NEAREST SOUTHEAST SUBMATRIX THAT MAKES MULTIPLE AN EIGENVALUE OF THE NORMAL NORTHWEST SUBMATRIX

Juan-Miguel Gracia and Francisco E. Velasco

(Communicated by Z. Drmač)

Abstract

Let A, B, C, D be four complex matrices, where $D \in \mathbb{C}^{m \times m}$ and $A \in \mathbb{C}^{n \times n}$ is a normal matrix. Let z_{0} be an fixed eigenvalue of A. We find the distance (with respect to the 2 -norm) from D to the set of matrices $X \in \mathbb{C}^{m \times m}$ such that z_{0} is a multiple eigenvalue of the matrix $$
\left(\begin{array}{ll} A & B \\ C & X \end{array}\right) .
$$

We also give an expression for one of the closest matrices.

1. Introduction

This paper is highly inspired by Malyshev [12] and Wei [14]. The Malyshev's paper is concerning to the distance from a matrix to the nearest matrix with a multiple eigenvalue (Wilkinson's problem). Wei solved the problem of finding the nearest matrix D^{\prime} to D which reduces the rank of $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ to a specific integer.

We denote by $\|\cdot\|$ the matrix spectral norm or 2 -norm. The spectrum of a square complex matrix M is denoted by $\Lambda(M)$. An important problem that has been studied for some decades is the description of the possible eigenvalues and Jordan canonical forms of square complex matrices partitioned in the shape

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

when some of the blocks A, B, C, D are fixed and the remaining blocks vary. Relevant results are due to Oliveira, Sá, Silva, Thompson, Wimmer and Zaballa, among others; see the survey paper by Cravo [4]. In [1], Beitia et al. studied the problem of analyzing the possible Jordan forms of the matrix $\left(\begin{array}{cc}A & B \\ C^{\prime} & D^{\prime}\end{array}\right)$ when A and B are fixed and C^{\prime} and D^{\prime} are close to C and D, respectively.

[^0]The problem of the description of the possible eigenvalues and Jordan forms of the matrices of the form

$$
\left(\begin{array}{ll}
A & B \\
C & X
\end{array}\right)
$$

where $A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{n \times m}, C \in \mathbb{C}^{m \times n}$ are fixed and X varies in $\mathbb{C}^{m \times m}$, has been particularly difficult. There are few results about it; see Cravo [4], problem $\left(P_{7}\right)$ in pages 2520 and 2527. Moreover, we know no results on the Jordan forms of matrices $\left(\begin{array}{cc}A & B \\ C & D^{\prime}\end{array}\right)$ when D^{\prime} is close to $D \in \mathbb{C}^{m \times m}$. When all the eigenvalues of the matrix $G:=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ are simple, the problem of finding the distance, $d(G)$, from D to the set of matrices $X \in \mathbb{C}^{m \times m}$ such that $\left(\begin{array}{cc}A & B \\ C & X\end{array}\right)$ has a multiple eigenvalue, is a kind of structured Wilkinson's problem. This problem has been addressed by means of the structured ε-pseudospectrum, defined as

$$
\bigcup_{\substack{X \in \mathbb{C}^{m \times m} \\
\|X-D\| \leqslant \varepsilon}} \Lambda\left(\begin{array}{ll}
A & B \\
C & X
\end{array}\right)
$$

see Du and Wei [5], where a characterization of the structured ε-pseudospectrum is given. Other characterizations can be seen in Hinrichsen and Kelb [9] and [6].

For $z_{0} \in \mathbb{C}$, if we could know the minimum, $f\left(z_{0}\right)$, of the set

$$
\left\{\|X-D\|: X \in \mathbb{C}^{m \times m} \text { and } z_{0} \text { is a multiple eigenvalue of }\left(\begin{array}{ll}
A & B \\
C & X
\end{array}\right)\right\}
$$

we would have

$$
\min _{z_{0} \in \mathbb{C}} f\left(z_{0}\right)=d(G)
$$

In [8] the authors found an expression for $f\left(z_{0}\right)$ in terms of a singular value maximization, when $z_{0} \notin \Lambda(A), A$ being any matrix of $\mathbb{C}^{n \times n}$. In the current paper we address this problem when A is a normal matrix and $z_{0} \in \Lambda(A)$. The solution obtained can be easily extended to the case when z_{0} is a semisimple (or nondefective) eigenvalue of A (normal or not). When z_{0} is not an eigenvalue of A the solution of the problem involves matrices of polynomials in a real variable t and the inverse of square nonsingular matrices; the case when z_{0} is an eigenvalue of A requires matrices of rational functions in t with a pole at $t=0$ and the Moore-Penrose inverse instead.

If $\lambda_{0} \in \Lambda(M)$, the algebraic multiplicity of λ_{0} is denoted by $\mathrm{m}\left(\lambda_{0}, M\right)$. For a matrix $N \in \mathbb{C}^{p \times q}$ we denote by $\sigma_{1}(N) \geqslant \sigma_{2}(N) \geqslant \cdots$ its singular values, and by N^{\dagger} its Moore-Penrose inverse. For a matrix X, we denote by $\operatorname{Im}(X)$ and $\operatorname{Ker}(X)$ its image and kernel subspaces. By O we denote the zero matrix of adequate size.

Moreover, as in [8], we can assume without loss of generality that $z_{0}=0$. Thus the problem we are going to solve, can be set as follows: Find the minimum

$$
\min _{\substack{X \in \mathbb{C}^{m \times m} \tag{1}\\
\mathrm{~m}\left(0,\left(\begin{array}{ll}
A & B \\
C & X
\end{array}\right)\right) \geqslant 2}}\|X-D\| .
$$

where $A \in \mathbb{C}^{n \times n}$ is a singular normal matrix $B \in \mathbb{C}^{n \times m}, C \in \mathbb{C}^{m \times n}$ and $D \in \mathbb{C}^{m \times m}$.

If for all $X \in \mathbb{C}^{m \times m}$ it happens that $\mathrm{m}\left(0,\left(\begin{array}{ll}A & B \\ C & X\end{array}\right)\right) \leqslant 1$, we agree to say that the minimum distance (1) is infinite. Note that this case is possible considering $A=O \in \mathbb{C}^{n \times n}$ and $B=C=I_{n}$ for example, since for each $X \in \mathbb{C}^{n \times n}$ the matrix

$$
\left(\begin{array}{ll}
O & I_{n} \\
I_{n} & X
\end{array}\right)
$$

is nonsingular. In Section 4, the cases in which this distance is infinite will be determined.

To simplify we denote by $L_{n, m}$ the Cartesian product $\mathbb{C}^{n \times n} \times \mathbb{C}^{n \times m} \times \mathbb{C}^{m \times n}$. For a triple of matrices $\alpha:=(A, B, C) \in L_{n, m}$, and for $X \in \mathbb{C}^{m \times m}$ we denote

$$
M(\alpha, X):=\left(\begin{array}{ll}
A & B \\
C & X
\end{array}\right)
$$

A lower bound of the minimum (1) was given in [8]. We will remember the notations that appear in $[8,(11)$ and (12)] to recall this bound, and for their use in this paper: Given a triple $\alpha:=(A, B, C) \in L_{n, m}$ and a matrix $D \in \mathbb{C}^{m \times m}$, we define for $t \in \mathbb{R}$,

$$
\begin{gather*}
\rho_{\alpha}(t):=\operatorname{rank}\left(\begin{array}{cc|c}
A & t I_{n} & B \\
O & A & O
\end{array}\right)+\operatorname{rank}\left(\begin{array}{cc}
A & t I_{n} \\
O & A \\
C & O \\
O & C
\end{array}\right)-\operatorname{rank}\left(\begin{array}{cc}
A & t I_{n} \\
O & A
\end{array}\right) \\
p_{\alpha}(t):=2 n+2 m-2-\rho_{\alpha}(t) \tag{2}\\
M_{\alpha}(t):=\left(\begin{array}{l}
\left.I_{2 n}-\left(\begin{array}{ll}
A & t I_{n} \\
O & A
\end{array}\right)\left(\begin{array}{ll}
A & t I_{n} \\
O & A
\end{array}\right)^{\dagger}\right)\left(\begin{array}{ll}
B & O \\
O & B
\end{array}\right) \\
N_{\alpha}(t):=\left(\begin{array}{ll}
C & O \\
O & C
\end{array}\right)\left(\begin{array}{l}
\left.I_{2 n}-\left(\begin{array}{ll}
A & t I_{n} \\
O & A
\end{array}\right)^{\dagger}\left(\begin{array}{ll}
A & t I_{n} \\
O & A
\end{array}\right)\right) \\
S_{2}^{\alpha}(t, D):=\left(I_{2 m}-\right.
\end{array}\right. \\
\times\left(\left(\begin{array}{ll}
D & t I_{m} \\
O & D
\end{array}\right)-\left(\begin{array}{ll}
C & O \\
O & C
\end{array}\right)\left(\begin{array}{ll}
A & t I_{n} \\
O & A
\end{array}\right)^{\dagger}\left(\begin{array}{ll}
B & O \\
O & B
\end{array}\right)\right)
\end{array}\right. \tag{3}\\
\times\left(I_{2 m}-M_{\alpha}(t)^{\dagger} M_{\alpha}(t)\right) . \tag{4}
\end{gather*}
$$

We agree to write $\sup _{t \geqslant 0} f(t)=\infty$ if the function $f:[0, \infty) \rightarrow \mathbb{R}$ is not bounded above. Then the announced lower bound of (1) is given below.

PROPOSITION 1. ([8], Proposition 23)

$$
\begin{equation*}
\sup _{t \geqslant 0} \sigma_{p_{\alpha}(t)+1}\left(S_{2}^{\alpha}(t, D)\right) \leqslant \min _{\substack{X \in \mathbb{C}^{m \times m} \\ \mathrm{~m}(0, M(\alpha, X)) \geqslant 2}}\|X-D\| . \tag{6}
\end{equation*}
$$

where

$$
\sigma_{j}\left(S_{2}^{\alpha}(t, D)\right):= \begin{cases}\infty & \text { if } j<1 \\ 0 & \text { if } j>2 m\end{cases}
$$

The aim of this paper is to prove that when A is normal and singular, the inequality (6) becomes an equality. Specifically, we prove the following result.

THEOREM 2. Let $\alpha:=(A, B, C) \in L_{n, m}$ be a triple of matrices, where A is normal and singular. Let $D \in \mathbb{C}^{m \times m}$. With the preceding notations, we have

$$
\begin{equation*}
\sup _{t>0} \sigma_{p_{\alpha}(t)+1}\left(S_{2}^{\alpha}(t, D)\right)=\min _{\substack{X \in \mathbb{C}^{m \times m} \\ \mathrm{~m}(0, M(\alpha, X)) \geqslant 2}}\|X-D\| . \tag{7}
\end{equation*}
$$

REMARK 1. Let us note that in this theorem we put $t>0$ instead of $t \geqslant 0$. In fact, once (7) is proved then by (6) we have

$$
\sigma_{p_{\alpha}(0)+1}\left(S_{2}^{\alpha}(0, D)\right) \leqslant \sup _{t>0} \sigma_{p_{\alpha}(t)+1}\left(S_{2}^{\alpha}(t, D)\right)
$$

Hence,

$$
\sup _{t \geqslant 0} \sigma_{p_{\alpha}(t)+1}\left(S_{2}^{\alpha}(t, D)\right)=\sup _{t>0} \sigma_{p_{\alpha}(t)+1}\left(S_{2}^{\alpha}(t, D)\right)
$$

This work is organized as follows. In Section 2, we give a simplified expression for $S_{2}^{\alpha}(t, D)$, and we reformulate Theorem 2 in Theorem 5. In Section 3, we introduce the auxiliary results we are going to use in this work. We analyze the asymptotic behavior of the singular values of $S_{2}^{\alpha}(t, D)$, both for $t \rightarrow 0^{+}$and $t \rightarrow \infty$, and we establish the existence of the limits

$$
\lim _{t \rightarrow 0^{+}} \sigma_{p_{\alpha}(t)+1}\left(S_{2}^{\alpha}(t, D)\right) \text { and } \lim _{t \rightarrow \infty} \sigma_{p_{\alpha}(t)+1}\left(S_{2}^{\alpha}(t, D)\right)
$$

in Section 4. We prove Theorem 5 in the following sections until the end of Section 8. Namely, in Section 5, we calculate the minimum (1) when the supremum

$$
\sup _{t>0} \sigma_{p_{\alpha}(t)+1}\left(S_{2}^{\alpha}(t, D)\right)
$$

is attained at a point t_{0} such that $0<t_{0}<\infty$ and we prove equality (7). In Section 6, we study the case when

$$
\sup _{t>0} \sigma_{p_{\alpha}(t)+1}\left(S_{2}^{\alpha}(t, D)\right)=\lim _{t \rightarrow \infty} \sigma_{p \alpha(t)+1}\left(S_{2}^{\alpha}(t, D)\right)
$$

and, in Sections 7 and 8, we consider the case when

$$
\sup _{t>0} \sigma_{p_{\alpha}(t)+1}\left(S_{2}^{\alpha}(t, D)\right)=\lim _{t \rightarrow 0^{+}} \sigma_{p_{\alpha}(t)+1}\left(S_{2}^{\alpha}(t, D)\right)
$$

finishing the proof of Theorem 5. In Section 9, we give a more general result that falls within the scope of this article. This is the case in which z_{0} is a semisimple eigenvalue of a not necessarily normal matrix A.

2. Reformulation of the main result

We denote by M^{*} the conjugate transpose of each complex matrix M. In this section we are going to reformulate Theorem 2, simplifying the expression of $S_{2}^{\alpha}(t, D)$ for $t>0$ when the triple α undergoes a transformation of unitary similarity given by the unitary matrix U that diagonalizes A. For this purpose we need some properties of the Moore-Penrose inverse, which can be seen in [2, Proposition 6.1.6, p. 225].

Lemma 3. Given a matrix $A \in \mathbb{C}^{p \times q}$, then we have
(1) $I_{p}-A A^{\dagger}$ and $I_{q}-A^{\dagger} A$ are orthogonal projectors.
(2) If $S_{1} \in \mathbb{C}^{p \times p}$ and $S_{2} \in \mathbb{C}^{q \times q}$ are unitary, then $\left(S_{1} A S_{2}\right)^{\dagger}=S_{2}^{*} A^{\dagger} S_{1}^{*}$.

Lemma 4. Let $U \in \mathbb{C}^{n \times n}$ be a unitary matrix and $D \in \mathbb{C}^{m \times m}$. Then for the triple of matrices $\beta:=\left(U^{*} A U, U^{*} B, C U\right) \in L_{n, m}$ and each $t>0$ we have $S_{2}^{\alpha}(t, D)=S_{2}^{\beta}(t, D)$.

Proof. To simplify this demonstration, we introduce the following notations:

$$
\begin{gathered}
L(t)=\left(\begin{array}{cc}
D & t I_{m} \\
O & D
\end{array}\right), \quad V=\left(\begin{array}{cc}
U & O \\
O & U
\end{array}\right), \quad F(t)=\left(\begin{array}{cc}
A & t I_{n} \\
O & A
\end{array}\right), \quad F_{1}(t)=V^{*} F(t) V \\
G=\left(\begin{array}{cc}
B & O \\
O & B
\end{array}\right), \quad G_{1}=V^{*} G, \quad H=\left(\begin{array}{cc}
C & O \\
O & C
\end{array}\right), \quad H_{1}=H V
\end{gathered}
$$

First, as the matrix V is unitary, by Lemma 3, we deduce that $\left(V^{*} F(t) V\right)^{\dagger}=$ $V^{*} F(t)^{\dagger} V$. Hence, from (3) and (4), we obtain

$$
\begin{aligned}
& M_{\beta}(t)=\left(I_{2 n}-F_{1}(t) F_{1}(t)^{\dagger}\right) G_{1}=\left(I_{2 n}-V^{*} F(t) V V^{*} F(t)^{\dagger} V\right) V^{*} G=V^{*} M_{\alpha}(t), \\
& N_{\beta}(t)=H_{1}\left(I_{2 n}-F_{1}(t)^{\dagger} F_{1}(t)\right)=H V\left(I_{2 n}-V^{*} F(t)^{\dagger} V V^{*} F(t) V\right)=N_{\alpha}(t) V .
\end{aligned}
$$

Similarly, as the matrix V is unitary, we see that $\left(V^{*} M_{\alpha}(t)\right)^{\dagger}=M_{\alpha}(t)^{\dagger} V$ and $\left(N_{\alpha}(t) V\right)^{\dagger}$ $=V^{*} N_{\alpha}(t)^{\dagger}$. Therefore,

$$
\begin{aligned}
& I_{2 m}-N_{\beta}(t) N_{\beta}(t)^{\dagger}=I_{2 m}-N_{\alpha}(t) N_{\alpha}(t)^{\dagger} \\
& I_{2 m}-M_{\beta}(t)^{\dagger} M_{\beta}(t)=I_{2 m}-M_{\alpha}(t)^{\dagger} M_{\alpha}(t) .
\end{aligned}
$$

Finally, from $H_{1} F_{1}(t) G_{1}=H F(t) G$, by (5), we infer that

$$
\begin{aligned}
S_{2}^{\beta}(t, D) & =\left(I_{2 m}-N_{\alpha}(t) N_{\alpha}(t)^{\dagger}\right)(L(t)-H F(t) G)\left(I_{2 m}-M_{\alpha}(t)^{\dagger} M_{\alpha}(t)\right) \\
& =S_{2}^{\alpha}(t, D) . \quad \square
\end{aligned}
$$

REMARK 2. Let us note that if $\alpha=(A, B, C)$ and $\beta=\left(U^{*} A U, U^{*} B, C U\right)$ are two triples of matrices of $L_{n, m}$ with U unitary, then 0 is a multiple eigenvalue of $M(\alpha, X)$ if and only if it is a multiple eigenvalue of $M(\beta, X)$. Hence, by the previous lemma, in the proof of Theorem 2 there is no loss of generality if we consider the triple of matrices β.

Now, we are going to apply Lemma 4 to compute $S_{2}^{\alpha}(t, D)$. As the matrix A is normal, let $U \in \mathbb{C}^{n \times n}$ be a unitary matrix such that

$$
U^{*} A U=\left(\begin{array}{cc}
O & O \\
O & \Sigma
\end{array}\right)
$$

where $\Sigma \in \mathbb{C}^{n_{2} \times n_{2}}, 1 \leqslant n_{2}<n$, is a invertible diagonal matrix. So, it is understood that $A \neq O$; the case when $A=O$ will be considered later in Remark 4. Let us consider the partition $n=n_{1}+n_{2}$ in block matrices:

$$
\left(\begin{array}{c|c}
U^{*} A U & U^{*} B \tag{8}\\
\hline C U & D
\end{array}\right)=\left(\begin{array}{cc|c}
O & O & B_{1} \\
O & \Sigma & B_{2} \\
\hline C_{1} & C_{2} & D
\end{array}\right), \quad B_{1} \in \mathbb{C}^{n_{1} \times m}, C_{1} \in \mathbb{C}^{m \times n_{1}}
$$

By Lemma 4, $S_{2}^{\alpha}(t, D)=S_{2}^{\beta}(t, D)$, where $\beta:=\left(U^{*} A U, U^{*} B, C U\right)$. We will compute $S_{2}^{\beta}(t, D)$ for $t>0$.

First, let us call

$$
F(t):=\left(\begin{array}{cccc}
O & O & t I_{n_{1}} & O \\
O & \Sigma & O & t I_{n_{2}} \\
O & O & O & O \\
O & O & O & \Sigma
\end{array}\right)
$$

therefore,

$$
F(t)^{\dagger}=\left(\begin{array}{cccc}
O & O & O & O \\
O & \Sigma^{-1} & O & -t \Sigma^{-2} \\
t^{-1} I_{n_{1}} & O & O & O \\
O & O & O & \Sigma^{-1}
\end{array}\right)
$$

and

$$
F(t) F(t)^{\dagger}=\left(\begin{array}{cccc}
I_{n_{1}} & O & O & O \\
O & I_{n_{2}} & O & O \\
O & O & O & O \\
O & O & O & I_{n_{2}}
\end{array}\right), \quad F(t)^{\dagger} F(t)=\left(\begin{array}{cccc}
O & O & O & O \\
O & I_{n_{2}} & O & O \\
O & O & I_{n_{1}} & O \\
O & O & O & I_{n_{2}}
\end{array}\right)
$$

Hence, from (3) and (4),

$$
M_{\beta}(t)=\left(\begin{array}{cc}
O & O \\
O & O \\
O & B_{1} \\
O & O
\end{array}\right), \quad N_{\beta}(t)=\left(\begin{array}{cccc}
C_{1} & O & O & O \\
O & O & O & O
\end{array}\right)
$$

Consequently,

$$
I_{2 m}-N_{\beta}(t) N_{\beta}(t)^{\dagger}=\left(\begin{array}{cc}
I_{m}-C_{1} C_{1}^{\dagger} & O \\
O & I_{m}
\end{array}\right), \quad I_{2 m}-M_{\beta}(t)^{\dagger} M_{\beta}(t)=\left(\begin{array}{cc}
I_{m} & O \\
O & I_{m}-B_{1}^{\dagger} B_{1}
\end{array}\right)
$$

Last,

$$
\left(\begin{array}{cccc}
C_{1} & C_{2} & O & O \\
O & O & C_{1} & C_{2}
\end{array}\right) F(t)^{\dagger}\left(\begin{array}{cc}
B_{1} & O \\
B_{2} & O \\
O & B_{1} \\
O & B_{2}
\end{array}\right)=\left(\begin{array}{cc}
C_{2} \Sigma^{-1} B_{2} & -t C_{2} \Sigma^{-2} B_{2} \\
t^{-1} C_{1} B_{1} & C_{2} \Sigma^{-1} B_{2}
\end{array}\right)
$$

From the three last equalities and (5) we deduce that for $t>0$,

$$
S_{2}^{\beta}(t, D)=\left(\begin{array}{cc}
\left(I_{m}-C_{1} C_{1}^{\dagger}\right)\left(D-C_{2} \Sigma^{-1} B_{2}\right) t\left(I_{m}-C_{1} C_{1}^{\dagger}\right)\left(I_{m}+C_{2} \Sigma^{-2} B_{2}\right)\left(I_{m}-B_{1}^{\dagger} B_{1}\right) \\
-t^{-1} C_{1} B_{1} & \left(D-C_{2} \Sigma^{-1} B_{2}\right)\left(I_{m}-B_{1}^{\dagger} B_{1}\right)
\end{array}\right) .
$$

Thus, by Lemma 4, it follows that for $t>0$

$$
S_{2}^{\alpha}(t, D)=\left(\begin{array}{cc}
P_{C} L_{1} & t P_{C} L_{2} P_{B} \tag{9}\\
-t^{-1} C_{1} B_{1} & L_{1} P_{B}
\end{array}\right),
$$

where $P_{C}:=I_{m}-C_{1} C_{1}^{\dagger}, P_{B}:=I_{m}-B_{1}^{\dagger} B_{1}, L_{1}:=D-C_{2} \Sigma^{-1} B_{2}$ and $L_{2}:=I_{m}+C_{2} \Sigma^{-2} B_{2}$. However, from this point on, in order to simplify the demonstration, we only consider the expression of $S_{2}^{\alpha}(t, D)$ given in (9). Moreover, by Remark 2, we can assume the triple $\alpha=(A, B, C)$ is in the form $\left(U^{*} A U, U^{*} B, C U\right)$ that was given in (8). From the definition of $p_{\alpha}(t)$ given in (2) we infer that

$$
p_{\alpha}(t)=2 m+n_{1}-2-\operatorname{rank}\left(B_{1}\right)-\operatorname{rank}\left(C_{1}\right)
$$

for $0<t<\infty$.
From now on, we will abbreviate $S_{2}^{\alpha}(t, D)$ by $S_{2}(t)$. With these considerations, when $A \neq O$, Theorem 2 can be reformulated in the following way.

THEOREM 5. Let $\alpha=(A, B, C) \in L_{n, m}$ be a triple of matrices

$$
A:=\left(\begin{array}{ll}
O & O \\
O & \Sigma
\end{array}\right), \quad B:=\binom{B_{1}}{B_{2}}, \quad C:=\left(C_{1}, C_{2}\right)
$$

with $B_{1} \in \mathbb{C}^{n_{1} \times m}, C_{1} \in \mathbb{C}^{m \times n_{1}}$ and $\Sigma \in \mathbb{C}^{n_{2} \times n_{2}}$ an invertible diagonal matrix, $n_{1} \geqslant 1$. Let us define

$$
\begin{equation*}
h:=2 m+n_{1}-1-\operatorname{rank}\left(B_{1}\right)-\operatorname{rank}\left(C_{1}\right) . \tag{10}
\end{equation*}
$$

Given $D \in \mathbb{C}^{m \times m}$. For $t>0$ let us also define

$$
S_{2}(t):=\left(\begin{array}{cc}
P_{C} L_{1} & t P_{C} L_{2} P_{B} \tag{11}\\
-t^{-1} C_{1} B_{1} & L_{1} P_{B}
\end{array}\right),
$$

where

$$
\begin{equation*}
P_{C}:=I_{m}-C_{1} C_{1}^{\dagger}, \quad P_{B}:=I_{m}-B_{1}^{\dagger} B_{1} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{1}:=D-C_{2} \Sigma^{-1} B_{2}, \quad L_{2}:=I_{m}+C_{2} \Sigma^{-2} B_{2} . \tag{13}
\end{equation*}
$$

Then

$$
\sup _{t>0} \sigma_{h}\left(S_{2}(t)\right)=\min _{\substack{X \in \mathbb{C}^{m \times m} \\ \mathrm{~m}(0, M(\alpha, X)) \geqslant 2}}\|X-D\| .
$$

REMARK 3. Suppose there exists a $t_{1}>0$ such that $\sigma_{h}\left(S_{2}\left(t_{1}\right)\right)=0$, equivalently $\operatorname{rank}\left(S_{2}\left(t_{1}\right)\right) \leqslant h-1$. By Section 4 of [8] we see that

$$
\begin{aligned}
\operatorname{rank}\left(\begin{array}{cccc}
A & t_{1} I_{n} & B & O \\
O & A & O & B \\
C & O & D & t_{1} I_{m} \\
O & C & O & D
\end{array}\right) & =\operatorname{rank}\left(\begin{array}{cc|cc}
A & B & t_{1} I_{n} & O \\
C & D & O & t_{1} I_{m} \\
\hline O & O & A & B \\
O & O & C & D
\end{array}\right) \\
& =\rho_{\alpha}\left(t_{1}\right)+\operatorname{rank}\left(S_{2}\left(t_{1}\right)\right) \leqslant \rho_{\alpha}\left(t_{1}\right)+h-1
\end{aligned}
$$

But, as

$$
h-1=p_{\alpha}\left(t_{1}\right)=2 m+2 n-2-\rho_{\alpha}\left(t_{1}\right),
$$

we infer that

$$
\operatorname{rank}\left(\begin{array}{cc|cc}
A & B & t_{1} I_{n} & O \\
C & D & O & t_{1} I_{m} \\
\hline O & O & A & B \\
O & O & C & D
\end{array}\right) \leqslant 2 m+2 n-2
$$

As it can be seen in [12, pages 444-445], this inequality implies that 0 is a multiple eigenvalue of $M(\alpha, D)$. Thus, by Proposition 1, Theorem 5 is already proved in this case. Therefore, from now on we will assume that $\sigma_{h}\left(S_{2}(t)\right)>0$ for $t>0$.

REMARK 4. When the normal matrix A is the $n \times n$ zero matrix, the statement of Theorem 5 is reduced to

$$
\sup _{t>0} \sigma_{k}\left(\begin{array}{cc}
P_{C} D & t P_{C} P_{B} \tag{14}\\
-t^{-1} C B & D P_{B}
\end{array}\right)=\min _{\substack{X \in \mathbb{C}^{m \times m} \\
\mathrm{~m}(0, M(\alpha, X)) \geqslant 2}}\|X-D\|,
$$

where $k:=2 m+n-1-\operatorname{rank}(B)-\operatorname{rank}(C)$. The proof of (14) might be done following similar reasoning to the $A \neq O$ case, replacing B_{1} by B, C_{1} by C, L_{1} by D, L_{2} by I_{m}, and removing Σ, B_{2} and C_{2}.

3. Auxiliary results

In this section, we are going to introduce some results that will be used in this work. In the first one, we give some properties of the Moore-Penrose inverse, which can be seen in [2, Proposition 6.1.6, page 225; Fact 6.4.8, page 235] and [3].

Lemma 6. Let $A \in \mathbb{C}^{p \times q}$ be a matrix. Then
(1) $\operatorname{Ker}\left(I_{p}-A A^{\dagger}\right)=\operatorname{Im}(A), \operatorname{Im}\left(I_{p}-A A^{\dagger}\right)=\operatorname{Ker}\left(A^{*}\right)=\operatorname{Ker}\left(A^{\dagger}\right)$.
(2) $\operatorname{Ker}\left(I_{q}-A^{\dagger} A\right)=\operatorname{Im}\left(A^{*}\right)=\operatorname{Im}\left(A^{\dagger}\right), \operatorname{Im}\left(I_{q}-A^{\dagger} A\right)=\operatorname{Ker}(A)$.
(3) $x \in \operatorname{Im}(A)$ if and only if $x=A A^{\dagger} x ; x \in \operatorname{Im}\left(A^{*}\right)$ if and only if $x^{*}=x^{*} A^{\dagger} A$.
(4) If $\operatorname{rank}(A)=p$, then $A A^{\dagger}=I_{p}$; if $\operatorname{rank}(A)=q$, then $A^{\dagger} A=I_{q}$.
(5) Let $F \in \mathbb{C}^{q \times r}$. If $\operatorname{rank}(A)=\operatorname{rank}(F)=q$, then $(A F)^{\dagger}=F^{\dagger} A^{\dagger}$.

With this lemma and Lemma 3, we get the following properties for the matrices $P_{C}=\left(I_{m}-C_{1} C_{1}^{\dagger}\right)$ and $P_{B}=\left(I_{m}-B_{1}^{\dagger} B_{1}\right)$, defined in (12).

Lemma 7. (1) P_{C} and P_{B} are orthogonal projectors.
(2) $\operatorname{Ker}\left(P_{C}\right)=\operatorname{Im}\left(C_{1}\right), \quad \operatorname{Im}\left(P_{C}\right)=\operatorname{Ker}\left(C_{1}^{*}\right)=\operatorname{Ker}\left(C_{1}^{\dagger}\right)$.
(3) $\operatorname{Ker}\left(P_{B}\right)=\operatorname{Im}\left(B_{1}^{*}\right)=\operatorname{Im}\left(B_{1}^{\dagger}\right), \quad \operatorname{Im}\left(P_{B}\right)=\operatorname{Ker}\left(B_{1}\right)$.
(4) If $\operatorname{rank}\left(C_{1}\right)=\operatorname{rank}\left(B_{1}\right)=n_{1}$, then $\left(C_{1} B_{1}\right)^{\dagger}=B_{1}^{\dagger} C_{1}^{\dagger}$.

We will need in Sections 6 and 8 the following lemma.

LEMMA 8. ([8], Lemma 33) Let $\left\{t_{k}\right\}_{k=1}^{\infty}$ be a sequence of real numbers which tends to ∞ when $k \rightarrow \infty$. Let $G \in \mathbb{C}^{p \times p}$ be a matrix and let $x_{k}, y_{k} \in \mathbb{C}^{p \times 1}, k=1,2, \ldots$ be vector sequences such that
(i) $\lim _{k \rightarrow \infty} G y_{k}=0$,
(ii) $\sup _{k=1,2, \ldots}\left\|t_{k}\left(x_{k}\right)^{*} G\right\| \leqslant T<\infty$, where T is a positive constant.

Then

$$
\lim _{k \rightarrow \infty} t_{k}\left(x_{k}\right)^{*} G y_{k}=0
$$

With respect to the asymptotic behavior of the eigenvalues of matrix functions, we have the following result.

Lemma 9. ([11], Lemma 5) Let $F(t)=G(t)+t^{-1} H \in \mathbb{C}^{p \times p}$ where $G(t)$ is a Hermitian matrix function analytic on an open interval $J \subset \mathbb{R}$ around 0 , and H is a constant Hermitian matrix such that $\operatorname{rank}(H)=r$. Assume that H has a spectral decomposition

$$
H=\left(V_{1}, V_{2}\right)\left(\begin{array}{cc}
\Lambda_{r} & O \\
O & O
\end{array}\right)\left(V_{1}, V_{2}\right)^{*}
$$

with unitary $V=\left(V_{1}, V_{2}\right)$ and $\Lambda_{r} \in \mathbb{R}^{r \times r}$ is a diagonal matrix with nonzero diagonal entries. Then as t approaches $0, r$ eigenvalues of $F(t)$ tend in absolute value to ∞, and the rest to the eigenvalues of $V_{2}^{*} G(0) V_{2}$.

Hence we will deduce the following result for singular values, which will be used in Section 4.

Lemma 10. Let $K(t)=L(t)+t^{-1} M \in \mathbb{C}^{p \times p}$, where $L(t)$ is an analytic matrix function on an open interval $J \subset \mathbb{R}$ around 0 and $\operatorname{rank}(M)=s$. Consider the singular value decomposition of M

$$
M=\left(P_{1}, P_{2}\right)\left(\begin{array}{cc}
\Sigma_{s} & O \\
O & O
\end{array}\right)\left(Q_{1}, Q_{2}\right)^{*}
$$

with unitary $\left(P_{1}, P_{2}\right)$ and $\left(Q_{1}, Q_{2}\right)$ and $\Sigma_{s} \in \mathbb{R}^{s \times s}$. Then as t approaches $0, s$ singular values of $K(t)$ tend to ∞, and the rest to the singular values of the matrix $P_{2}^{*} L(0) Q_{2}$.

Proof. Observe that in the matrix function, valued in $\mathbb{C}^{2 p \times 2 p}$,

$$
N(t)=\left(\begin{array}{cc}
O & K(t) \\
K^{*}(t) & O
\end{array}\right)=\left(\begin{array}{cc}
O & L(t) \\
L^{*}(t) & O
\end{array}\right)+t^{-1}\left(\begin{array}{cc}
O & M \\
M^{*} & O
\end{array}\right)=R(t)+t^{-1} S
$$

the matrices $R(t)$ and S are Hermitian, $R(t)$ is analytic around 0 and $\operatorname{rank}(S)=2 s$. Let us note that, by the Jordan-Wielandt lemma [13, Theorem 4.2], the eigenvalues of $N(t)$ are

$$
\pm \sigma_{1}(K(t)), \ldots, \pm \sigma_{p}(K(t))
$$

Consider the unitary matrix $\left(V_{1}, V_{2}\right) \in \mathbb{C}^{2 p \times 2 p}$, with

$$
V_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
P_{1} & P_{1} \\
Q_{1} & -Q_{1}
\end{array}\right) \in \mathbb{C}^{2 p \times 2 s}, \quad V_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
P_{2} & P_{2} \\
Q_{2} & -Q_{2}
\end{array}\right) \in \mathbb{C}^{2 p \times 2(p-s)}
$$

Then

$$
S=\left(V_{1}, V_{2}\right)\left(\begin{array}{ccc}
\Sigma_{s} & O & O \\
O & -\Sigma_{s} & O \\
O & O & O
\end{array}\right)\left(V_{1}, V_{2}\right)^{*}
$$

is a spectral decomposition of S. Hence, by Lemma 9 as $t \rightarrow 0$ we deduce that $2 s$ eigenvalues of $N(t)$ tend in absolute value to ∞; and the rest to the eigenvalues of the matrix

$$
V_{2}^{*} R(0) V_{2}=\frac{1}{2}\left(\begin{array}{cc}
Q_{2}^{*} L^{*}(0) P_{2}+P_{2}^{*} L(0) Q_{2} & Q_{2}^{*} L^{*}(0) P_{2}-P_{2}^{*} L(0) Q_{2} \\
-Q_{2}^{*} L^{*}(0) P_{2}+P_{2}^{*} L(0) Q_{2} & -Q_{2}^{*} L^{*}(0) P_{2}-P_{2}^{*} L(0) Q_{2}
\end{array}\right)
$$

Taking the unitary matrix

$$
X=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-I & -I \\
-I & I
\end{array}\right)
$$

we deduce that the eigenvalues of $V_{2}^{*} R(0) V_{2}$ are the eigenvalues of

$$
X^{*} V_{2}^{*} R(0) V_{2} X=\left(\begin{array}{cc}
O & P_{2}^{*} L(0) Q_{2} \\
\left(P_{2}^{*} L(0) Q_{2}\right)^{*} & O
\end{array}\right)
$$

that is, $\pm \sigma_{1}\left(P_{2}^{*} L(0) Q_{2}\right), \ldots, \pm \sigma_{p-s}\left(P_{2}^{*} L(0) Q_{2}\right)$.
To conclude this section, we give some results about the singular values of matrix functions of a real variable. The first one can be seen in [10, Theorem 4.3.17, page 442 and Corollary 4.3.20, page 443].

LEMMA 11. Let $F(t) \in \mathbb{C}^{q \times q}$ be an analytic matrix function on an open set $\Omega \subset$ \mathbb{R}. Then, there exist unitary matrix functions $U(t), V(t)$ and a diagonal matrix function $\Sigma(t)=\operatorname{diag}\left(\tilde{\sigma}_{1}(t), \tilde{\sigma}_{2}(t), \ldots, \tilde{\sigma}_{p}(t)\right) \in \mathbb{R}^{q \times q}$, all of which are analytic on Ω, such that for $t \in \Omega$,

$$
U(t)^{*} F(t) V(t)=\Sigma(t)
$$

Moreover

$$
\tilde{\sigma}_{i}^{\prime}(t)=\operatorname{Re}\left(u_{i}^{*}(t) F^{\prime}(t) v_{i}(t)\right)
$$

Another result, which will be used in Section 5, is the following one [10, Proposition 4.3.21, page 443].

LEMMA 12. Let Ω be an open subset of \mathbb{R} and $F: \Omega \rightarrow \mathbb{C}^{m \times n}$ be an analytic matrix function on Ω. If the function $\sigma_{i}(F(t))$ has a positive local maximum (or minimum) at $t_{0} \in \Omega$, then there exist a pair of singular vectors $u \in \mathbb{C}^{m \times 1}, v \in \mathbb{C}^{n \times 1}$ of $F\left(t_{0}\right)$ corresponding to $\sigma_{i}\left(F\left(t_{0}\right)\right)$ such that

$$
\operatorname{Re}\left(u^{*} F^{\prime}\left(t_{0}\right) v\right)=0
$$

4. Asymptotic behavior of the singular values

In this section, we analyze the asymptotic behavior of the singular values of the matrix function $S_{2}(t)$ defined in (11), both when $t \rightarrow 0^{+}$and $t \rightarrow \infty$. We start with the $t \rightarrow 0^{+}$case.

Lemma 13. Let $S_{2}(t)$ be the matrix function in (11), and assume that $s=\operatorname{rank}\left(C_{1} B_{1}\right)$. Then as $t \rightarrow 0^{+}$, the first s singular values of $S_{2}(t)$ tend to ∞ and the remaining $2 m-s$ ones satisfy

$$
\lim _{t \rightarrow 0^{+}} \sigma_{s+k}\left(S_{2}(t)\right)=\sigma_{k}\left(\begin{array}{cc}
P_{C} L_{1}\left(I_{m}-\left(C_{1} B_{1}\right)^{\dagger} C_{1} B_{1}\right) & O \\
O & \left(I_{m}-C_{1} B_{1}\left(C_{1} B_{1}\right)^{\dagger}\right) L_{1} P_{B}
\end{array}\right)
$$

for $k=1, \ldots, 2 m-s$. If $\operatorname{rank}\left(B_{1}\right)=\operatorname{rank}\left(C_{1}\right)=n_{1}$, then as $t \rightarrow 0^{+}$, the first n_{1} singular values of $S_{2}(t)$ tend to ∞, and the remaining $2 m-n_{1}$ ones satisfy

$$
\lim _{t \rightarrow 0^{+}} \sigma_{n_{1}+k}\left(S_{2}(t)\right)=\sigma_{k}\left(\begin{array}{cc}
P_{C} L_{1} P_{B} & O \\
O & P_{C} L_{1} P_{B}
\end{array}\right) \text { for } k=1, \ldots, 2 m-n_{1}
$$

REMARK 5. Note that the block $P_{C} L_{1} P_{B}$ in the last matrix is repeated.
Proof. First, by (11), we have

$$
S_{2}(t)=\left(\begin{array}{cc}
P_{C} L_{1} & t P_{C} L_{2} P_{B} \\
O & L_{1} P_{B}
\end{array}\right)+t^{-1}\left(\begin{array}{cc}
O & O \\
-C_{1} B_{1} & O
\end{array}\right)=L(t)+t^{-1} M
$$

with $L(t)$ analytic in a neighborhood of 0 and $\operatorname{rank}(M)=\operatorname{rank}\left(C_{1} B_{1}\right)=s$. Let $\left(U_{1}, U_{2}\right)$, $\left(V_{1}, V_{2}\right)$ be unitary matrices of $\mathbb{C}^{m \times m}$, with $U_{2}, V_{2} \in \mathbb{C}^{m \times(m-s)}$, such that

$$
\left(U_{1}, U_{2}\right)^{*}\left(-C_{1} B_{1}\right)\left(V_{1}, V_{2}\right)=\left(\begin{array}{cc}
\Sigma_{s} & O \tag{15}\\
O & O
\end{array}\right)
$$

with $\Sigma_{s} \in \mathbb{R}^{s \times s}$, gives us the singular value decomposition of $-C_{1} B_{1}$. Therefore, considering the unitary matrices

$$
P:=\left(\begin{array}{ccc}
O & O & I_{m} \\
U_{1} & U_{2} & O
\end{array}\right), \quad Q:=\left(\begin{array}{ccc}
V_{1} & V_{2} & O \\
O & O & I_{m}
\end{array}\right)
$$

we deduce that

$$
P^{*} M Q=\left(\begin{array}{cc}
\Sigma_{s} & O \\
O & O
\end{array}\right) .
$$

Calling

$$
P_{2}:=\left(\begin{array}{cc}
O & I_{m} \\
U_{2} & O
\end{array}\right), \quad Q_{2}:=\left(\begin{array}{cc}
V_{2} & O \\
O & I_{m}
\end{array}\right)
$$

by Lemma 10 we see that when $t \rightarrow 0^{+}$, the first s singular values of $S_{2}(t)$ tend to ∞, and the rest to the singular values of

$$
P_{2}^{*} L(0) Q_{2}=\left(\begin{array}{cc}
O & U_{2}^{*} L_{1} P_{B} \\
P_{C} L_{1} V_{2} & O
\end{array}\right)
$$

Hence, for $k=1,2, \ldots, 2 m-s$,

$$
\lim _{t \rightarrow 0^{+}} \sigma_{s+k}\left(S_{2}(t)\right)=\sigma_{k}\left(\begin{array}{cc}
P_{C} L_{1} V_{2} & O \tag{16}\\
O & U_{2}^{*} L_{1} P_{B}
\end{array}\right)
$$

By (15), $-C_{1} B_{1} V_{1}=U_{1} \Sigma_{s}$ and $-\left(C_{1} B_{1}\right)^{*} U_{1}=V_{1} \Sigma_{s}$, from Lemma 6(1)(2) we get first

$$
\begin{gathered}
U_{1}=-C_{1} B_{1} V_{1} \Sigma_{s}^{-1} \Rightarrow \operatorname{Im}\left(U_{1}\right) \subset \operatorname{Im}\left(C_{1} B_{1}\right)=\operatorname{Ker}\left(I_{m}-C_{1} B_{1}\left(C_{1} B_{1}\right)^{\dagger}\right), \\
V_{1}=-\left(C_{1} B_{1}\right)^{*} U_{1} \Sigma_{s}^{-1} \Rightarrow \operatorname{Im}\left(V_{1}\right) \subset \operatorname{Im}\left(\left(C_{1} B_{1}\right)^{*}\right)=\operatorname{Ker}\left(I_{m}-\left(C_{1} B_{1}\right)^{\dagger} C_{1} B_{1}\right) .
\end{gathered}
$$

But, given that $I_{m}-C_{1} B_{1}\left(C_{1} B_{1}\right)^{\dagger}$ and $I_{m}-\left(C_{1} B_{1}\right)^{\dagger} C_{1} B_{1}$ are orthogonal projectors in virtue of Lemma 3(1), we infer that

$$
\begin{equation*}
U_{1}^{*}\left(I_{m}-C_{1} B_{1}\left(C_{1} B_{1}\right)^{\dagger}\right)=O, \quad\left(I_{m}-\left(C_{1} B_{1}\right)^{\dagger} C_{1} B_{1}\right) V_{1}=O \tag{17}
\end{equation*}
$$

Similarly, from (15) and Lemma 6(1)(2), we see that

$$
\begin{gathered}
\left(C_{1} B_{1}\right)^{*} U_{2}=O \Rightarrow \operatorname{Im}\left(U_{2}\right) \subset \operatorname{Ker}\left(\left(C_{1} B_{1}\right)^{*}\right)=\operatorname{Im}\left(I_{m}-C_{1} B_{1}\left(C_{1} B_{1}\right)^{\dagger}\right) \\
C_{1} B_{1} V_{2}=O \Rightarrow \operatorname{Im}\left(V_{2}\right) \subset \operatorname{Ker}\left(C_{1} B_{1}\right)=\operatorname{Im}\left(I_{m}-\left(C_{1} B_{1}\right)^{\dagger} C_{1} B_{1}\right)
\end{gathered}
$$

Thus

$$
U_{2}^{*}\left(I_{m}-C_{1} B_{1}\left(C_{1} B_{1}\right)^{\dagger}\right)=U_{2}^{*}, \quad\left(I_{m}-\left(C_{1} B_{1}\right)^{\dagger} C_{1} B_{1}\right) V_{2}=V_{2} .
$$

Consequently, with (17) and these two last equations, we deduce that

$$
\begin{aligned}
\left(O, P_{C} L_{1} V_{2}\right) & =P_{C} L_{1}\left(I_{m}-\left(C_{1} B_{1}\right)^{\dagger} C_{1} B_{1}\right)\left(V_{1}, V_{2}\right), \\
\binom{O}{U_{2}^{*} L_{1} P_{B}} & =\binom{U_{1}^{*}}{U_{2}^{*}}\left(I_{m}-C_{1} B_{1}\left(C_{1} B_{1}\right)^{\dagger}\right) L_{1} P_{B} .
\end{aligned}
$$

Substituting these equations in (16) we prove the lemma in the first case.
To prove the lemma in the $\operatorname{rank}\left(B_{1}\right)=\operatorname{rank}\left(C_{1}\right)=n_{1}$ case, as $s=\operatorname{rank}\left(C_{1} B_{1}\right)=$ n_{1}, it is sufficient to see that $I_{m}-C_{1} B_{1}\left(C_{1} B_{1}\right)^{\dagger}=P_{C}, I_{m}-\left(C_{1} B_{1}\right)^{\dagger} C_{1} B_{1}=P_{B}$. In fact,
given that $\operatorname{rank}\left(B_{1}\right)=\operatorname{rank}\left(C_{1}\right)=n_{1}$, then $C_{1}^{\dagger} C_{1}=B_{1} B_{1}^{\dagger}=I_{n_{1}}$ by Lemma 6(4). And $\left(C_{1} B_{1}\right)^{\dagger}=B_{1}^{\dagger} C_{1}^{\dagger}$ by Lemma 7(4). Hence

$$
\begin{gathered}
I_{m}-C_{1} B_{1}\left(C_{1} B_{1}\right)^{\dagger}=I_{m}-C_{1} B_{1} B_{1}^{\dagger} C_{1}^{\dagger}=I_{m}-C_{1} C_{1}^{\dagger}=P_{C}, \\
I_{m}-\left(C_{1} B_{1}\right)^{\dagger} C_{1} B_{1}=I_{m}-B_{1}^{\dagger} C_{1}^{\dagger} C_{1} B_{1}=I_{m}-B_{1}^{\dagger} B_{1}=P_{B} .
\end{gathered}
$$

For the $t \rightarrow \infty$ case, we have the following result.
Lemma 14. Let $S_{2}(t)$ be the matrix function in (11). Let us call $L:=P_{C} L_{2} P_{B}$, and assume that $\ell=\operatorname{rank}\left(P_{C} L_{2} P_{B}\right)$. Then as $t \rightarrow \infty$, the first ℓ singular values of $S_{2}(t)$ tend to ∞, and the remaining $2 m-\ell$ ones satisfy

$$
\lim _{t \rightarrow \infty} \sigma_{\ell+k}\left(S_{2}(t)\right)=\sigma_{k}\left(\begin{array}{cc}
P_{C}\left(I_{m}-L L^{\dagger}\right) L_{1} & O \\
O & L_{1}\left(I_{m}-L^{\dagger} L\right) P_{B}
\end{array}\right)
$$

for $k=1, \ldots, 2 m-\ell$.
REMARK 6. Let us note that the matrix in the right hand side is $2 m \times 2 m$.
Proof. Let $\left(U_{1}, U_{2}\right),\left(V_{1}, V_{2}\right)$ be unitary matrices of $\mathbb{C}^{m \times m}$, with $U_{2}, V_{2} \in \mathbb{C}^{m \times(m-\ell)}$, that perform the singular value decomposition of L

$$
\left(U_{1}, U_{2}\right)^{*} L\left(V_{1}, V_{2}\right)=\left(\begin{array}{cc}
\Sigma_{\ell} & O \tag{18}\\
O & O
\end{array}\right)
$$

with $\Sigma_{\ell} \in \mathbb{R}^{\ell \times \ell}$. Applying a similar reasoning to the one of the previous lemma for the matrix function

$$
\hat{S}_{2}(t)=\left(\begin{array}{cc}
P_{C} L_{1} & t^{-1} L \\
-t C_{1} B_{1} & L_{1} P_{B}
\end{array}\right)
$$

we find that as $t \rightarrow \infty$, the first ℓ singular values of $S_{2}(t)$ tend to ∞, and the remaining $2 m-\ell$ ones satisfy

$$
\lim _{t \rightarrow \infty} \sigma_{\ell+k}\left(S_{2}(t)\right)=\sigma_{k}\left(\begin{array}{cc}
U_{2}^{*} P_{C} L_{1} & O \tag{19}\\
O & L_{1} P_{B} V_{2}
\end{array}\right) \text { for } k=1, \ldots, 2 m-\ell
$$

Let us note that as P_{C} and P_{B} are orthogonal projectors, then $P_{C} L=L$ and $P_{B} L^{*}=$ L^{*}. Hence, from (18) and by Lemma 6(1)(2), we obtain first

$$
\begin{gathered}
P_{C} U_{1} \Sigma_{\ell}=P_{C} L V_{1}=L V_{1} \Rightarrow \operatorname{Im}\left(P_{C} U_{1}\right) \subset \operatorname{Im} L=\operatorname{Ker}\left(I_{m}-L L^{\dagger}\right) \\
P_{B} V_{1} \Sigma_{\ell}=P_{B} L^{*} U_{1}=L^{*} U_{1} \Rightarrow \operatorname{Im}\left(P_{B} V_{1}\right) \subset \operatorname{Im} L^{*}=\operatorname{Ker}\left(I_{m}-L^{\dagger} L\right)
\end{gathered}
$$

Therefore by Lemma 3(1) $I_{m}-L L^{\dagger}$ and $I_{m}-L^{\dagger} L$ are orthogonal projectors, then

$$
\begin{equation*}
U_{1}^{*} P_{C}\left(I_{m}-L L^{\dagger}\right)=O, \quad\left(I_{m}-L^{\dagger} L\right) P_{B} V_{1}=O \tag{20}
\end{equation*}
$$

Similarly, from (18) and Lemma 6(1)(2), we have

$$
O=U_{2}^{*} L=U_{2}^{*} P_{C} L \text { and } O=L V_{2}=L P_{B} V_{2} .
$$

Thus

$$
U_{2}^{*} P_{C}\left(I_{m}-L L^{\dagger}\right)=U_{2}^{*} P_{C}, \quad\left(I_{m}-L^{\dagger} L\right) P_{B} V_{2}=P_{B} V_{2}
$$

Substituting these two last equalities and (20) in (19) we have proved the lemma.

REMARK 7. Taking into account the expression for h given in (10), Lemmas 13 and 14, and Proposition 1, we conclude that if

$$
\begin{equation*}
2 m+n_{1}-1-\operatorname{rank}\left(B_{1}\right)-\operatorname{rank}\left(C_{1}\right) \leqslant \max \left\{\operatorname{rank}\left(C_{1} B_{1}\right), \operatorname{rank}\left(P_{C} L_{2} P_{B}\right)\right\} \tag{21}
\end{equation*}
$$

then $\sup _{t>0} \sigma_{h}\left(S_{2}(t)\right)=\infty$; that is, there is no matrix $X \in \mathbb{C}^{m \times m}$ such that 0 is a multiple eigenvalue of $M(\alpha, X)$. Consequently, Theorem 5 is proved in this case. It can be demonstrated that inequality (21) is equivalent to

$$
\operatorname{rank}\left(B_{1}\right)=\operatorname{rank}\left(C_{1}\right)=m \text { and }\left(m=n_{1} \text { or } m=n_{1}-1\right)
$$

Therefore, from here on we will assume that

$$
2 m+n_{1}-1-\operatorname{rank}\left(B_{1}\right)-\operatorname{rank}\left(C_{1}\right)>\max \left\{\operatorname{rank}\left(C_{1} B_{1}\right), \operatorname{rank}\left(P_{C} L_{2} P_{B}\right)\right\}
$$

Remark 8. Given Theorem 5, we can assert that

$$
\min _{\substack{X \in \mathbb{C}^{m \times m} \\ \mathrm{~m}(0, M(\alpha, X)) \geqslant 2}}\|X-D\|=\infty
$$

if and only if inequality (21) is satisfied.
In the next section the proof of Theorem 5 starts and continues until the end of Section 8.

5. When the supremum is a maximum

Given $t_{0} \neq 0$, in agreement with the notations (10) and (11), let us call

$$
\sigma_{0}:=\sigma_{h}\left(S_{2}\left(t_{0}\right)\right)
$$

where we assume $\sigma_{0}>0$. Let

$$
\begin{equation*}
u:=\binom{u_{1}}{u_{2}}, \quad v:=\binom{v_{1}}{v_{2}} \tag{22}
\end{equation*}
$$

be a pair of singular vectors of $S_{2}\left(t_{0}\right)$ associated with σ_{0}, where $u_{1}, u_{2}, v_{1}, v_{2} \in \mathbb{C}^{m \times 1}$.
Using [12, Section 4] and [7, Section 4] we will establish some properties of u, v. First, as $S_{2}\left(t_{0}\right) v=\sigma_{0} u$ and $S_{2}\left(t_{0}\right)^{*} u=\sigma_{0} v$, from (11) and (22) we get

$$
P_{C} L_{1} v_{1}+t_{0} P_{C} L_{2} P_{B} v_{2}=\sigma_{0} u_{1}, \text { and } t_{0} P_{B} L_{2}^{*} P_{C} u_{1}+P_{B} L_{1}^{*} u_{2}=\sigma_{0} v_{2}
$$

Hence, as $\sigma_{0}>0$, from the two previous equalities we deduce that $u_{1} \in \operatorname{Im}\left(P_{C}\right)$ and $v_{2} \in \operatorname{Im}\left(P_{B}\right)$. Thus, by Lemma 7(2)(3) we have $C_{1}^{*} u_{1}=0, P_{C} u_{1}=u_{1}$ and $B_{1} v_{2}=$ $0, P_{B} v_{2}=v_{2}$. Theses equalities jointly with $S_{2}\left(t_{0}\right) v=\sigma_{0} u$ and $S_{2}\left(t_{0}\right)^{*} u=\sigma_{0} v$, imply the following equations.

$$
\begin{array}{r}
P_{C} L_{1} v_{1}+t_{0} P_{C} L_{2} v_{2}=\sigma_{0} u_{1}, \\
-t_{0}^{-1} C_{1} B_{1} v_{1}+L_{1} v_{2}=\sigma_{0} u_{2}, \\
L_{1}^{*} u_{1}-t_{0}^{-1} B_{1}^{*} C_{1}^{*} u_{2}=\sigma_{0} v_{1}, \\
t_{0} P_{B} L_{2}^{*} u_{1}+P_{B} L_{1}^{*} u_{2}=\sigma_{0} v_{2}, \\
C_{1}^{*} u_{1}=C_{1}^{\dagger} u_{1}=0, \\
B_{1} v_{2}=0, \\
P_{C} u_{1}=u_{1}, \\
P_{B} v_{2}=v_{2} . \tag{30}
\end{array}
$$

Substituting (29) in (23) we see that $P_{C}\left(L_{1} v_{1}+t_{0} L_{2} v_{2}-\sigma_{0} u_{1}\right)=0$. Therefore from Lemma 7(2) we have $L_{1} v_{1}+t_{0} L_{2} v_{2}-\sigma_{0} u_{1} \in \operatorname{Im}\left(C_{1}\right)$. Consequently by Lemma 6(3),

$$
\begin{equation*}
C_{1} C_{1}^{\dagger}\left(L_{1} v_{1}+t_{0} L_{2} v_{2}-\sigma_{0} u_{1}\right)=L_{1} v_{1}+t_{0} L_{2} v_{2}-\sigma_{0} u_{1} \tag{31}
\end{equation*}
$$

Multiplying to the right equations (23)-(26) by $u_{1}^{*}, u_{2}^{*}, v_{1}^{*}, v_{2}^{*}$ respectively, conjugating (29) and (30), i.e., $u_{1}^{*} P_{C}=u_{1}^{*}, v_{2}^{*} P_{B}=v_{2}^{*}$, we conclude that

$$
\begin{aligned}
& u_{1}^{*} L_{1} v_{1}+t_{0} u_{1}^{*} L_{2} v_{2}=\sigma_{0} u_{1}^{*} u_{1}, \\
& -t_{0}^{-1} u_{2}^{*} C_{1} B_{1} v_{1}+u_{2}^{*} L_{1} v_{2}=\sigma_{0} u_{2}^{*} u_{2}, \\
& v_{1}^{*} L_{1}^{*} u_{1}-t_{0}^{-1} v_{1}^{*} B_{1}^{*} C_{1}^{*} u_{2}=\sigma_{0} v_{1}^{*} v_{1}, \\
& t_{0} v_{2}^{*} L_{2}^{*} u_{1}+v_{2}^{*} L_{1}^{*} u_{2}=\sigma_{0} v_{2}^{*} v_{2}
\end{aligned}
$$

Subtracting the conjugate of the third equation from the first one and the conjugate of the fourth equation from the second one, we conclude that

$$
\begin{equation*}
\sigma_{0}\left(u_{1}^{*} u_{1}-v_{1}^{*} v_{1}\right)=t_{0} u_{1}^{*} L_{2} v_{2}+t_{0}^{-1} u_{2}^{*} C_{1} B_{1} v_{1}=-\sigma_{0}\left(u_{2}^{*} u_{2}-v_{2}^{*} v_{2}\right) . \tag{32}
\end{equation*}
$$

Multiplying (24) and (25) by u_{1}^{*} and v_{2}^{*} from the right-hand side, respectively and using $u_{1}^{*} C_{1}=0$ (27) and $B_{1} v_{2}=0$ (28), we obtain

$$
u_{1}^{*} L_{1} v_{2}=\sigma_{0} u_{1}^{*} u_{2}, \quad v_{2}^{*} L_{1}^{*} u_{1}=\sigma_{0} v_{2}^{*} v_{1} .
$$

Hence, subtracting the conjugate of the second equation from the first one, we see that $\sigma_{0}\left(u_{1}^{*} u_{2}-v_{1}^{*} v_{2}\right)=0$. As $\sigma_{0} \neq 0$, we infer that

$$
\begin{equation*}
u_{1}^{*} u_{2}=v_{1}^{*} v_{2} . \tag{33}
\end{equation*}
$$

REMARK 9. Note that equations (23)-(33) remain valid for each pair of singular vectors associated with a nonzero singular value of $S_{2}(t)$ for $t \neq 0$. This remark will be important in Sections 6 and 8.

Now assume that $\sigma_{h}\left(S_{2}(t)\right)$ attains a relative extremum $\sigma_{0}:=\sigma_{h}\left(S_{2}\left(t_{0}\right)\right)>0$ at $t_{0} \neq 0$. Then, by Lemma 12, there exists a pair of singular vectors u, v of $S_{2}\left(t_{0}\right)$ corresponding to $\sigma_{h}\left(S_{2}\left(t_{0}\right)\right)$ such that

$$
\operatorname{Re}\left(u^{*} S_{2}^{\prime}\left(t_{0}\right) v\right)=\operatorname{Re}\left(u^{*}\left(\begin{array}{cc}
O & P_{C} L_{2} P_{B} \\
t_{0}^{-2} C_{1} B_{1} & O
\end{array}\right) v\right)=0
$$

Partitioning the vectors u, v according (22), we have

$$
\operatorname{Re}\left(t_{0}^{-2} u_{2}^{*} C_{1} B_{1} v_{1}+u_{1}^{*} P_{C} L_{2} P_{B} v_{2}\right)=0
$$

Since $t_{0} \neq 0$ and $u_{1}^{*} P_{C} L_{2} P_{B} v_{2}=u_{1}^{*} L_{2} v_{2}$ (by (29) and (30)), we deduce that $\operatorname{Re}\left(t_{0}^{-1} u_{2}^{*} C_{1} B_{1} v_{1}+t_{0} u_{1}^{*} L_{2} v_{2}\right)=0$. Hence, from (32), we see that

$$
\begin{equation*}
u_{1}^{*} u_{1}=v_{1}^{*} v_{1}, \quad u_{2}^{*} u_{2}=v_{2}^{*} v_{2} . \tag{34}
\end{equation*}
$$

Now let us define the matrices

$$
V:=\left[v_{1}, v_{2}\right] \in \mathbb{C}^{m \times 2}, \quad U:=\left[u_{1}, u_{2}\right] \in \mathbb{C}^{m \times 2}
$$

By (33) and (34), we have $V^{*} V=U^{*} U$. Hence, the matrix

$$
D_{0}:=D-\sigma_{0} U V^{\dagger}
$$

satisfies $\left\|D-D_{0}\right\|=\sigma_{0}$ and

$$
\begin{equation*}
D_{0} V=D V-\sigma_{0} U, \quad U^{*} D_{0}=U^{*} D-\sigma_{0} V^{*} \tag{35}
\end{equation*}
$$

(see [8], page 1208, (35)) Consequently, to prove Theorem 5 in this case, it suffices to prove that 0 is a multiple eigenvalue of the matrix $M\left(\alpha, D_{0}\right)$.

Since $\operatorname{rank}\left(V^{*} V\right) \geqslant 1$, we have two possibilities: $\operatorname{rank} V=1$ or $\operatorname{rank} V=2$. In the $\operatorname{rank} V=1$ case, we will analyze the subcases when $v_{2} \neq 0$ and when $v_{2}=0$.
5.1. $\operatorname{rank} V=2$

Note that $\operatorname{rank} V=2$ implies that v_{1} and v_{2} are linearly independent. Hence, to prove that 0 is a multiple eigenvalue of $M\left(\alpha, D_{0}\right)$ it suffices to see that

$$
\left(\begin{array}{ccc}
O & O & B_{1} \\
O & \Sigma & B_{2} \\
C_{1} & C_{2} & D_{0}
\end{array}\right)\left(\begin{array}{ll}
z_{2} & z_{1} \\
w_{2} & w_{1} \\
v_{2} & v_{1}
\end{array}\right)=\left(\begin{array}{ll}
z_{2} & z_{1} \\
w_{2} & w_{1} \\
v_{2} & v_{1}
\end{array}\right)\left(\begin{array}{cc}
0 & -t_{0} \\
0 & 0
\end{array}\right)
$$

with

$$
\begin{aligned}
& z_{2}=-t_{0}^{-1} B_{1} v_{1}, \quad z_{1}=-C_{1}^{\dagger}\left(L_{1} v_{1}+t_{0} L_{2} v_{2}-\sigma_{0} u_{1}\right) \\
& w_{2}=-\Sigma^{-1} B_{2} v_{2}, w_{1}=t_{0} \Sigma^{-2} B_{2} v_{2}-\Sigma^{-1} B_{2} v_{1}
\end{aligned}
$$

By $B_{1} v_{2}=0$ (28) and $D_{0} v_{i}=D v_{i}-\sigma_{0} u_{i}$ for $i=1,2$ (35), the problem reduces to verifying the equalities

$$
\begin{gathered}
-t_{0}^{-1} C_{1} B_{1} v_{1}-C_{2} \Sigma^{-1} B_{2} v_{2}+D v_{2}=\sigma_{0} u_{2} \\
-C_{1} C_{1}^{\dagger}\left(L_{1} v_{1}+t_{0} L_{2} v_{2}-\sigma_{0} u_{1}\right)+t_{0} C_{2} \Sigma^{-2} B_{2} v_{2}-C_{2} \Sigma^{-1} B_{2} v_{1}+D v_{1}-\sigma_{0} u_{1}=-t_{0} v_{2}
\end{gathered}
$$

By (13) we have $L_{1}=D-C_{2} \Sigma^{-1} B_{2}$ and $L_{2}=I_{m}+C_{2} \Sigma^{-2} B_{2}$, the two previous equalities are reduced to

$$
\begin{gathered}
-t_{0}^{-1} C_{1} B_{1} v_{1}+L_{2} v_{2}=\sigma_{0} u_{2} \\
-C_{1} C_{1}^{\dagger}\left(L_{1} v_{1}+t_{0} L_{2} v_{2}-\sigma_{0} u_{1}\right)+L_{1} v_{1}+t_{0} L_{2} v_{2}-\sigma_{0} u_{1}=0
\end{gathered}
$$

which are true by (24) and (31), respectively.

5.2. $\operatorname{rank} V=1$ and $v_{2} \neq 0$

Observe that in this case $v_{1}=\lambda v_{2}$ and $u_{1}=\lambda u_{2}$, for some $\lambda \in \mathbb{C}$. Hence, as $v_{2} \neq 0$, to prove that 0 is a multiple eigenvalue of $M\left(\alpha, D_{0}\right)$ it suffices to find a vector $w \in \mathbb{C}^{n_{1} \times 1}$ such that

$$
\left(\begin{array}{ccc}
O & O & B_{1} \tag{36}\\
O & \Sigma & B_{2} \\
C_{1} & C_{2} & D_{0}
\end{array}\right)\left(\begin{array}{cc}
0 & w \\
-\Sigma^{-1} B_{2} v_{2} & -\Sigma^{-2} B_{2} v_{2} \\
v_{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & w \\
-\Sigma^{-1} B_{2} v_{2} & -\Sigma^{-2} B_{2} v_{2} \\
v_{2} & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

because this means that the columns of the matrix

$$
\left(\begin{array}{cc}
0 & w \\
-\Sigma^{-1} B_{2} v_{2} & -\Sigma^{-2} B_{2} v_{2} \\
v_{2} & 0
\end{array}\right)
$$

form a Jordan chain of 0 as eigenvalue of $M\left(\alpha, D_{0}\right)$.
Multiplying the matrices in (36), we have

$$
\left(\begin{array}{cc}
B_{1} v_{2} & 0 \tag{37}\\
-B_{2} v_{2}+B_{2} v_{2} & -\Sigma^{-1} B_{2} v_{2} \\
-C_{2} \Sigma^{-1} B_{2} v_{2}+D_{0} v_{2} & C_{1} w-C_{2} \Sigma^{-2} B_{2} v_{2}
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & -\Sigma^{-1} B_{2} v_{2} \\
0 & v_{2}
\end{array}\right) .
$$

By (28) $B_{1} v_{2}=0$, so the (1,1) -entries in (37) are equal. By (35) $D_{0} v_{2}=D v_{2}-$ $\sigma_{0} u_{2}$, hence, by the definition of L_{1},

$$
-C_{2} \Sigma^{-1} B_{2} v_{2}+D_{0} v_{2}=D v_{2}-C_{2} \Sigma^{-1} B_{2} v_{2}-\sigma_{0} u_{2}=L_{1} v_{2}-\sigma_{0} u_{2}
$$

As $v_{1}=\lambda v_{2}$ and $B_{1} v_{2}=0$, then $B_{1} v_{1}=0$. From (24), $L_{1} v_{2}=\sigma_{0} u_{2}$, thus the $(3,1)-$ entries in (37) are equal. Equating the (3,2)-entries, and by the definition of L_{2}, we have

$$
C_{1} w-C_{2} \Sigma^{-2} B_{2} v_{2}=v_{2}, \quad C_{1} w=v_{2}+C_{2} \Sigma^{-2} B_{2} v_{2}, \quad C_{1} w=L_{2} v_{2}
$$

Thus the vector w must satisfy $C_{1} w=L_{2} v_{2}$. This vector exists if and only if $L_{2} v_{2} \in$ $\operatorname{Im} C_{1}=\operatorname{Ker} P_{C}$ by Lemma 7(2).

As $B_{1} v_{1}=0, u_{1}=\lambda u_{2}, v_{1}=\lambda v_{2}$, from (23) and (29) we have

$$
\lambda P_{C} L_{1} v_{2}+t_{0} P_{C} L_{2} v_{2}=\lambda \sigma_{0} u_{2}
$$

since $L_{1} v_{2}=\sigma_{0} u_{2}$, we obtain $t_{0} P_{C} L_{2} v_{2}=0$. But $t_{0} \neq 0$, so $P_{C} L_{2} v_{2}=0$. Therefore, $L_{2} v_{2} \in \operatorname{Ker} P_{C}$.
5.3. $\operatorname{rank} V=1$ and $v_{2}=0$

As $v_{2}=0$, then $u_{2}=0, v_{1} \neq 0$ and $u_{1} \neq 0$. Hence, to prove that 0 is a multiple eigenvalue of $M\left(\alpha, D_{0}\right)$ it suffices to find a vector $w \in \mathbb{C}^{n_{1} \times 1}$, such that

$$
\left(\begin{array}{ccc}
0 & -u_{1}^{*} C_{2} \Sigma^{-1} & u_{1}^{*} \tag{38}\\
w^{*} & -u_{1}^{*} C_{2} \Sigma^{-2} & 0
\end{array}\right)\left(\begin{array}{ccc}
O & O & B_{1} \\
O & \Sigma & B_{2} \\
C_{1} & C_{2} & D_{0}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & -u_{1}^{*} C_{2} \Sigma^{-1} & u_{1}^{*} \\
w^{*} & -u_{1}^{*} C_{2} \Sigma^{-2} & 0
\end{array}\right) .
$$

This means that the vectors

$$
\left(\begin{array}{c}
w \\
-\Sigma^{-2} C_{2}^{*} u_{1} \\
0
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
-\Sigma^{-1} C_{2}^{*} u_{1} \\
u_{1}
\end{array}\right)
$$

form a Jordan chain on the left of 0 as an eigenvalue of $M\left(\alpha, D_{0}\right)$. Multiplying the matrices in (38), we will have to prove the following equality.

$$
\left(\begin{array}{ccc}
u_{1}^{*} C_{1}-u_{1}^{*} C_{2}+u_{1}^{*} C_{2} & -u_{1}^{*} C_{2} \Sigma^{-1} B_{2}+u_{1}^{*} D_{0} \\
0 & -u_{1}^{*} C_{2} \Sigma^{-1} & w^{*} B_{1}-u_{1}^{*} C_{2} \Sigma^{-2} B_{2}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -u_{1}^{*} C_{2} \Sigma^{-1} & u_{1}^{*}
\end{array}\right) .
$$

The (1,1) -entries are equal, because $u_{1}^{*} C_{1}=0$ by (27). Let us see the reasons of the equality of the $(1,3)$-entries. By (35), $u_{1}^{*} D_{0}=u_{1}^{*} D-\sigma_{0} v_{1}^{*}$. So,

$$
-u_{1}^{*} C_{2} \Sigma^{-1} B_{2}+u_{1}^{*} D_{0}=0 \Longleftrightarrow-u_{1}^{*} C_{2} \Sigma^{-1} B_{2}+u_{1}^{*} D=\sigma_{0} v_{1}^{*} .
$$

By the definition of L_{1}, the last equality is equivalent to $u_{1}^{*} L_{1}=\sigma_{0} v_{1}^{*}$. As $u_{2}=0$, (25) implies $L_{1}^{*} u_{1}=\sigma_{0} v_{1}^{*}$. Finally to prove the equality of the $(2,3)$-entries, we construct a vector w such that

$$
w^{*} B_{1}-u_{1}^{*} C_{2} \Sigma^{-2} B_{2}=u_{1}^{*} .
$$

By the definition of L_{2}, the vector w must satisfy $w^{*} B_{1}=u_{1}^{*} L_{2}$; that is $B_{1}^{*} w=L_{2}^{*} u_{1}$. Such a w exists if and only if $L_{2}^{*} u_{1} \in \operatorname{Im} B_{1}^{*}=\operatorname{Ker} P_{B}$, by Lemma 7(3). Since $u_{2}=v_{2}=$ $0, t_{0} \neq 0$, and (26), $P_{B} L_{2}^{*} u_{1}=0$.

REMARK 10. We have proved Theorem 5 when the function $t \mapsto \sigma_{h}\left(S_{2}(t)\right)$ has a positive local extremum at a point $t_{0} \neq 0$. Note that if for a positive integer q we have $\sigma_{h+q}\left(S_{2}(t)\right) \neq 0$, for $t \neq 0$, we can apply the same reasoning to the function $t \mapsto \sigma_{h+q}\left(S_{2}(t)\right)$. Therefore, as in [8, Corollary 30], we deduce the following result.

THEOREM 15. The function $t \mapsto \sigma_{h}\left(S_{2}(t)\right)$ has no relative minimum in $(0, \infty)$. Moreover for each positive integer q, either $\sigma_{h+q}\left(S_{2}(t)\right)=0$ for $t \neq 0$, or the function $t \mapsto \sigma_{h+q}\left(S_{2}(t)\right)$ has no relative minimum in $(0, \infty)$.

6. When the supremum is the limit at ∞

In this section, we suppose that the limit

$$
\lim _{t \rightarrow \infty} \sigma_{h}\left(S_{2}(t)\right)
$$

is finite and positive, let us call it σ_{0}.
Observe first that Lemma 14 requires $h>\operatorname{rank}\left(P_{C} L_{2} P_{B}\right)$ because the limit above is finite. Consider now a sequence of real numbers $\left\{t_{k}\right\}_{k=1}^{\infty}$ which tends to ∞ when $k \rightarrow \infty$, and let $\hat{\sigma}_{k}:=\sigma_{h}\left(S_{2}\left(t_{k}\right)\right)$. Then

$$
\lim _{t \rightarrow \infty} \hat{\sigma}_{k}=\sigma_{0}
$$

For each k, let

$$
u^{k}:=\binom{u_{1}^{k}}{u_{2}^{k}}, \quad v^{k}:=\binom{v_{1}^{k}}{v_{2}^{k}}, \quad u_{i}^{k}, v_{i}^{k} \in \mathbb{C}^{m \times 1}, \quad i=1,2,
$$

be pairs of singular vectors of $S_{2}\left(t_{k}\right)$, associated with $\hat{\sigma}_{k}$. As the vectors u^{k} and v^{k} are unitary, the sequence $\left\{\left(u^{k}, v^{k}\right)\right\}_{k=1}^{\infty}$ has a convergent subsequence, say to (u, v). In order to simplify we will denote the terms of this subsequence with the same index k. Then

$$
\lim _{k \rightarrow \infty} u^{k}=u=:\binom{u_{1}}{u_{2}}, \quad \lim _{k \rightarrow \infty} v^{k}=v=:\binom{v_{1}}{v_{2}} .
$$

For each sufficiently large k, the equalities (23)-(30), (32), and (33) are satisfied for t_{k}, u^{k}, v^{k} and $\hat{\sigma}_{k}$ instead of t_{0}, u, v and σ_{0}. Hence, taking limits, we infer that

$$
\begin{array}{r}
\lim _{k \rightarrow \infty} P_{C} L_{2} v_{2}^{k}=P_{C} L_{2} v_{2}=0, \\
L_{1} v_{2}=\sigma_{0} u_{2}, \\
L_{1}^{*} u_{1}=\sigma_{0} v_{1}, \\
\lim _{k \rightarrow \infty} t_{k} P_{B} L_{2}^{*} u_{1}^{k}=\sigma_{0} v_{2}-P_{B} L_{1}^{*} u_{2}, \\
\lim _{k \rightarrow \infty} P_{B} L_{2}^{*} u_{1}^{k}=P_{B} L_{2}^{*} u_{1}=0, \\
C_{1}^{*} u_{1}=C_{1}^{\dagger} u_{1}=0, \\
B_{1} v_{2}=0, \\
\lim _{k \rightarrow \infty} t_{k}\left(u_{1}^{k}\right)^{*} L_{2} v_{2}^{k}=\sigma_{0}\left(u_{1}^{*} u_{1}-v_{1}^{*} v_{1}\right)=-\sigma_{0}\left(u_{2}^{*} u_{2}-v_{2}^{*} v_{2}\right), \\
u_{1}^{*} u_{2}=v_{1}^{*} v_{2} . \tag{47}
\end{array}
$$

We are going to apply Lemma 8 to $t_{k}\left(u_{1}^{k}\right)^{*} L_{2} v_{2}^{k}=t_{k}\left(u_{1}^{k}\right)^{*} P_{C} L_{2} P_{B} v_{2}^{k}$, for each k, because $\left(u_{1}^{k}\right)^{*}=\left(u_{1}^{k}\right)^{*} P_{C}$ and $v_{2}^{k}=P_{B} v_{2}^{k}$, by (29) and (30), respectively. Let $x_{k}:=u_{1}^{k}$, $y_{k}:=v_{2}^{k}$ and $G:=P_{C} L_{2} P_{B}$. Then by (39) we have

$$
\lim _{k \rightarrow \infty} G y_{k}=\lim _{k \rightarrow \infty} P_{C} L_{2} P_{B} v_{2}^{k}=\lim _{k \rightarrow \infty} P_{C} L_{2} v_{2}^{k}=0
$$

On the other hand, $\left\|t_{k} x_{k}^{*} G\right\|=\left\|t_{k}\left(u_{1}^{k}\right)^{*} P_{C} L_{2} P_{B}\right\|=\left\|t_{k} P_{B} L_{2}^{*} u_{1}^{k}\right\|$ is bounded in virtue of (42). Thus, applying Lemma 8, we see that

$$
\lim _{k \rightarrow \infty} t_{k}\left(u_{1}^{k}\right)^{*} L_{2} v_{2}^{k}=\lim _{k \rightarrow \infty} t_{k}\left(u_{1}^{k}\right)^{*} P_{C} L_{2} P_{B} v_{2}^{k}=0
$$

Substituting this equality in (46), we conclude that $u_{1}^{*} u_{1}=v_{1}^{*} v_{1}$ and $u_{2}^{*} u_{2}=v_{2}^{*} v_{2}$. Hence, if we consider the matrices $V:=\left[v_{1}, v_{2}\right], U:=\left[u_{1}, u_{2}\right]$, from the two preceding equalities and (47), we have $U^{*} U=V^{*} V$. Therefore, as in Section 5, the matrix

$$
D_{0}:=D-\sigma_{0} U V^{\dagger}
$$

satisfies $\left\|D-D_{0}\right\|=\sigma_{0}$ and

$$
D_{0} v_{2}=D v_{2}-\sigma_{0} u_{2}, \quad u_{1}^{*} D_{0}=u_{1}^{*} D-\sigma_{0} v_{1}^{*}
$$

By the definition of L_{1}, given in (13), from (40) and (41), we see that

$$
\begin{equation*}
D_{0} v_{2}=C_{2} \Sigma^{-1} B_{2} v_{2}, \quad u_{1}^{*} D_{0}=u_{1}^{*} C_{2} \Sigma^{-1} B_{2} \tag{48}
\end{equation*}
$$

Hence, to prove Theorem 5 in this case, it suffices to prove that 0 is a multiple eigenvalue of the matrix $M\left(\alpha, D_{0}\right)$. Once here, we are going to consider two cases: $v_{2} \neq 0$ and $v_{2}=0$.

6.1. $v_{2} \neq 0$

As v_{2} is nonzero, to prove that 0 is a multiple eigenvalue of the matrix $M\left(\alpha, D_{0}\right)$, it suffices to find a vector $w \in \mathbb{C}^{n_{1} \times 1}$ such that

$$
\left(\begin{array}{ccc}
O & O & B_{1} \\
O & \Sigma & B_{2} \\
C_{1} & C_{2} & D_{0}
\end{array}\right)\left(\begin{array}{cc}
0 & w \\
-\Sigma^{-1} B_{2} v_{2} & -\Sigma^{-2} B_{2} v_{2} \\
v_{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & w \\
-\Sigma^{-1} B_{2} v_{2} & -\Sigma^{-2} B_{2} v_{2} \\
v_{2} & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

Multiplying these matrices, as $B_{1} v_{2}=0$ by (45), and $D_{0} v_{2}=C_{2} \Sigma^{-1} B_{2} v_{2}$ by (48), the problem is reduced to find a vector w that satisfies $C_{1} w-C_{2} \Sigma^{-2} B v_{2}=v_{2}$. That is, using the definition of L_{2}, given in (13), it suffices to find w such that

$$
C_{1} w=L_{2} v_{2} .
$$

Hence, there exists w if and only if $L_{2} v_{2} \in \operatorname{Im} C_{1}$, or which is equivalent by Lemma 7(2), if and only if $L_{2} v_{2} \in \operatorname{Ker} P_{C}$, which is true by (39).
6.2. $v_{2}=0$

In this case $u_{2}=0$ and $u_{1} \neq 0$. Thus, it suffices to find a vector $w \in \mathbb{C}^{n_{1} \times 1}$ such that

$$
\left(\begin{array}{ccc}
0 & -u_{1}^{*} C_{2} \Sigma^{-1} & u_{1}^{*} \\
w^{*} & -u_{1}^{*} C_{2} \Sigma^{-2} & 0
\end{array}\right)\left(\begin{array}{ccc}
O & O & B_{1} \\
O & \Sigma & B_{2} \\
C_{1} & C_{2} & D_{0}
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & -u_{1}^{*} C_{2} \Sigma^{-1} & u_{1}^{*} \\
w^{*} & -u_{1}^{*} C_{2} \Sigma^{-2} & 0
\end{array}\right) .
$$

Multiplying these matrices, as $u_{1}^{*} C_{1}=0$ by (44) and $u_{1}^{*} D_{0}=u_{1}^{*} C_{2} \Sigma^{-1} B_{2}$ by (48), it suffices to find a vector w such that

$$
w_{1}^{*} B_{1}-u_{1}^{*} C_{2} \Sigma^{-2} B_{2}=u_{1}^{*} \Leftrightarrow B_{1}^{*} w_{1}=L_{2}^{*} u_{1}
$$

having used the definition of L_{2}, given in (13). Consequently, there exists w if and only if $L_{2}^{*} u_{1} \in \operatorname{Im} B_{1}$, or which is equivalent by Lemma 7(3), if and only if $L_{2}^{*} u_{1} \in \operatorname{Ker} P_{B}$; which is true by (43).

Two final remarks on Section 6

REMARK 11. Let us observe that in the part of the proof of Theorem 5, given in this section, we have not used the equality

$$
\begin{equation*}
\sup _{t>0} \sigma_{h}\left(S_{2}(t)\right)=\lim _{t \rightarrow \infty} \sigma_{h}\left(S_{2}(t)\right) \tag{49}
\end{equation*}
$$

Actually, all we have used is the fact that

$$
\lim _{t \rightarrow \infty} \sigma_{h}\left(S_{2}(t)\right)
$$

is finite and positive. This assumption implies (49), since by Proposition 1 and Lemma 14, we have the following result.

Proposition 16. Let $L:=P_{C} L_{2} P_{B}$. If $h>\operatorname{rank}(L)$ and

$$
\sigma_{0}:=\sigma_{h-\operatorname{rank}(L)}\left(\begin{array}{cc}
P_{C}\left(I_{m}-L L^{\dagger}\right) L_{1} & O \\
O & L_{1}\left(I_{m}-L^{\dagger} L\right) P_{B}
\end{array}\right)
$$

is positive, then

$$
\min _{\substack{X \in \mathbb{C}^{m \times m} \\ \mathrm{~m}(0, M(\alpha, X)) \geqslant 2}}\|X-D\|=\sigma_{0} .
$$

Moreover,

$$
\sup _{t>0} \sigma_{h}\left(S_{2}(t)\right)=\lim _{t \rightarrow \infty} \sigma_{h}\left(S_{2}(t)\right)
$$

REMARK 12. Let $p>\operatorname{rank}\left(P_{C} L_{2} P_{B}\right)$. By Lemma 14 the limit

$$
\lim _{t \rightarrow \infty} \sigma_{p}\left(S_{2}(t)\right)
$$

is finite. Let us assume it is positive. Following again all the reasoning of this section, we can prove that there exists a matrix $Y \in \mathbb{C}^{m \times m}$ such that

$$
\|Y-D\|=\lim _{t \rightarrow \infty} \sigma_{p}\left(S_{2}(t)\right), \text { and } \mathrm{m}(0, M(\alpha, Y)) \geqslant 2
$$

Besides, by Proposition 1 and Lemma 14, we have the following result.

PROPOSITION 17.

(1) Let $L:=P_{C} L_{2} P_{B}$. Assume $p>\operatorname{rank}(L)$. Then

$$
\min _{\substack{X \in \mathbb{C}^{m \times m} \\
\mathrm{~m}(0, M(\alpha, X)) \geqslant 2}}\|X-D\| \leqslant \sigma_{p-\operatorname{rank}(L)}\left(\begin{array}{cc}
P_{C}\left(I_{m}-L L^{\dagger}\right) L_{1} & O \\
O & L_{1}\left(I_{m}-L^{\dagger} L\right) P_{B}
\end{array}\right)
$$

if this singular value is positive.
(2) For each positive integer q the limit

$$
\lim _{t \rightarrow \infty} \sigma_{h+q}\left(S_{2}(t)\right)
$$

is equal to σ_{0} or to 0 , where σ_{0} is defined in Proposition 16.
7. When the supremum is the limit at 0 , and $\operatorname{rank}\left(B_{1}\right)<n_{1}$ or $\operatorname{rank}\left(C_{1}\right)<n_{1}$

In this section, we assume that $\operatorname{rank}\left(B_{1}\right)<n_{1}$ or $\operatorname{rank}\left(C_{1}\right)<n_{1}$, and we suppose that the limit

$$
\lim _{t \rightarrow 0^{+}} \sigma_{h}\left(S_{2}(t)\right)
$$

is finite and positive, let us call it σ_{0}.
To shorten notation, we write s instead of $\operatorname{rank}\left(C_{1} B_{1}\right)$. First, let us observe that Lemma 13 warrants the existence of the limit. Moreover, by the same lemma and denoting

$$
T_{1}:=I_{m}-\left(C_{1} B_{1}\right)^{\dagger} C_{1} B_{1}, \quad T_{2}:=I_{m}-C_{1} B_{1}\left(C_{1} B_{1}\right)^{\dagger}
$$

as $h>s$, we have

$$
\lim _{t \rightarrow 0^{+}} \sigma_{h}\left(S_{2}(t)\right)=\sigma_{h-s}\left(\begin{array}{cc}
P_{C} L_{1} T_{1} & O \\
O & T_{2} L_{1} P_{B}
\end{array}\right)=\sigma_{0}>0
$$

We are going to prove some properties of the singular vectors of $P_{C} L_{1} T_{1}$ and $T_{2} L_{1} P_{B}$. Assume that σ_{0} is a singular value of $P_{C} L_{1} T_{1}$ and let (u, v) be a pair of singular vectors corresponding to it. As $P_{C} L_{1} T_{1} v=\sigma_{0} u$, by Lemma 7(2), we have $u \in \operatorname{Im}\left(P_{C}\right)=\operatorname{Ker}\left(C_{1}^{*}\right)$, that is $P_{C} u=u, u^{*} C_{1}=0$. On the other hand, as $T_{1} L_{1}^{*} P_{C} u=$ $T_{1} L_{1}^{*} u=\sigma_{0} v$,

$$
L_{1}^{*} u-\sigma_{0} v=\left(C_{1} B_{1}\right)^{\dagger} C_{1} B_{1} L_{1}^{*} u \in \operatorname{Im}\left(C_{1} B_{1}\right)^{\dagger}=\operatorname{Im}\left(C_{1} B_{1}\right)^{*} \subset \operatorname{Im}\left(B_{1}^{*}\right)
$$

Hence, by Lemma 6(3), we see that $u^{*} L_{1}-\sigma_{0} v^{*}=\left(u^{*} L_{1}-\sigma_{0} v^{*}\right) B_{1}^{\dagger} B_{1}$. Thus, as (u, v) is a pair singular vectors of $P_{C} L_{1} T_{1}$ associated with σ_{0}, we infer that

$$
\begin{array}{r}
P_{C} L_{1} T_{1} v=\sigma_{0} u \\
T_{1} L_{1}^{*} u=\sigma_{0} v, \\
P_{C} u=u, u^{*} C_{1}=0 \\
u^{*} L_{1}-\sigma_{0} v^{*}=\left(u^{*} L_{1}-\sigma_{0} v^{*}\right) B_{1}^{\dagger} B_{1} \tag{53}
\end{array}
$$

Similarly, using Lemmas 7(3) and 6(3), if (x, y) is a pair of singular vectors of $T_{2} L_{1} P_{B}$ associated with σ_{0}, we conclude that

$$
\begin{array}{r}
T_{2} L_{1} y=\sigma_{0} x, \\
P_{B} L_{1}^{*} T_{2} x=\sigma_{0} y, \\
P_{B} y=y, B_{1} y=0, \\
L_{1} y-\sigma_{0} x=C_{1} C_{1}^{\dagger}\left(L_{1} y-\sigma_{0} x\right) . \tag{57}
\end{array}
$$

To conclude the proof of Theorem 5 in this case, we are going to consider two cases: (1) σ_{0} is a singular value of $P_{C} L_{1} T_{1}$; (2) σ_{0} is a singular value of $T_{2} L_{1} P_{B}$.

7.1. σ_{0} is a singular value of $P_{C} L_{1} T_{1}$

Let (u, v) be a pair of singular vectors of $P_{C} L_{1} T_{1}$ associated with σ_{0}. For the entire subsection let

$$
D_{0}:=D-\sigma_{0} u v^{*} .
$$

It is clear that $\left\|D-D_{0}\right\|=\sigma_{0}$. Besides, by (53), we have

$$
\left(-\left(u^{*} L_{1}-\sigma_{0} v^{*}\right) B_{1}^{\dagger},-u^{*} C_{2} \Sigma^{-1}, u^{*}\right)\left(\begin{array}{ccc}
O & O & B_{1} \tag{58}\\
O & \Sigma & B_{2} \\
C_{1} & C_{2} & D_{0}
\end{array}\right)=0 .
$$

At this point, we consider two subcases: (1) $\operatorname{rank}\left(B_{1}\right)<n_{1}$ and (2) $\operatorname{rank}\left(C_{1}\right)<$ $n_{1}=\operatorname{rank}\left(B_{1}\right)$.
7.1.1. $\operatorname{rank}\left(B_{1}\right)<n_{1}$

In this case, there exists a nonzero vector $z \in \mathbb{C}^{n_{1} \times 1}$ such that $z^{*} B_{1}=0$. Thus,

$$
\left(z^{*}, 0,0\right)\left(\begin{array}{ccc}
O & O & B_{1} \\
O & \Sigma & B_{2} \\
C_{1} & C_{2} & D_{0}
\end{array}\right)=0 .
$$

This, together with (58), proves that 0 is a multiple eigenvalue of $M\left(\alpha, D_{0}\right)$.

7.1.2. $\operatorname{rank}\left(C_{1}\right)<n_{1}=\operatorname{rank}\left(B_{1}\right)$

As $\operatorname{rank}\left(C_{1}\right)<n_{1}$ there exists a nonzero vector $z \in \mathbb{C}^{n_{1} \times 1}$ such that $C_{1} z=0$. Therefore

$$
\left(\begin{array}{ccc}
O & O & B_{1} \\
O & \Sigma & B_{2} \\
C_{1} & C_{2} & D_{0}
\end{array}\right)\left(\begin{array}{l}
z \\
0 \\
0
\end{array}\right)=0 .
$$

Thus, by (58), to prove that 0 is a multiple eigenvalue of $M\left(\alpha, D_{0}\right)$ it suffices to see that

$$
\left(-\left(u^{*} L_{1}-\sigma_{0} v^{*}\right) B_{1}^{\dagger},-u^{*} C_{2} \Sigma^{-1}, u^{*}\right)\left(\begin{array}{c}
z \\
0 \\
0
\end{array}\right)=-\left(u^{*} L_{1}-\sigma_{0} v^{*}\right) B_{1}^{\dagger} z=0
$$

Since $\operatorname{rank}\left(B_{1}\right)=n_{1}$, (51) implies $L_{1}^{*} u-\sigma_{0} v=\left(C_{1} B_{1}\right)^{\dagger} C_{1} B_{1} L_{1}^{*} u$ and $B_{1} B_{1}^{\dagger}=I_{n_{1}}$. Thus

$$
\left(u^{*} L_{1}-\sigma_{0} v^{*}\right) B_{1}^{\dagger} z=u^{*} L_{1}\left(C_{1} B_{1}\right)^{\dagger} C_{1} B_{1} B_{1}^{\dagger} z=u^{*} L_{1}\left(C_{1} B_{1}\right)^{\dagger} C_{1} z=0
$$

because $C_{1} z=0$.

7.2. σ_{0} is a singular value of $T_{2} L_{1} P_{B}$

Let (x, y) be a pair of singular vectors of $T_{2} L_{1} P_{B}$ associated with σ_{0}. In this subsection we define

$$
D_{0}:=D-\sigma_{0} x y^{*}
$$

Again we have $\left\|D-D_{0}\right\|=\sigma_{0}$. From (57), we see that

$$
\left(\begin{array}{ccc}
O & O & B_{1} \tag{59}\\
O & \Sigma & B_{2} \\
C_{1} & C_{2} & D_{0}
\end{array}\right)\left(\begin{array}{c}
-C_{1}^{\dagger}\left(L_{1} y-\sigma_{0} x\right) \\
-\Sigma^{-1} B_{2} y \\
y
\end{array}\right)=0
$$

Now we will consider two subcases: (1) $\operatorname{rank}\left(C_{1}\right)<n_{1}$ and (2) $\operatorname{rank}\left(B_{1}\right)<n_{1}=$ $\operatorname{rank}\left(C_{1}\right)$.
7.2.1. $\operatorname{rank}\left(C_{1}\right)<n_{1}$

In this case there exists a nonzero vector $z \in \mathbb{C}^{n_{1} \times 1}$ such that $C_{1} z=0$. Hence,

$$
\left(\begin{array}{ccc}
O & O & B_{1} \\
O & \Sigma & B_{2} \\
C_{1} & C_{2} & D_{0}
\end{array}\right)\left(\begin{array}{l}
z \\
0 \\
0
\end{array}\right)=0
$$

This, together with (59) proves that 0 is a multiple eigenvalue of $M\left(\alpha, D_{0}\right)$.
7.2.2. $\operatorname{rank}\left(B_{1}\right)<n_{1}=\operatorname{rank}\left(C_{1}\right)$

As $\operatorname{rank}\left(B_{1}\right)<n_{1}$ there is a nonzero vector $z \in \mathbb{C}^{n \times 1}$ such that $z^{*} B_{1}=0$. So

$$
\left(z^{*}, 0,0\right)\left(\begin{array}{ccc}
O & O & B_{1} \\
O & \Sigma & B_{2} \\
C_{1} & C_{2} & D_{0}
\end{array}\right)=0
$$

Therefore, to demonstrate that 0 is a multiple eigenvalue of $M\left(\alpha, D_{0}\right)$, it suffices to see that

$$
\left(z^{*}, 0,0\right)\left(\begin{array}{c}
-C_{1}^{\dagger}\left(L_{1} y-\sigma_{0} x\right) \\
-\Sigma^{-1} B_{2} y \\
y
\end{array}\right)=-z^{*} C_{1}^{\dagger}\left(L_{1} y-\sigma_{0} x\right)=0
$$

Since $\operatorname{rank}\left(C_{1}\right)=n_{1}$, (54) implies $L_{1} y-\sigma_{0} x=C_{1} B_{1}\left(C_{1} B_{1}\right)^{\dagger} L_{1} y$ and $C_{1}^{\dagger} C_{1}=I_{n_{1}}$. Consequently

$$
z^{*} C_{1}^{\dagger}\left(L_{1} y-\sigma_{0} x\right)=z^{*} C_{1}^{\dagger} C_{1} B_{1}\left(C_{1} B_{1}\right)^{\dagger} L_{1} y=z^{*} B_{1}\left(C_{1} B_{1}\right)^{\dagger} L_{1} y=0
$$

because $z^{*} B_{1}=0$.

Two final remarks on Section 7

REMARK 13. Let us observe that in the part of the proof of Theorem 5, given in this section, we have not used the equality

$$
\begin{equation*}
\sup _{t>0} \sigma_{h}\left(S_{2}(t)\right)=\lim _{t \rightarrow 0^{+}} \sigma_{h}\left(S_{2}(t)\right) . \tag{60}
\end{equation*}
$$

Actually, all we have used is the fact that

$$
\lim _{t \rightarrow 0^{+}} \sigma_{h}\left(S_{2}(t)\right)
$$

is finite and positive. This assumption implies (60), since by Proposition 1 and Lemma 13, we have the following result.

Proposition 18. Let $M:=C_{1} B_{1}$. Assume that $\operatorname{rank}\left(B_{1}\right)<n_{1}$ or $\operatorname{rank}\left(C_{1}\right)<n_{1}$. If $h>\operatorname{rank}\left(C_{1} B_{1}\right)$ and

$$
\sigma_{0}:=\sigma_{h-\operatorname{rank}(M)}\left(\begin{array}{cc}
P_{C} L_{1}\left(I_{m}-M^{\dagger} M\right) & O \\
O & \left(I_{m}-M M^{\dagger}\right) L_{1} P_{B}
\end{array}\right)
$$

is positive, then

$$
\min _{\substack{X \in \mathbb{C}^{m \times m} \\ \mathrm{~m}(0, M(\alpha, X)) \geqslant 2}}\|X-D\|=\sigma_{0} .
$$

Moreover,

$$
\sup _{t>0} \sigma_{h}\left(S_{2}(t)\right)=\lim _{t \rightarrow 0^{+}} \sigma_{h}\left(S_{2}(t)\right)
$$

Remark 14. Let $p>\operatorname{rank}\left(C_{1} B_{1}\right)$. By Lemma 13 the limit

$$
\lim _{t \rightarrow 0^{+}} \sigma_{p}\left(S_{2}(t)\right)
$$

is finite. Let us assume it is positive. Following again all the reasoning of this section, we can prove that there exists a matrix $Y \in \mathbb{C}^{m \times m}$ such that

$$
\|Y-D\|=\lim _{t \rightarrow 0^{+}} \sigma_{p}\left(S_{2}(t)\right), \text { and } \mathrm{m}(0, M(\alpha, Y)) \geqslant 2
$$

Besides, by Proposition 1 and Lemma 13, we have the following result.

Proposition 19. Assume that $\operatorname{rank}\left(B_{1}\right)<n_{1}$ or $\operatorname{rank}\left(C_{1}\right)<n_{1}$.
(1) Let $M:=C_{1} B_{1}$. Suppose that $p>\operatorname{rank}\left(C_{1} B_{1}\right)$. Then

$$
\min _{\substack{X \in \mathbb{C}^{m \times m} \\
\mathrm{~m}(0, M(\alpha, X)) \geqslant 2}}\|X-D\| \leqslant \sigma_{p-\operatorname{rank}(M)}\left(\begin{array}{cc}
P_{C} L_{1}\left(I_{m}-M^{\dagger} M\right) & O \\
O & \left(I_{m}-M M^{\dagger}\right) L_{1} P_{B}
\end{array}\right),
$$

if this singular value is positive.
(2) For each positive integer q it follows that the limit

$$
\lim _{t \rightarrow 0^{+}} \sigma_{h+q}\left(S_{2}(t)\right)
$$

is equal to σ_{0} or to 0 , where σ_{0} is defined in Proposition 18.

8. When the supremum is the limit at 0 , and $\operatorname{rank}\left(B_{1}\right)=\operatorname{rank}\left(C_{1}\right)=n_{1}$

In this section, we assume that $\operatorname{rank}\left(B_{1}\right)=\operatorname{rank}\left(C_{1}\right)=n_{1}$, and we consider the case when

$$
\sup _{t>0} \sigma_{h}\left(S_{2}(t)\right)=\lim _{t \rightarrow 0^{+}} \sigma_{h}\left(S_{2}(t)\right)
$$

As $\operatorname{rank}\left(B_{1}\right)=\operatorname{rank}\left(C_{1}\right)=n_{1}$, by Lemma 6(5), we have $C_{1}^{\dagger} C_{1}=B_{1} B_{1}^{\dagger}=I_{n_{1}}$; this fact will be used frequently along the section. Besides from (10) it follows that $h=2 m-$ $n_{1}-1$. Since $\operatorname{rank}\left(C_{1} B_{1}\right)=n_{1}$, by Lemma 13 we have

$$
\lim _{t \rightarrow 0^{+}} \sigma_{h}\left(S_{2}(t)\right)=\lim _{t \rightarrow 0^{+}} \sigma_{h+1}\left(S_{2}(t)\right)=\sigma_{m-n_{1}}\left(P_{C} L_{1} P_{B}\right)=: \sigma_{0}>0
$$

Thus there exists an $\varepsilon>0$ such that the functions $t \mapsto \sigma_{h}\left(S_{2}(t)\right)$ and $t \mapsto \sigma_{h+1}\left(S_{2}(t)\right)$ are nonincreasing on the interval $(0, \varepsilon)$.

Let us suppose that σ_{0} is a multiple singular value of $P_{C} L_{1} P_{B}$. Then there are pairs of singular vectors $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)$ of $P_{C} L_{1} P_{B}$ associated with σ_{0} so that $U^{*} U=$ $I_{2}=V^{*} V$, where $U:=\left[u_{1}, u_{2}\right]$ and $V:=\left[v_{1}, v_{2}\right]$. Define now the matrix

$$
D_{0}:=D-\sigma_{0} U V^{*}
$$

Since $\left\|U V^{*}\right\|=1$, it follows that $\left\|D-D_{0}\right\|=\sigma_{0}$ and $U^{*} D_{0}=U^{*} D-\sigma_{0} V^{*}$. Given that $L_{1}=D-C_{2} \Sigma^{-1} B_{2}$, by (52) and (53) we have

$$
\left(-\left(u_{i}^{*} L_{1}-\sigma_{0} v_{i}^{*}\right) B_{1}^{\dagger},-u_{i}^{*} C_{2} \Sigma^{-1}, u_{i}^{*}\right)\left(\begin{array}{ccc}
O & O & B_{1} \\
O & \Sigma & B_{2} \\
C_{1} & C_{2} & D_{0}
\end{array}\right)=0, \quad i=1,2
$$

that is, 0 is a multiple eigenvalue of $M\left(\alpha, D_{0}\right)$.
From now let us assume that σ_{0} is a simple singular value of $P_{C} L_{1} P_{B}$. We will consider the matrix function $t \mapsto t S_{2}(t)$, which is analytic on \mathbb{R}. Then, by Lemma 11, there must be some $2 m \times 2 m$ unitary matrix functions

$$
U(t):=\left(U_{1}(t), U_{2}(t), \ldots, U_{2 m}(t)\right), V(t):=\left(V_{1}(t), V_{2}(t), \ldots, V_{2 m}(t)\right)
$$

and a diagonal matrix function $\Sigma(t)=\operatorname{diag}\left(\tilde{\sigma}_{1}(t), \tilde{\sigma}_{2}(t), \ldots, \tilde{\sigma}_{2 m}(t)\right) \in \mathbb{R}^{2 m \times 2 m}$, all analytic on \mathbb{R}, so that for each $t \neq 0$ we have

$$
U(t)^{*} t S_{2}(t) V(t)=\Sigma(t) \Leftrightarrow U(t)^{*} S_{2}(t) V(t)=\operatorname{diag}\left(\tilde{\sigma}_{i}(t) / t\right)
$$

Observe that for some interval $(0, a)$, with $a>0$, we can assume without loss of generality that all the functions $\tilde{\sigma}_{i}(t)$ are nonnegative on it. Let j, k be now the unique subscripts such that

$$
\lim _{t \rightarrow 0^{+}} \frac{\tilde{\sigma}_{j}(t)}{t}=\lim _{t \rightarrow 0^{+}} \frac{\tilde{\sigma}_{k}(t)}{t}=\sigma_{0}
$$

Thus, it is correct to assume that for each positive t sufficiently close to 0 we have $\tilde{\sigma}_{j}(t) \geqslant \tilde{\sigma}_{k}(t)$. Define the functions

$$
f(t):=\frac{\tilde{\sigma}_{j}(t)}{t}, \quad g(t):=\frac{\tilde{\sigma}_{k}(t)}{t}
$$

Then, we see that

$$
\lim _{t \rightarrow 0^{+}} f(t)=\lim _{t \rightarrow 0^{+}} g(t)=\sigma_{0}
$$

and there exists a $b>0$ such that $f(t), g(t)$ are analytic on $(0, b)$, and for $t \in(0, b)$ we have the inequality $f(t) \geqslant g(t)$.

Let us denote

$$
u(t):=\binom{u_{1}(t)}{u_{2}(t)}=U_{j}(t), \quad v(t):=\binom{v_{1}(t)}{v_{2}(t)}=V_{j}(t),
$$

and

$$
x(t):=\binom{x_{1}(t)}{x_{2}(t)}=U_{k}(t), \quad y(t):=\binom{y_{1}(t)}{y_{2}(t)}=V_{k}(t),
$$

where $U_{j}(t), U_{k}(t)$ and $V_{j}(t), V_{k}(t)$ are the j-th and k-th columns of $U(t)$ and $V(t)$, respectively. Since they are analytic functions, we infer that the following limits exist

$$
\lim _{t \rightarrow 0^{+}} u(t)=u:=\binom{u_{1}}{u_{2}}, \quad \lim _{t \rightarrow 0^{+}} v(t)=v:=\binom{v_{1}}{v_{2}}
$$

and

$$
\lim _{t \rightarrow 0^{+}} x(t)=x:=\binom{x_{1}}{x_{2}}, \quad \lim _{t \rightarrow 0^{+}} y(t)=y:=\binom{y_{1}}{y_{2}} .
$$

Moreover, $(u(t), v(t))$ and $(x(t), y(t))$ are pairs of singular vectors of $S_{2}(t)$ associated with the singular values $f(t)$ and $g(t)$, respectively. Therefore, for each $t \in(0, b)$ the equalities (23)-(33) but for $(u(t), v(t))$ (instead of u, v) and $f(t)$ (instead of σ_{0}), and for $(x(t), y(t))$ (instead of u, v) and $g(t)$ (instead of σ_{0}), respectively, are satisfied.

First note that from (24) we deduce that

$$
\lim _{t \rightarrow 0^{+}} C_{1} B_{1} v_{1}(t)=C_{1} B_{1} v_{1}=0
$$

Thus, as $\operatorname{rank}\left(C_{1}\right)=n_{1}$, we have $B_{1} v_{1}=0$, which is equivalent to $P_{B} v_{1}=v_{1}$ by Lemma 7(3). Similarly, as $\operatorname{rank}\left(B_{1}\right)=n_{1}$, being aware of Remark 9 and taking limits in (25) when $t \rightarrow 0^{+}$, we conclude that $C_{1}^{*} u_{2}=0$, which is equivalent to $P_{C} u_{2}=u_{2}$ by Lemma 7(2).

Now, being aware of Remark 9 and considering equations (23)-(30), changing t_{0} by t in them and as $\operatorname{Im}\left(C_{1}\right)=\operatorname{Ker}\left(P_{C}\right), \operatorname{Im}\left(B_{1}^{*}\right)=\operatorname{Ker}\left(P_{B}\right)$, by Lemma 7(2)(3), when $t \rightarrow 0^{+}$we infer that

$$
\begin{array}{r}
P_{C} L_{1} v_{1}=\sigma_{0} u_{1}, \\
\lim _{t \rightarrow 0^{+}} t^{-1} C_{1} B_{1} v_{1}(t)=L_{1} v_{2}-\sigma_{0} u_{2}, \\
L_{1} v_{2}-\sigma_{0} u_{2} \in \operatorname{Im}\left(C_{1}\right)=\operatorname{Ker}\left(P_{C}\right), \\
\lim _{t \rightarrow 0^{+}} t^{-1} B_{1}^{*} C_{1}^{*} u_{2}(t)=L_{1}^{*} u_{1}-\sigma_{0} v_{1}, \\
L_{1}^{*} u_{1}-\sigma_{0} v_{1} \in \operatorname{Im}\left(B_{1}^{*}\right)=\operatorname{Ker}\left(P_{B}\right), \\
P_{B} L_{1}^{*} u_{2}=\sigma_{0} v_{2} \\
C_{1}^{*} u_{1}=C_{1}^{*} u_{2}=0 \\
B_{1} v_{1}=B_{1} v_{2}=0 \\
P_{C} u_{1}=u_{1}, P_{C} u_{2}=u_{2} \\
P_{B} v_{1}=v_{1}, P_{B} v_{2}=v_{2} . \tag{70}
\end{array}
$$

Remark that all the above properties are true also for (x, y).
Now, let (z, w) be a pair of singular vectors of $P_{C} L_{1} P_{B}$ associated with the simple singular value σ_{0}. Let us see that there exist vectors $a:=\left(a_{1}, a_{2}\right)$ and $b:=\left(b_{1}, b_{2}\right)$ of $\mathbb{C}^{1 \times 2}$ such that

$$
\begin{equation*}
\left(u_{1}, u_{2}\right)=z a,\left(v_{1}, v_{2}\right)=w a,\left(x_{1}, x_{2}\right)=z b,\left(y_{1}, y_{2}\right)=w b \tag{71}
\end{equation*}
$$

where $a b^{*}=0$ and $\|a\|^{2}=\|b\|^{2}=1$.
First note that, as $P_{B} v_{i}=v_{i}$ and $P_{C} u_{i}=u_{i}, i=1,2$, by (61) and (66) equation (71) is equivalent to

$$
\left\{\begin{array}{l}
P_{C} L_{1} v_{2}=\sigma_{0} P_{C} u_{2} \\
P_{B} L_{1}^{*} u_{1}=\sigma_{0} P_{B} v_{1}
\end{array}\right.
$$

These last equalities are true by (63) and (65), respectively.
Hence, if we consider the matrices $V:=\left[v_{1}, v_{2}\right], U:=\left[u_{1}, u_{2}\right] \in \mathbb{C}^{m \times 2}$, from (71) we find that

$$
\begin{equation*}
U^{*} U=V^{*} V \tag{72}
\end{equation*}
$$

Thus, as in Section 5, the matrix

$$
D_{0}:=D-\sigma_{0} U V^{\dagger}
$$

satisfy $\left\|D-D_{0}\right\|=\sigma_{0}$ and $D_{0} V=D V-\sigma_{0} U$. Remark that all the above properties are true also for $X:=\left[x_{1}, x_{2}\right], Y:=\left[y_{1}, y_{2}\right]$.

So, to prove Theorem 5 in this case, it suffices to prove that 0 is a multiple eigenvalue of the matrix $M\left(\alpha, D_{0}\right)$, where $D_{0}:=D-\sigma_{0} U V^{\dagger}$ or $D_{0}:=D-\sigma_{0} X Y^{\dagger}$, respectively. The following lemma allows us to reduce the possible cases.

Lemma 20. With the preceding notations, we have
(1) $\operatorname{rank}(U)=\operatorname{rank}(V)=\operatorname{rank}(X)=\operatorname{rank}(Y)=1$,
(2) if $v_{1}=0$ then $y_{2}=0$,
(3) if $v_{2}=0$ then $y_{1}=0$.

Proof. (1) is immediate by (71). For demonstrating (2), let us assume now that $v_{1}=0$, hence $v_{2} \neq 0$. Since u, y are orthogonal, we have $v_{2}^{*} y_{2}=0$, i.e. by (71) $\bar{a}_{2} b_{2}=0$. Then $b_{2}=0$, consequently $y_{2}=0$. In a similar way (3) is proved.

At this moment, by the preceding lemma, the possible cases to analyze are two: (1) $v_{1}=0$ or $v_{2}=0$; (2) $u_{1}=\alpha u_{2}, v_{1}=\alpha v_{2}, x_{1}=\beta x_{2}$ and $y_{1}=\beta y_{2}$, with scalar nonzero α, β.

8.1. $v_{1}=0$ or $v_{2}=0$

First let us suppose that $v_{1}=0$ and let $D_{0}:=D-\sigma_{0} U V^{\dagger}$. Note that $u_{1}=0$. Hence v_{2} and u_{2} are nonzero vectors. To prove Theorem 5 in this case, we will search a pair of eigenvectors of $M\left(\alpha, D_{0}\right)$ associated with the eigenvalue 0 , one on the left and other on the right, so that they are orthogonal.

We are going to prove that

$$
\left(\begin{array}{ccc}
O & O & B_{1} \\
O & \Sigma & B_{2} \\
C_{1} & C_{2} & D_{0}
\end{array}\right)\left(\begin{array}{c}
-C_{1}^{\dagger}\left(L_{1} v_{2}-\sigma_{0} u_{2}\right) \\
-\Sigma^{-1} B_{2} v_{2} \\
v_{2}
\end{array}\right)=0
$$

Since $B_{1} v_{2}=0$ by property (68) and $D_{0} v_{2}=D v_{2}-\sigma_{0} u_{2}$, we just need to check

$$
-C_{1} C_{1}^{\dagger}\left(L_{1} v_{2}-\sigma_{0} u_{2}\right)-C_{2} \Sigma^{-1} B_{2} v_{2}+D v_{2}-\sigma_{0} u_{2}=0
$$

Or which is the same,

$$
C_{1} C_{1}^{\dagger}\left(L_{1} v_{2}-\sigma_{0} u_{2}\right)=L_{1} v_{2}-\sigma_{0} u_{2}
$$

because by (13), $L_{1}=D-C_{2} \Sigma^{-1} B_{2}$. That is, by Lemma 6(3), it suffices to prove that $L_{1} v_{2}-\sigma_{0} u_{2} \in \operatorname{Im} C_{1}$. Which is true by (63).

On the other hand, since $P_{B} v_{2}=v_{2}$, from (66) we conclude that $L_{1}^{*} u_{2}-\sigma_{0} v_{2} \in$ $\operatorname{Ker}\left(P_{B}\right)=\operatorname{Im}\left(B_{1}^{\dagger}\right)$. Hence, reasoning in a similar manner and using $u_{2}^{*} D_{0}=u_{2}^{*} D-$ $\sigma_{0} v_{2}^{*}$, it follows that

$$
\left(-\left(u_{2}^{*} L_{1}-\sigma_{0} v_{2}^{*}\right) B_{1}^{\dagger},-u_{2}^{*} C_{2} \Sigma^{-1}, u_{2}^{*}\right)\left(\begin{array}{ccc}
O & O & B_{1} \\
O & \Sigma & B_{2} \\
C_{1} & C_{2} & D_{0}
\end{array}\right)=0
$$

By the definition (13), $L_{2}=I_{m}+C_{2} \Sigma^{-2} B_{2}$. Moreover $v_{2}^{*} B_{1}^{\dagger}=0$, by (68). Let us denote by ϕ the following scalar:

$$
\begin{aligned}
\phi & :=\left(-\left(u_{2}^{*} L_{1}-\sigma_{0} v_{2}^{*}\right) B_{1}^{\dagger},-u_{2}^{*} C_{2} \Sigma^{-1}, u_{2}^{*}\right)\left(\begin{array}{c}
-C_{1}^{\dagger}\left(L_{1} v_{2}-\sigma_{0} u_{2}\right) \\
-\Sigma^{-1} B_{2} v_{2} \\
v_{2}
\end{array}\right) \\
& =u_{2}^{*} L_{1} B_{1}^{\dagger} C_{1}^{\dagger}\left(L_{1} v_{2}-\sigma_{0} u_{2}\right)+u_{2}^{*} L_{2} v_{2} .
\end{aligned}
$$

In order to prove Theorem 5 in this case we are going to see that $\phi=0$.
From (62),

$$
L_{1} v_{2}-\sigma_{0} u_{2}=\lim _{t \rightarrow 0^{+}} t^{-1} C_{1} B_{1} v_{1}(t) \Rightarrow C_{1}^{\dagger}\left(L_{1} v_{2}-\sigma_{0} u_{2}\right)=\lim _{t \rightarrow 0^{+}} t^{-1} C_{1}^{\dagger} C_{1} B_{1} v_{1}(t)
$$

But, since $C_{1}^{\dagger} C_{1}=I_{n_{1}}$, we have

$$
C_{1}^{\dagger}\left(L_{1} v_{2}-\sigma_{0} u_{2}\right)=\lim _{t \rightarrow 0^{+}} t^{-1} B_{1} v_{1}(t)
$$

Thus

$$
\phi=u_{2}^{*} L_{1} B_{1}^{\dagger} \lim _{t \rightarrow 0^{+}} t^{-1} B_{1} v_{1}(t)+u_{2}^{*} L_{2} v_{2}=\lim _{t \rightarrow 0^{+}} u_{2}(t)^{*} L_{1} B_{1}^{\dagger} \lim _{t \rightarrow 0^{+}} t^{-1} B_{1} v_{1}(t)+u_{2}^{*} L_{2} v_{2}
$$

that is,

$$
\phi=\lim _{t \rightarrow 0^{+}} \frac{u_{2}(t)^{*} L_{1} B_{1}^{\dagger} B_{1} v_{1}(t)}{t}+u_{2}^{*} L_{2} v_{2}
$$

By (26) we find that
$t u_{1}^{*}(t) L_{2} P_{B}+u_{2}^{*}(t) L_{1} P_{B}=f(t) v_{2}(t)^{*} \Rightarrow t u_{1}^{*}(t) L_{2} P_{B}+u_{2}^{*}(t) L_{1}-u_{2}^{*}(t) L_{1} B_{1}^{\dagger} B_{1}=f(t) v_{2}(t)^{*}$.
Therefore

$$
u_{2}^{*}(t) L_{1} B_{1}^{\dagger} B_{1}=t u_{1}^{*}(t) L_{2} P_{B}+u_{2}^{*}(t) L_{1}-f(t) v_{2}(t)^{*}
$$

Consequently

$$
\phi=\lim _{t \rightarrow 0^{+}} \frac{t u_{1}^{*}(t) L_{2} P_{B} v_{1}(t)+u_{2}^{*}(t) L_{1} v_{1}(t)-f(t) v_{2}(t)^{*} v_{1}(t)}{t}+u_{2}^{*} L_{2} v_{2}
$$

and, as $P_{B} v_{1}=0$ by (70),

$$
\phi=\lim _{t \rightarrow 0^{+}} \frac{u_{2}^{*}(t) L_{1} v_{1}(t)-f(t) v_{2}(t)^{*} v_{1}(t)}{t}+u_{2}^{*} L_{2} v_{2}
$$

$\operatorname{By}(23), P_{C} L_{1} v_{1}(t)+t P_{C} L_{2} v_{2}(t)=f(t) u_{1}(t)$. Hence we know that $L_{1} v_{1}(t)=f(t) u_{1}(t)-$ $t P_{C} L_{2} v_{2}(t)+C_{1} C_{1}^{\dagger} L_{1} v_{1}(t)$. Since $u_{2}^{*} P_{C}=u_{2}^{*}$, it follows that

$$
\phi=\lim _{t \rightarrow 0^{+}} \frac{f(t) u_{2}(t)^{*} u_{1}(t)+u_{2}(t)^{*} C_{1} C_{1}^{\dagger} L_{1} v_{1}(t)-f(t) v_{2}(t)^{*} v_{1}(t)}{t}
$$

But, by (33), we have $u_{2}(t)^{*} u_{1}(t)=v_{2}(t)^{*} v_{1}(t)$. Therefore

$$
\phi=\lim _{t \rightarrow 0^{+}} \frac{u_{2}(t)^{*} C_{1} C_{1}^{\dagger} L_{1} v_{1}(t)}{t}=\lim _{t \rightarrow 0^{+}} \frac{u_{2}(t)^{*} C_{1} B_{1} B_{1}^{\dagger} C_{1}^{\dagger} L_{1} v_{1}(t)}{t}
$$

because $B_{1} B_{1}^{\dagger}=I_{n_{1}}$. Finally, we will apply Lemma 8. Taking $x(t):=u_{2}(t), y(t):=$ $B_{1}^{\dagger} C_{1}^{\dagger} L_{1} v_{1}(t)$ and $G=C_{1} B_{1}$, we obtain

$$
\begin{aligned}
\lim _{t \rightarrow 0^{+}} G y(t) & =\lim _{t \rightarrow 0^{+}} C_{1} B_{1} B_{1}^{\dagger} C_{1}^{\dagger} L_{1} v_{1}(t)=0 \\
\lim _{t \rightarrow 0^{+}} \frac{x(t)^{*} G}{t} & =\lim _{t \rightarrow 0^{+}} \frac{u_{2}(t)^{*} C_{1} B_{1}}{t}=L_{1}^{*} u_{1}-\sigma_{0} v_{1}=0
\end{aligned}
$$

using (64) and that $u_{1}(t), v_{1}(t) \rightarrow 0$. Thus, by Lemma 8 we have $\phi=0$.

If $v_{2}=0$, since by Lemma 20(3), $y_{1}=0$, it suffices to repeat the preceding reasoning for the pair (x, y), with the matrix $D_{0}:=D-\sigma_{0} X Y^{\dagger}$.
8.2. $u_{1}=\alpha u_{2}, v_{1}=\alpha v_{2}, x_{1}=\beta x_{2}$, and $y_{1}=\beta y_{2}$, with $\alpha \beta \neq 0$.

From (71) we infer that there exist two nonzero complex numbers δ, η such that

$$
u=\binom{\delta \alpha z}{\delta z}, v=\binom{\delta \alpha w}{\delta w}, \quad x=\binom{\eta \beta z}{\eta z}, y=\binom{\eta \beta w}{\eta w}
$$

Since v, y are orthogonal, $\bar{\delta} \eta(\bar{\alpha} \beta+1) w^{*} w=0$. Consequently

$$
\begin{equation*}
\bar{\alpha} \beta+1=0 . \tag{73}
\end{equation*}
$$

On the other hand, applying Lemma 11 , for $t \in(0, \varepsilon)$, one has

$$
f^{\prime}(t)=\operatorname{Re}\left(u^{*}(t) S_{2}^{\prime}(t) v(t)\right)=\operatorname{Re}\left(\left(u_{1}(t)^{*} u_{2}(t)^{*}\right)\left(\begin{array}{cc}
O & P_{C} L_{2} P_{B} \\
t^{-2} C_{1} B_{1} & O
\end{array}\right)\binom{v_{1}(t)}{v_{2}(t)}\right)
$$

Since $u_{1}(t)^{*} P_{C} L_{2} P_{B} v_{2}(t)=u_{1}(t)^{*} L_{2} v_{2}(t)$, we get
$f^{\prime}(t)=\operatorname{Re}\left(t^{-2} u_{2}(t)^{*} C_{1} B_{1} v_{1}(t)+u_{1}(t)^{*} L_{2} v_{2}(t)\right)=t^{-2} u_{2}(t)^{*} C_{1} B_{1} v_{1}(t)+u_{1}(t)^{*} L_{2} v_{2}(t)$,
because of (32). As $C_{1} B_{1}=C_{1} B_{1}\left(C_{1} B_{1}\right)^{\dagger} C_{1} B_{1}$ and $\left(C_{1} B_{1}\right)^{\dagger}=B_{1}^{\dagger} C_{1}^{\dagger}$, by Lemma 7-4, we obtain

$$
t^{-2} u_{2}(t)^{*} C_{1} B_{1} v_{1}(t)=\frac{u_{2}(t)^{*} C_{1} B_{1}}{t} B_{1}^{\dagger} C_{1}^{\dagger} \frac{C_{1} B_{1} v_{1}(t)}{t} .
$$

Thus, from (64) and (62), we see that

$$
\lim _{t \rightarrow 0^{+}} t^{-2} u_{2}(t)^{*} C B v_{1}(t)=\left(u_{1}^{*} L_{1}-\sigma_{0} v_{1}^{*}\right) B_{1}^{\dagger} C_{1}^{\dagger}\left(L_{1} v_{2}-\sigma_{0} u_{2}\right)
$$

Therefore, as $v_{1}^{*} B_{1}^{\dagger}=0$ and $C_{1}^{\dagger} u_{2}=0$, we infer that

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} f^{\prime}(t)=u_{1}^{*}\left(L_{1} B_{1}^{\dagger} C_{1}^{\dagger} L_{1}+L_{2}\right) v_{2} \tag{74}
\end{equation*}
$$

Similarly, for $g(t)$ we obtain

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} g^{\prime}(t)=x_{1}^{*}\left(L_{1} B_{1}^{\dagger} C_{1}^{\dagger} L_{1}+L_{2}\right) y_{2} \tag{75}
\end{equation*}
$$

Now, since the functions $f(t), g(t)$ are strictly nonincreasing and f^{\prime}, g^{\prime} are continuous functions, we see that $f^{\prime}(t), g^{\prime}(t)$ are nonpositive. As there exist the limits of $f^{\prime}(t), g^{\prime}(t)$ when $t \rightarrow 0^{+}$, given in (74) and (75), we deduce that

$$
\begin{equation*}
u_{1}^{*}\left(L_{1} B_{1}^{\dagger} C_{1}^{\dagger} L_{1}+L_{2}\right) v_{2} \leqslant 0 \text { and } x_{1}^{*}\left(L_{1} B_{1}^{\dagger} C_{1}^{\dagger} L_{1}+L_{2}\right) y_{2} \leqslant 0 \tag{76}
\end{equation*}
$$

Using the expressions obtained at the beginning of this subsection for u, v, x, y, we get

$$
\begin{aligned}
& u_{1}^{*}\left(L_{1} B_{1}^{\dagger} C_{1}^{\dagger} L_{1}+L_{2}\right) v_{2}=|\delta|^{2} \bar{\alpha} z^{*}\left(L_{1} B_{1}^{\dagger} C_{1}^{\dagger} L_{1}+L_{2}\right) w, \\
& x_{1}^{*}\left(L_{1} B_{1}^{\dagger} C_{1}^{\dagger} L_{1}+L_{2}\right) y_{2}=|\eta|^{2} \bar{\beta} z^{*}\left(L_{1} B_{1}^{\dagger} C_{1}^{\dagger} L_{1}+L_{2}\right) w .
\end{aligned}
$$

Thus, from (76) we obtain

$$
\bar{\alpha} z^{*}\left(L_{1} B_{1}^{\dagger} C_{1}^{\dagger} L_{1}+L_{2}\right) w \leqslant 0 \text { and } \bar{\beta} z^{*}\left(L_{1} B_{1}^{\dagger} C_{1}^{\dagger} L_{1}+L_{2}\right) w \leqslant 0 .
$$

Denote in a short while $\chi:=z^{*}\left(L_{1} B_{1}^{\dagger} C_{1}^{\dagger} L_{1}+L_{2}\right) w \in \mathbb{C}$. Hence, as $\bar{\alpha} \beta+1=0$ by (73), from the preceding inequalities, we find that

$$
-\beta^{-1} \chi \leqslant 0 \text { and } \bar{\beta} \chi \leqslant 0 .
$$

Consequently, since $\beta \neq 0$, these two inequalities are only possible if $\chi=0$. That is, we have proved that if (z, w) is a pair of singular vectors of $P_{C} L_{1} P_{B}$ associated with the singular value σ_{0}, then $z^{*}\left(L_{1} B_{1}^{\dagger} C_{1}^{\dagger} L_{1}+L_{2}\right) w=0$. Therefore, for the pair (u, v) one has

$$
\begin{equation*}
u_{2}^{*}\left(L_{1} B_{1}^{\dagger} C_{1}^{\dagger} L_{1}+L_{2}\right) v_{2}=0 . \tag{77}
\end{equation*}
$$

Next, defining the matrix $D_{0}:=D-\sigma_{0} U V^{\dagger}$ we are going to prove that 0 is a multiple eigenvalue of $M\left(\alpha, D_{0}\right)$. In a similar way to that of Subsection 8.1, given that

$$
\left(\begin{array}{ccc}
O & O & B_{1} \\
O & \Sigma & B_{2} \\
C_{1} & C_{2} & D_{0}
\end{array}\right)\left(\begin{array}{c}
-C_{1}^{\dagger}\left(L_{1} v_{2}-\sigma_{0} u_{2}\right) \\
-\Sigma^{-1} B_{2} v_{2} \\
v_{2}
\end{array}\right)=0
$$

and

$$
\left(-\left(u_{2}^{*} L_{1}-\sigma_{0} v_{2}^{*}\right) B_{1}^{\dagger},-u_{2}^{*} C_{2} \Sigma^{-1}, u_{2}^{*}\right)\left(\begin{array}{ccc}
O & O & B_{1} \\
O & \Sigma & B_{2} \\
C_{1} & C_{2} & D_{0}
\end{array}\right)=0,
$$

to prove that 0 is a multiple eigenvalue of $M\left(\alpha, D_{0}\right)$, it suffices to see that

$$
\phi=\left(u_{2}^{*} L_{1}-\sigma_{0} v_{2}^{*}\right) B_{1}^{\dagger} C_{1}^{\dagger}\left(L_{1} v_{2}-\sigma_{0} u_{2}\right)+u_{2}^{*} L_{2} v_{2}=0 .
$$

That is as $v_{2}^{*} B_{1}^{\dagger}=0$ and $C_{1}^{\dagger} u_{2}=0$, it suffices to see that

$$
u_{2}^{*}\left(L_{1} B_{1}^{\dagger} C_{1}^{\dagger} L_{1}+L_{2}\right) v_{2}=0,
$$

which is true by (77). This completes the proof of Theorem 5.

Final remark on Section 8

Remark 15. In Section 7, Proposition 18, we have proved that if $\operatorname{rank}\left(B_{1}\right)<n_{1}$ or $\operatorname{rank}\left(C_{1}\right)<n_{1}$, then

$$
\sup _{t>0} \sigma_{h}\left(S_{2}(t)\right)=\lim _{t \rightarrow 0^{+}} \sigma_{h}\left(S_{2}(t)\right)
$$

whenever this limit is >0. Let us assume that $\operatorname{rank}\left(B_{1}\right)=\operatorname{rank}\left(C_{1}\right)=n_{1}$. If the limit

$$
\lim _{t \rightarrow 0^{+}} \sigma_{h}\left(S_{2}(t)\right)
$$

is finite and positive, the following question arises: does the equality

$$
\sup _{t>0} \sigma_{h}\left(S_{2}(t)\right)=\lim _{t \rightarrow 0^{+}} \sigma_{h}\left(S_{2}(t)\right)
$$

always hold? The answer is negative, as it can be seen in the following example. Let us consider the matrix of $\mathbb{C}^{3 \times 3}$

$$
\left(\begin{array}{cc}
0 & B \\
C & D
\end{array}\right):=\left(\begin{array}{c|cc}
0 & 1 & 0 \\
\hline 1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \Rightarrow S_{2}(t)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Then, $h=2$ and

$$
\sigma_{2}\left(S_{2}(t)\right)= \begin{cases}\sqrt{\frac{t^{2}+2+t \sqrt{t^{2}+4}}{2}} & \text { if } t \in(0,1 / \sqrt{2}] \\ 1 / t & \text { if } t \in[1 / \sqrt{2}, \infty)\end{cases}
$$

We have

$$
\lim _{t \rightarrow 0^{+}} \sigma_{2}\left(S_{2}(t)\right)=1>0
$$

but the supremum is attained at $t_{0}=1 / \sqrt{2}$ and its value is $\sqrt{2}$.

9. Scope of the results

Let $\alpha:=(A, B, C) \in L_{n, m}$. Let $T \in \mathbb{C}^{n \times n}$ an invertible matrix and consider the triple $\alpha_{T}:=\left(T A T^{-1}, T B, C T^{-1}\right)$. It is easy to see that $M(\alpha, X)$ has a double 0 eigenvalue if and only if $M\left(\alpha_{T}, X\right)$ has a double 0 eigenvalue, for $X \in \mathbb{C}^{m \times m}$. Hence

$$
\min _{\substack{X \in \mathbb{C}^{m \times m} \\ \mathrm{~m}(0, M(\alpha, X)) \geqslant 2}}\|X-D\|=\min _{\substack{X \in \mathbb{C}^{m \times m} \\ \mathrm{~m}\left(0, M\left(\alpha_{T}, X\right)\right) \geqslant 2}}\|X-D\| .
$$

Moreover, it is clear that $p_{\alpha}(t)=p_{\alpha_{T}}(t)$.
Finally, we wish to note that applying the same reasoning of this work, we can obtain the following result, more general than Theorem 2.

THEOREM 21. Let $\alpha:=(A, B, C) \in L_{n, m}$ be any triple of matrices, where 0 is a semisimple eigenvalue of A. Let $D \in \mathbb{C}^{m \times m}$. Let Q be an invertible matrix such that

$$
Q A Q^{-1}=\left(\begin{array}{cc}
O & O \\
O & A_{1}
\end{array}\right)
$$

where A_{1} is an invertible matrix. Let $\beta:=\left(Q A Q^{-1}, Q B, C Q^{-1}\right)$. Then,

$$
\min _{\substack{X \in \mathbb{C}^{m \times m} \\ \mathrm{~m}(0, M(\alpha, X)) \geqslant 2}}\|X-D\|=\sup _{t>0} \sigma_{p_{\beta}(t)+1}\left(S_{2}^{\beta}(t, D)\right) .
$$

Acknowledgments

We are indebted to M. Karow for drawing our attention to Reference [11]. We thank the two referees for their valuable comments and suggestions that greatly improved the previous version of the paper.

REFERENCES

[1] M. A. Beitia, I. de Hoyos, I. Zaballa, The change of similarity invariants under row perturbations, Linear Algebra Appl. 429 (2008), 1302-1333.
[2] D. S. Bernstein, Matrix Mathematics, Princeton University Press, 2005.
[3] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Pitman, London, 1979.
[4] G. Cravo, Matrix completion problems, Linear Algebra Appl. 430 (2009), 2511-2540.
[5] K. DU, Y. WEI, Structured pseudospectra and structured sensitivity of eigenvalues, J. Comput. Appl. Math. 197 (2006), 502-519.
[6] J. M. GonZÁLEZ de Durana, J. M. Gracia, Geometric multiplicity margin for a submatrix, Linear Algebra Appl. 349 (2002), 77-104.
[7] J. M. Gracia, Nearest matrix with two prescribed eigenvalues, Linear Algebra Appl. 401 (2005), 277-294.
[8] J. M. Gracia, F. E. Velasco, Nearest southeast submatrix that makes multiple a prescribed eigenvalue. Part 1, Linear Algebra Appl. 430 (2009), 1196-1215.
[9] D. Hinrichsen, B. Kelb, Spectral value sets: a graphical tool for robustness analysis, Systems Control Lett. 21 (1993), 127-136.
[10] D. Hinrichsen, A. J. Pritchard, Mathematical systems theory I, Springer, 2000.
[11] T. Hu, L. Qiu, On structured perturbation of Hermitian matrices, Linear Algebra Appl. 275-276 (1998), 287-314.
[12] A. N. MALYSHEV, A formula for the 2-norm distance from a matrix to the set of matrices with multiple eigenvalues, Numer. Math. 83 (3) (1999) 443-454.
[13] G. W. Stewart, J. G. Sun, Matrix perturbation theory, Academic Press, 1990.
[14] M. Wei, Perturbation theory for the Eckart-Young-Mirsky theorem and the constrained total least squares problem, Linear Algebra Appl. 280 (1998), 267-287.
(Received October 7, 2010)
Juan-Miguel Gracia
Department of Applied Mathematics and Statistics The University of the Basque Country

Faculty of Pharmacy
Paseo de la Universidad 7
ES-01006 Vitoria-Gasteiz
Spain
e-mail: juanmiguel.gracia@ehu.es
Francisco E. Velasco
Department of Applied Mathematics and Statistics The University of the Basque Country

Faculty of Pharmacy
Paseo de la Universidad 7
ES-01006 Vitoria-Gasteiz
Spain
e-mail: franciscoenrique.velasco@ehu.es

[^0]: Mathematics subject classification (2010): 15A18, 15A60, 15A09.
 Keywords and phrases: Singular values, analytic matrix functions, asymptotic behavior, Malyshev, Moore-Penrose inverse.

 This work was supported by the Ministry of Science and Innovation, Project MTM2010-19356-C02-01.

