
0 r < 0 then the eigenvalues

accumulate at −∞ . The eigenvalues accumulate at both ±∞ only in the right indefinite
situation of Theorem 3.2.

For a given m , uniqueness of λm permits a sharper statement of monotonic de-
pendence than in Corollary 3.3, and using Lemmas 2.1 and 2.2 as well we can also give
some continuous and C1 dependence results. For example, we could take r of the form
r1 + zr2 for a parameter z .

COROLLARY 4.4. Under the conditions of Theorem 4.3, the eigenvalue λm in-
creases strictly with q,β0 and −β1 , provided that the asymptote L satisfies the restric-
tion L < mπp + β1 throughout. Under the same restriction, λm , if � 0 (resp. � 0 ),
increases (resp. decreases) strictly in r , and if the coefficients and boundary data are
C j in a parameter (for j = 0 or 1 ), then so are the eigenvalues.

Proof. Monotonicity follows as for Corollary 3.3, and C1 dependence comes from
the eigenvalue equation

θ (1,λ ) = nπp +β1, (4.1)

Lemmas 2.1 and 2.2 and the implicit function theorem. A similar argument holds for
the case j = 0. �

To conclude this section, we discuss interlacing of the zeros of the eigenfunctions
ym corresponding to λm .

THEOREM 4.5. Under the conditions of Theorem 4.3, if m < n and s,t are con-
secutive zeros of ym then there is at least one zero of yn in (s,t) provided

∫ t
s r > 0 .

Proof. First note that

θ (x,λ ,β0 + kπp) = θ (x,λ ,β0)+ kπp (4.2)

for all x ,λ and nonnegative integers k . Thus the change in θ over an interval (e.g.,
[s,t]) is independent of the addition of an integer multiple of πp to θ at any fixed
x ∈ [s, t] .

Since s is a zero of ym , θ (s,λm) is an integer multiple of πp . Suppose first that
this is also true for θ (s,λn) , so we can set

θ̃(x,λm) := θ (x,λm)+ kπp (4.3)

to give θ̃ (s,λm) = θ (s,λn) for some integer k . Then we can apply (4.2) and Lemma
2.2(i) with a = s, b = t and r̃ = r to give θ (t,λn) > θ (s,λn)+πp whence θ (x,λn) =
θ (s,λn)+πp for some x ∈ (s,t) .

A similar argument holds with x traversing [s,t] in reverse if θ (t,λn) is an integer
multiple of πp . In the remaining case, we argue by contradiction, assuming that

lπp < θ (s,λn), θ (t,λn) < (l +1)πp
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for some integer l . Thus for some integer k , (4.3) gives θ (u,λn) = θ̃ (u,λm) for some
u ∈ (s, t) . We then contradict Lemma 2.2(i) with a = u, b = t if

∫ t
u r > 0, and with

a = s, b = u (with x traversing [s,u] in reverse) otherwise. �

5. Translatable to left semi-definite cases

We define the various types of left definiteness in terms of the form lq[y] of (2.8).
In particular (1.1)-(1.2) is left definite, denoted LD, (resp. left semidefinite, denoted
LSD) if lq[y] > 0 (resp. � 0) for all non-zero y ∈W 1

p (0,1) . If these conditions hold
after a translation of the eigenparameter λ , say by τ , (and hence replacement of lq[y]
by lq−τr[y]) then we shall use the acronym TLD (resp. TLSD).

These conditions can be described in terms of θ (1,λ ) . Consider the right definite
problem, with (1.1) replaced by

−Δpy = (μ−q)[y]p−1. (5.1)

From the analogue of (1.3) with λ and r replaced by μ and 1, we see that (1.1)-(1.2)
is LD if and only if (5.1) has minimal eigenvalue μ0 > 0. The corresponding Elbert-
Prüfer angle increases strictly in μ , so at μ = 0 it is less than β1 and coincides with
θ (x,0) for (1.1)-(1.2). Thus the LD condition for (1.1)-(1.2) corresponds to θ (1,0) <
β1 of (1.2). Similarly LSD (resp. TLD, TLSD) corresponds to θ (1,0) � β1 (resp.
θ (1,τ) < β1,θ (1,τ) � β1) .

If RSD holds (say with r � 0), then θ (1,λ ) is strictly increasing by Lemma 4.1
and TLSD corresponds to M = 0 in Theorem 4.3 with all λn � τ . Then the preceding
discussion leads to the following.

THEOREM 5.1. Suppose r � 0 a.e. Then the following are equivalent: θ (1,τ0) �
β1 ; TLSD (for τ = τ0 ); M = 0 in Theorem 4.3; and λ0 � τ0 in Theorem 4.3. Moreover,
TLSD (for τ = τ0 ) ⇒ TLD (for all τ < τ0 ) ⇒ TLSD (for all τ � τ0 ).

The LD case corresponds to τ = 0, for example when q = 0 and Dirichlet condi-
tions β0 = 0,β1 = πp, are imposed. This situation has been discussed by many authors,
in particular by Elbert [13] under RSD as well.

We turn now to cases which are not RSD, so by Theorem 3.2, θ (1,λ ) → +∞ as
λ →±∞ . As for Theorem 3.2, θ (1,λ ) has a global minimum value θ∗ , say, achieved
at λ∗ , say. We shall see later that λ∗ is unique under TLSD. Let us analyse the TLD
case first.

THEOREM 5.2. Suppose that RSD fails, i.e.,
∫ 1
0 r± are both positive, and let θ∗ =

θ (1,λ∗) , as above. Then the following are equivalent: θ∗ < β1 ; TLD (with τ = λ∗ );
M = 0 in Theorem 3.2; and λ−

0 < λ∗ < λ+
0 in Theorem 3.2.

If the above conditions hold then for all n � 0 there are precisely two eigenvalues
λ±

n with oscillation count n. They are simple, they satisfy ±(λ±
n −τ) > 0 for all n � 0 ,

and they obey the asymptotics of Theorem 3.2. Moreover the λ±
n satisfy the continuity

and monotonicity conclusions of Corollary 4.4 (with monotonicity reversed for the λ−
n ),

provided that TLD holds throughout.
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Finally, LD holds if and only if ±λ±
n > 0 for all n � 0 , so we may take τ = 0 in

the above.

Proof. The equivalences follow as for Theorem 5.1 but with Theorem 3.2 substi-
tuted for Theorem 4.3. For simplicity of notation, we now translate the λ axis so that
λ∗ = 0. Then uniqueness and simplicity follow from (2.9) which gives

λ±
n θλ (1,λ±

n ) > 0 (5.2)

for each n � 0. Continuity and monotonicity may be established via (4.1) and the
implicit function theorem, cf. Corollary 4.4. �

The TLSD case is slightly different.

THEOREM 5.3. Suppose that RSD fails. Then (1.1)-(1.2) is TLSD but not TLD if
and only if θ∗ = β1 . In this case, λ∗ is the unique eigenvalue with oscillation count 0 ,
and it is algebraically non-simple. Also the conclusion of Theorem 5.2 holds for all λ±

n
with n � 1 .

Proof. The proof of the first contention follows from Theorem 5.2 and the first
paragraph of this section.

For the rest of the proof, we again translate the λ axis to λ∗ = 0, which is evidently
an eigenvalue with oscillation count 0. Moreover, since β1 is the minimum of θ (1,λ ) ,

θλ (1,0) = 0 (5.3)

and so λ = 0 is non-simple.
Suppose that there is another eigenvalue λ̃ �= 0, say, with oscillation count 0.

Then θ (1, λ̃ ) = β1 so we also have

θλ (1, λ̃ ) = 0. (5.4)

Let y and ỹ be eigenfunctions corresponding to λ = 0 and λ = λ̃ , respectively. Then
(2.9), (5.3) and (5.4) give r[y] = r[ỹ] = 0, so

lq[y] = 0 (5.5)

and lq−λ̃ r[ỹ] = 0, whence lq[ỹ] = λ̃ r[ỹ] = 0, follow from (2.9).

It follows that y and ỹ are both minimisers of lq , and hence are eigenfunctions
for (5.1), (1.2) with eigenvalue μ = 0, see [5, Section 5]. From geometric simplicity
of this eigenvalue we have y = tỹ for some t �= 0. Thus y and ỹ generate the same
Elbert-Prüfer angle θ , and we obtain

1+(0r−q−1)|sinpθ |p = 1+(λ̃r−q−1)|sinpθ |p.

Then λ̃r = 0 except where θ is an integer multiple of πp , i.e., almost everywhere, by
Lemma 2.1. Since λ̃ �= 0, we have the contradiction r = 0 a.e.
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This proves uniqueness of the eigenvalue λ∗ = 0. Finally, for n � 1, λ±
n �= 0 so if

lq[y±n ] = 0 for any corresponding eigenfunction y±n , then we obtain a contradiction as
above. Thus in fact lq[y±n ] > 0 and so (5.2) must hold. �

We can now deduce the following for when LSD holds but LD fails. This is the
case, for example, with q = 0 and Neumann boundary conditions α0 = α1 = πp/2, a
situation discussed by several authors.

COROLLARY 5.4. If (1.1)-(1.2) is LSD but not LD, i.e., θ (1,0) = β1 , then Theo-
rem 5.2 holds with τ = 0 and all n > 1 . For n = 0 , either Theorem 5.3 holds with λ∗ =
0 = θλ (1,0) , or else θλ (1,0) �= 0,λσ

0 = 0 and σλ−σ
0 < 0 , where σ = sgnθλ (1,0) .

Proof. The only case needing comment is n = 0 with θλ (1,0) �= 0, so TLD holds.
Evidently θ (1,0) = 0 gives λσ

0 = 0 with σ = sgnθλ (1,0) and the result then follows
from Theorem 5.2. �

We next discuss some properties of the graph of θ (1,λ ) under TLSD. Note that
if β1 = θ∗(� πp) then we are in the situation of Theorem 5.3, and so the minimiser λ∗
of θ (1,λ ) (which is independent of β1 ) is unique, as claimed earlier.

Now suppose that β1 = πp . As noted above θλ (1,λ∗) = 0 and, by (5.2), θλ (1,λ )
takes the sign of λ −λ∗ at any eigenvalue λ �= λ∗ . Elsewhere, however, our methods
give no information about θλ (1,λ ) . If β1 < πp , then one can apply the previous rea-
soning to the related problem (1.1)-(1.2) with β1 replaced by some β ∈ (β1,πp] to give
regions of monotonicity, but there remain infinitely many other regions where we do
not know how the sign of θλ (1,λ ) varies. Thus even for variation of β1 , we need an
implicit condition (TLD in Theorem 5.2, cf. the condition on L in Corollary 4.4) on
the coefficients to obtain our dependence and interlacing results.

One situation where explicit conditions suffice is the special case q � 0 a.e. and
β0 � πp

2 � β1 , (which covers most of the literature for p �= 2 in one dimension, but
which we call “classical” LSD since it was already examined for p = 2 around 1900
by Bôcher and others – see [16, Section 10.61]). Indeed Bôcher gave a transformation
of the problem leading to λ dependent boundary conditions. This gives rise to an
analogous modified Prüfer angle, but since there are related ideas in [4, 17], we shall

be brief. We define an angle ψ via cotpψ = |λ | 1
1−p cotpθ and derive the equation

ψ ′ = |λ | 1
p−1 |sin′ψ |p− (|λ |−1q− r)|sinψ |p

(cf. [5, equation (2.4)]) together with boundary conditions

cotpψ( j,λ ) = |λ | 1
1−p cotpβ j, j = 0, 1.

Then for λ > 0, it is easily seen that ψ(1,λ ) increases strictly, while the branch of

cot−1
p (λ

1
1−p cotpβ1) in (nπp,(n + 1)πp] is nonincreasing, in λ . Similar results hold

(with monotonicities reversed) for λ < 0.
Together with the estimate |ψ−θ | < πp

2 , this leads to an alternative derivation of
Theorem 5.2, but the important point from our present perspective is the global nature
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(for λ of fixed sign) of the monotonicities observed above. Using the fact that for an
eigenfunction y , y(x,λ ) = 0 precisely when the corresponding ψ(x,λ ) is an integer
multiple of πp , we have the following analogue of Corollary 4.4 and Theorem 4.5 for
the λ+

n (with similar statements for the λ−
n ).

COROLLARY 5.5. In the classical LSD case, the positive eigenvalues increase
strictly with q,−r,β0 and −β1 . If the coefficients and boundary data are C j in a pa-
rameter (for j = 0 or 1 ), then so are the positive eigenvalues. Finally, the eigenfunction
zeros interlace for different positive eigenvalues.

REMARK. After our work was submitted, reference [18] appeared, and a referee
has kindly drawn our attention to this paper. It deals with the case q = 0 under Dirichlet
and Neumann conditions. These are covered by Theorem 5.2 (LD case) and Corollary
5.5 respectively, but [18] also treats further topics including eigenvalue dependence on
the weight function r in topologies not considered here.
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