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A REVIEW OF A RIESZ BASIS PROPERTY FOR

INDEFINITE STURM–LIOUVILLE PROBLEMS

PAUL BINDING AND ANDREAS FLEIGE

Abstract. For an indefinite weight function r on [−1,1] with xr(x) > 0 we consider connections
between a Riesz basis property of the indefinite Sturm-Liouville eigenvalue problem

−y′′ = λry, y(−1) = y(1) = 0

and various different conditions, for example HELP-type inequalities(∫ 1
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for certain classes of functions h on [0,1] . We show that for so-called strongly odd dominated
functions r (including odd r ) these problems are equivalent. This allows us to apply known
results from the theory of one problem to the others.

1. Introduction

We shall consider the Sturm-Liouville problem

−y′′ = λ ry a.e. on (−1,1) , y(±1) = 0 (1.1)

where r ∈ L1(−1,1) and
xr(x) > 0. (1.2)

The aim is to review some of the conditions on r known to be necessary or sufficient
(or both) for the existence of a Riesz basis of eigenfunctions in the weighted space
H := L2,|r|(−1,1) with inner product

(y, z) =
∫ 1

−1
|r|yz . (1.3)

We refer to this as the Riesz basis property (RBP), and we shall explore the connections
between it and the conditions mentioned above, and also make some extensions to more
general conditions on r .

Recall that a Riesz basis is the image under a linear operator U, say, of an or-
thonormal basis, where U is (a) bounded and (b) boundedly invertible. At times it will
also be useful to consider the related problem

−z′′ = μ |r| z a.e. on (−1,1), z(±1) = 0. (1.4)
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Even for this right definite problem, Riesz bases can play a rôle. Suppose for the
moment that r, 1

r ∈ L∞(−1,1) (so H is equivalent to L2 (−1,1) in this case) and write
(1.4) in the form

Lz = μ |R|z, (1.5)

where −L is the Dirichlet Laplacian and R is multiplication by r , both operators acting
in L2 (−1,1) . Since |R|−1 L is self-adjoint with compact inverse in H , (1.5) admits
an orthonormal basis of eigenfunctions z1,z2, . . . in H. Thus, for U = |R|1/2 , Uzn are
orthonormal in L2(−1,1) . Since U satisfies (a) and (b) above, zn form a Riesz basis
of eigenfunctions for (1.4) in the unweighted space L2(−1,1) .

We remark that the above U is also (c) positive definite, and conditions like (a),
(b) and (c) will play a role for problems with indefinite r below. Expansions using
eigenfunction bases for indefinite weight Sturm-Liouville problems were already in-
vestigated by Hilbert over a century ago in a space denoted below by H1. The impetus
for considering the larger space H instead (at least in indefinite cases) seems to have
come initially from two-way processes in particle physics and probability, related to
“half-range” expansions.

While such processes have a long history, there were several mathematical inves-
tigations in the 1960s and 1970s. For example, Case [11], Hangelbroek [23] and others
discussed integrodifferential equations with an indefinite time derivative from trans-
port theory, and we cite Baouendi and Grisvard [5] and Pagani [29] for existence and
uniqueness of forward-backward parabolic equations. The last two papers correspond
(after separation of variables) to equations including (1.1) with r(x) = x (where there
are many applications), and

r(x) = rα(x) := sgn(x) |x|α , (1.6)

respectively. Several works on (1.1) and related equations were published in the period
1975–1985, particularly by Beals, Kaper and their collaborators. We cite [3] with
several applications for (an abstract version of) r = rα , [26] for a treatment of (1.1)
with r(x) = x via properties of Airy functions, and [4] for cases with r = f rα where
f ∈C1 . In these works the equivalence of two norms on H1 played a fundamental rôle,
and we return to this aspect later.

Our review in Section 2 takes the study of conditions for the RBP from the position
it reached with [4] up to the present. We split the conditions into five groups, 2.1 being
devoted to conditions which are equivalent to the RBP for abstract problems. Explicitly
these began (to our knowledge) with Pyatkov’s work [32] using interpolation spaces,
but there were several earlier conditions implicit in [12]. Subsequently Ćurgus and
Najman [14] and Volkmer [36] gave several further conditions independently. In 2.2
we examine generalised Beals conditions on the weight function r which are sufficient
for the RBP, in [4, 13] using conditions generalising (1.6) on both sides of the turning
point x = 0, and in [18, 19, 36] where a one-sided condition suffices. A necessary
condition, which we denote by V, was given in [36] when r ∈ L∞, and is examined
in 2.3 along with further conditions based on V from [2, 9]. In 2.4 we discuss some
versions of the so-called HELP inequality. This has a long history but the works most
relevant to our topic are by Evans and Everitt [15, 16] and Bennewitz [6]. In [36]
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Volkmer showed that a particular version of the HELP inequality was necessary for the
RBP if r was L∞ and odd. Finally in 2.5 we discuss Parfenov’s developments [30] of a
sufficient condition from [32], leading to some conditions which are necessary as well,
at least for odd r.

In Section 3, we shall review and extend some connections between the groups
of conditions in 2.1–2.5. At the same time, we also relax the assumptions on r from
L∞ to L1 and from oddness to a strongly odd dominated (SOD) condition introduced
in [9]. The net result is that we obtain equivalence of conditions from all the groups
except 2.2. For the latter we give two new conditions, one necessary and one sufficient
for the RBP, and we obtain equivalence if r satisfies an extra limit condition at the
turning point. These equivalences are summarised in 3.5. We conclude in Section 4
with a discussion of our results together with some examples illustrating the theory and
its limitations.

Before proceeding, we wish to point out that several works in the area (including
some cited above and below) deal with more general problems than (1.1) (e.g., the
differential expression could contain extra coefficients [4], be of higher order [13] or
in higher dimensions [14, 32], or contain measures [19, 31]; the boundary conditions
could be more general [7, 8], there could be several turning points [13, 33], etc.) A
theory for these settings equivalent to the one presented in Section 3 would require
additional research, and some of the above references already give counterexamples
limiting the possibilities. We have focussed instead on some specific properties of r for
(1.1), which allows comparison of much of the literature.

NOTATION. As above, H is the weighted Hilbert space L2,|r|(−1,1) with inner
product from (1.3), and we denote the corresponding norm by ‖·‖ . Equation (1.4)
can be written in the form Az = μz where A is a (self-adjoint) operator in H . Here
Az =− 1

|r|z
′′ on a domain consisting of those z such that z(±1) = 0 with z, z′ absolutely

continuous (AC) on [−1,1] and 1
r z

′′ ∈ H . Similarly, (1.1) can be written JAy = λy
where J is the (self-adjoint) operator of multiplication by sgn r in H. It is well known
that A is positive and we can define (as in [14]) a scale of Hilbert spaces Hs(−2 � s � 2)
in the following way. For s � 0 we take D(As/2) with norm given by ‖y‖s :=

∥∥As/2y
∥∥ ,

and for s < 0 we take the completion of H with respect to ‖.‖s as above. In all cases
we denote the corresponding inner product by (., .)s . Note that H0 = H, while H1 and
H2 are the form and operator domains of A.

Finally, if C denotes a condition on r : (−1,1)→R then C+ (resp. C− ) denotes
the same condition with r restricted to (0,1) (resp. (-1,0)).

2. Groups of known conditions for the Riesz basis property

In this section we give an overview of different groups of conditions which are
known to be necessary and/or sufficient for the RBP (at least under some additional
assumptions on r ).
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2.1. Necessary and sufficient conditions on an abstract level

We shall treat some of the conditions in this subsection somewhat informally, since
(being equivalent to the RBP) they will not be needed explicitly in what follows. They
were mostly formulated for abstract equations, with applications to (1.1) that were in
some ways more general (e.g., in higher dimensions), but sometimes with restrictions
to r ∈ L∞ , 1

r ∈ L∞ , or both. Our aim is to give the reader a flavour, without full details
and definitions, of some of the different areas that have been visited in the search for
equivalent statements.

The first condition that we know to have been explicitly formulated as equivalent
to the RBP was by Pyatkov [32] as follows:

(i) [H1,H−1]1/2 = H .

Here H, Hs come from Section 1 and [X ,Y ]t denotes (complex) interpolation between
the spaces X and Y . Interpolation is discussed in books and [32] refers to [35] for this
topic. We note here only that there are other (real) methods of interpolation which are
related, and, for example, Hs can be obtained as [H1,H]1−s or via the real methods as
(H,H1)s,2 .

Later Ćurgus and Najman [14] gave several conditions equivalent to the RBP, in-
cluding versions of (i) with H1, H−1 replaced by Hs, H−s for 0 < s � 2. Another of
their conditions can be expressed in the form

(ii) infinity is a regular critical point of JA,

where J and A are as in Section 1. Regularity of critical points is also discussed
in books and [14] refers to [1, 10, 28] for this topic. We note here, however, that (ii)
concerns the spectral measure E (also called spectral function) of JA in the Krein space
K = (H, [., .]) , with indefinite inner product [y,z] =

∫ 1
−1 ryz , the topology being that of

H . For a given eigenvalue λ of (1.1), E({λ}) is a K -orthogonal projector taking the
sign of λ . Since the eigenvalues accumulate at ±∞ , E changes sign at ∞ , which is
therefore a critical point. The values of E (on, say, two-sided neighbourhoods of ∞)
are not in general H -orthogonal projectors, however, and (ii) corresponds to the case
when these projectors remain bounded.

We remark that Ćurgus already gave a list of conditions (not including the RBP)
equivalent to (ii) in [12]. In view of [14], then, Ćurgus’s list implicitly contains the
RBP, and also predates [32]. Another condition from [12] is

(iii) JA is similar to a self-adjoint operator in H .

Indeed, since (1.1) leads to a discrete spectrum, the similarity transformation can be
taken as the operator U in the definition of Riesz basis in Section 1, but (iii) (and the
other conditions above) also apply in more general cases (and then Riesz bases must be
interpreted in terms of spectral measures – cf. [13, Remark 4.3]). We note that (iii) has
also been studied in its own right – see [27] for a recent contribution.

Ćurgus [12] gave another condition involving (a), (b) and (c) used for U in Section
1, but in the Krein space K instead of H . Of course the meaning of (a) and (b) is
unchanged since the H and K topologies coincide, but (c) must be taken in K . The
statement of the condition is
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(iv) there exists an operator W on K satisfying (a), (b) and (c) from Section 1, and
with H2 as an invariant subspace.

There are also various modifications in [12], [14] and [36] involving different spaces.
For example, W could be bounded in Hs and/or have Hs as an invariant subspace for
0 < s � 2.

The final necessary and sufficient condition that we shall consider is as follows.
We follow the construction in [36], noting that equivalent versions can be found in [12]
and [14]. Let T denote the absolute value of the self-adjoint operator (JA)−1 in H1 .
With the norm on H1 given by ‖y‖T := ‖T 1/2y‖1 consider the condition

(v) the norms ‖.‖T and ‖.‖ are equivalent on H1 , i.e., for some c > 0,

c−1‖y‖ � ‖y‖T � c‖y‖ for all y ∈ H1. (2.1)

We remark that this formed a key tool in the earlier approaches of Beals, e.g., [3, 4] and
Kaper et al, e.g., [26] to establish the RBP under specific conditions on r mentioned in
Section 1. For r ∈ L∞ , Volkmer [36] showed that the separate inequalities in (2.1) were
each equivalent to the RBP.

2.2. Beals-type sufficient conditions

Our starting point is the following modification of (1.6):

(B) there are α > − 1
2 , ε > 0, f ∈C1[−ε,ε] with f (0) �= 0 such that

r(x) = sgn(x) |x|α f (x) for all x ∈ (−ε,ε). (2.2)

This was employed by Beals [4] as a sufficient condition for the existence of (full-
and half-range) bases for (1.1). There have been various generalisations. For example
Beals [4] already mentioned the possibility of using two functions f± replacing f for
±x > 0, and in [13] Ćurgus and Langer extended this to allow the possibility of two
powers α± > −1 as well. They also showed that these conditions produced Riesz
bases. The later investigations [18] and [36] showed independently that such conditions
sufficed from one side x > 0 or x < 0, leading to so-called one-sided Beals conditions
(B± ).

Various authors have also examined the proof of [4, Lemma 1], to find weaker
implicit conditions. These are sometimes called generalized Beals conditions, for ex-
ample

(GB+) for some ε,μ > 0 there is g ∈C1[0,ε] such that

g(x) =
r(x)

r(μx)
for all x ∈ (0,ε) and g(0) �= μ .

This condition was shown to be sufficient for the RBP in [19, Theorem 3.7]. We remark
that there was a similar two-sided condition mentioned in [13, Remark 3.3], a related
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condition in [36, Corollary 2.7], and a more general (but less direct) one-sided condition
in [19, Theorem 3.3]. Of course, there is a condition (GB-) with similar properties.

Further results on Beals-type conditions will be given in Section 3, but the follow-
ing summarises some of the main points from above.

THEOREM 2.1. We have (B) ⇒ (B+) ⇒ (GB+) ⇒ RBP.

2.3. Volkmer-type necessary conditions

Most of the necessary conditions for the RBP so far are based on the inequality

(∫ 1

−1

1
|r| |h

′|2
)2

� k

(∫ 1

−1
|h|2
)(∫ 1

−1
|
(

h′

r

)′
|2
)

(2.3)

introduced by Volkmer in [36, (4.3)]. Let DV denote the set of AC functions h on
[−1,1] , for which h′

r is AC and ( h′
r )′ is L2 , and for which ( h′

r )(−1) = ( h′
r )(1) = 0.

We write

(V) there is k > 0 such that (2.3) holds for all h ∈ DV .

Volkmer [36] established the following

THEOREM 2.2. If r ∈ L∞(−1,1) , then RBP ⇒ (V).

Various authors have given more direct necessary conditions, for example,
(AP+) there are no sequences an, bn satisfying 0 < an < bn � 1, and

an

bn
→ 0 and

∫ an
0 r∫ bn
0 r

→ 1 as n → ∞.

For odd r , Abasheeva and Pyatkov introduced an equivalent condition and established
(V) ⇒ (AP+) in [2, Corollary 1]. They also gave a more involved condition in be-
tween (V) and (AP+) in [2, Theorem 1]. Their proofs were based on applying (V) to
sequences of specific functions h . In [9] a two-sided version (AP) was introduced with
the above integrals replaced by

∫ an
−an

|r| and
∫ bn
−bn

|r| , and also a condition (AP-) with
upper integration limits zero. Of course these conditions all coincide when r is odd,
but not in general.

For 0 < a < b < 1, consider the functions

ga,b(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 (x ∈ [−1,−b))
b+x
b−a (x ∈ [−b,−a])
1 (x ∈ (−a,a))
b−x
b−a (x ∈ [a,b])
0 (x ∈ (b,1])

, ha,b(x) :=
∫ x

−1
ga,b r (2.4)

on [−1,1] . Then ha,b ∈ DV , and we can formulate the condition
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(Vab ) there is k > 0 so that (2.3) holds for all h = ha,b with 0 < a < b < 1.
This condition (for sequences an,bn , and another slightly weaker one), can be found in
[9], where the implication (Vab ) ⇒ (AP+) was established for odd r ∈ L∞ . Actually,
in [9] all the above conditions were shown to be equivalent under a weaker condition
than oddness, which will be studied in Section 3. Combining the above, we obtain

THEOREM 2.3. For odd r∈L∞(−1,1) , the conditions (V), (Vab ), (AP) and (AP± )
are all equivalent.

2.4. HELP-type conditions

In [36] Volkmer observed a connection between the RBP and one of the so-called
HELP-type inequalities, which take the form(∫ b

0
p |y′|2

)2

� k

(∫ b

0
w|y|2

)(∫ b

0

1
w
|(py′)′|2

)
(2.5)

where 0 < b � ∞ , w > 0 and 1
p , w are locally L1 . (Actually potential terms in the first

and third integrals are usually included, but they will not be relevant to our discussion).
Such inequalities (which are to hold for some k > 0 for all y from a specified domain)
have a long history, but a brief version is as follows.

In 1932, Hardy and Littlewood [24] discussed the case p = w = 1, b =∞ , leading
to a so-called HL inequality. After it featured prominently in the well-known book
[25] this was sometimes referred to as the HLP inequality, and Everitt’s discussion [17]
which allowed a C1 positive coefficient p (and potential terms) led to the acronym
HELP. After various authors had considered particular classes of weight function w ,
Evans and Everitt [15] studied cases with p, w as above, using a “strong limit point”
condition to ensure vanishing of the boundary term at b = ∞ in the Dirichlet form for
the associated equation

−(py′)′ = λwy. (2.6)

In [15, Section 12] they also introduced the regular case (which we distinguish by
setting b = 1, with 0 < 1

p , w ∈ L1(0,1)), and discussed the corresponding inequalities
on various domains in [15, 16]. In the following we consider this regular case.

Let DM denote the (maximal) domain consisting of those y ∈ AC[0,1] for which
py′ is AC and the third integral in (2.5) is finite. With DN as the set of y∈DM satisfying
the right-hand Neumann condition (py′)(1) = 0, we write

(EEN ) for some k > 0, (2.5) holds for all y ∈ DN .
This condition was studied in [16] and was shown to be equivalent to a condition on the
Titchmarsh-Weyl function

m(λ ) =
(pψ ′

λ )(1)
(pχ ′

λ )(1)
(λ ∈ C\R)

where χλ , ψλ form a fundamental pair of solutions of (2.6) at x = 0, so

χλ (0) = 1, (pχ ′
λ )(0) = 0, ψλ (0) = 0, (pψ ′

λ )(0) = 1.
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One can then express the m function condition equivalent to (EEN ) in the following
form:

(EEm ) for some θ0 ∈ (0, π2 ) ,

(Imλ )Im[λ 2m(λ )] � 0 for all λ ∈C(θ0) (2.7)

where C(θ0) is the (double) cone {seiθ : s ∈ R\ {0}, θ ∈ [θ0,
π
2 ]} .

(Note that (2.7) is automatic for θ0 = π
2 ). Evans and Everitt also gave the best possible

constant k for (EEN ) in terms of the minimal angle θ0 , together with a similar result
for a right hand Dirichlet condition.

There is an obvious similarity between (2.3) and (2.5) in the case p = 1
r , w =

1, but there is more involved than simply changing the interval of integration, and
in general the relationship between the (V) and (EEN) conditions is not clear. For
example, (V) involves a turning point, and the number of boundary conditions imposed
differs between DN and DV . Nevertheless Volkmer [36, Theorem 4.1] was able to use
the two-sided condition (V) to establish the following connection between the RBP and
the one-sided condition (EEN) .

THEOREM 2.4. For odd r ∈ L∞(−1,1) , RBP ⇒ (EEN) with p = 1
r , w = 1 .

In between the publication of [15] and [16], Bennewitz (for example, in [6]) stud-
ied (2.5) on the maximal domain DM above. This was in fact the original formulation
in [15, Section 12], and we shall label the corresponding condition

(EEM) for some k > 0, (2.5) holds for all y ∈ DM .
For simplicity we shall give a version of [6] only for the case p = 1

r , w = 1 relevant to
the RBP as noted above. In this case, Bennewitz’s assumption [6, eq. (1.1)] is automatic
and [6, eq. (1.2)] leads to conditions of the form

(B0+ ) for some t ∈ (0,1) , limsupx↘0 S0(t,x) �= 1 where

S0(t,x) :=
∫ tx
0 r∫ x
0 r

, (2.8)

and a similar condition (B1+ ) involving limsup as x ↗ 1 for integrals with upper
limits 1. There is also a third condition (B2+ ) that the boundary term [(py′)y ]10 in
the Dirichlet form for the associated equation (2.6) should vanish for all solutions y of
(2.6) with λ = 0. Bennewitz expressed this in terms of certain eigenvalue problems for
(2.6), and his main result (for the special case we are considering) was

THEOREM 2.5. If p = 1
r , w = 1 then (EEM ) is equivalent to the combination of

(B0+ ), (B1+ ) and (B2+ ).

2.5. Parfenov-type conditions

While the core of this subsection is from Parfenov’s paper [30], the foundation for
one of his conditions dates somewhat earlier. In [32], Pyatkov showed that boundedness
of the operator J on Hs for some s > 0 (see Section 1 for notation) was sufficient for
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(i) in 2.1, and hence for the RBP. Using real interpolation spaces, Parfenov was able to
rework Pyatkov’s condition into the following equivalent form expressed more directly
in terms of r :

(P) there are c,d > 0 such that, whenever 0 < η � ε � 1,

min(
∫ η

0
r,
∫ 0

−η
|r|) � c

(η
ε

)d ∫ ε

−ε
|r|. (2.9)

Indeed [30, Corollary 4] contains the following

THEOREM 2.6. If r ∈ L1(−1,1) then (P) ⇒ RBP.

Parfenov then turned to one-sided conditions, one being (P+ ), i.e., (P) with (2.9)
replaced by ∫ η

0
r � c

(η
ε

)d ∫ ε

0
r.

We shall also define the analogous condition (P− ) for −1 � ε � η < 0. The remaining
conditions below will be discussed via the following, for c ∈ (0,1) :

(P c+ ) there is t ∈ (0,1) such that for all ε ∈ (0,1)

∫ tε

0
r � c

∫ ε

0
r. (2.10)

We define (P c ) via the inequality

∫ tε

−tε
|r| � c

∫ ε

−ε
|r|,

and similarly for (P c− ). Parfenov introduced (P 1
2
+ ) in [30], and (P 1

2
), (P 1

2
± ) were

discussed in [9]. We can now state the following variant of [30, Theorem 6].

THEOREM 2.7. For odd r ∈ L∞(−1,1) and c∈ (0,1) , the following are all equiv-
alent to the RBP: (P), (P± ), and (Pc ) and (Pc± ).

We remark that Parfenov’s list of equivalent conditions includes (AP+), and the
argument proceeds via the implication RBP ⇒ (AP+) which was given in Theorem 2.3
only for r ∈ L∞ . On the other hand we shall improve this to r ∈ L1 in Section 3. Also
Parfenov’s argument is for (P 1

2
+ ) but it carries over directly to (Pc+ ), and Pytakov

[34, Theorem 3.1] states (referring to Parfenov’s thesis for proof) a result implicitly
providing equivalence of various conditions including (P+), (P 1

2
+ ) and (Pc+ ). For the

remaining equivalences, we note that (P) and (P± ) coincide for odd r , as do (Pc ) and
(Pc± ).
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3. Connections between the groups

In this section we change our focus in various ways. We shall review inter- rather
than intra-group relations, provide some new relations including equivalences, and ex-
tend other relations from r ∈ L∞ to r ∈ L1 , and from odd r (as in [2, 30, 36]) to a
weaker condition defined as follows. With

re(x) :=
1
2

(r(x)+ r(−x)) , ro(x) :=
1
2

(r(x)− r(−x)) (x ∈ [−1,1])

our standing assumption (1.2) is equivalent to

|re(x)| < ro(x) a.e. on [0,1].

We call r weakly odd-dominated (WOD) if a function ρ exists satisfying ρ (ε) < 1 for
all ε ∈ (0,1] and ∫ x

0
|re| � ρ (ε)

∫ x

0
ro for all x ∈ (0,ε)

and strongly odd-dominated (SOD) if ρ can also be chosen so that

ρ (ε) = o
(
ε1/2

)
as ε → 0.

Clearly, all odd weight functions are SOD (and hence also WOD). Also r is SOD if
r(x) = ax + o(|x| 3

2 ) as x → 0, assuming a �= 0 – further examples will be given in
Section 4. Odd domination conditions were discussed in [9] after an earlier condition,
stronger than SOD but weaker than oddness, had been introduced in [22].

3.1. Conditions from 2.1 and 2.3

In [36], Volkmer established the implication RBP ⇒ (V) of Theorem 2.2 for
r ∈ L∞ , yet there are various results stated in the literature for r ∈ L1 but depending
explicitly or implicitly on this implication. Since we have not seen an explicit proof for
unbounded r , we shall provide one now for completeness.

THEOREM 3.1. If r ∈ L1(−1,1) then RBP ⇒ (V).

Proof. We shall adapt the proof from [36], using an abstract form

Sy = λTy (3.1)

of (1.1), where S and T are self-adjoint operators on a Hilbert space H∗ with inner
product (., .)∗ , S has a positive compact inverse and T is bounded. Assume the RBP
in H∗ for (3.1). Then [36, Theorem 2.2] gives the necessary condition

(|T |y,y)∗ � c‖S−1Ty‖S‖y‖S for all y ∈ HS. (3.2)

Here HS = D(S
1
2 ) with norm ‖y‖S := ‖S 1

2 y‖∗.



AN INDEFINITE STURM-LIOUVILLE RIESZ BASIS PROPERTY 745

For r ∈ L∞ , Volkmer used (3.2) with H∗ = L2(−1,1) and S = L, T = R from
Section 1 to derive (∫ 1

−1
|r||y|2

)2

� k

(∫ 1

−1
|z′|2

)(∫ 1

−1
|y′|2

)
(3.3)

for all y ∈ HS = W 1
2,0(−1,1) , where Sz = Ty , so z satisfies

−z′′ = ry, (3.4)

z(±1) = 0. (3.5)

For r ∈ L1 , we claim that (3.2), with H∗ = H , S = A (which does have a positive
compact inverse, and moreover HS = H1 ) and T = J again yields (3.3). Indeed the first
integral is obvious since y ∈ H1 ⊂ H , and for the second we integrate by parts to give

‖u‖1 =
(∫ 1

−1
|u′|2

) 1
2

:= ν(u) for all u ∈ H2, (3.6)

in particular for u = z . For the third integral, we note that H1 is the completion of H2

in the H1 norm, so for any y ∈ H1 there is a sequence zn ∈ H2 converging to y in H1 .
By (3.6) with u = zn , the zn also converge in the ν norm, to a limit v , say. Moreover A
is uniformly positive (see above), so the norms in (3.6) dominate the H norm. Thus the
zn also converge in H , and we can write u = y = v in (3.6) to establish our claim. (Note
that the third integral above can also be treated by the methods of, e.g., [19, Chapter
2]).

Volkmer’s argument extending (3.3) to any z satisfying (3.4) (without boundary
conditions) can now be repeated, and (2.3) then follows from the substitution y =
− h′

r , z′ = h . Thus condition (V) continues to hold even for r ∈ L1(−1,1). �
Note that in Theorems 2.3, 2.4 and 2.7 the only step depending on r ∈ L∞ was

Theorem 2.2. Therefore, Theorem 3.1 implies

COROLLARY 3.2. Theorems 2.3, 2.4 and 2.7 remain valid for all r ∈ L1(−1,1) .

3.2. Beals- and HELP-type conditions from 2.2 and 2.4

Our aim now is to connect (B0+ ) of 2.4 with new conditions related to (GB+) and
(B+) of 2.2. At first sight such a connection may seem surprising since (B0+ ) is only
one of three conditions in Theorem 2.5 and moreover (EEM ) has as far as we know not
previously been connected to the RBP. Moreover Beals-type conditions have usually
been viewed only as sufficient for the RBP, although a necessary aspect was explored
in [21] under a smoothness condition on r and we shall return to this later.

We shall need a variant of de l’Hôpital’s rule, which is usually proved via Rolle’s
theorem and requires a certain function to have a vanishing derivative at an extremum.
In our case this derivative need not exist, so we shall present a different proof of (a
generalisation of) this famous rule. In what follows we shall use “ess” to mean modulo
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(Lebesgue) null sets. For example, if f ∈ L1(0,1) and x ∈ (0,1) , then ess inf (0,x) f is
the largest number η so that one can redefine f to value η on a null set in (0,x) , giving
a new function f̃ with inf (0,x) f̃ = η . Similarly, ess lim x↘0 f = η means lim x↘0 f̃ = η
for an appropriate f̃ (redefined as above).

LEMMA 3.3. For some η > 0 let f ,g ∈ L1(0,η) with g of one sign a.e. Then
with F(x) :=

∫ x
0 f , G(x) :=

∫ x
0 g we have

lim
x↘0

ess inf(0,x)
f
g

� liminf
x↘0

F(x)
G(x)

� limsup
x↘0

F(x)
G(x)

� lim
x↘0

esssup(0,x)
f
g
.

Proof. Suppose without loss that g > 0 and note that

ess inf(0,x)
f
g

is nonincreasing in x. (3.7)

Thus the left hand limit exists, perhaps infinite. We write � for this limit, and
assume it to be finite, as in our application below (the proof in the infinite case is a
simple adaptation).

Given ε > 0 there is δ > 0 so that ess inf (0,x)
f
g > �− ε for all x ∈ (0,δ ) , so

F(x) > (�− ε)G(x) for all x ∈ (0,δ ) . Obviously G(x) > 0 for such x , so the first of
our required inequalities follows. The third is similar, and the second is trivial. �

We note that a standard version of de l’Hôpital’s rule follows if F and G are
differentiable and the outer two limits above are equal. This version was used under
related circumstances in [21].

For μ ∈ (0,1) we now write

σμ(x) :=
μr(μx)

r(x)
(3.8)

and we introduce two generalised Beals-type conditions
(GB i+ ) limx↘0 ess inf(0,x)σμ < 1 for some μ ∈ (0,1)

and
(GB s+ ) limx↘0 ess sup(0,x)σμ < 1 for some μ ∈ (0,1) .

Note that these limits always exist, by (3.7) and its ess sup analogue.

THEOREM 3.4. If r ∈ L1(−1,1) then (GBs+ ) ⇒ (B0+ ) ⇒ (GBi+ ).

Proof. Assume (GB s+ ) and apply Lemma 3.3 with f (x) := μr(μx) and g(x) :=
r(x) . Then

limsup
ε↘0

∫ εμ
0 r∫ ε
0 r

= limsup
ε↘0

∫ ε
0 μr(μx)dx∫ ε

0 r(x)dx
� lim

ε↘0
ess sup(0,ε)σμ < 1.
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This yields (B0+ ). Now, assuming this condition, we apply Lemma 3.3 again to give

lim
ε↘0

ess inf(0,ε)σμ � liminf
ε↘0

∫ ε
0 μr(μx)dx∫ ε

0 r(x)dx
� limsup

ε↘0

∫ εμ
0 r∫ ε
0 r

which is less than 1 because (B0+ ) implies 0 � S0(t,x) < 1 in (2.8), since r > 0 a.e.
on (0,1) and t ∈ (0,1) . Thus (GB i+ ) must hold. �

Under an additional limit condition we can do better:

COROLLARY 3.5. Assume that r ∈ L1(−1,1) and that ess limx↘0σμ(x) exists
for some μ ∈ (0,1) . Then (GBs+ ), (B0+ ) and (GBi+ ) are all equivalent.

Proof. By assumption, limx↘0 ess inf(0,x)σμ = limx↘0 ess sup(0,x)σμ , so (GB s+ )
and (GB i+ ) are equivalent. The result then follows from Theorem 3.4. �

Conditions of this type on r are clearly weaker than (GB+). One may also give
more direct conditions on r , as follows.

COROLLARY 3.6. Assume that r ∈ L1(−1,1) and that r(x) = axα + o(xα) as
x ↘ 0 , for some real a(> 0) and α (> −1) . Then (GBs+ ), (B0+ ) and (GBi+ ) are
all equivalent.

Proof. By assumption, σμ(x) = μα+1 +o(1) as x ↘ 0 for some (in fact all) μ ∈
(0,1) so the result follows from Corollary 3.5. �

Again, the above conditions on r are clearly weaker than (B+). Note that all the
conditions above refer to x > 0. There is of course a corresponding theory involv-
ing analogous conditions (B0− ) (defined as for (B0+ ) but with x < 0) and (GB s− ),
(GB i− ) (with (0,x) above replaced by (x,0)) and x < 0).

3.3. Volkmer- and HELP-type conditions from 2.3 and 2.4

We start with the following

PROPOSITION 3.7. If r ∈ L1(−1,1) is odd then (V) ⇒ (EEN ) for p = 1
r , w = 1 .

Proof. Let y∈DN – see condition (EEN ) in 2.4 – and extend y to an even function
h on [−1,1] . Then h ∈ DV and

∫ 1

−1

1
|r| |h

′|2 = 2
∫ 1

0

1
r
|h′|2,

∫ 1

−1
|h|2 = 2

∫ 1

0
|h|2,

∫ 1

−1
|
(

h′

r

)′
|2 = 2

∫ 1

0
|
(

h′

r

)′
|2.
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If (V) holds then (2.3) must be satisfied for h , and hence, from the above equations,
(2.5) is satisfied for y , and so (EEN ) must hold. �

We remark that the above result is implicit in [36], but we are unaware of any
results in the converse direction. Our aim now is to establish such a result, moreover
with oddness of r weakened to SOD. To this end we first obtain the following estimates:

LEMMA 3.8. If r ∈ L1 is SOD then there are constants c1,c2 > 0 such that

∫ 1

0
|ga,b|2 |re| � c1

∫ 1

0
|ga,b|2 r, (3.9)

∫ 0

−1
|ga,b|2 |r| � c2

∫ 1

0
|ga,b|2 r (3.10)

for all 0 < a < b < 1 , where ga,b is defined in (2.4).

Proof. It follows from [9, Lemma 4.1] that there is a constant c1 > 0 such that∫ x

0
|re| � c1

∫ x

0
r

for all x ∈ (0,1) . Therefore the function ϕ(x) :=
∫ x
0 (c1 r− |re|) is nonnegative on

[0,1] . Then, since ϕ(0) = ga,b(1) = 0 and
(|ga,b|2

)′ � 0 on (0,1) , integration by parts
gives ∫ 1

0
|ga,b|2 (c1 r−|re|) = −

∫ 1

0

(|ga,b|2
)′ ϕ � 0,

and this is (3.9). Then we obtain

∫ 0

−1
|ga,b|2 |r| = −

∫ 0

−1
|ga,b|2 (ro + re) =

∫ 1

0
|ga,b|2 (ro − re)

=
∫ 1

0
|ga,b|2 (r−2re) � (1+2c1)

∫ 1

0
|ga,b|2 r,

which is (3.10). �
Let us define condition (EEab ) as for (EEN ) in 2.4 but with DN replaced by the set

of all restrictions of the functions ha,b in (2.4) to [0,1] with 0 < a < b < 1 – compare
the definition of (Vab ) in 2.3. Then we have the following

PROPOSITION 3.9. If r ∈ L1(−1,1) is SOD and p = 1
r , w = 1 then

(EEN ) ⇒ (EEab ) ⇒ (Vab ) ⇒ (V).

Proof. (EEN ) ⇒ (Eab ) is obvious so assume the latter. Note that by Lemma 3.8

∫ 1

−1
|h′a,b|2

1
|r| =

∫ 1

−1
|ga,b|2|r| � (1+ c2)

∫ 1

0
|ga,b|2r
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for all 0 < a < b < 1. Therefore, with c := (1+ c2)2 , (Eab ) implies

(∫ 1

−1
|h′a,b|2

1
|r|
)2

� c

(∫ 1

0
|h′a,b|2

1
r

)2

� ck

(∫ 1

0
|ha,b|2

)(∫ 1

0
|
(

h′a,b

r

)′
|2
)

� ck

(∫ 1

−1
|ha,b|2

)(∫ 1

−1
|
(

h′a,b

r

)′
|2
)

with a fixed constant k > 0. This establishes (Vab ), and its equivalencewith (V) follows
from [9, Theorem 4.3] and Theorem 3.1 (cf. Corollary 3.2). �

3.4. Bennewitz- and Parfenov-type conditions from 2.4 and 2.5

In this subsection we shall relate the conditions of 2.5 to each other and to further
conditions from Section 2. Most of these relations are either known or can be derived
from the previous results of the present section.

In [30] Parfenov gave equivalence of (P+), (P 1
2
+ ), (AP+) and the RBP for odd

r . This was partially extended to equivalence of (P+) and the RBP under a condition
between oddness and SOD of r ∈ L∞(−1,1) in [22]. Then these results were extended
to SOD r ∈ L∞(−1,1) , and also to include (V), in the main result of [9]. Actually, one
can extend this to r ∈ L1(−1,1) :

PROPOSITION 3.10. If r ∈ L1(−1,1) is SOD then the conditions of Theorems 2.3
and 2.7 are all equivalent.

Proof. All the steps in the proof of [9, Theorem 4.3] are valid for r ∈ L1 except
RBP ⇒ (V), and for this we can use Theorem 3.1 instead. �

In [21] and [30], certain connections and differences, respectively, were observed
between the conditions of 2.2 and 2.5, and they will be discussed below. As we saw
in 3.2, there is a connection between Beals-type conditions and (B0+ ), and we now
show that (B0+ ) and (Pc+ ), originally formulated within the different frameworks of
2.4 and 2.5, are also intimately connected.

PROPOSITION 3.11. For any r ∈ L1(−1,1) and c ∈ (0,1) , the conditions (Pc+ )
and (B0+ ) are equivalent.

Proof. Referring to (2.8), we see that (Pc+ ) with c ∈ (0,1) implies S0(t,x) � c <
1 for all x ∈ (0,1) , so (B0+ ) holds.

For the converse, we assume (B0+ ) and we note that �= 1 can be replaced by
< 1 in this condition for some d ∈ (0,1) since r > 0 a.e. on (0,1) and t ∈ (0,1) . If
(Pd+ ) fails for all d ∈ (0,1) , then there is a sequence εn ∈ (0,1) so that S0(t,εn)→ 1.
Without loss of generality we can assume εn → ε ∈ [0,1] . If ε > 0 then S0(t,ε) = 1
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so
∫ ε
tε r = 0, contradicting (1.2). If ε = 0 then we contradict (B0+ ). Thus (Pd+ ) does

in fact hold for some d ∈ (0,1) .
Finally, define r̃ as the odd extension of r|[0,1] , i.e.,

r̃(x) = r(x) if x > 0 and r̃(x) = −r(−x) if x < 0. (3.11)

Then (Pb+ ) for r and (Pb ) for r̃ coincide for any b ∈ (0,1) . Moreover (Pc ) and (Pd )
are equivalent for the odd function r̃ by Theorem 2.7 and Corollary 3.2, so, from the
previous paragraph, (Pc+ ) also holds. �

Of course there is a corresponding result involving (Pc− ) and the analogous con-
dition (B0− ) for x < 0 (see Corollary 3.6 et seq). In view of Proposition 3.10, then,
we have the following

COROLLARY 3.12. If r ∈ L1(−1,1) is SOD and c∈ (0,1) , then the RBP is equiv-
alent to each of the conditions (B0± ) and (Pc± ).

3.5. Equivalent statements

We are now ready to list as equivalent most of the statements in Section 2 for SOD
r ∈ L1(−1,1) .

THEOREM 3.13. If r ∈ L1(−1,1) is SOD, p = 1
r , w = 1 and c ∈ (0,1) , then the

RBP is equivalent to each of the following conditions:
(V), (Vab ), (AP) and (AP± ) from 2.3,
(EEN ) and (EEm ) from 2.4 and (EEab ) from Proposition 3.9,
(B0± ) from 2.4 and 3.2, and
(P), (P± ), and (Pc ) and (Pc± ) from 2.5.

Proof. In view of Propositions 3.9 and 3.10 and Corollary 3.12, it is enough to
prove (Pc+ ) ⇒ (EEN ) since (EEN ) ⇒ (V) follows from Proposition 3.9.

To this end consider again the odd extension r̃ of (3.11). Then (Pc+ ) for r implies
the same condition for r̃ . Consequently, Proposition 3.10 gives (V) for the odd function
r̃ . By Proposition 3.7 this implies (EEN ) for r̃ , and hence (EEN ) for r . �

In order to include Beals-type conditions, we appeal to the results of 3.2.

COROLLARY 3.14. If r ∈ L1(−1,1) is SOD, then
(i) (GBs+ ) or (GBs− ) ⇒ RBP ⇒ (GBi+ ) and (GBi− )
(ii) (GBs± ) and (GBi± ) are each equivalent to the conditions of Theorem 3.13 if,

in addition, σμ(x) of (3.8) has an essential limit as x → 0± for some μ ∈ (0,1) (for
example, if r(x) = asgn(x)|x|α + o(|x|α) as x → 0± , for some real a (> 0 ) and α
(> −1 )).

This follows from Theorems 3.4 and 3.13 and Corollaries 3.5 and 3.6, and im-
proves previous results in the literature in various ways. For example, [21] contains
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equivalence of (GB+) and the RBP under some extra limit conditions on r(x) and r′(x)
as x → 0.

We conclude this section by noting that not only are some of the conditions of 2.4
helpful in the study of the RBP, but the converse is also true. For example, we have

COROLLARY 3.15. If r ∈ L1(−1,1) is SOD, then (EEM ) with p = 1
r , w = 1 is

equivalent to the combination of (B1+ ), (B2+ ) and any one of the conditions in Theo-
rem 3.13.

In particular, (EEM ) is equivalent to (EEN ) (which takes the form of (EEM ) but
for a restricted class of functions) together with the extra conditions (B1+ ) and (B2+ ).

Moreover, counterexamples to the RBP must also fail the other conditions of The-
orem 3.13. For example, let an := 1

(2n)! , bn := 1
(2n−1)! for each n ∈ N . For x ∈ (0,1]

put

r(x) :=
{

x if x ∈ [an,bn], n ∈ N,
1 otherwise

and take the odd extension r(x) := −r(−x) for x ∈ [−1,0) . Obviously, r ∈ L∞(−1,1)
is odd, hence SOD, and by [2, Example 1] the RBP fails. (A similar example was given
in [20]). Thus we have the following

COROLLARY 3.16. For the preceding function r , condition (EEN ) is not valid,
i.e., for all k > 0 there is a function h ∈ DN such that(∫ 1

0
|h′|2 1

r
dx

)2

> k

(∫ 1

0
|h|2dx

)(∫ 1

0
|
(

h′

r

)′
|2dx

)
.

4. Discussion

In the preceding sections we have reviewed some of the more recent literature on
a Riesz basis property of (1.1). We have also provided a platform for the equivalence of
most of these conditions, some of the implications involved being new, at least to our
knowledge. This platform includes the SOD condition from the start of Section 3, and
we shall next discuss some aspects of this condition in its own right.

We start with the following

LEMMA 4.1. If r is SOD then so is R, where

R(x) :=
{

r(x) x ∈ (0,1)
ro(x) x ∈ (−1,0) .

Proof. Note that R satisfies (1.2), i.e., R(x) = r(x) > 0 and R(−x) = ro(−x) < 0
for x ∈ (0,1) . We consider the even and odd parts of R for x > 0:

Re(x) =
1
2

(r(x)+ ro(−x)) =
1
2
re(x),

Ro(x) =
1
2

(r(x)− ro(−x)) = ro(x)+
1
2
re(x).
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Since r is SOD, we have for all x ∈ (0,ε)
∫ x

0
|Re| � ρ (ε)

2

∫ x

0
ro,

∫ x

0
Ro �

(
1− ρ(ε)

2

)∫ x

0
ro

for some ρ < 1 satisfying ρ (ε) = o
(
ε1/2

)
. Thus

∫ x

0
|Re| � ρ (ε)

∫ x

0
Ro

which implies that R is SOD. �

We shall use this result in two ways, first to construct SOD examples via one-sided
perturbations of odd functions. Indeed if r∗ is odd and s is even on (−1,1) , and

∫ x

0
|s| � ρ (ε)

∫ x

0
r∗ (4.1)

for x ∈ (0,ε) with ρ as above, then r∗ + s is SOD on (−1,1) by definition. Thus, by
Lemma 4.1, the function R given by R = r∗ on (−1,0) and R = r∗ + s on (0,1) must
also be SOD. It is enough here if s is defined only on (0,1) , and one can also have an
independent perturbation of r∗ on (−1,0) .

EXAMPLE 4.2. Let r∗ = arα with a > 0 and α >−1 – see (1.6) – and s(x) = bxβ

for x ∈ (0,1) , |b| � a and β > α + 1
2 . Then (4.1) holds, so the function R above is

SOD.

Similarly, any two-sided perturbation of the form arα(x) + o(|x|α+ 1
2 ) is SOD.

Note that Beals-type functions as in (2.2) are included, being of the form arα(x) +
O(|x|α+1) .

In view of the restriction α > − 1
2 in (2.2), such perturbing terms s are bounded,

but it is easy to make unbounded versions, even if r∗ is bounded, i.e., if α � 0.

EXAMPLE 4.3. Let In = (2−n,21−n) , and as before r∗ = arα with a �= 0. Then∫
In r∗ = b2−n(α+1) for some b �= 0. For each n , choose a subinterval Jn of In with

length 2−nγ where γ > α+2, and let s = 2n/2 on Jn and s = 0 elsewhere on In . Then
s is unbounded (but integrable) on (0,1) and (4.1) holds, so R as above is SOD.

Our second use of Lemma 4.1 is to connect the above perturbation approach with
the RBP. This also sheds light on the additional “information” allowing a one-sided
condition like (EEN ) to predict two-sided properties like the RBP for a non odd weight
r .

THEOREM 4.4. Assume r ∈ L1(−1,1) is SOD. Then the RBP holds for r if and
only if this is true for the odd part ro of r . In other words, the RBP holds for an odd
weight function if and only if it holds for all SOD perturbations.
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Proof. Theorem 3.13 and Lemma 4.1 allow us to conclude the following chain of
equivalences:

RBP for r

⇔ (Pc+) for r ⇔ (Pc+) for R ⇔ (Pc−) for R ⇔ (Pc−) for ro

⇔ RBP for ro �

As an example, we have

EXAMPLE 4.5. Let r∗ and s be as in Examples 4.2 and 4.3 respectively, and write
s∗ for the even extension of s over (−1,1) . Then the RBP holds for r∗ + s∗ .

Of course, many weight functions r admit the RBP without being SOD. The fol-
lowing is a more explicit version of Parfenov’s final example in [30, Section 5].

EXAMPLE 4.6. Fix α > −1 and let dk = (k + 1)−(α+2) , xk = 1/k! for k ∈ N .
Evidently dk > dk+1 and it is not difficult to show that

dk <
Rk+1

(k+1)Rk
where Rk :=

∫ xk

xk+1

rα

and rα is as above.
From the above properties of dk we obtain

dkRk

(1−dk+1)Rk+1
<

1
k
→ 0 as k → ∞. (4.2)

Now define the function ϕ by

ϕ(s) :=

⎧⎪⎪⎨
⎪⎪⎩

d2k s ∈ (x2k+1,x2k],
1−d2k−1 s ∈ (x2k,x2k−1],
d2k−1 s ∈ [−x2k−1,−x2k),
1−d2k s ∈ [−x2k,−x2k+1).

Then r := ϕrα ∈ L1(−1,1) , and one can argue as in [30, Section 5] to show that r satis-
fies (P), but, because of (4.2), that it fails (AP+) with ak := x2k+1, bk := x2k . Therefore,
by Theorem 3.13, the RBP holds for r , which cannot be SOD.

Moreover, if a given weight function r satisfies (GB+) then the RBP holds with no
restriction (other than negativity and integrability) on r(x) for x < 0. For example, we
can combine rα(x) for x > 0 with the weight function from Corollary 3.16 for x < 0.
Then (GB+), and hence RBP and all right sided conditions from Theorem 3.13, are
satisfied, whereas all left sided conditions, and hence SOD, fail to hold. Also several of
the steps leading to Theorem 3.13 are valid under weaker assumptions than SOD, some
even under WOD (see [9]). Thus relaxation of SOD can be added to the list in Section
1 of interesting areas of possible further research into the RBP.
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