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Abstract. Let A,B,C,D be four complex matrices, where D ∈ Cm×m and A ∈ Cn×n is a normal
matrix. Let z0 be an fixed eigenvalue of A . We find the distance (with respect to the 2-norm)
from D to the set of matrices X ∈ Cm×m such that z0 is a multiple eigenvalue of the matrix(

A B
C X

)
.

We also give an expression for one of the closest matrices.

1. Introduction

This paper is highly inspired by Malyshev [12] and Wei [14]. The Malyshev’s
paper is concerning to the distance from a matrix to the nearest matrix with a multiple
eigenvalue (Wilkinson’s problem). Wei solved the problem of finding the nearest matrix
D′ to D which reduces the rank of

(
A B
C D

)
to a specific integer.

We denote by ‖ ·‖ the matrix spectral norm or 2-norm. The spectrum of a square
complex matrix M is denoted by Λ(M) . An important problem that has been studied
for some decades is the description of the possible eigenvalues and Jordan canonical
forms of square complex matrices partitioned in the shape(

A B
C D

)

when some of the blocks A,B,C,D are fixed and the remaining blocks vary. Relevant
results are due to Oliveira, Sá, Silva, Thompson, Wimmer and Zaballa, among others;
see the survey paper by Cravo [4]. In [1], Beitia et al. studied the problem of analyzing
the possible Jordan forms of the matrix

(
A B
C′ D′

)
when A and B are fixed and C′ and D′

are close to C and D , respectively.
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The problem of the description of the possible eigenvalues and Jordan forms of
the matrices of the form (

A B
C X

)
,

where A ∈ Cn×n,B ∈ Cn×m,C ∈ Cm×n are fixed and X varies in Cm×m , has been
particularly difficult. There are few results about it; see Cravo [4], problem (P7) in
pages 2520 and 2527. Moreover, we know no results on the Jordan forms of matri-
ces

(
A B
C D′

)
when D′ is close to D ∈ Cm×m . When all the eigenvalues of the matrix

G :=
(

A B
C D

)
are simple, the problem of finding the distance, d(G) , from D to the set of

matrices X ∈ Cm×m such that
(

A B
C X

)
has a multiple eigenvalue, is a kind of structured

Wilkinson’s problem. This problem has been addressed by means of the structured
ε -pseudospectrum, defined as

⋃
X∈Cm×m

‖X−D‖�ε

Λ
(

A B
C X

)
;

see Du and Wei [5], where a characterization of the structured ε -pseudospectrum is
given. Other characterizations can be seen in Hinrichsen and Kelb [9] and [6].

For z0 ∈ C , if we could know the minimum, f (z0) , of the set

{‖X −D‖ : X ∈ C
m×m and z0 is a multiple eigenvalue of

(
A B
C X

)},
we would have

min
z0∈C

f (z0) = d(G).

In [8] the authors found an expression for f (z0) in terms of a singular value maxi-
mization, when z0 /∈ Λ(A) , A being any matrix of Cn×n . In the current paper we
address this problem when A is a normal matrix and z0 ∈ Λ(A) . The solution obtained
can be easily extended to the case when z0 is a semisimple (or nondefective) eigenvalue
of A (normal or not). When z0 is not an eigenvalue of A the solution of the problem
involves matrices of polynomials in a real variable t and the inverse of square nonsin-
gular matrices; the case when z0 is an eigenvalue of A requires matrices of rational
functions in t with a pole at t = 0 and the Moore-Penrose inverse instead.

If λ0 ∈ Λ(M) , the algebraic multiplicity of λ0 is denoted by m(λ0,M) . For a
matrix N ∈ Cp×q we denote by σ1(N) � σ2(N) � · · · its singular values, and by N† its
Moore–Penrose inverse. For a matrix X , we denote by Im(X) and Ker(X) its image
and kernel subspaces. By O we denote the zero matrix of adequate size.

Moreover, as in [8], we can assume without loss of generality that z0 = 0. Thus
the problem we are going to solve, can be set as follows: Find the minimum

min
X∈C

m×m

m
(
0,
(

A B
C X

))
�2

‖X −D‖. (1)

where A ∈ C
n×n is a singular normal matrix B ∈ C

n×m,C ∈ C
m×n and D ∈ C

m×m .
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If for all X ∈Cm×m it happens that m
(
0,
(

A B
C X

))
� 1, we agree to say that the minimum

distance (1) is infinite. Note that this case is possible considering A = O ∈ Cn×n and
B = C = In for example, since for each X ∈ Cn×n the matrix(

O In
In X

)

is nonsingular. In Section 4, the cases in which this distance is infinite will be deter-
mined.

To simplify we denote by Ln,m the Cartesian product Cn×n ×Cn×m ×Cm×n . For
a triple of matrices α := (A,B,C) ∈ Ln,m , and for X ∈ Cm×m we denote

M(α,X) :=
(

A B
C X

)
.

A lower bound of the minimum (1) was given in [8]. We will remember the nota-
tions that appear in [8, (11) and (12)] to recall this bound, and for their use in this paper:
Given a triple α := (A,B,C) ∈ Ln,m and a matrix D ∈ Cm×m , we define for t ∈ R ,

ρα(t) := rank

(
A tIn B O
O A O B

)
+ rank

⎛
⎜⎜⎝

A tIn
O A
C O
O C

⎞
⎟⎟⎠− rank

(
A tIn
O A

)
,

pα(t) := 2n+2m−2−ρα(t), (2)

Mα(t) :=

(
I2n−

(
A tIn
O A

)(
A tIn
O A

)†
)(

B O
O B

)
(3)

Nα(t) :=
(

C O
O C

)(
I2n−

(
A tIn
O A

)†(
A tIn
O A

))
(4)

Sα2 (t,D) :=
(
I2m−Nα(t)Nα (t)†)

×
((

D tIm
O D

)
−
(

C O
O C

)(
A tIn
O A

)†(
B O
O B

))

× (I2m −Mα(t)†Mα(t)
)
. (5)

We agree to write supt�0 f (t) =∞ if the function f : [0,∞)→ R is not bounded above.
Then the announced lower bound of (1) is given below.

PROPOSITION 1. ([8], Proposition 23)

sup
t�0

σpα (t)+1
(
Sα2 (t,D)

)
� min

X∈C
m×m

m(0,M(α ,X))�2

‖X −D‖. (6)
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where

σ j
(
Sα2 (t,D)

)
:=

{
∞ if j < 1,

0 if j > 2m.

The aim of this paper is to prove that when A is normal and singular, the inequality (6)
becomes an equality. Specifically, we prove the following result.

THEOREM 2. Let α := (A,B,C)∈ Ln,m be a triple of matrices, where A is normal
and singular. Let D ∈ Cm×m . With the preceding notations, we have

sup
t>0

σpα (t)+1
(
Sα2 (t,D)

)
= min

X∈C
m×m

m(0,M(α ,X))�2

‖X −D‖. (7)

REMARK 1. Let us note that in this theorem we put t > 0 instead of t � 0. In
fact, once (7) is proved then by (6) we have

σpα (0)+1
(
Sα2 (0,D)

)
� sup

t>0
σpα (t)+1

(
Sα2 (t,D)

)
.

Hence,
sup
t�0

σpα (t)+1
(
Sα2 (t,D)

)
= sup

t>0
σpα (t)+1

(
Sα2 (t,D)

)
.

This work is organized as follows. In Section 2, we give a simplified expression for
Sα2 (t,D) , and we reformulate Theorem 2 in Theorem 5. In Section 3, we introduce the
auxiliary results we are going to use in this work. We analyze the asymptotic behavior
of the singular values of Sα2 (t,D) , both for t → 0+ and t → ∞ , and we establish the
existence of the limits

lim
t→0+

σpα (t)+1
(
Sα2 (t,D)

)
and lim

t→∞
σpα (t)+1

(
Sα2 (t,D)

)
,

in Section 4. We prove Theorem 5 in the following sections until the end of Section 8.
Namely, in Section 5, we calculate the minimum (1) when the supremum

sup
t>0

σpα (t)+1
(
Sα2 (t,D)

)
is attained at a point t0 such that 0 < t0 < ∞ and we prove equality (7). In Section 6,
we study the case when

sup
t>0

σpα (t)+1
(
Sα2 (t,D)

)
= lim

t→∞
σpα (t)+1

(
Sα2 (t,D)

)
,

and, in Sections 7 and 8, we consider the case when

sup
t>0

σpα (t)+1
(
Sα2 (t,D)

)
= lim

t→0+
σpα (t)+1

(
Sα2 (t,D)

)
,

finishing the proof of Theorem 5. In Section 9, we give a more general result that falls
within the scope of this article. This is the case in which z0 is a semisimple eigenvalue
of a not necessarily normal matrix A .
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2. Reformulation of the main result

We denote by M∗ the conjugate transpose of each complex matrix M . In this
section we are going to reformulate Theorem 2, simplifying the expression of Sα2 (t,D)
for t > 0 when the triple α undergoes a transformation of unitary similarity given by
the unitary matrix U that diagonalizes A . For this purpose we need some properties of
the Moore-Penrose inverse, which can be seen in [2, Proposition 6.1.6, p. 225].

LEMMA 3. Given a matrix A ∈ Cp×q , then we have
(1) Ip−AA† and Iq−A†A are orthogonal projectors.
(2) If S1 ∈ Cp×p and S2 ∈ Cq×q are unitary, then (S1AS2)† = S∗2A

†S∗1 .

LEMMA 4. Let U ∈ Cn×n be a unitary matrix and D ∈ Cm×m . Then for the triple
of matrices β := (U∗AU,U∗B,CU)∈ Ln,m and each t > 0 we have Sα2 (t,D)= Sβ2 (t,D) .

Proof. To simplify this demonstration, we introduce the following notations:

L(t) =
(

D tIm
O D

)
, V =

(
U O
O U

)
, F(t) =

(
A tIn
O A

)
, F1(t) = V ∗F(t)V,

G =
(

B O
O B

)
, G1 = V ∗G, H =

(
C O
O C

)
, H1 = HV.

First, as the matrix V is unitary, by Lemma 3, we deduce that (V ∗F(t)V )† =
V ∗F(t)†V . Hence, from (3) and (4), we obtain

Mβ (t) = (I2n−F1(t)F1(t)†)G1 = (I2n−V ∗F(t)VV ∗F(t)†V )V ∗G = V ∗Mα(t),
Nβ (t) = H1(I2n−F1(t)†F1(t)) = HV (I2n−V ∗F(t)†VV ∗F(t)V ) = Nα(t)V.

Similarly, as the matrix V is unitary, we see that (V ∗Mα(t))† = Mα(t)†V and (Nα(t)V )†

= V ∗Nα(t)† . Therefore,

I2m−Nβ (t)Nβ (t)† = I2m−Nα(t)Nα(t)†,
I2m−Mβ (t)†Mβ (t) = I2m−Mα(t)†Mα(t).

Finally, from H1F1(t)G1 = HF(t)G , by (5), we infer that

Sβ2 (t,D) =
(
I2m−Nα(t)Nα(t)†)(L(t)−HF(t)G)

(
I2m −Mα(t)†Mα(t)

)
= Sα2 (t,D). �

REMARK 2. Let us note that if α = (A,B,C) and β = (U∗AU,U∗B,CU) are two
triples of matrices of Ln,m with U unitary, then 0 is a multiple eigenvalue of M(α,X)
if and only if it is a multiple eigenvalue of M(β ,X) . Hence, by the previous lemma, in
the proof of Theorem 2 there is no loss of generality if we consider the triple of matrices
β .
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Now, we are going to apply Lemma 4 to compute Sα2 (t,D) . As the matrix A is
normal, let U ∈ Cn×n be a unitary matrix such that

U∗AU =
(

O O
O Σ

)
,

where Σ ∈ Cn2×n2 ,1 � n2 < n , is a invertible diagonal matrix. So, it is understood that
A �= O ; the case when A = O will be considered later in Remark 4. Let us consider the
partition n = n1 +n2 in block matrices:

(
U∗AU U∗B
CU D

)
=

⎛
⎝ O O B1

O Σ B2

C1 C2 D

⎞
⎠ , B1 ∈ C

n1×m,C1 ∈ C
m×n1 . (8)

By Lemma 4, Sα2 (t,D) = Sβ2 (t,D) , where β := (U∗AU,U∗B,CU) . We will compute

Sβ2 (t,D) for t > 0.
First, let us call

F(t) :=

⎛
⎜⎜⎝

O O tIn1 O
O Σ O tIn2

O O O O
O O O Σ

⎞
⎟⎟⎠ ;

therefore,

F(t)† =

⎛
⎜⎜⎝

O O O O
O Σ−1 O −tΣ−2

t−1In1 O O O
O O O Σ−1

⎞
⎟⎟⎠ ,

and

F(t)F(t)† =

⎛
⎜⎜⎝

In1 O O O
O In2 O O
O O O O
O O O In2

⎞
⎟⎟⎠ , F(t)†F(t) =

⎛
⎜⎜⎝

O O O O
O In2 O O
O O In1 O
O O O In2

⎞
⎟⎟⎠ .

Hence, from (3) and (4),

Mβ (t) =

⎛
⎜⎜⎝

O O
O O
O B1

O O

⎞
⎟⎟⎠ , Nβ (t) =

(
C1 O O O
O O O O

)
.

Consequently,

I2m−Nβ (t)Nβ (t)† =
(

Im −C1C
†
1 O

O Im

)
, I2m−Mβ (t)†Mβ (t) =

(
Im O
O Im−B†

1B1

)
.

Last, (
C1 C2 O O
O O C1 C2

)
F(t)†

⎛
⎜⎜⎝

B1 O
B2 O
O B1

O B2

⎞
⎟⎟⎠=

(
C2Σ−1B2 −tC2Σ−2B2

t−1C1B1 C2Σ−1B2

)
,
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From the three last equalities and (5) we deduce that for t > 0,

Sβ2 (t,D) =
(

(Im −C1C
†
1)(D−C2Σ−1B2) t(Im −C1C

†
1)(Im +C2Σ−2B2)(Im −B†

1B1)
−t−1C1B1 (D−C2Σ−1B2)(Im −B†

1B1)

)
.

Thus, by Lemma 4, it follows that for t > 0

Sα2 (t,D) =
(

PCL1 tPCL2PB

−t−1C1B1 L1PB

)
, (9)

where PC := Im−C1C
†
1 , PB := Im−B†

1B1 , L1 := D−C2Σ−1B2 and L2 := Im+C2Σ−2B2 .
However, from this point on, in order to simplify the demonstration, we only consider
the expression of Sα2 (t,D) given in (9). Moreover, by Remark 2, we can assume the
triple α = (A,B,C) is in the form (U∗AU,U∗B,CU) that was given in (8). From the
definition of pα(t) given in (2) we infer that

pα(t) = 2m+n1−2− rank(B1)− rank(C1)

for 0 < t < ∞ .
From now on, we will abbreviate Sα2 (t,D) by S2(t) . With these considerations,

when A �= O , Theorem 2 can be reformulated in the following way.

THEOREM 5. Let α = (A,B,C) ∈ Ln,m be a triple of matrices

A :=
(

O O
O Σ

)
, B :=

(
B1

B2

)
, C := (C1,C2),

with B1 ∈ Cn1×m , C1 ∈ Cm×n1 and Σ ∈ Cn2×n2 an invertible diagonal matrix, n1 � 1 .
Let us define

h := 2m+n1−1− rank(B1)− rank(C1). (10)

Given D ∈ Cm×m . For t > 0 let us also define

S2(t) :=
(

PCL1 tPCL2PB

−t−1C1B1 L1PB

)
, (11)

where

PC := Im −C1C
†
1 , PB := Im−B†

1B1, (12)

and

L1 := D−C2Σ−1B2, L2 := Im +C2Σ−2B2. (13)

Then

sup
t>0

σh (S2(t)) = min
X∈Cm×m

m(0,M(α ,X))�2

‖X −D‖.
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REMARK 3. Suppose there exists a t1 > 0 such that σh
(
S2(t1)

)
= 0, equivalently

rank
(
S2(t1)

)
� h−1. By Section 4 of [8] we see that

rank

⎛
⎜⎜⎝

A t1In B O
O A O B
C O D t1Im
O C O D

⎞
⎟⎟⎠= rank

⎛
⎜⎜⎝

A B t1In O
C D O t1Im
O O A B
O O C D

⎞
⎟⎟⎠

= ρα(t1)+ rank
(
S2(t1)

)
� ρα(t1)+h−1.

But, as
h−1 = pα(t1) = 2m+2n−2−ρα(t1),

we infer that

rank

⎛
⎜⎜⎝

A B t1In O
C D O t1Im
O O A B
O O C D

⎞
⎟⎟⎠� 2m+2n−2.

As it can be seen in [12, pages 444–445], this inequality implies that 0 is a multiple
eigenvalue of M(α,D) . Thus, by Proposition 1, Theorem 5 is already proved in this
case. Therefore, from now on we will assume that σh

(
S2(t)

)
> 0 for t > 0 .

REMARK 4. When the normal matrix A is the n×n zero matrix, the statement of
Theorem 5 is reduced to

sup
t>0

σk

(
PCD tPCPB

−t−1CB DPB

)
= min

X∈Cm×m

m(0,M(α ,X))�2

‖X −D‖, (14)

where k := 2m+n−1− rank(B)− rank(C) . The proof of (14) might be done following
similar reasoning to the A �= O case, replacing B1 by B , C1 by C , L1 by D , L2 by Im ,
and removing Σ,B2 and C2 .

3. Auxiliary results

In this section, we are going to introduce some results that will be used in this
work. In the first one, we give some properties of the Moore-Penrose inverse, which
can be seen in [2, Proposition 6.1.6, page 225; Fact 6.4.8, page 235] and [3].

LEMMA 6. Let A ∈ Cp×q be a matrix. Then
(1) Ker(Ip−AA†) = Im(A) , Im(Ip−AA†) = Ker(A∗) = Ker(A†) .
(2) Ker(Iq−A†A) = Im(A∗) = Im(A†) , Im(Iq −A†A) = Ker(A) .
(3) x ∈ Im(A) if and only if x = AA†x; x ∈ Im(A∗) if and only if x∗ = x∗A†A.
(4) If rank(A) = p, then AA† = Ip ; if rank(A) = q, then A†A = Iq .
(5) Let F ∈ Cq×r . If rank(A) = rank(F) = q, then (AF)† = F†A† .

With this lemma and Lemma 3, we get the following properties for the matrices
PC = (Im −C1C

†
1) and PB = (Im −B†

1B1) , defined in (12).
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LEMMA 7. (1) PC and PB are orthogonal projectors.
(2) Ker(PC) = Im(C1) , Im(PC) = Ker(C∗

1) = Ker(C†
1) .

(3) Ker(PB) = Im(B∗
1) = Im(B†

1) , Im(PB) = Ker(B1) .
(4) If rank(C1) = rank(B1) = n1 , then (C1B1)† = B†

1C
†
1 .

We will need in Sections 6 and 8 the following lemma.

LEMMA 8. ([8], Lemma 33) Let {tk}∞k=1 be a sequence of real numbers which
tends to ∞ when k → ∞ . Let G ∈ C

p×p be a matrix and let xk,yk ∈ C
p×1 , k = 1,2, . . .

be vector sequences such that

(i) limk→∞Gyk = 0,

(ii) supk=1,2,...‖tk(xk)∗G‖ � T < ∞ , where T is a positive constant.

Then

lim
k→∞

tk(xk)∗Gyk = 0.

With respect to the asymptotic behavior of the eigenvalues of matrix functions, we
have the following result.

LEMMA 9. ([11], Lemma 5) Let F(t) = G(t) + t−1H ∈ C
p×p where G(t) is a

Hermitian matrix function analytic on an open interval J ⊂ R around 0 , and H is
a constant Hermitian matrix such that rank(H) = r . Assume that H has a spectral
decomposition

H = (V1,V2)
(
Λr O
O O

)
(V1,V2)∗,

with unitary V = (V1,V2) and Λr ∈ Rr×r is a diagonal matrix with nonzero diagonal
entries. Then as t approaches 0 , r eigenvalues of F(t) tend in absolute value to ∞ ,
and the rest to the eigenvalues of V ∗

2 G(0)V2 .

Hence we will deduce the following result for singular values, which will be used
in Section 4.

LEMMA 10. Let K(t) = L(t)+ t−1M ∈ Cp×p , where L(t) is an analytic matrix
function on an open interval J ⊂ R around 0 and rank(M) = s. Consider the singular
value decomposition of M

M = (P1,P2)
(
Σs O
O O

)
(Q1,Q2)∗,

with unitary (P1,P2) and (Q1,Q2) and Σs ∈ Rs×s . Then as t approaches 0 , s singular
values of K(t) tend to ∞ , and the rest to the singular values of the matrix P∗

2 L(0)Q2 .
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Proof. Observe that in the matrix function, valued in C2p×2p ,

N(t) =
(

O K(t)
K∗(t) O

)
=
(

O L(t)
L∗(t) O

)
+ t−1

(
O M
M∗ O

)
= R(t)+ t−1S,

the matrices R(t) and S are Hermitian, R(t) is analytic around 0 and rank(S) = 2s .
Let us note that, by the Jordan-Wielandt lemma [13, Theorem 4.2], the eigenvalues of
N(t) are

±σ1(K(t)), . . . ,±σp(K(t)).

Consider the unitary matrix (V1,V2) ∈ C
2p×2p , with

V1 =
1√
2

(
P1 P1

Q1 −Q1

)
∈ C

2p×2s, V2 =
1√
2

(
P2 P2

Q2 −Q2

)
∈ C

2p×2(p−s).

Then

S = (V1,V2)

⎛
⎝Σs O O

O −Σs O
O O O

⎞
⎠(V1,V2)∗,

is a spectral decomposition of S . Hence, by Lemma 9 as t → 0 we deduce that 2s
eigenvalues of N(t) tend in absolute value to ∞ ; and the rest to the eigenvalues of the
matrix

V ∗
2 R(0)V2 =

1
2

(
Q∗

2L
∗(0)P2 +P∗

2 L(0)Q2 Q∗
2L

∗(0)P2−P∗
2 L(0)Q2

−Q∗
2L

∗(0)P2 +P∗
2 L(0)Q2 −Q∗

2L
∗(0)P2−P∗

2 L(0)Q2

)
.

Taking the unitary matrix

X =
1√
2

(−I −I
−I I

)
,

we deduce that the eigenvalues of V ∗
2 R(0)V2 are the eigenvalues of

X∗V ∗
2 R(0)V2X =

(
O P∗

2 L(0)Q2

(P∗
2 L(0)Q2)∗ O

)
,

that is, ±σ1(P∗
2 L(0)Q2), . . . ,±σp−s(P∗

2 L(0)Q2) . �

To conclude this section, we give some results about the singular values of matrix
functions of a real variable. The first one can be seen in [10, Theorem 4.3.17, page 442
and Corollary 4.3.20, page 443].

LEMMA 11. Let F(t) ∈ Cq×q be an analytic matrix function on an open set Ω⊂
R . Then, there exist unitary matrix functions U(t),V (t) and a diagonal matrix function
Σ(t) = diag(σ̃1(t), σ̃2(t), . . . , σ̃p(t)) ∈ Rq×q , all of which are analytic on Ω , such that
for t ∈Ω ,

U(t)∗F(t)V (t) = Σ(t).

Moreover
σ̃ ′

i (t) = Re
(
u∗i (t)F

′(t)vi(t)
)
.
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Another result, which will be used in Section 5, is the following one [10, Proposi-
tion 4.3.21, page 443].

LEMMA 12. Let Ω be an open subset of R and F : Ω → Cm×n be an analytic
matrix function on Ω . If the function σi

(
F(t)

)
has a positive local maximum (or mini-

mum) at t0 ∈Ω , then there exist a pair of singular vectors u∈ Cm×1, v∈Cn×1 of F(t0)
corresponding to σi

(
F(t0)

)
such that

Re
(
u∗F ′(t0)v

)
= 0.

4. Asymptotic behavior of the singular values

In this section, we analyze the asymptotic behavior of the singular values of the
matrix function S2(t) defined in (11), both when t → 0+ and t → ∞ . We start with the
t → 0+ case.

LEMMA 13. Let S2(t) be the matrix function in (11), and assume that
s = rank(C1B1) . Then as t → 0+ , the first s singular values of S2(t) tend to ∞ and the
remaining 2m− s ones satisfy

lim
t→0+

σs+k (S2(t)) = σk

(
PCL1(Im − (C1B1)†C1B1) O

O (Im −C1B1(C1B1)†)L1PB

)
.

for k = 1, . . . ,2m−s. If rank(B1) = rank(C1)= n1 , then as t → 0+ , the first n1 singular
values of S2(t) tend to ∞ , and the remaining 2m−n1 ones satisfy

lim
t→0+

σn1+k (S2(t)) = σk

(
PCL1PB O

O PCL1PB

)
for k = 1, . . . ,2m−n1.

REMARK 5. Note that the block PCL1PB in the last matrix is repeated.

Proof. First, by (11), we have

S2(t) =
(

PCL1 tPCL2PB

O L1PB

)
+ t−1

(
O O

−C1B1 O

)
= L(t)+ t−1M,

with L(t) analytic in a neighborhoodof 0 and rank(M)= rank(C1B1)= s . Let (U1,U2) ,
(V1,V2) be unitary matrices of Cm×m , with U2,V2 ∈ Cm×(m−s) , such that

(U1,U2)∗(−C1B1)(V1,V2) =
(
Σs O
O O

)
, (15)

with Σs ∈ Rs×s , gives us the singular value decomposition of −C1B1 . Therefore, con-
sidering the unitary matrices

P :=
(

O O Im
U1 U2 O

)
, Q :=

(
V1 V2 O
O O Im

)
,
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we deduce that

P∗MQ =
(
Σs O
O O

)
.

Calling

P2 :=
(

O Im
U2 O

)
, Q2 :=

(
V2 O
O Im

)
,

by Lemma 10 we see that when t → 0+ , the first s singular values of S2(t) tend to ∞ ,
and the rest to the singular values of

P∗
2 L(0)Q2 =

(
O U∗

2 L1PB

PCL1V2 O

)
.

Hence, for k = 1,2, . . . ,2m− s ,

lim
t→0+

σs+k (S2(t)) = σk

(
PCL1V2 O

O U∗
2 L1PB

)
. (16)

By (15), −C1B1V1 = U1Σs and −(C1B1)∗U1 =V1Σs , from Lemma 6(1)(2) we get
first

U1 = −C1B1V1Σ−1
s ⇒ Im(U1) ⊂ Im(C1B1) = Ker(Im −C1B1(C1B1)†),

V1 = −(C1B1)∗U1Σ−1
s ⇒ Im(V1) ⊂ Im((C1B1)∗) = Ker(Im − (C1B1)†C1B1).

But, given that Im −C1B1(C1B1)† and Im − (C1B1)†C1B1 are orthogonal projectors in
virtue of Lemma 3(1), we infer that

U∗
1 (Im −C1B1(C1B1)†) = O, (Im− (C1B1)†C1B1)V1 = O. (17)

Similarly, from (15) and Lemma 6(1)(2), we see that

(C1B1)∗U2 = O ⇒ Im(U2) ⊂ Ker((C1B1)∗) = Im(Im −C1B1(C1B1)†),
C1B1V2 = O ⇒ Im(V2) ⊂ Ker(C1B1) = Im(Im − (C1B1)†C1B1).

Thus
U∗

2 (Im −C1B1(C1B1)†) =U∗
2 , (Im − (C1B1)†C1B1)V2 = V2.

Consequently, with (17) and these two last equations, we deduce that

(O,PCL1V2) = PCL1(Im − (C1B1)†C1B1)(V1,V2),(
O

U∗
2 L1PB

)
=
(

U∗
1

U∗
2

)
(Im −C1B1(C1B1)†)L1PB.

Substituting these equations in (16) we prove the lemma in the first case.

To prove the lemma in the rank(B1) = rank(C1) = n1 case, as s = rank(C1B1) =
n1 , it is sufficient to see that Im −C1B1(C1B1)† = PC , Im − (C1B1)†C1B1 = PB . In fact,
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given that rank(B1) = rank(C1) = n1 , then C†
1C1 = B1B

†
1 = In1 by Lemma 6(4). And

(C1B1)† = B†
1C

†
1 by Lemma 7(4). Hence

Im −C1B1(C1B1)† = Im−C1B1B
†
1C

†
1 = Im −C1C

†
1 = PC,

Im − (C1B1)†C1B1 = Im−B†
1C

†
1C1B1 = Im−B†

1B1 = PB. �

For the t → ∞ case, we have the following result.

LEMMA 14. Let S2(t) be the matrix function in (11). Let us call L := PCL2PB ,
and assume that � = rank(PCL2PB) . Then as t →∞ , the first � singular values of S2(t)
tend to ∞ , and the remaining 2m− � ones satisfy

lim
t→∞

σ�+k (S2(t)) = σk

(
PC(Im−LL†)L1 O

O L1(Im −L†L)PB

)
,

for k = 1, . . . ,2m− � .

REMARK 6. Let us note that the matrix in the right hand side is 2m×2m .

Proof. Let (U1,U2),(V1,V2) be unitary matrices of Cm×m , with U2,V2 ∈Cm×(m−�) ,
that perform the singular value decomposition of L

(U1,U2)∗L(V1,V2) =
(
Σ� O
O O

)
, (18)

with Σ� ∈ R�×� . Applying a similar reasoning to the one of the previous lemma for the
matrix function

Ŝ2(t) =
(

PCL1 t−1L
−tC1B1 L1PB

)
,

we find that as t → ∞ , the first � singular values of S2(t) tend to ∞ , and the remaining
2m− � ones satisfy

lim
t→∞

σ�+k (S2(t)) = σk

(
U∗

2 PCL1 O
O L1PBV2

)
for k = 1, . . . ,2m− �. (19)

Let us note that as PC and PB are orthogonal projectors, then PCL = L and PBL∗ =
L∗ . Hence, from (18) and by Lemma 6(1)(2), we obtain first

PCU1Σ� = PCLV1 = LV1 ⇒ Im(PCU1) ⊂ ImL = Ker(Im−LL†),
PBV1Σ� = PBL∗U1 = L∗U1 ⇒ Im(PBV1) ⊂ ImL∗ = Ker(Im −L†L).

Therefore by Lemma 3(1) Im −LL† and Im−L†L are orthogonal projectors, then

U∗
1 PC(Im −LL†) = O, (Im −L†L)PBV1 = O. (20)

Similarly, from (18) and Lemma 6(1)(2), we have

O = U∗
2 L = U∗

2 PCL and O = LV2 = LPBV2.
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Thus
U∗

2 PC(Im −LL†) = U∗
2 PC, (Im −L†L)PBV2 = PBV2.

Substituting these two last equalities and (20) in (19) we have proved the lemma. �

REMARK 7. Taking into account the expression for h given in (10), Lemmas 13
and 14, and Proposition 1, we conclude that if

2m+n1−1− rank(B1)− rank(C1) � max{rank(C1B1), rank(PCL2PB)}, (21)

then supt>0σh (S2(t)) = ∞ ; that is, there is no matrix X ∈ Cm×m such that 0 is a
multiple eigenvalue of M(α,X) . Consequently, Theorem 5 is proved in this case. It
can be demonstrated that inequality (21) is equivalent to

rank(B1) = rank(C1) = m and (m = n1 or m = n1−1).

Therefore, from here on we will assume that

2m+n1−1− rank(B1)− rank(C1) > max{rank(C1B1), rank(PCL2PB)}.

REMARK 8. Given Theorem 5, we can assert that

min
X∈Cm×m

m(0,M(α ,X))�2

‖X −D‖ = ∞

if and only if inequality (21) is satisfied.

In the next section the proof of Theorem 5 starts and continues until the end of
Section 8.

5. When the supremum is a maximum

Given t0 �= 0, in agreement with the notations (10) and (11), let us call

σ0 := σh (S2(t0)) ,

where we assume σ0 > 0. Let

u :=
(

u1

u2

)
, v :=

(
v1

v2

)
, (22)

be a pair of singular vectors of S2(t0) associated with σ0 , where u1,u2,v1,v2 ∈ Cm×1 .
Using [12, Section 4] and [7, Section 4] we will establish some properties of u,v .

First, as S2(t0)v = σ0u and S2(t0)∗u = σ0v , from (11) and (22) we get

PCL1v1 + t0PCL2PBv2 = σ0u1, and t0PBL∗
2PCu1 +PBL∗

1u2 = σ0v2.
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Hence, as σ0 > 0, from the two previous equalities we deduce that u1 ∈ Im(PC) and
v2 ∈ Im(PB) . Thus, by Lemma 7(2)(3) we have C∗

1u1 = 0,PCu1 = u1 and B1v2 =
0,PBv2 = v2 . Theses equalities jointly with S2(t0)v = σ0u and S2(t0)∗u = σ0v , imply
the following equations.

PCL1v1 + t0PCL2v2 = σ0u1, (23)

−t−1
0 C1B1v1 +L1v2 = σ0u2, (24)

L∗
1u1− t−1

0 B∗
1C

∗
1u2 = σ0v1, (25)

t0PBL∗
2u1 +PBL∗

1u2 = σ0v2, (26)

C∗
1u1 = C†

1u1 = 0, (27)

B1v2 = 0, (28)

PCu1 = u1, (29)

PBv2 = v2. (30)

Substituting (29) in (23) we see that PC(L1v1 + t0L2v2 −σ0u1) = 0. Therefore
from Lemma 7(2) we have L1v1+t0L2v2−σ0u1 ∈ Im(C1) . Consequently by Lemma 6(3),

C1C
†
1(L1v1 + t0L2v2−σ0u1) = L1v1 + t0L2v2−σ0u1. (31)

Multiplying to the right equations (23)–(26) by u∗1,u
∗
2,v

∗
1,v

∗
2 respectively, conju-

gating (29) and (30), i.e., u∗1PC = u∗1 , v∗2PB = v∗2 , we conclude that

u∗1L1v1 + t0u∗1L2v2 = σ0u∗1u1,

−t−1
0 u∗2C1B1v1 +u∗2L1v2 = σ0u∗2u2,

v∗1L
∗
1u1− t−1

0 v∗1B
∗
1C

∗
1u2 = σ0v∗1v1,

t0v∗2L
∗
2u1 + v∗2L

∗
1u2 = σ0v∗2v2.

Subtracting the conjugate of the third equation from the first one and the conjugate
of the fourth equation from the second one, we conclude that

σ0(u∗1u1− v∗1v1) = t0u
∗
1L2v2 + t−1

0 u∗2C1B1v1 = −σ0(u∗2u2− v∗2v2). (32)

Multiplying (24) and (25) by u∗1 and v∗2 from the right-hand side, respectively and
using u∗1C1 = 0 (27) and B1v2 = 0 (28), we obtain

u∗1L1v2 = σ0u
∗
1u2, v∗2L

∗
1u1 = σ0v

∗
2v1.

Hence, subtracting the conjugate of the second equation from the first one, we see that
σ0(u∗1u2− v∗1v2) = 0. As σ0 �= 0, we infer that

u∗1u2 = v∗1v2. (33)

REMARK 9. Note that equations (23)–(33) remain valid for each pair of singular
vectors associated with a nonzero singular value of S2(t) for t �= 0. This remark will
be important in Sections 6 and 8.
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Now assume that σh (S2(t)) attains a relative extremum σ0 := σh (S2(t0)) > 0
at t0 �= 0. Then, by Lemma 12, there exists a pair of singular vectors u,v of S2(t0)
corresponding to σh (S2(t0)) such that

Re
(
u∗S′2(t0)v

)
= Re

(
u∗
(

O PCL2PB

t−2
0 C1B1 O

)
v

)
= 0.

Partitioning the vectors u,v according (22), we have

Re(t−2
0 u∗2C1B1v1 +u∗1PCL2PBv2) = 0.

Since t0 �= 0 and u∗1PCL2PBv2 = u∗1L2v2 (by (29) and (30)), we deduce that
Re(t−1

0 u∗2C1B1v1 + t0u∗1L2v2) = 0. Hence, from (32), we see that

u∗1u1 = v∗1v1, u∗2u2 = v∗2v2. (34)

Now let us define the matrices

V := [v1,v2] ∈ C
m×2, U := [u1,u2] ∈ C

m×2.

By (33) and (34), we have V ∗V = U∗U . Hence, the matrix

D0 := D−σ0UV †,

satisfies ‖D−D0‖ = σ0 and

D0V = DV −σ0U, U∗D0 = U∗D−σ0V
∗. (35)

(see [8], page 1208, (35)) Consequently, to prove Theorem 5 in this case, it suffices to
prove that 0 is a multiple eigenvalue of the matrix M(α,D0) .

Since rank(V ∗V ) � 1, we have two possibilities: rankV = 1 or rankV = 2. In the
rankV = 1 case, we will analyze the subcases when v2 �= 0 and when v2 = 0.

5.1. rankV = 2

Note that rankV = 2 implies that v1 and v2 are linearly independent. Hence, to
prove that 0 is a multiple eigenvalue of M(α,D0) it suffices to see that⎛

⎝O O B1

O Σ B2

C1 C2 D0

⎞
⎠
⎛
⎝ z2 z1

w2 w1

v2 v1

⎞
⎠=

⎛
⎝ z2 z1

w2 w1

v2 v1

⎞
⎠(0 −t0

0 0

)
,

with
z2 = −t−1

0 B1v1, z1 = −C†
1(L1v1 + t0L2v2−σ0u1),

w2 = −Σ−1B2v2, w1 = t0Σ−2B2v2−Σ−1B2v1.

By B1v2 = 0 (28) and D0vi = Dvi −σ0ui for i = 1,2 (35), the problem reduces to
verifying the equalities

−t−1
0 C1B1v1−C2Σ−1B2v2 +Dv2 = σ0u2,

−C1C
†
1(L1v1 + t0L2v2−σ0u1)+ t0C2Σ−2B2v2−C2Σ−1B2v1 +Dv1−σ0u1 = −t0v2.
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By (13) we have L1 = D−C2Σ−1B2 and L2 = Im +C2Σ−2B2 , the two previous
equalities are reduced to

−t−1
0 C1B1v1 +L2v2 = σ0u2,

−C1C
†
1(L1v1 + t0L2v2−σ0u1)+L1v1 + t0L2v2 −σ0u1 = 0,

which are true by (24) and (31), respectively.

5.2. rankV = 1 and v2 �= 0

Observe that in this case v1 = λv2 and u1 = λu2 , for some λ ∈ C . Hence, as
v2 �= 0, to prove that 0 is a multiple eigenvalue of M(α,D0) it suffices to find a vector
w ∈ Cn1×1 such that⎛
⎝O O B1

O Σ B2

C1 C2 D0

⎞
⎠
⎛
⎝ 0 w
−Σ−1B2v2 −Σ−2B2v2

v2 0

⎞
⎠=

⎛
⎝ 0 w
−Σ−1B2v2 −Σ−2B2v2

v2 0

⎞
⎠(0 1

0 0

)
, (36)

because this means that the columns of the matrix⎛
⎝ 0 w
−Σ−1B2v2 −Σ−2B2v2

v2 0

⎞
⎠

form a Jordan chain of 0 as eigenvalue of M(α,D0) .
Multiplying the matrices in (36), we have⎛

⎝ B1v2 0
−B2v2 +B2v2 −Σ−1B2v2

−C2Σ−1B2v2 +D0v2 C1w−C2Σ−2B2v2

⎞
⎠=

⎛
⎝0 0

0 −Σ−1B2v2

0 v2

⎞
⎠ . (37)

By (28) B1v2 = 0, so the (1,1)-entries in (37) are equal. By (35) D0v2 = Dv2 −
σ0u2 , hence, by the definition of L1 ,

−C2Σ−1B2v2 +D0v2 = Dv2−C2Σ−1B2v2 −σ0u2 = L1v2 −σ0u2.

As v1 = λv2 and B1v2 = 0, then B1v1 = 0. From (24), L1v2 = σ0u2 , thus the (3,1)-
entries in (37) are equal. Equating the (3,2)-entries, and by the definition of L2 , we
have

C1w−C2Σ−2B2v2 = v2, C1w = v2 +C2Σ−2B2v2, C1w = L2v2.

Thus the vector w must satisfy C1w = L2v2 . This vector exists if and only if L2v2 ∈
ImC1 = KerPC by Lemma 7(2).

As B1v1 = 0, u1 = λu2 , v1 = λv2 , from (23) and (29) we have

λPCL1v2 + t0PCL2v2 = λσ0u2;

since L1v2 = σ0u2 , we obtain t0PCL2v2 = 0. But t0 �= 0, so PCL2v2 = 0. Therefore,
L2v2 ∈ KerPC .
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5.3. rankV = 1 and v2 = 0

As v2 = 0, then u2 = 0, v1 �= 0 and u1 �= 0. Hence, to prove that 0 is a multiple
eigenvalue of M(α,D0) it suffices to find a vector w ∈ Cn1×1 , such that

(
0 −u∗1C2Σ−1 u∗1
w∗ −u∗1C2Σ−2 0

)⎛⎝O O B1

O Σ B2

C1 C2 D0

⎞
⎠=

(
0 0
1 0

)(
0 −u∗1C2Σ−1 u∗1
w∗ −u∗1C2Σ−2 0

)
. (38)

This means that the vectors⎛
⎝ w
−Σ−2C∗

2u1

0

⎞
⎠ ,

⎛
⎝ 0
−Σ−1C∗

2u1

u1

⎞
⎠

form a Jordan chain on the left of 0 as an eigenvalue of M(α,D0) . Multiplying the
matrices in (38), we will have to prove the following equality.

(
u∗1C1 −u∗1C2 +u∗1C2 −u∗1C2Σ−1B2 +u∗1D0

0 −u∗1C2Σ−1 w∗B1−u∗1C2Σ−2B2

)
=
(

0 0 0
0 −u∗1C2Σ−1 u∗1

)
.

The (1,1)-entries are equal, because u∗1C1 = 0 by (27). Let us see the reasons of the
equality of the (1,3)-entries. By (35), u∗1D0 = u∗1D−σ0v∗1 . So,

−u∗1C2Σ−1B2 +u∗1D0 = 0 ⇐⇒−u∗1C2Σ−1B2 +u∗1D = σ0v
∗
1.

By the definition of L1 , the last equality is equivalent to u∗1L1 = σ0v∗1 . As u2 = 0, (25)
implies L∗

1u1 = σ0v∗1 . Finally to prove the equality of the (2,3)-entries, we construct a
vector w such that

w∗B1−u∗1C2Σ−2B2 = u∗1.

By the definition of L2 , the vector w must satisfy w∗B1 = u∗1L2 ; that is B∗
1w = L∗

2u1 .
Such a w exists if and only if L∗

2u1 ∈ ImB∗
1 = KerPB , by Lemma 7(3). Since u2 = v2 =

0, t0 �= 0, and (26), PBL∗
2u1 = 0.

REMARK 10. We have proved Theorem 5 when the function t �→ σh (S2(t)) has
a positive local extremum at a point t0 �= 0. Note that if for a positive integer q we
have σh+q (S2(t)) �= 0, for t �= 0, we can apply the same reasoning to the function
t �→ σh+q (S2(t)) . Therefore, as in [8, Corollary 30], we deduce the following result.

THEOREM 15. The function t �→ σh (S2(t)) has no relative minimum in (0,∞) .
Moreover for each positive integer q, either σh+q (S2(t)) = 0 for t �= 0 , or the function
t �→ σh+q (S2(t)) has no relative minimum in (0,∞) .



NEAREST SOUTHEAST SUBMATRIX OF THE NORMAL NORTHWEST SUBMATRIX 19

6. When the supremum is the limit at ∞

In this section, we suppose that the limit

lim
t→∞

σh
(
S2(t)

)
is finite and positive, let us call it σ0 .

Observe first that Lemma 14 requires h > rank(PCL2PB) because the limit above
is finite. Consider now a sequence of real numbers {tk}∞k=1 which tends to ∞ when
k → ∞ , and let σ̂k := σh

(
S2(tk)

)
. Then

lim
t→∞

σ̂k = σ0.

For each k , let

uk :=
(

uk
1

uk
2

)
, vk :=

(
vk
1

vk
2

)
, uk

i ,v
k
i ∈ C

m×1, i = 1,2,

be pairs of singular vectors of S2(tk) , associated with σ̂k . As the vectors uk and vk

are unitary, the sequence {(uk,vk)}∞k=1 has a convergent subsequence, say to (u,v) . In
order to simplify we will denote the terms of this subsequence with the same index k .
Then

lim
k→∞

uk = u =:

(
u1

u2

)
, lim

k→∞
vk = v =:

(
v1

v2

)
.

For each sufficiently large k , the equalities (23)–(30), (32), and (33) are satisfied
for tk,uk,vk and σ̂k instead of t0,u,v and σ0 . Hence, taking limits, we infer that

lim
k→∞

PCL2v
k
2 = PCL2v2 = 0, (39)

L1v2 = σ0u2, (40)

L∗
1u1 = σ0v1, (41)

lim
k→∞

tkPBL∗
2u

k
1 = σ0v2 −PBL∗

1u2, (42)

lim
k→∞

PBL∗
2u

k
1 = PBL∗

2u1 = 0, (43)

C∗
1u1 = C†

1u1 = 0, (44)

B1v2 = 0, (45)

lim
k→∞

tk(uk
1)

∗L2v
k
2 = σ0(u∗1u1− v∗1v1) = −σ0(u∗2u2− v∗2v2), (46)

u∗1u2 = v∗1v2. (47)

We are going to apply Lemma 8 to tk(uk
1)

∗L2vk
2 = tk(uk

1)
∗PCL2PBvk

2 , for each k ,
because (uk

1)
∗ = (uk

1)
∗PC and vk

2 = PBvk
2 , by (29) and (30), respectively. Let xk := uk

1 ,
yk := vk

2 and G := PCL2PB . Then by (39) we have

lim
k→∞

Gyk = lim
k→∞

PCL2PBvk
2 = lim

k→∞
PCL2v

k
2 = 0.
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On the other hand, ‖tkx∗kG‖ = ‖tk(uk
1)

∗PCL2PB‖ = ‖tkPBL∗
2u

k
1‖ is bounded in virtue

of (42). Thus, applying Lemma 8, we see that

lim
k→∞

tk(uk
1)

∗L2v
k
2 = lim

k→∞
tk(uk

1)
∗PCL2PBvk

2 = 0.

Substituting this equality in (46), we conclude that u∗1u1 = v∗1v1 and u∗2u2 = v∗2v2 .
Hence, if we consider the matrices V := [v1,v2], U := [u1,u2] , from the two preced-
ing equalities and (47), we have U∗U = V ∗V . Therefore, as in Section 5, the matrix

D0 := D−σ0UV †,

satisfies ‖D−D0‖ = σ0 and

D0v2 = Dv2−σ0u2, u∗1D0 = u∗1D−σ0v
∗
1.

By the definition of L1 , given in (13), from (40) and (41), we see that

D0v2 = C2Σ−1B2v2, u∗1D0 = u∗1C2Σ−1B2. (48)

Hence, to prove Theorem 5 in this case, it suffices to prove that 0 is a multiple
eigenvalue of the matrix M(α,D0) . Once here, we are going to consider two cases:
v2 �= 0 and v2 = 0.

6.1. v2 �= 0

As v2 is nonzero, to prove that 0 is a multiple eigenvalue of the matrix M(α,D0) ,
it suffices to find a vector w ∈ Cn1×1 such that⎛

⎝O O B1

O Σ B2

C1 C2 D0

⎞
⎠
⎛
⎝ 0 w
−Σ−1B2v2 −Σ−2B2v2

v2 0

⎞
⎠=

⎛
⎝ 0 w
−Σ−1B2v2 −Σ−2B2v2

v2 0

⎞
⎠(0 1

0 0

)
.

Multiplying these matrices, as B1v2 = 0 by (45), and D0v2 = C2Σ−1B2v2 by (48), the
problem is reduced to find a vector w that satisfies C1w−C2Σ−2Bv2 = v2 . That is,
using the definition of L2 , given in (13), it suffices to find w such that

C1w = L2v2.

Hence, there exists w if and only if L2v2 ∈ ImC1 , or which is equivalent by Lemma 7(2),
if and only if L2v2 ∈ KerPC , which is true by (39).

6.2. v2 = 0

In this case u2 = 0 and u1 �= 0. Thus, it suffices to find a vector w ∈ Cn1×1 such
that (

0 −u∗1C2Σ−1 u∗1
w∗ −u∗1C2Σ−2 0

)⎛⎝O O B1

O Σ B2

C1 C2 D0

⎞
⎠=

(
0 0
1 0

)(
0 −u∗1C2Σ−1 u∗1
w∗ −u∗1C2Σ−2 0

)
.
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Multiplying these matrices, as u∗1C1 = 0 by (44) and u∗1D0 = u∗1C2Σ−1B2 by (48),
it suffices to find a vector w such that

w∗
1B1−u∗1C2Σ−2B2 = u∗1 ⇔ B∗

1w1 = L∗
2u1,

having used the definition of L2 , given in (13). Consequently, there exists w if and only
if L∗

2u1 ∈ ImB1 , or which is equivalent by Lemma 7(3), if and only if L∗
2u1 ∈ KerPB ;

which is true by (43).

Two final remarks on Section 6

REMARK 11. Let us observe that in the part of the proof of Theorem 5, given in
this section, we have not used the equality

sup
t>0

σh
(
S2(t)

)
= lim

t→∞
σh
(
S2(t)

)
. (49)

Actually, all we have used is the fact that

lim
t→∞

σh
(
S2(t)

)
is finite and positive. This assumption implies (49), since by Proposition 1 and Lemma 14,
we have the following result.

PROPOSITION 16. Let L := PCL2PB . If h > rank(L) and

σ0 := σh−rank(L)

(
PC(Im −LL†)L1 O

O L1(Im −L†L)PB

)

is positive, then
min

X∈Cm×m

m(0,M(α ,X))�2

‖X −D‖ = σ0.

Moreover,
sup
t>0

σh (S2(t)) = lim
t→∞

σh (S2(t)) .

REMARK 12. Let p > rank(PCL2PB) . By Lemma 14 the limit

lim
t→∞

σp
(
S2(t)

)
is finite. Let us assume it is positive. Following again all the reasoning of this section,
we can prove that there exists a matrix Y ∈ Cm×m such that

‖Y −D‖ = lim
t→∞

σp
(
S2(t)

)
, and m(0,M(α,Y )) � 2.

Besides, by Proposition 1 and Lemma 14, we have the following result.
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PROPOSITION 17.

(1) Let L := PCL2PB . Assume p > rank(L) . Then

min
X∈C

m×m

m(0,M(α ,X))�2

‖X −D‖ � σp−rank(L)

(
PC(Im−LL†)L1 O

O L1(Im −L†L)PB

)
,

if this singular value is positive.

(2) For each positive integer q the limit

lim
t→∞

σh+q (S2(t))

is equal to σ0 or to 0 , where σ0 is defined in Proposition 16.

7. When the supremum is the limit at 0 , and rank(B1) < n1 or rank(C1) < n1

In this section, we assume that rank(B1) < n1 or rank(C1) < n1 , and we suppose
that the limit

lim
t→0+

σh
(
S2(t)

)
is finite and positive, let us call it σ0 .

To shorten notation, we write s instead of rank(C1B1) . First, let us observe that
Lemma 13 warrants the existence of the limit. Moreover, by the same lemma and
denoting

T1 := Im− (C1B1)†C1B1, T2 := Im −C1B1(C1B1)†,

as h > s , we have

lim
t→0+

σh (S2(t)) = σh−s

(
PCL1T1 O

O T2L1PB

)
= σ0 > 0.

We are going to prove some properties of the singular vectors of PCL1T1 and
T2L1PB . Assume that σ0 is a singular value of PCL1T1 and let (u,v) be a pair of
singular vectors corresponding to it. As PCL1T1v = σ0u , by Lemma 7(2), we have
u ∈ Im(PC) = Ker(C∗

1) , that is PCu = u, u∗C1 = 0. On the other hand, as T1L∗
1PCu =

T1L∗
1u = σ0v ,

L∗
1u−σ0v = (C1B1)†C1B1L

∗
1u ∈ Im(C1B1)† = Im(C1B1)∗ ⊂ Im(B∗

1).

Hence, by Lemma 6(3), we see that u∗L1−σ0v∗ = (u∗L1−σ0v∗)B†
1B1 . Thus, as (u,v)

is a pair singular vectors of PCL1T1 associated with σ0 , we infer that

PCL1T1v = σ0u, (50)

T1L
∗
1u = σ0v, (51)

PCu = u, u∗C1 = 0, (52)

u∗L1−σ0v
∗ = (u∗L1 −σ0v

∗)B†
1B1. (53)
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Similarly, using Lemmas 7(3) and 6(3), if (x,y) is a pair of singular vectors of T2L1PB

associated with σ0 , we conclude that

T2L1y = σ0x, (54)

PBL∗
1T2x = σ0y, (55)

PBy = y, B1y = 0, (56)

L1y−σ0x = C1C
†
1(L1y−σ0x). (57)

To conclude the proof of Theorem 5 in this case, we are going to consider two cases:
(1) σ0 is a singular value of PCL1T1 ; (2) σ0 is a singular value of T2L1PB .

7.1. σ0 is a singular value of PCL1T1

Let (u,v) be a pair of singular vectors of PCL1T1 associated with σ0 . For the
entire subsection let

D0 := D−σ0uv∗.

It is clear that ‖D−D0‖ = σ0 . Besides, by (53), we have

(−(u∗L1−σ0v
∗)B†

1,−u∗C2Σ−1,u∗)

⎛
⎝O O B1

O Σ B2

C1 C2 D0

⎞
⎠= 0. (58)

At this point, we consider two subcases: (1) rank(B1) < n1 and (2) rank(C1) <
n1 = rank(B1) .

7.1.1. rank(B1) < n1

In this case, there exists a nonzero vector z ∈ C
n1×1 such that z∗B1 = 0. Thus,

(z∗,0,0)

⎛
⎝O O B1

O Σ B2

C1 C2 D0

⎞
⎠= 0.

This, together with (58), proves that 0 is a multiple eigenvalue of M(α,D0) .

7.1.2. rank(C1) < n1 = rank(B1)

As rank(C1) < n1 there exists a nonzero vector z ∈ Cn1×1 such that C1z = 0.
Therefore ⎛

⎝O O B1

O Σ B2

C1 C2 D0

⎞
⎠
⎛
⎝z

0
0

⎞
⎠= 0.
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Thus, by (58), to prove that 0 is a multiple eigenvalue of M(α,D0) it suffices to see
that

(
−(u∗L1 −σ0v

∗)B†
1,−u∗C2Σ−1,u∗

)⎛⎝z
0
0

⎞
⎠= −(u∗L1−σ0v

∗)B†
1z = 0.

Since rank(B1) = n1 , (51) implies L∗
1u−σ0v = (C1B1)†C1B1L∗

1u and B1B
†
1 = In1 . Thus

(u∗L1−σ0v
∗)B†

1z = u∗L1(C1B1)†C1B1B
†
1z = u∗L1(C1B1)†C1z = 0,

because C1z = 0.

7.2. σ0 is a singular value of T2L1PB

Let (x,y) be a pair of singular vectors of T2L1PB associated with σ0 . In this
subsection we define

D0 := D−σ0xy
∗.

Again we have ‖D−D0‖ = σ0 . From (57), we see that

⎛
⎝O O B1

O Σ B2

C1 C2 D0

⎞
⎠
⎛
⎝−C†

1(L1y−σ0x)
−Σ−1B2y

y

⎞
⎠= 0. (59)

Now we will consider two subcases: (1) rank(C1) < n1 and (2) rank(B1) < n1 =
rank(C1) .

7.2.1. rank(C1) < n1

In this case there exists a nonzero vector z ∈ Cn1×1 such that C1z = 0. Hence,⎛
⎝O O B1

O Σ B2

C1 C2 D0

⎞
⎠
⎛
⎝z

0
0

⎞
⎠= 0.

This, together with (59) proves that 0 is a multiple eigenvalue of M(α,D0) .

7.2.2. rank(B1) < n1 = rank(C1)

As rank(B1) < n1 there is a nonzero vector z ∈ Cn×1 such that z∗B1 = 0. So

(z∗,0,0)

⎛
⎝O O B1

O Σ B2

C1 C2 D0

⎞
⎠= 0.
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Therefore, to demonstrate that 0 is a multiple eigenvalue of M(α,D0) , it suffices to see
that

(z∗,0,0)

⎛
⎝−C†

1(L1y−σ0x)
−Σ−1B2y

y

⎞
⎠= −z∗C†

1(L1y−σ0x) = 0.

Since rank(C1) = n1 , (54) implies L1y−σ0x =C1B1(C1B1)†L1y and C†
1C1 = In1 . Con-

sequently

z∗C†
1(L1y−σ0x) = z∗C†

1C1B1(C1B1)†L1y = z∗B1(C1B1)†L1y = 0,

because z∗B1 = 0.

Two final remarks on Section 7

REMARK 13. Let us observe that in the part of the proof of Theorem 5, given in
this section, we have not used the equality

sup
t>0

σh
(
S2(t)

)
= lim

t→0+
σh
(
S2(t)

)
. (60)

Actually, all we have used is the fact that

lim
t→0+

σh
(
S2(t)

)
is finite and positive. This assumption implies (60), since by Proposition 1 and Lemma 13,
we have the following result.

PROPOSITION 18. Let M :=C1B1 . Assume that rank(B1)< n1 or rank(C1) < n1 .
If h > rank(C1B1) and

σ0 := σh−rank(M)

(
PCL1(Im −M†M) O

O (Im −MM†)L1PB

)

is positive, then
min

X∈Cm×m

m(0,M(α ,X))�2

‖X −D‖ = σ0.

Moreover,
sup
t>0

σh (S2(t)) = lim
t→0+

σh (S2(t)) .

REMARK 14. Let p > rank(C1B1) . By Lemma 13 the limit

lim
t→0+

σp
(
S2(t)

)
is finite. Let us assume it is positive. Following again all the reasoning of this section,
we can prove that there exists a matrix Y ∈ Cm×m such that

‖Y −D‖ = lim
t→0+

σp
(
S2(t)

)
, and m(0,M(α,Y )) � 2.

Besides, by Proposition 1 and Lemma 13, we have the following result.



26 J.-M. GRACIA AND F. E. VELASCO

PROPOSITION 19. Assume that rank(B1) < n1 or rank(C1) < n1 .
(1) Let M := C1B1 . Suppose that p > rank(C1B1) . Then

min
X∈C

m×m

m(0,M(α ,X))�2

‖X −D‖ � σp−rank(M)

(
PCL1(Im −M†M) O

O (Im −MM†)L1PB

)
,

if this singular value is positive.
(2) For each positive integer q it follows that the limit

lim
t→0+

σh+q (S2(t))

is equal to σ0 or to 0 , where σ0 is defined in Proposition 18.

8. When the supremum is the limit at 0 , and rank(B1) = rank(C1) = n1

In this section, we assume that rank(B1) = rank(C1) = n1 , and we consider the
case when

sup
t>0

σh
(
S2(t)

)
= lim

t→0+
σh
(
S2(t)

)
.

As rank(B1) = rank(C1) = n1 , by Lemma 6(5), we have C†
1C1 = B1B

†
1 = In1 ; this fact

will be used frequently along the section. Besides from (10) it follows that h = 2m−
n1−1. Since rank(C1B1) = n1 , by Lemma 13 we have

lim
t→0+

σh
(
S2(t)

)
= lim

t→0+
σh+1

(
S2(t)

)
= σm−n1 (PCL1PB) =: σ0 > 0.

Thus there exists an ε > 0 such that the functions t �→ σh (S2(t)) and t �→ σh+1 (S2(t))
are nonincreasing on the interval (0,ε) .

Let us suppose that σ0 is a multiple singular value of PCL1PB . Then there are
pairs of singular vectors (u1,v1),(u2,v2) of PCL1PB associated with σ0 so that U∗U =
I2 = V ∗V , where U := [u1,u2] and V := [v1,v2] . Define now the matrix

D0 := D−σ0UV ∗.

Since ‖UV ∗‖ = 1, it follows that ‖D−D0‖ = σ0 and U∗D0 = U∗D−σ0V ∗ . Given
that L1 = D−C2Σ−1B2 , by (52) and (53) we have

(−(u∗i L1 −σ0v
∗
i )B

†
1,−u∗i C2Σ−1,u∗i )

⎛
⎝O O B1

O Σ B2

C1 C2 D0

⎞
⎠= 0, i = 1,2;

that is, 0 is a multiple eigenvalue of M(α,D0) .
From now let us assume that σ0 is a simple singular value of PCL1PB . We will

consider the matrix function t �→ tS2(t) , which is analytic on R . Then, by Lemma 11,
there must be some 2m×2m unitary matrix functions

U(t) := (U1(t),U2(t), . . . ,U2m(t)) ,V (t) := (V1(t),V2(t), . . . ,V2m(t))
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and a diagonal matrix function Σ(t) = diag(σ̃1(t), σ̃2(t), . . . , σ̃2m(t))∈R2m×2m , all ana-
lytic on R , so that for each t �= 0 we have

U(t)∗tS2(t)V (t) = Σ(t) ⇔U(t)∗S2(t)V (t) = diag(σ̃i(t)/t).

Observe that for some interval (0,a) , with a > 0, we can assume without loss of gen-
erality that all the functions σ̃i(t) are nonnegative on it. Let j,k be now the unique
subscripts such that

lim
t→0+

σ̃ j(t)
t

= lim
t→0+

σ̃k(t)
t

= σ0.

Thus, it is correct to assume that for each positive t sufficiently close to 0 we have
σ̃ j(t) � σ̃k(t) . Define the functions

f (t) :=
σ̃ j(t)

t
, g(t) :=

σ̃k(t)
t

.

Then, we see that
lim

t→0+
f (t) = lim

t→0+
g(t) = σ0,

and there exists a b > 0 such that f (t),g(t) are analytic on (0,b) , and for t ∈ (0,b) we
have the inequality f (t) � g(t) .

Let us denote

u(t) :=
(

u1(t)
u2(t)

)
= Uj(t), v(t) :=

(
v1(t)
v2(t)

)
= Vj(t),

and

x(t) :=
(

x1(t)
x2(t)

)
= Uk(t), y(t) :=

(
y1(t)
y2(t)

)
= Vk(t),

where Uj(t),Uk(t) and Vj(t),Vk(t) are the j -th and k -th columns of U(t) and V (t) ,
respectively. Since they are analytic functions, we infer that the following limits exist

lim
t→0+

u(t) = u :=
(

u1

u2

)
, lim

t→0+
v(t) = v :=

(
v1

v2

)
,

and

lim
t→0+

x(t) = x :=
(

x1

x2

)
, lim

t→0+
y(t) = y :=

(
y1

y2

)
.

Moreover, (u(t),v(t)) and (x(t),y(t)) are pairs of singular vectors of S2(t) associated
with the singular values f (t) and g(t) , respectively. Therefore, for each t ∈ (0,b) the
equalities (23)–(33) but for (u(t),v(t)) (instead of u,v) and f (t) (instead of σ0 ), and
for (x(t),y(t)) (instead of u,v) and g(t) (instead of σ0 ), respectively, are satisfied.

First note that from (24) we deduce that

lim
t→0+

C1B1v1(t) = C1B1v1 = 0.
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Thus, as rank(C1) = n1 , we have B1v1 = 0, which is equivalent to PBv1 = v1 by
Lemma 7(3). Similarly, as rank(B1) = n1 , being aware of Remark 9 and taking limits
in (25) when t → 0+ , we conclude that C∗

1u2 = 0, which is equivalent to PCu2 = u2 by
Lemma 7(2).

Now, being aware of Remark 9 and considering equations (23)–(30), changing t0
by t in them and as Im(C1) = Ker(PC) , Im(B∗

1) = Ker(PB) , by Lemma 7(2)(3), when
t → 0+ we infer that

PCL1v1 = σ0u1, (61)

lim
t→0+

t−1C1B1v1(t) = L1v2−σ0u2, (62)

L1v2−σ0u2 ∈ Im(C1) = Ker(PC), (63)

lim
t→0+

t−1B∗
1C

∗
1u2(t) = L∗

1u1−σ0v1, (64)

L∗
1u1−σ0v1 ∈ Im(B∗

1) = Ker(PB), (65)

PBL∗
1u2 = σ0v2, (66)

C∗
1u1 = C∗

1u2 = 0, (67)

B1v1 = B1v2 = 0, (68)

PCu1 = u1, PCu2 = u2, (69)

PBv1 = v1, PBv2 = v2. (70)

Remark that all the above properties are true also for (x,y) .
Now, let (z,w) be a pair of singular vectors of PCL1PB associated with the simple

singular value σ0 . Let us see that there exist vectors a := (a1,a2) and b := (b1,b2) of
C1×2 such that

(u1,u2) = za, (v1,v2) = wa, (x1,x2) = zb, (y1,y2) = wb, (71)

where ab∗ = 0 and ‖a‖2 = ‖b‖2 = 1.
First note that, as PBvi = vi and PCui = ui, i = 1,2, by (61) and (66) equation (71)

is equivalent to {
PCL1v2 = σ0PCu2,

PBL∗
1u1 = σ0PBv1.

These last equalities are true by (63) and (65), respectively.
Hence, if we consider the matrices V := [v1,v2],U := [u1,u2] ∈ Cm×2 , from (71)

we find that
U∗U = V ∗V. (72)

Thus, as in Section 5, the matrix

D0 := D−σ0UV †,

satisfy ‖D−D0‖ = σ0 and D0V = DV −σ0U . Remark that all the above properties
are true also for X := [x1,x2], Y := [y1,y2] .

So, to prove Theorem 5 in this case, it suffices to prove that 0 is a multiple eigen-
value of the matrix M(α,D0) , where D0 := D−σ0UV † or D0 := D−σ0XY † , respec-
tively. The following lemma allows us to reduce the possible cases.



NEAREST SOUTHEAST SUBMATRIX OF THE NORMAL NORTHWEST SUBMATRIX 29

LEMMA 20. With the preceding notations, we have
(1) rank(U) = rank(V ) = rank(X) = rank(Y ) = 1 ,
(2) if v1 = 0 then y2 = 0 ,
(3) if v2 = 0 then y1 = 0 .

Proof. (1) is immediate by (71). For demonstrating (2), let us assume now that
v1 = 0, hence v2 �= 0. Since u,y are orthogonal, we have v∗2y2 = 0, i.e. by (71)
a2b2 = 0. Then b2 = 0, consequently y2 = 0. In a similar way (3) is proved. �

At this moment, by the preceding lemma, the possible cases to analyze are two:
(1) v1 = 0 or v2 = 0; (2) u1 = αu2 , v1 = αv2 , x1 = βx2 and y1 = βy2 , with scalar
nonzero α,β .

8.1. v1 = 0 or v2 = 0

First let us suppose that v1 = 0 and let D0 := D− σ0UV † . Note that u1 = 0.
Hence v2 and u2 are nonzero vectors. To prove Theorem 5 in this case, we will search
a pair of eigenvectors of M(α,D0) associated with the eigenvalue 0, one on the left
and other on the right, so that they are orthogonal.

We are going to prove that⎛
⎝O O B1

O Σ B2

C1 C2 D0

⎞
⎠
⎛
⎝−C†

1(L1v2−σ0u2)
−Σ−1B2v2

v2

⎞
⎠= 0.

Since B1v2 = 0 by property (68) and D0v2 = Dv2 −σ0u2 , we just need to check

−C1C
†
1(L1v2−σ0u2)−C2Σ−1B2v2 +Dv2−σ0u2 = 0.

Or which is the same,

C1C
†
1(L1v2−σ0u2) = L1v2 −σ0u2,

because by (13), L1 = D−C2Σ−1B2 . That is, by Lemma 6(3), it suffices to prove that
L1v2−σ0u2 ∈ ImC1 . Which is true by (63).

On the other hand, since PBv2 = v2 , from (66) we conclude that L∗
1u2 −σ0v2 ∈

Ker(PB) = Im(B†
1) . Hence, reasoning in a similar manner and using u∗2D0 = u∗2D−

σ0v∗2 , it follows that

(−(u∗2L1−σ0v
∗
2)B

†
1,−u∗2C2Σ−1,u∗2)

⎛
⎝O O B1

O Σ B2

C1 C2 D0

⎞
⎠= 0.

By the definition (13), L2 = Im +C2Σ−2B2 . Moreover v∗2B
†
1 = 0, by (68). Let us

denote by φ the following scalar:

φ := (−(u∗2L1−σ0v∗2)B
†
1,−u∗2C2Σ−1,u∗2)

⎛
⎝−C†

1(L1v2−σ0u2)
−Σ−1B2v2

v2

⎞
⎠

= u∗2L1B
†
1C

†
1(L1v2−σ0u2)+u∗2L2v2.
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In order to prove Theorem 5 in this case we are going to see that φ = 0.
From (62),

L1v2−σ0u2 = lim
t→0+

t−1C1B1v1(t) ⇒C†
1(L1v2 −σ0u2) = lim

t→0+
t−1C†

1C1B1v1(t).

But, since C†
1C1 = In1 , we have

C†
1(L1v2−σ0u2) = lim

t→0+
t−1B1v1(t).

Thus

φ = u∗2L1B
†
1 lim

t→0+
t−1B1v1(t)+u∗2L2v2 = lim

t→0+
u2(t)∗L1B

†
1 lim

t→0+
t−1B1v1(t)+u∗2L2v2;

that is,

φ = lim
t→0+

u2(t)∗L1B
†
1B1v1(t)

t
+u∗2L2v2.

By (26) we find that

tu∗1(t)L2PB+u∗2(t)L1PB = f (t)v2(t)∗ ⇒ tu∗1(t)L2PB+u∗2(t)L1−u∗2(t)L1B
†
1B1 = f (t)v2(t)∗.

Therefore
u∗2(t)L1B

†
1B1 = tu∗1(t)L2PB +u∗2(t)L1 − f (t)v2(t)∗.

Consequently

φ = lim
t→0+

tu∗1(t)L2PBv1(t)+u∗2(t)L1v1(t)− f (t)v2(t)∗v1(t)
t

+u∗2L2v2,

and, as PBv1 = 0 by (70),

φ = lim
t→0+

u∗2(t)L1v1(t)− f (t)v2(t)∗v1(t)
t

+u∗2L2v2.

By (23), PCL1v1(t)+tPCL2v2(t)= f (t)u1(t) . Hence we know that L1v1(t)= f (t)u1(t)−
tPCL2v2(t)+C1C

†
1L1v1(t) . Since u∗2PC = u∗2 , it follows that

φ = lim
t→0+

f (t)u2(t)∗u1(t)+u2(t)∗C1C
†
1L1v1(t)− f (t)v2(t)∗v1(t)

t
.

But, by (33), we have u2(t)∗u1(t) = v2(t)∗v1(t) . Therefore

φ = lim
t→0+

u2(t)∗C1C
†
1L1v1(t)

t
= lim

t→0+

u2(t)∗C1B1B
†
1C

†
1L1v1(t)

t
,

because B1B
†
1 = In1 . Finally, we will apply Lemma 8. Taking x(t) := u2(t) , y(t) :=

B†
1C

†
1L1v1(t) and G =C1B1 , we obtain

lim
t→0+

Gy(t) = lim
t→0+

C1B1B
†
1C

†
1L1v1(t) = 0,

lim
t→0+

x(t)∗G
t

= lim
t→0+

u2(t)∗C1B1

t
= L∗

1u1−σ0v1 = 0,

using (64) and that u1(t),v1(t) → 0. Thus, by Lemma 8 we have φ = 0.
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If v2 = 0, since by Lemma 20(3), y1 = 0, it suffices to repeat the preceding rea-
soning for the pair (x,y) , with the matrix D0 := D−σ0XY † .

8.2. u1 = αu2 , v1 = αv2 , x1 = βx2 , and y1 = βy2 , with αβ �= 0 .

From (71) we infer that there exist two nonzero complex numbers δ ,η such that

u =
(
δαz
δ z

)
, v =

(
δαw
δw

)
, x =

(
ηβ z
ηz

)
, y =

(
ηβw
ηw

)
.

Since v,y are orthogonal, δη(αβ +1)w∗w = 0. Consequently

αβ +1 = 0. (73)

On the other hand, applying Lemma 11, for t ∈ (0,ε) , one has

f ′(t) = Re
(
u∗(t)S′2(t)v(t)

)
= Re

((
u1(t)∗ u2(t)∗

)( O PCL2PB

t−2C1B1 O

)(
v1(t)
v2(t)

))
.

Since u1(t)∗PCL2PBv2(t) = u1(t)∗L2v2(t) , we get

f ′(t)= Re
(
t−2u2(t)∗C1B1v1(t)+u1(t)∗L2v2(t)

)
= t−2u2(t)∗C1B1v1(t)+u1(t)∗L2v2(t),

because of (32). As C1B1 = C1B1(C1B1)†C1B1 and (C1B1)† = B†
1C

†
1 , by Lemma 7-4,

we obtain

t−2u2(t)∗C1B1v1(t) =
u2(t)∗C1B1

t
B†

1C
†
1
C1B1v1(t)

t
.

Thus, from (64) and (62), we see that

lim
t→0+

t−2u2(t)∗CBv1(t) = (u∗1L1−σ0v
∗
1)B

†
1C

†
1(L1v2−σ0u2).

Therefore, as v∗1B
†
1 = 0 and C†

1u2 = 0, we infer that

lim
t→0+

f ′(t) = u∗1(L1B
†
1C

†
1L1 +L2)v2. (74)

Similarly, for g(t) we obtain

lim
t→0+

g′(t) = x∗1(L1B
†
1C

†
1L1 +L2)y2. (75)

Now, since the functions f (t),g(t) are strictly nonincreasing and f ′,g′ are continuous
functions, we see that f ′(t),g′(t) are nonpositive. As there exist the limits of f ′(t),g′(t)
when t → 0+ , given in (74) and (75), we deduce that

u∗1(L1B
†
1C

†
1L1 +L2)v2 � 0 and x∗1(L1B

†
1C

†
1L1 +L2)y2 � 0. (76)
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Using the expressions obtained at the beginning of this subsection for u,v,x,y , we
get

u∗1(L1B
†
1C

†
1L1 +L2)v2 = |δ |2αz∗(L1B

†
1C

†
1L1 +L2)w,

x∗1(L1B
†
1C

†
1L1 +L2)y2 = |η |2β z∗(L1B

†
1C

†
1L1 +L2)w.

Thus, from (76) we obtain

αz∗(L1B
†
1C

†
1L1 +L2)w � 0 and β z∗(L1B

†
1C

†
1L1 +L2)w � 0.

Denote in a short while χ := z∗(L1B
†
1C

†
1L1 + L2)w ∈ C . Hence, as αβ + 1 = 0

by (73), from the preceding inequalities, we find that

−β−1χ � 0 and βχ � 0.

Consequently, since β �= 0, these two inequalities are only possible if χ = 0. That is,
we have proved that if (z,w) is a pair of singular vectors of PCL1PB associated with the
singular value σ0 , then z∗(L1B

†
1C

†
1L1 +L2)w = 0. Therefore, for the pair (u,v) one has

u∗2(L1B
†
1C

†
1L1 +L2)v2 = 0. (77)

Next, defining the matrix D0 := D−σ0UV † we are going to prove that 0 is a
multiple eigenvalue of M(α,D0) . In a similar way to that of Subsection 8.1, given that⎛

⎝O O B1

O Σ B2

C1 C2 D0

⎞
⎠
⎛
⎝−C†

1(L1v2−σ0u2)
−Σ−1B2v2

v2

⎞
⎠= 0,

and

(−(u∗2L1−σ0v
∗
2)B

†
1,−u∗2C2Σ−1,u∗2)

⎛
⎝O O B1

O Σ B2

C1 C2 D0

⎞
⎠= 0,

to prove that 0 is a multiple eigenvalue of M(α,D0) , it suffices to see that

φ = (u∗2L1 −σ0v
∗
2)B

†
1C

†
1(L1v2−σ0u2)+u∗2L2v2 = 0.

That is as v∗2B
†
1 = 0 and C†

1u2 = 0, it suffices to see that

u∗2(L1B
†
1C

†
1L1 +L2)v2 = 0,

which is true by (77). This completes the proof of Theorem 5.

Final remark on Section 8

REMARK 15. In Section 7, Proposition 18, we have proved that if rank(B1) < n1

or rank(C1) < n1 , then

sup
t>0

σh (S2(t)) = lim
t→0+

σh (S2(t))
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whenever this limit is > 0. Let us assume that rank(B1) = rank(C1) = n1 . If the limit

lim
t→0+

σh (S2(t))

is finite and positive, the following question arises: does the equality

sup
t>0

σh (S2(t)) = lim
t→0+

σh (S2(t))

always hold? The answer is negative, as it can be seen in the following example. Let us
consider the matrix of C3×3

(
0 B
C D

)
:=

⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠⇒ S2(t) =

⎛
⎜⎜⎝

0 0 0 0
0 1 0 t

−1/t 0 0 0
0 0 0 1

⎞
⎟⎟⎠ .

Then, h = 2 and

σ2 (S2(t)) =

⎧⎨
⎩
√

t2 +2+ t
√

t2 +4
2

if t ∈ (0,1/
√

2],

1/t if t ∈ [1/
√

2,∞).

1/
√
2

1

σ2(S2(t))

t

√
2

We have

lim
t→0+

σ2 (S2(t)) = 1 > 0,

but the supremum is attained at t0 = 1/
√

2 and its value is
√

2.
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9. Scope of the results

Let α := (A,B,C) ∈ Ln,m . Let T ∈ Cn×n an invertible matrix and consider the
triple αT := (TAT−1,TB,CT−1) . It is easy to see that M(α,X) has a double 0 eigen-
value if and only if M(αT ,X) has a double 0 eigenvalue, for X ∈ Cm×m . Hence

min
X∈C

m×m

m(0,M(α ,X))�2

‖X −D‖ = min
X∈C

m×m

m(0,M(αT ,X))�2

‖X −D‖.

Moreover, it is clear that pα(t) = pαT (t) .
Finally, we wish to note that applying the same reasoning of this work, we can

obtain the following result, more general than Theorem 2.

THEOREM 21. Let α := (A,B,C) ∈ Ln,m be any triple of matrices, where 0 is a
semisimple eigenvalue of A. Let D ∈ Cm×m . Let Q be an invertible matrix such that

QAQ−1 =
(

O O
O A1

)
,

where A1 is an invertible matrix. Let β := (QAQ−1,QB,CQ−1) . Then,

min
X∈Cm×m

m(0,M(α ,X))�2

‖X −D‖ = sup
t>0

σpβ (t)+1
(
Sβ2 (t,D)

)
.
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